```
Journal of Discrete Mathematical Sciences & Cryptography
ISSN 0972-0529 (Print), ISSN 2169-0065 (Online)
Vol. }26\mathrm{ (2023), No. 1, pp. 231-253
DOI : 10.1080/09720529.2021.1935095
```


A note on eccentricity based topological indices of honeycomb, oxide and 2-power interconnection networks

G. Kirithiga Nandini ${ }^{\ddagger}$
Department of Computer Science and Engineering
Hindustan Institute of Technology and Science
Chennai 603103
Tamil Nadu
India

Sandi Klavžar ${ }^{+}$
Faculty of Mathematics and Physics
University of Ljubljana
Jadranska cesta 19
1000 Ljubljana
Slovenia
and

Faculty of Natural Sciences and Mathematics
University of Maribor
Koroška cesta 160
2000 Maribor
Slovenia
and

Institute of Mathematics, Physics and Mechanics
Jadranska cesta 19
1000 Ljubljana
Slovenia

[^0]T. M. Rajalaxmi ${ }^{\S}$
Department of Mathematics
Sri Sivasubramaniya Nadar College of Engineering
Chennai 603110
Tamil Nadu
India
R. Sundara Rajan *
Department of Mathematics
Hindustan Institute of Technology and Science
Chennai 603103
Tamil Nadu
India

Abstract

In a series of papers, Imran et al. reported the total eccentricity index, the average eccentricity index, the eccentricity-based Zagreb indices, the atom-bond connectivity index, and the geometric arithmetic index of honeycomb networks, hypertrees, X-trees, and oxide networks. In this paper, it is demonstrated that these computations contain flaws. Corrected, and in many cases also simplified, formulas are also obtained.

Subject Classification: 05C05, 05C10, 05C12, 05C90, 92E10, 68R10.
Keywords: Eccentricity-based topological index, Honeycomb network, Hypertree, X-tree, Oxide network.

1. Introduction

Chemical graph theory has become very beneficial because of its applications in mathematical chemistry. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physico-chemical, pharmacological, toxicological, biological, and other properties of chemical compounds [13]. Among topological descriptors, connectivity indices play an important and prominent role. Applying M-polynomials which were introduced in [6] (see also [3, 7, 19, 20]), Cancan et al. [4] obtained topological indices which help to predict physico-chemical properties of the underlying dendrimers, and help to the study of the properties of the materials of ship building. Chemical-based experiments

[^1]indicate that there is strong relationship between the characteristics of chemical compounds and drugs and their molecular structures. Topological indices calculated for these chemical structures help us to understand the physical features, chemical reactivity and biological activity [29]. Ahmad et al. [1] obtained the degree based topological indices of line graphs of benzene rings embedded in P-type-surface in 2D network which may help to study the properties of benzene rings.

Different eccentricity based indices are being used for the modeling of biological activities of chemical compounds, and proved to provide a high degree of predictability as compared to some other well-known indices in case of anticonvulsant, anti-inflammatory, and diuretic activities. The research of these topological indices is very active, we point to the following selected list of related recent investigations $[2,5,14,15,27,28,30,31,32$, 33]. In this direction, in a series of papers [16, 17, 18], different eccentricity based topological indices were investigated on honeycomb networks, hypertrees, X-trees, and oxide networks. In this paper we demonstrate that these computations contain errors, and present corrected formulas. In many cases the new formulas are also simpler than the original ones, that is, they are given in a closed form.

The paper is organized as follows. In the rest of the introduction, definitions needed in this paper are stated. In Section 2 we consider honeycomb networks and correct results from [17], in Section 3 we correct results from [16] on oxide networks, and in Section 4 we correct results from [18] on two classes of 2-power interconnection networks, such as hypertree networks and X-tree networks.

The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest path between them. For any vertex $v \in V(G)$, the eccentricity of v is defined as $e c(v)=\max \{d(v, u): u \in V(G)\}$. The degree of a vertex v will be denoted by $d(v)$. The eccentricity based topological indices of interest in this paper are defined for a connected graph G as follows, where GA stands for geometric-arithmetic and ABC for atom bond connectivity.

- Total-eccentricity index [8]: $\zeta(G)=\sum_{u \in V(G)} e c(u)$
- Average eccentricity index [16] : $\operatorname{avec}(G)=\frac{1}{n} \sum_{v \in V(G)} \operatorname{ec}(v)$
- First Zagreb eccentricity index [11]: $M_{1}^{*}(G)=\sum_{u v \in E(G)}(e c(u)+e c(v))$
- Second Zagreb eccentricity index [11] : $M_{1}^{* *}(G)=\sum_{v \in V(G)} e c(v)^{2}$
- Third Zagreb eccentricity index $[11]: M_{2}^{*}(G)=\sum_{u v \in E(G)}(e c(u) \cdot e c(v))$
- Fourth $G A$ eccentricity index [10] : $G A_{4}(G)=\sum_{u v \in E(G)} \frac{2 \cdot \sqrt{e c(u) \cdot e c(v)}}{\operatorname{ec(u)+ec(v)}}$
- Fifth multiplicative $A B C$ index [9] : $A B C_{5}(G)=\sum_{u v \in E(G)} \sqrt{\frac{e c(u)+e c(v)-2}{e c(u) \cdot e c(v)}}$
- Eccentric connectivity index [26] : $\xi(G)=\sum_{v \in V(G)} d(v) \cdot e c(v)$

2. Honeycomb networks

In this section we consider honeycomb networks and correct results from [17].

A unit honeycomb network is a hexagon, denoted by $H C_{1}$. The honeycomb network $H C_{2}$ is obtained from $H C_{1}$ by adding six hexagons around its boundary edges. Inductively, honeycomb network $H C_{n}$ is obtained from $H C_{n-1}$ by adding a layer of hexagons around the boundary edges of $H C_{n-1}$, see Fig. 1. The number of vertices and edges of $H C_{n}$ is $6 n^{2}$ and $9 n^{2}-3 n$, respectively [21].

Figure 1
Honeycomb network HC_{3}

In the following formulas (1)-(7), the results reported in [17, Theorems 2.2.1-2.8.1] are listed.

$$
\begin{align*}
& \zeta\left(H C_{n}\right)=6 \sum_{m=1}^{n} \sum_{k=n}^{2 n-1} m(2 k+1)+12 \sum_{m=1}^{n-1} \sum_{k=n}^{2 n-2} m(k+1) \tag{1}\\
& \operatorname{avec}\left(H C_{n}\right)=\frac{1}{n^{2}}\left\{\sum_{m=1}^{n} \sum_{k=n}^{2 n-1} m(2 k+1)+2 \sum_{m=1}^{n-1} \sum_{k=n}^{2 n-2} m(k+1)\right\} \tag{2}\\
& M_{1}^{*}\left(H C_{n}\right)=12 \sum_{k=n}^{2 n-1}(2 k+1)+6 \sum_{m=1}^{n-1} \sum_{k=n}^{2 n-2} m(12 k+13) \tag{3}\\
& M_{1}^{* *}\left(H C_{n}\right)=6 \sum_{m=1}^{n} \sum_{k=n}^{2 n-1} m(2 k+1)^{2}+24 \sum_{m=1}^{n-1} \sum_{k=n}^{2 n-2} m(k+1)^{2} \tag{4}\\
& M_{2}^{*}\left(H C_{n}\right)=6 \sum_{k=n}^{2 n-1}(2 k+1)^{2}+12 \sum_{m=1}^{n-1} \sum_{k=n}^{2 n-2} m\left(6 k^{2}+13 k+7\right) \tag{5}\\
& G A_{4}\left(H C_{n}\right)=6+12 \sum_{m=1}^{n-1} \sum_{k=n}^{2 n-2}\left\{m \frac{\sqrt{(2 k+1)(2 k+2)}}{4 k+3}+2 m \frac{\sqrt{(2 k+2)(2 k+3)}}{4 k+5}\right\} \tag{6}
\end{align*}
$$

$$
\begin{align*}
A B C_{5}\left(H C_{n}\right)= & 12 \sum_{k=n}^{2 n-1} \frac{\sqrt{k}}{2 k+1}+6 \sum_{m=1}^{n-1} \sum_{k=n}^{2 n-2}\left\{m \sqrt{\frac{4 k+1}{(2 k+1)(2 k+2)}}\right. \\
& \left.+2 m \sqrt{\frac{4 k+3}{(2 k+2)(2 k+3)}}\right\} \tag{7}
\end{align*}
$$

Consider now the honeycomb network HC_{3}. It contains 54 vertices and 72 edges, and by a direct calculation we find that:

- $\quad e c(1)=e c(2)=e c(3)=e c(4)=e c(7)=e c(12)=e c(16)=e c(22)=e c(27)$
$=e c(28)=e c(33)=e c(39)=e c(43)=e c(48)=e c(52)=e c(53)=e c(54)$
$=e c(51)=11$;
- $\quad e c(5)=e c(6)=e c(8)=e c(11)=e c(17)=e c(21)=e c(34)=e c(38)=e c(44)$
$=e c(47)=e c(49)=e c(50)=10$;
- $\quad e c(9)=e c(10)=e c(13)=e c(15)=e c(23)=e c(26)=e c(29)=e c(32)=e c(40)$
$=e c(42)=e c(45)=e c(46)=9$;
- $\quad e c(14)=e c(18)=e c(20)=e c(35)=e c(37)=e c(41)=8$ and
- $\quad e c(19)=e c(24)=e c(25)=e c(30)=e c(31)=e c(36)=7$.

From these values we obtain:

$$
\begin{align*}
\zeta\left(H C_{3}\right)= & (11 \times 18)+(10 \times 12)+(9 \times 12)+(8 \times 6)+(7 \times 6)=516 \tag{8}\\
\operatorname{avec}\left(H C_{3}\right)= & \frac{1}{54}((11 \times 18)+(10 \times 12)+(9 \times 12)+(8 \times 6)+(7 \times 6))=9.55 \tag{9}\\
M_{1}^{*}\left(H C_{3}\right)= & 6(7+7)+6(5+5)+6(6+5)+12(6+7)=366 \tag{10}\\
M_{1}^{* *}\left(H C_{3}\right)= & 12\left(7^{2}\right)+6\left(6^{2}\right)+6\left(5^{2}\right)=954 \tag{11}\\
M_{2}^{*}\left(H C_{3}\right)= & 6(7+7)+6(5+5)+6(6+5)+12(6+7)=366 \tag{12}\\
G A_{4}\left(H C_{3}\right)= & 2 \frac{\sqrt{(11 \times 11)}}{(11+11)}+2 \frac{\sqrt{(10 \times 11)}}{(10+11)}+2 \frac{\sqrt{(10 \times 9)}}{(10+9)}+2 \frac{\sqrt{(9 \times 9)}}{(9+9)} \\
& +2 \frac{\sqrt{(9 \times 8)}}{(9+8)}+2 \frac{\sqrt{(8 \times 7)}}{(8+7)}+2 \frac{\sqrt{(7 \times 7)}}{(7+7)}=71.918 \tag{13}\\
A B C_{5}\left(H C_{3}\right)= & \sqrt{\frac{11+11-2}{11 \times 11}}+\sqrt{\frac{10+11-2}{10 \times 11}}+\sqrt{\frac{9+10-2}{9 \times 10}}+\sqrt{\frac{9+9-2}{9 \times 9}} \\
& +\sqrt{\frac{9+8-2}{9 \times 8}}+\sqrt{\frac{8+7-2}{8 \times 7}}+\sqrt{\frac{7+7-2}{7 \times 7}}=31.629 \tag{14}
\end{align*}
$$

On the other hand, (1) ([17, Theorem 2.2.1]) gives $\zeta\left(\mathrm{HC}_{3}\right)=1296$, (2) $\left(\left[17\right.\right.$, Theorem 2.3.1]) gives $\operatorname{avec}\left(\mathrm{HC}_{3}\right)=24$, (3) ([17, Theorem 2.4.1]) gives $M_{1}^{*}\left(H C_{3}\right)=2304$, (4) $\left(\left[17\right.\right.$, Theorem 2.5.1]) gives $M_{1}^{* *}\left(H C_{3}\right)=11988$, (5) ([17, Theorem 2.6.1]) gives $M_{2}^{*}\left(H C_{3}\right)=10686$, (6) ([17, Theorem 2.7.1]) gives $G A_{4}\left(H C_{3}\right)=113.8315$, and (7) ([17, Theorem 2.8.1]) gives $A B C_{5}\left(H C_{3}\right)=55.9638$. Comparing these values with (8)-(14) we see that the formulas stated in (1)-(7) are not correct. In the next theorem we fix the result as follows.

Theorem 2.1: Let $H C_{n}$ be the n-dimensional honeycomb network. Then we have the following.
(i) $\quad \zeta\left(H C_{n}\right)=n\left(20 n^{2}-3 n+1\right)$;
(ii) $\operatorname{avec}\left(H C_{n}\right)=\frac{20 n^{2}-3 n+1}{6 n}$;
(iii) $\quad M_{1}^{*}\left(H C_{n}\right)=3 n\left(20 n^{2}-11 n+3\right)$;
(iv) $M_{1}^{* *}\left(H C_{n}\right)=n\left(68 n^{3}-20 n^{2}+7 n-1\right)$;
(v) $\quad M_{2}^{*}\left(H C_{n}\right)=6 n^{2}\left(17 n^{2}-13 n+5\right)$;

Table 1
Vertex partition of honeycomb network for n-levels based on eccentricity of each vertex with existence of their frequencies.

$\varepsilon(u)$	Frequency	Range of m and n
$2 n+2 m-1$	$6 m$	$1 \leq m \leq n, n \geq 1$
$2 n+2 m$	$6 m$	$1 \leq m \leq n-1, n>1$

Table 2
Corrected edge partition of honeycomb network for n-levels based on eccentricity of end vertices with existence of their frequencies.

$(\varepsilon(u), \varepsilon(v))$	Frequency	Range of m and n
$(2 n+2 m-1,2 n+2 m-1)$	6	$1 \leq m \leq n, n \geq 1$
$(2 n+2 m-1,2 n+2 m)$	$6 m$	$1 \leq m \leq n-1, n>1$
$(2 n+2 m, 2 n+2 m+1)$	$12 m$	$1 \leq m \leq n-1, n>1$

(vi) $G A_{4}\left(H C_{n}\right)=6 n+\sum_{m=1}^{n-1} 12 m \frac{\sqrt{(2 n+2 m-1)(2 n+2 m)}}{4 n+4 m-1}$

$$
+\sum_{m=1}^{n-1} 24 m \frac{\sqrt{(2 n+2 m)(2 n+2 m+1)}}{4 n+4 m+1}
$$

(vii) $\quad A B C_{5}\left(H C_{n}\right)=\sum_{m=1}^{n} 6 \frac{\sqrt{4 n+4 m-4}}{2 n+2 m-1}+\sum_{m=1}^{n-1} 12 m \sqrt{\frac{4 n+4 m-1}{(2 n+2 m)(2 n+2 m-1)}}$

$$
+\sum_{m=1}^{n-1} 24 m \sqrt{\frac{4 n+4 m+1}{(2 n+2 m)(2 n+2 m+1)}} .
$$

Proof: Based on the vertex and edge partitions with respect to eccentricity as given in Tables 1 and 2, respectively, we can compute as follows.
(i)

$$
\begin{aligned}
\zeta\left(H C_{n}\right) & =6 \sum_{m=1}^{n} m(2(n+m-1))+\sum_{m=1}^{n-1} 6 m(2(n+m-1)+2) \\
& =n\left(20 n^{2}-3 n+1\right) ;
\end{aligned}
$$

(ii) $\operatorname{avec}\left(H C_{n}\right)=\frac{1}{6 n^{2}}\left\{\sum_{m=1}^{n} 6 m(2 n+2 m-1)+\sum_{m=1}^{n-1} 6 m(2(n+m))\right\}$

$$
=\frac{20 n^{2}-3 n+1}{6 n}
$$

Using the same approach, we prove equations (iii), (iv), and (v).
(vi) $G A_{4}\left(H C_{n}\right)=\sum_{m=1}^{n} 6 \times 2 \frac{\sqrt{(2(n+m-1)+1)(2(n+m-1)+1)}}{2(n+m-1)+1+2(n+m-1)+1}$

$$
\begin{aligned}
& +\sum_{m=1}^{n-1} 12 m \frac{\sqrt{(2(n+m-1)+1)(2(n+m-1)+2)}}{2(n+m-1)+1+2(n+m-1)+2} \\
& +\sum_{m=1}^{n-1} 12 m \times 2 \frac{\sqrt{(2(n+m-1)+2)(2(n+m-1)+3)}}{2(n+m-1)+2+2(n+m-1)+3} \\
& =6 n+\sum_{m=1}^{n-1} 12 m \frac{\sqrt{(2 n+2 m-1)(2 n+2 m)}}{4 n+4 m-1} \\
& +\sum_{m=1}^{n-1} 24 m \frac{\sqrt{(2 n+2 m)(2 n+2 m+1)}}{4 n+4 m+1} ;
\end{aligned}
$$

(vii) $A B C_{5}\left(H C_{n}\right)=\sum_{m=1}^{n} 6 \times \sqrt{\frac{2(n+m-1)+1+2(n+m-1)+1-2}{(2(n+m-1)+1)(2(n+m-1)+1)}}$

$$
\begin{aligned}
& \quad+\sum_{m=1}^{n-1} 6 m \times 2 \sqrt{\frac{2(n+m-1)+1+2(n+m-1)+2}{(2(n+m-1)+1)(2(n+m-1)+2)}} \\
& +\sum_{m=1}^{n-1} 12 m \times 2 \sqrt{\frac{2(n+m-1)+2+2(n+m-1)+3}{(2(n+m-1)+2)(2(n+m-1)+3)}} \\
& =\sum_{m=1}^{n} 6 \frac{\sqrt{4 n+4 m-4}}{2 n+2 m-1}+\sum_{m=1}^{n-1} 12 m \sqrt{\frac{4 n+4 m-1}{(2 n+2 m)(2 n+2 m-1)}} \\
& \quad+\sum_{m=1}^{n-1} 24 m \sqrt{\frac{4 n+4 m+1}{(2 n+2 m)(2 n+2 m+1)} .}
\end{aligned}
$$

3. Oxide networks

In this section we consider oxide networks and correct results from [16].

The n-dimensional oxide network is denoted by $O X_{n}$ and is obtained from the n-dimensional silicate network (cf. [22]) which is in turn a

Figure 2
Oxide network OX_{3}
(silicate) sheet of tetrahedrons. The corner vertices of a tetrahedron are oxygen nodes and the center vertices are silicon nodes. When all the silicon vertices are deleted from a silicate network, an oxide network is constructed. The structure of $O X_{n}$ should be understand from Fig. 2, where the oxide network OX_{3} is shown. The number of vertices in $O X_{n}$ is $9 n^{2}+3 n$ and the number of edges is $18 n^{2}$.

In the following formulas (15)-(21), the results reported in [16, Theorems 1-7] are listed.

$$
\begin{align*}
\zeta\left(O X_{n}\right)= & 6 \sum_{m=1}^{n} \sum_{k=n}^{2 n-1}\{6 m k+4 m-2 k-1\} \tag{15}\\
\operatorname{avec}\left(O X_{n}\right)= & \frac{2}{3 n^{2}+n} \sum_{m=1}^{n} \sum_{k=n}^{2 n-1}\{6 m k+4 m-2 k-1\} \tag{16}\\
M_{1}^{*}\left(O X_{n}\right)= & 12 \sum_{m=1}^{n} \sum_{k=n}^{2 n-1}\{8 m k+5 m-2 k-1\}+12 \sum_{m=1}^{n-1} \sum_{k=n}^{2 n-2} m(4 k+5) \tag{17}\\
M_{1}^{* *}\left(O X_{n}\right)= & 6 \sum_{m=1}^{n} \sum_{k=n}^{2 n-1}\left\{2 m\left(6 k^{2}+8 k+3\right)-(2 k+1)^{2}\right\} \tag{18}\\
M_{2}^{*}\left(O X_{n}\right)= & 12 \sum_{m=1}^{n} \sum_{k=n}^{2 n-1}\left\{2 m\left(8 k^{2}+8 k+3\right)-\left(4 k^{2}+2 k+1\right)\right\} \\
& +24 \sum_{m=1}^{n-1} \sum_{k=n}^{2 n-2} m(2 k+3)(k+1) \tag{19}
\end{align*}
$$

$$
\begin{align*}
G A_{4}\left(O X_{n}\right)= & 12 \sum_{m=1}^{n} \sum_{k=n}^{2 n-1}\left\{\frac{2 m-1}{2}+2 m \frac{\sqrt{(2 k+1)(2 k+2)}}{4 k+3}\right\} \\
& +24 \sum_{m=1}^{n-1} \sum_{k=n}^{2 n-2} m \sqrt{\frac{(2 k+2)(2 k+3)}{4 k+5}} \tag{20}\\
A B C_{5}\left(O X_{n}\right)= & 12 \sum_{m=1}^{n} \sum_{k=n}^{2 n-1}\left\{\frac{(2 m-1) \sqrt{k}}{2 k+1}+m \sqrt{\frac{4 k+1}{(2 k+1)(2 k+2)}}\right\} \\
& +12 \sum_{m=1}^{n-1} \sum_{k=n}^{2 n-2} m \sqrt{\frac{4 k+3}{(2 k+2)(2 k+3)}} \tag{21}
\end{align*}
$$

Consider now the oxide network OX_{3} which contains 90 vertices and 162 edges. In OX_{3}, we have the following six different values of eccentricities.

- $\quad e c(1)=e c(2)=e c(3)=e c(4)=e c(16)=e c(25)=e c(31)=e c(42)=e c(49)$

$$
=e c(60)=e c(66)=e c(75)=e c(80)=e c(87)=e c(88)=e c(89)=e c(90)=12
$$

- $\quad e c(5)=e c(6)=e c(7)=e c(8)=e c(9)=e c(10)=e c(11)=e c(12)=e c(15)$

$$
\begin{aligned}
& =e c(17)=e c(24)=e c(26)=e c(30)=e c(32)=e c(41)=e c(43)=e c(48) \\
& =e c(50)=e c(59)=e c(61)=e c(65)=e c(67)=e c(74)=e c(76)=e c(79) \\
& =e c(81)=e c(82)=e c(83)=e c(84)=e c(85)=e c(86)=11 ;
\end{aligned}
$$

- $\quad e c(13)=e c(14)=e c(18)=e c(20)=e c(21)=e c(22)=e c(23)=e c(33)=e c(40)$ $=e c(51)=e c(58)=e c(68)=e c(73)=e c(77)=e c(78)=10$;
- $\quad e c(19)=e c(27)=e c(29)=e c(34)=e c(39)=e c(44)=e c(47)=e c(52)$
$=e c(57)=e c(62)=e c(64)=e c(69)=e c(70)=e c(71)=e c(72)=9$;
- $\quad e c(28)=e c(35)=e c(38)=e c(53)=e c(56)=e c(63)=8$ and
- $\quad e c(36)=e c(37)=e c(45)=e c(46)=e c(54)=e c(55)=7$.

From these values we obtain:

$$
\begin{align*}
\zeta\left(\mathrm{OX}_{3}\right)= & (7 \times 6)+(9 \times 18)+(11 \times 30)+(8 \times 6)+(10 \times 12) \\
& +(12 \times 18)=918 \tag{22}\\
\operatorname{avec}\left(\mathrm{OX}_{3}\right)= & \frac{1}{90}((7 \times 6)+(9 \times 18)+(11 \times 30)+(8 \times 6)+(10 \times 12) \\
& +(12 \times 18))=10.2 \tag{23}
\end{align*}
$$

$$
\begin{align*}
G A_{4}\left(O X_{3}\right)= & 36 \frac{\sqrt{(12 \times 11)}}{(12+11)}+30 \frac{\sqrt{(11 \times 11)}}{(11+11)}+24 \frac{\sqrt{(11 \times 10)}}{(11+10)} \\
& +24 \frac{\sqrt{(10 \times 9)}}{(10+9)}+18 \frac{\sqrt{(9 \times 9)}}{(9+9)}+12 \frac{\sqrt{(9 \times 8)}}{(9+8)} \\
& +12 \frac{\sqrt{(8 \times 7)}}{(8+7)}+6 \frac{\sqrt{(7 \times 7)}}{(7+7)}=83.9258 \tag{24}\\
A B C_{5}\left(O X_{3}\right)= & 36 \sqrt{\frac{11+12-2}{11 \times 12}}+30 \sqrt{\frac{11+11-2}{11 \times 11}}+24 \sqrt{\frac{10+11-2}{10 \times 11}} \\
& +24 \sqrt{\frac{9+10-2}{9 \times 10}}+18 \sqrt{\frac{9+9-2}{9 \times 9}}+12 \sqrt{\frac{9+8-2}{9 \times 8}} \\
& +12 \sqrt{\frac{8+7-2}{8 \times 7}}+6 \sqrt{\frac{7+7-2}{7 \times 7}}=69.192 \tag{25}
\end{align*}
$$

On the other hand, (15) ([16, Theorem 1]) gives $\zeta\left(O X_{3}\right)=2538$, (16) ([16, Theorem 2]) gives $\operatorname{avec}\left(\mathrm{OX}_{3}\right)=169.2$, (20) ([16, Theorem 6]) gives $G A_{4}\left(O X_{3}\right)=690.6036$, and (21) ([16, Theorem 7]) gives $A B C_{5}\left(\mathrm{OX}_{3}\right)=$ 190.1088. Comparing these values with (22), (23), (24), and (25) we see that the formulas stated in (15), (16), (20), and (21) are not correct. In a similar way we see that the formulas (17), (18), and (19) are not correct. In the next theorem we fix the formulas.

Theorem 3.1 : Let $O X_{n}$ be the n-dimensional oxide network. Then, we have the following.
(i) $\quad \zeta\left(O X_{n}\right)=6 n^{2}(5 n+2)$;
(ii) $\operatorname{avec}\left(O X_{n}\right)=\frac{2 n(5 n+2)}{3 n+1}$;
(iii) $M_{1}^{*}\left(O X_{n}\right)=120 n^{3}$;
(iv) $M_{1}^{* *}\left(O X_{n}\right)=6 n^{3}(17 n+8)$;
(v) $M_{2}^{*}\left(O X_{n}\right)=6 n^{2}\left(34 n^{2}-1\right)$;

Table 3

Vertex partitions of oxide network for n-levels based on eccentricity of each vertex with existence of their frequencies.

$\varepsilon(u)$	Frequency	Range of m and n
$2 n+2 m-1$	$6(2 m-1)$	$1 \leq m \leq n, n \geq 1$
$2 n+2 m$	$6 m$	$1 \leq m \leq n, n \geq 1$

Table 4
Edge partitions of oxide network for n-levels based on eccentricity of end vertices with existence of their frequencies.

$(\varepsilon(u), \varepsilon(v))$	Frequency	Range of m and n
$(2 n+2 m-1,2 n+2 m-1)$	$6(2 m-1)$	$1 \leq m \leq n, n \geq 1$
$(2 n+2 m-1,2 n+2 m)$	$12 m$	$1 \leq m \leq n, n \geq 1$
$(2 n+2 m, 2 n+2 m+1)$	$12 m$	$1 \leq m \leq n-1, n>1$

(vi) $G A_{4}\left(O X_{n}\right)=6 n^{2}+\sum_{m=1}^{n} 24 m \frac{\sqrt{(2 n+2 m-1)(2 n+2 m)}}{4 n+4 m-1}$

$$
+\sum_{m=1}^{n-1} 24 m \frac{\sqrt{(2 n+2 m)(2 n+2 m+1)}}{4 n+4 m+1}
$$

(vii) $A B C_{5}\left(O X_{n}\right)=\sum_{m=1}^{n} 12(2 m-1) \frac{\sqrt{n+m-1}}{2 n+2 m-1}$

$$
\begin{aligned}
& +\sum_{m=1}^{n} 12 m \sqrt{\frac{4 n+4 m-3}{(2 n+2 m-1)(2 n+2 m)}} \\
& +\sum_{m=1}^{n-1} 12 m \sqrt{\frac{4 n+4 m-1}{(2 n+2 m)(2 n+2 m+1)}}
\end{aligned}
$$

Proof: Using the vertex and edge partitioned from Tables 3 and 4, we have the following computations.
(i)

$$
\zeta\left(O X_{n}\right)=\sum_{m=1}^{n} 6(2 m-1)(2(n+m-1)+1)+\sum_{m=1}^{n} 6 m(2(n+m-1)+2)
$$

$$
\begin{aligned}
& =\sum_{m=1}^{n} 6(2 m-1)(2 n+2 m-1)+\sum_{m=1}^{n} 6 m(2 n+2 m) \\
& =6 n^{2}(5 n+2) ;
\end{aligned}
$$

(ii) $\quad \operatorname{avec}\left(O X_{n}\right)=\frac{1}{9 n^{2}+3 n}\left\{\sum_{m=1}^{n} 6(2 m-1)(2 n+2 m-1)+\sum_{m=1}^{n} 6 m(2 n+2 m)\right\}$

$$
\begin{aligned}
& =\frac{1}{9 n^{2}+3 n}\left\{6 n^{2}(5 n+2)\right\} \\
& =\frac{2 n(5 n+2)}{3 n+1}
\end{aligned}
$$

Using the same approach, we prove equations (iii), (iv), and (v).
(vi) $G A_{4}\left(O X_{n}\right)=\sum_{m=1}^{n} 6(2 m-1) \frac{2 \sqrt{(2(n+m-1)+1)(2(n+m-1)+1)}}{4 n+4 m-2}$

$$
\begin{aligned}
& +\sum_{m=1}^{n} 12 m \frac{2 \sqrt{(2(n+m-1)+1)(2(n+m-1)+2)}}{4 n+4 m-1} \\
& +\sum_{m=1}^{n-1} 12 m \frac{2 \sqrt{(2(n+m-1)+2)(2(n+m-1)+3)}}{4 n+4 m+1} \\
& =6 n^{2}+\sum_{m=1}^{n} 24 m \frac{\sqrt{(2 n+2 m-1)(2 n+2 m)}}{4 n+4 m-1} \\
& +\sum_{m=1}^{n-1} 24 m \frac{\sqrt{(2 n+2 m)(2 n+2 m+1)}}{4 n+4 m+1} ;
\end{aligned}
$$

(vii) $A B C_{5}\left(O X_{n}\right)=\sum_{m=1}^{n} 6(2 m-1) \sqrt{\frac{2 n+2 m-1+2 n+2 m-1-2}{(2 n+2 m-1)^{2}}}$

$$
\begin{aligned}
& +\sum_{m=1}^{n} 12 m \sqrt{\frac{2 n+2 m-1+2 n+2 m-2}{(2 n+2 m-1)(2 n+2 m)}} \\
& +\sum_{m=1}^{n-1} 12 m \sqrt{\frac{2 n+2 m+2 n+2 m+1-2}{(2 n+2 m)(2 n+2 m+1)}} \\
& =\sum_{m=1}^{n} 12(2 m-1) \frac{\sqrt{n+m-1}}{2 n+2 m-1} \\
& +\sum_{m=1}^{n} 12 m \sqrt{\frac{4 n+4 m-3}{(2 n+2 m-1)(2 n+2 m)}} \\
& +\sum_{m=1}^{n-1} 12 m \sqrt{\frac{4 n+4 m-1}{(2 n+2 m)(2 n+2 m+1)}} .
\end{aligned}
$$

Figure 3
Hypertree network HT(3)

4. 2-power interconnection networks

In this section we consider 2-power interconnection networks and correct results from [18]. In the first subsection we deal with hypertree networks, and in the second subsection with X-tree networks.

4.1 Hypertree networks

A hypertree $H T(k)$ [12] is constructed as follows. Start with a complete binary tree T_{k} (a binary tree in which level $i, 0 \leq i \leq k$, contains 2^{i} vertices). Label the vertices of T_{k} as follows. The root has label 1, and the children of a vertex x are labeled by $2 x$ and $2 x+1$. The hypertree $H T(k)$ is then obtained by adding edges in each level $i, 1 \leq i \leq k$, between vertices whose label difference is 2^{i-1}. See Fig. 3 for $H T(3)$.

In the following formulas (26)-(30), the results reported in [18, Theorems 1-5] are listed.

$$
\begin{align*}
\xi(H T(k)) & =2 k+4 \sum_{i=1}^{k-1} \sum_{p=k}^{2 k-2} 2^{i} p+2^{k+1}(2 k-1) \tag{26}\\
\zeta(H T(k)) & =k+\sum_{i=1}^{k-1} \sum_{p=k}^{2 k-2} 2^{i} p+2^{k}(2 k-1) \tag{27}\\
M_{1}^{*}(H T(k)) & =6 k+\sum_{i=1}^{k-1} \sum_{p=k}^{2 k-2}(2 p+1) 2^{i+1}+\sum_{i=1}^{k-1} \sum_{p=k}^{2 k-2}(2 p+2) 2^{i} \tag{28}
\end{align*}
$$

$$
\begin{align*}
& M_{1}^{* *}(H T(k))=k^{2}+\sum_{i=1}^{k-1} \sum_{p=k}^{2 k-2} 2^{i} p^{2}+2^{k}(2 k-1)^{2} \tag{29}\\
& M_{2}^{*}(H T(k))=3 k^{2}+\sum_{i=1}^{k-1} \sum_{p=k}^{2 k-2} p(p+1) 2^{i+1}+\sum_{i=k} \sum_{p=k}(p+1)^{2} 2^{i} \tag{30}
\end{align*}
$$

We note that the above results (28) and (30) have been already published in [9], and that the same results have also been investigated in [23].

We next show that (26), (27), and (29) do not hold. For this sake consider the hypertree network $H T$ (3) which has 15 vertices, 21 edges, and three different vertex eccentricities:

- $\quad e c(1)=e c(2)=e c(3)=3$;
- $\quad e c(4)=e c(5)=e c(6)=e c(7)=4$ and
- $\quad e c(8)=e c(9)=e c(10)=e c(11)=e c(12)=e c(13)=e c(14)=e c(15)=5$.

From here we get:

$$
\begin{align*}
\xi(H T(3)) & =2(3)+(4 \times 3) 2+(4 \times 4) 4+(2 \times 5) 8=174 \tag{31}\\
\zeta(H T(3)) & =3+(3) 2+(4) 4+(5) 8=65 \tag{32}\\
M_{1}^{* *}(H T(3)) & =3^{2}+(3)^{2} 2+(4)^{2} 4+(5)^{2} 8=291 \tag{33}
\end{align*}
$$

On the other hand, (26) ([18, Theorem 1]) gives $\xi(H T(3))=254,(27)$ $([18$, Theorem 2]) gives $\zeta(H T(3))=85$, and (29) ([18, Theorem 4]) gives $M_{1}^{* *}(H T(3))=354$. Hence formulas (26), (27), and (29) are not correct. We correct them as follows.

Theorem 4.1: Let $H T(k)$ be the k-dimensional hypertree network. Then we have the following.
(i) $\xi(H T(k))=12 k \times 2^{k}-6 k-14 \times 2^{k}+16$;
(ii) $\quad \zeta(H T(k))=4 k \times 2^{k}-k-4 \times 2^{k}+4$;
(iii) $\quad M_{1}^{* *}(H T(k))=8 k+2^{k} \times\left(4 k^{2}-12 k+11\right)+2^{k} \times(2 k-1)^{2}-k^{2}-12$.

Table 5
Vertex partitions of hypertree for k-levels based on eccentricity of each vertex with existence of their frequencies.

$d(v)$	$\varepsilon(u)$	Frequency	Range of i
2	k	2^{i}	$i=0$
4	$k+i-1$	2^{i}	$1 \leq i \leq k-1$
2	$2 k-1$	2^{i}	$i=k$

Table 6
Edge partitions of hypertree for k-levels based on eccentricity of end vertices with existence of their frequencies.

$(\varepsilon(u), \varepsilon(v))$	Frequency	Range of i
(k, k)	3×2^{i}	$i=0$
$(k+i-1, k+i)$	2^{i+1}	$1 \leq i \leq k-1$
$(k+i, k+i)$	2^{i}	$1 \leq i \leq k-1$

Proof: Using the vertex and edge partitioned from Tables 5 and 6, we have the following computations.
(i) $\quad \xi(H T(k))=2 k+4 \sum_{i=1}^{k-1} 2^{i}(k+i-1)+2 \sum_{i=k}(2 k-1) 2^{i}$ $=12 k \times 2^{k}-6 k-14 \times 2^{k}+16 ;$
(ii)

$$
\zeta(H T(k))=k+\sum_{i=1}^{k-1} 2^{i}(k+i-1)+\sum_{i=k}(2 k-1) 2^{i}
$$

$$
=4 k \times 2^{k}-k-4 \times 2^{k}+4 ;
$$

(iii) $\quad M_{1}^{* *}(H T(k))=k^{2}+\sum_{i=1}^{k-1} 2^{i}(k+i-1)^{2}+\sum_{i=k} 2^{i}(2 k-1)^{2}$

$$
=8 k+2^{k} \times\left(4 k^{2}-12 k+11\right)+2^{k} \times(2 k-1)^{2}-k^{2}-12 .
$$

Figure 4
X-tree network $X T(4)$

4.2 X-tree networks

The X-tree $X T(k)$ [18] is obtained from the complete binary tree T_{k} by joining the vertices in each level from left to right. The construction should be clear from Fig. 4, where $X T(4)$ is drawn.

In the following formulas (34)-(38), the results reported in [16, Theorems 6-10] are listed.

$$
\begin{align*}
\xi(X T(k))= & 2 k+8 \sum_{p=k}^{2 k-2} p+4(2 k-1)+5 \sum_{p=k}^{2 k-3} \sum_{i=1}^{k-2} 2^{i} p+2^{k-1}(2 k-2) 3 \\
& \cdot 5 \sum_{p=k+2, k>3}^{2 k-2} \sum_{i=1, k>3}^{k-3}\left(2\left(2^{i}-1\right) p\right)+3(2 k-1)\left(2\left(2^{k-2}-1\right)\right) \tag{34}\\
& +\sum_{p=k+2, k>3}^{2 k-2} \sum_{i=1, k>3}^{k-3}\left(2\left(2^{i}-1\right) p\right)+(2 k-1)\left(2\left(2^{k-2}-1\right)\right)+(2 k-2) 2^{k-1} \\
M_{1}^{*}(X T(k))= & 12 k+\sum_{i=1}^{2 k-2} p+2(2 k-1)+\sum_{p=k}^{2 k-3} \sum_{i=1}^{k-2} 2^{i} p \\
& +\sum_{i=1}^{k-2} \sum_{p=k}^{2 k-3}(2 p+1)\left(2\left(3\left(2^{i-1}\right)+1\right)\right)+(4 k-2)\left(2\left(2^{k-2}-1\right)\right)
\end{align*}
$$

$$
\begin{align*}
M_{1}^{* *}(X T(k))= & k^{2}+2 \sum_{p=k}^{2 k-2} p^{2}+2(2 k-1)^{2}+\sum_{p=k}^{2 k-3} \sum_{i=1}^{k-2} 2^{i} p^{2} \\
& +\sum_{p=k+2, k>3}^{2 k-2} \sum_{i=1}^{k-3}\left(2\left(2^{i}-1\right) p^{2}\right)+(2 k-1)^{2}\left(2\left(2^{k-2}-1\right)\right)+(2 k-2)^{2} 2^{k-1} \tag{37}
\end{align*}
$$

$$
\begin{align*}
M_{2}^{*}(X T(k))= & 6 k^{2}+\sum_{p=k+1}^{2 k-2} \sum_{i=1}^{k-2} 3\left(2^{i}-1\right) p^{2}+\sum_{p=k}^{2 k-3} \sum_{i=1}^{k-2} p(p+1)\left(2\left(3\left(2^{i-1}\right)+1\right)\right) \\
& +(2 k-1)(2 k-2)\left(2^{k-1}+2\right)+(2 k-1)^{2}\left(2\left(2^{k-2}-1\right)\right) . \tag{38}
\end{align*}
$$

The results (36) and (38) have been already published in [9] and have been investigated in [24]. We now show that formulas (34), (35), and (37) are not correct. For this sake consider the X-tree network $X T(4)$ from Fig. 4 which has 31 vertices, 56 edges, and the following eccentricities of its vertices:

- $\quad e c(1)=e c(2)=e c(3)=e c(5)=e c(6)=4$;
- $\quad e c(4)=e c(7)=e c(10)=e c(11)=e c(12)=e c(13)=5$;
- $\quad e c(8)=e c(9)=e c(14)=e c(15)=e c(20)=e c(21)=e c(22)=e c(23)=e c(24)$
$=e c(25)=e c(26)=e c(27)=6$ and
- $\quad e c(16)=e c(17)=e c(18)=e c(19)=e c(28)=e c(29)=e c(30)=e c(31)=7$.

From these values we derive:

$$
\begin{align*}
\xi(X T(4))= & 2(4)+4(4)(2)+5(4)(2)+4(5)(2)+4(6)(2)+5(6)(2)+5(5)(4) \\
& +2(7)(2)+3(7)(6)+8(6)(3)=626 \tag{39}\\
\zeta(X T(4))= & 5(4)+6(5)+12(6)+8(7)=178 \tag{40}\\
M_{1}^{* *}(X T(4))= & 5(4)^{2}+6(5)^{2}+12(6)^{2}+8(7)^{2}=1054 \tag{41}
\end{align*}
$$

On the other hand, (34) ([18, Theorem 6]) gives $\xi(X T(4))=2280$, (35) $([18$, Theorem 7]) gives $\zeta(X T(4))=204$, and (37) $([18$, Theorem 9]) gives $M_{1}^{* *}(X T(4))=1168$. We conclude that formulas (34), (35), and (37) and not correct. Corrected results read as follows.

Table 7

Vertices partition of an X-tree (k-level) based on degree and eccentricity of each vertex with the existence of its frequencies.

$d(v)$	$\varepsilon(u)$	frequency	Range of i
2	k	2^{i}	$i=0$
4	$k+i-1$	2	$1 \leq i \leq k-1$
2	$2 k-1$	2^{i}	$i=1$
5	$k+i-1$	2^{i}	$1 \leq i \leq k-2$
5	$k+i+1$	$2\left(2^{i}-1\right)$	$1 \leq i \leq k-3, k>3$
3	$2 k-1$	$2\left(2^{i}-1\right)$	$i=k-2$
3	$2 k-2$	2^{i}	$i=k-1$

Theorem 4.2 : Let $X T(k)$ be the k-dimensional X-tree network. Then, we have the following.
(i) $\xi(X T(k))=16 k \times 2^{k}-7 k-22 \times 2^{k}-3 k^{2}+30$;
(ii) $\zeta(X T(k))=4 k \times 2^{k}-k-5 \times 2^{k}+6$;
(iii) $M_{1}^{* *}(X T(k))=12 k-20 k \times 2^{k}+17 \times 2^{k}-k^{2}+8 \times 2^{k} \times k^{2}-18$.

Proof : Using the vertex partition from Table 7, we have the following computations.
(i) $\xi(X T(k))=2 \sum_{i=0} 2^{i} k+4 \sum_{i=1}^{k-1} 2 p+2 \sum_{i=1} 2^{i}(2 k-1)+5 \sum_{i=1}^{k-3} 2\left(2^{i}-1\right)(k+i+1)$

$$
\begin{aligned}
& +3 \sum_{i=k-2}(2 k-1) 2\left(2^{i}-1\right)+3 \sum_{i=k-1}(2 k-2) 2^{i}+5 \sum_{i=1}^{k-2} 2^{i}(k+i-1) \\
= & 16 k \times 2^{k}-7 k-22 \times 2^{k}-3 k^{2}+30 ;
\end{aligned}
$$

(ii) $\zeta(X T(k))=k+\sum_{i=1}^{k-1} 2 p+\sum_{i=1}(2 k-1) 2^{i}+\sum_{i=1}^{k-2} 2^{i}(k+i-1)$

$$
\begin{aligned}
& +\sum_{i=1}^{k-3} 2\left(2^{i}-1\right)(k+i+1)+\sum_{i=k-2} 2(2 k-1)\left(2^{i}-1\right)+\sum_{i=k-1}(2 k-2) 2^{i} \\
= & 4 k \times 2^{k}-k-5 \times 2^{k}+6
\end{aligned}
$$

$$
\text { (iii) } \begin{aligned}
M_{1}^{* *}(X T(k))= & k^{2}+\sum_{i=1}^{k-1} 2 p^{2}+\sum_{i=1} 2^{i}(2 k-1)^{2}+\sum_{i=1}^{k-2} 2^{i}(k+i-1)^{2} \\
& +\sum_{i=1}^{k-3} 2\left(2^{i}-1\right)(k+i+1)^{2}+\sum_{i=k-2} 2\left(2^{i}-1\right)(2 k-1)^{2} \\
& +\sum_{i=k-1} 2^{i}(2 k-2)^{2} \\
= & 12 k-20 k \times 2^{k}+17 \times 2^{k}-k^{2}+8 \times 2^{k} \times k^{2}-18 .
\end{aligned}
$$

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The work of R. Sundara Rajan is supported by Project No. ECR/2016/1993, Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India. Further, we thank A. Arul Shantrinal, Department of Mathematics, Hindustan Institute of Technology and Science, Chennai, India for her fruitful suggestions. Sandi Klavžar was supported from the Slovenian Research Agency (research core funding No. P1-0297 and projects J1-9109, J1-1693, N1-0095). The work of T. M. Rajalaxmi is partially supported by Project No. SSN/IFFP-2020/CISCO-21, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India. Further, the authors would like to thank the anonymous referees for their suggestions.

References

[1] A. Ahmad, K. Elahi, R. Hasni, M. F. Nadeem, Computing the degree based topological indices of line graph of benzene ring embedded in P-type-surface in 2D network, Journal of Information and Optimization Sciences, 40(7) (2019) 1511-1528, DOI: 10.1080/02522667.2018.1552411
[2] F. Ali, M. Salman, A. Hafeez, S. Huang, On computation of some distance-based topological indices on circulant networks-II, Journal of Information and Optimization Sciences, 39(4) (2018) 759-782, DOI: 10.1080/02522667.2016.1223588
[3] M. Cancan, D. Afzal, S. Hussain, A. Maqbool, F. Afzal, Some new topological indices of silicate network via M-polynomial, Journal of Discrete Mathematical Sciences and Cryptography, 23(6) (2020) 11571171, DOI: 10.1080/09720529.2020.1809776
[4] M. Cancan, S. Ediz, H. M. U. Rehman, D. Afzal, M-polynomial and topological indices Poly (EThyleneAmidoAmine) dendrimers, Journal of Information and Optimization Sciences 41 (2020) 1117-1131.
[5] R. M. Casablanca, P. Dankelmann, Distance and eccentric sequences to bound the Wiener index, Hosoya polynomial and the average eccentricity in the strong products of graphs, Discrete Applied Mathematics 263 (2019) 105-117.
[6] E. Deutsch, S. Klavžar, M-polynomial and degree-based topological indices, Iranian Journal of Mathematical Chemistry 6 (2015) 93-102.
[7] E. Deutsch, S. Klavžar, On the M-polynomial of planar chemical graphs, Iranian Journal of Mathematical Chemistry 11 (2020) 65-71.
[8] R. Farooq, M. Ali Malik, On some eccentricity based topological indices of nanostar dendrimers, Optoelectronics and Advanced Materials-Rapid Communications 9 (2015) 842-849.
[9] W. Gao, H. Wua, M. K. Siddiqui, A. Q. Baig, Study of biological networks using graph theory, Saudi Journal of Biological Sciences 25 (2018) 1212-1219.
[10] M. Ghorbani, A. Khaki, A note on the fourth version of geometricarithmetic index, Optoelectronics and Advanced Materials-Rapid Communications 4 (2010) 2212-2215.
[11] M. Ghorbani, M. A. Hosseinzadeh, A new version of Zagreb indices, Filomat 26 (2012) 93-100.
[12] J. R. Goodman, C. H. Sequin, A multiprocessor interconnection topology, IEEE Transactions on Computers 30 (1981) 923-933.
[13] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
[14] F. Hayat, The minimum second Zagreb eccentricity index of graphs with parameters, Discrete Applied Mathematics 285 (2020) 307-316.
[15] H. Hua, On the quotients between the eccentric connectivity index and the eccentric distance sum of graphs with diameter 2, Discrete Applied Mathematics 285 (2020) 297-300.
[16] M. Imran, M. K. Siddiqui, A. A. E. Abunamous, D. Adi, S. H. Rafique, A. Q. Baig, Eccentricity based topological indices of an oxide network, Mathematics 6 (2018) Article 126.
[17] M. Imran, M. R. Farahani, Eccentricity based topological indices of honeycomb networks, Journal of Discrete Mathematical Sciences and Cryptography 22 (2019) 1199-1213.
[18] M. Imran, M. A. Iqbal, Y. Liu, A. Q. Baig, W. Khalid, M. A. Zaighum, Computing eccentricity-based topological indices of 2-power interconnection networks, Journal of Chemistry (2020) Volume 2020, Article ID 3794592.
[19] K. Julietraja, P. Venugopal, Computation of degree-based topological descriptors using M-polynomial for coronoid systems, Polycyclic Aromatic Compounds (2020) DOI: 10.1080/10406638.2020.1804415.
[20] Y. C. Kwun, M. Munir, W. Nazeer, S. Rafique, S. M. Kang, M-polynomials and topological indices of V-phenylenic nanotubes and nanotori, Scientific Reports 7 (2017) Article 8756.
[21] P. Manuel, B. Rajan, I. Rajasingh, M. Chris Monica, On minimum metric dimension of honeycomb networks, Journal of Discrete Algorithms 6 (2008) 20-27.
[22] P. Manuel, I. Rajasingh, Topological properties of silicate networks, in: 2009 5th IEEE GCC Conference \& Exhibition, Kuwait City, (2009), 1-5.
[23] R. S. Rajan, K. J. Kumar, A. A. Shantrinal, T. M. Rajalaxmi, I. Rajasingh, K. Balasubramanian, Biochemical \& phylogenetic networks-I: hypertrees and corona products, Journal of Mathematical Chemistry, 59, (2021), 676-698.
[24] R. S. Rajan, A. A. Shantrinal, K. J. Kumar, T. M. Rajalaxmi, I. Rajasingh, K. Balasubramanian, Biochemical \& phylogenetic networks-II: X-trees and phylogenetic trees, Journal of Mathematical Chemistry, 59, (2021), 699-718.
[25] I. Rajasingh, R. Jayagopal, R. S. Rajan, Domination parameters in hypertrees and sibling trees, Discrete Applied Mathematics 280 (2020) 237-245.
[26] V. Sharma, R. Goswami, A. K. Madan, Eccentric connectivity index: a novel highly discriminating topological descriptor for structure property and structure activity studies, Journal of Chemical Information and Computer Sciences 37 (1997) 273-282.
[27] X. Song, J. Li, W. He, On Zagreb eccentricity indices of cacti, Applied Mathematics and Computations 383 (2020) Article 125361.
[28] M. O. Turaci, On vertex and edge eccentricity-based topological indices of a certain chemical graph that represents bidentate ligands, Journal of Molecular Structure 1207 (2020) Article 127766,
[29] T. Vetrík, S. Balachandran, General multiplicative Zagreb indices of trees, Discrete Applied Mathematics, 247 (2018) 341-351.
[30] T. Vetrík, S. Balachandran, General eccentric connectivity index of trees and unicyclic graphs, Discrete Applied Mathematics, 284 (2020) 301-315.
[31] G. Wang, L. Yan, S. Zaman, M. Zhang, The connective eccentricity index of graphs and its applications to octane isomers and benzenoid hydrocarbons, International Journal of Quantum Chemistry 120 (2020) Article e26334.
[32] K. Xu, K. Ch. Das, S. Klavžar, H. Li, Comparison of Wiener index and Zagreb eccentricity indices, MATCH Commnunications in Mathematical and in Computer Chemistry 84 (2020) 595-610.
[33] G. Yu, X. Li, Connective Steiner 3-eccentricity index and network similarity measure, Applied Mathematics and Computations 386 (2020) Article 125446.

Received November, 2020
Revised March, 2021

[^0]: ${ }^{\ddagger}$ E-mail: gknandini93@gmail.com
 ${ }^{\dagger}$ E-mail: sandi.klavzar@fmf.uni-lj.si

[^1]: ${ }^{{ }^{s}}$ E-mail: laxmi.raji18@gmail.com
 *E-mail: vprsundar@gmail.com (Corresponding Author)

