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Abstract

Three characterizations of quasi-median graphs are proved, for instance, they are partial
Hamming graphs without convex house and convexQ−

3 such that certain relations on their edge sets
coincide. Expansion procedures, weakly 2-convexity, and several relations on the edge set of a graph
are essential for these results. Quasi-semimedian graphs are characterized which yields an additional
characterization of quasi-median graphs. Two equalities for quasi-median graphs are proved. One of
them asserts that ifαi , i ≥ 0, denotes the number of induced Hamming subgraphs of a quasi-median
graph, then

∑
i≥0 (−1)i αi = 1. Finally, an Euler-type formula is derived for graphs that can be

obtained by a sequence of connected expansions fromK1.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Median and quasi-median graphs are well studied classes of graphs, cf. [1, 7, 12, 17, 19–
21, 25, 32]. Quasi-median graphs have been introduced by Mulder [25] as a natural
nonbipartite extension of median graphs. Chung et al. [12] and independently Wilkeit
[32] proved that they are the weak retracts of Hamming graphs. On the other hand,
Hamming graphs are the regular quasi-median graphs [25]. Chastand [6] extended the
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above retraction result to infinite graphs. In [1] a survey of characterizations of quasi-
median graphs is given including some new ones.

Quasi-median graphs have an interesting application in location theory. Namely, they
are precisely the graphs for which a certain dynamic location problem provides a finite
solution, see [11, 12] or [19] for more details. From the algorithmic point of view it is an
easy observation that quasi-median graphs can be recognized in polynomial time. Feder’s
general approach of [14] yields an O(mn) algorithm, wherem is the number of edges
andn the number of vertices of a given graph. The fastest known recognition algorithm is
due to Hagauer [17] and is of complexityO(M(m, n) + mlogn), whereM(m, n) denotes
the complexity of recognizing median graphs. (CurrentlyM(m, n) = O(n1.41(logn)2.82),
see [19].)

Partial cubes, that is, isometric subgraphs of hypercubes, were first investigated
by Graham and Pollak [15], see also [10, 13, 33]. Nonbipartite extensions of this
class are isometric subgraphs of Hamming graphs, called partial Hamming graphs, see
[8, 16, 31]. Since (weak) retracts are isometric subgraphs, quasi-median graphs are partial
Hamming graphs. In addition, quasi-median graphs are also quasi-semimedian graphs,
the class of graphs that forms a nonbipartite extension of semimedian graphs introduced
in [18].

In this paper we consider the quasi-median graphs and their generalizations: weakly
modular graphs, partial Hamming graphs, quasi-semimedian graphs, and graphs that can
be obtained fromK1 by connected expansions.

In the next section we introduce necessary concepts and recall some known results.
We follow with a section in which quasi-median graphs are introduced and relevant
characterizations are given. Quasi-semimedian graphs are also presented and a result of
[18] is extended from semimedian to quasi-semimedian graphs. We continue with a section
containing three characterizations of quasi-median graphs. We show that quasi-median
graphs are precisely partial Hamming graphs which include no convex house orQ−

3 ,
and for which certain relations on their edge sets coincide. We also prove that quasi-
median graphs can be described as quasi-semimedian graphs which contain no convex
house orQ−

3 . In Section 5we study quasi-semimedian graphs, in particular we give their
characterization. This in turn enables us to obtain another characterization of quasi-median
graphs. In the last section we first prove that for a quasi-median graphG the following
holds:

∑
i≥0

(−1)iαi = 1 and − t =
∑
i≥0

(−1)i iαi .

Here t is a dimension ofG andαi the number of induced Hamming subgraphs ofG of
degreei . These results generalize such equalities for median graphs [27]. We conclude
the paper by proving that for a graphG that can be obtained by a sequence of connected
expansions fromK1, 2n − m − k ≤ 2 holds, where we have equality if and only ifG is
Ct � K2-free (t ≥ 3) and K4-free. This result extends all such previously known Euler-
type formulae.
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2. Preliminaries

The interval I (u, v) between verticesu, v of a connected graphG is the set of
vertices of all shortest paths betweenu and v in G. A graph G is a median graph if
|I (u, v) ∩ I (v,w) ∩ I (w, u)| = 1 for all triples of verticesu, v, w of G.

A graph G satisfies thetriangle property if for any verticesu, x , y ∈ V (G) where
d(u, x) = d(u, y) = k ≥ 2 such thatxy ∈ E(G), there exists a common neighbourv

of x andy with d(u, v) = k − 1. A graphG satisfies thequadrangle property if for any
u, x , y, z ∈ V (G) such thatd(u, x) = d(u, y) = d(u, z) − 1 andd(x, y) = 2 with
z a common neighbour ofx and y, there exists a common neighbourv of x and y such
thatd(u, v) = d(u, x) − 1. A graph which fulfils the quadrangle property and the triangle
property is calledweakly modular.

A subgraphH of a graphG is called isometric if dH (u, v) = dG(u, v) for all u,
v ∈ V (H ), wheredG(u, v) denotes the length of a shortest path inG from u to v. A
connected subgraphH of G is calledconvex if for every two vertices fromH all shortest
paths are contained inH . It is easy to see that the intersection of two convex subgraphs
is also convex. Aconvex closure of a subgraphH of G is defined as the smallest convex
subgraph ofG which containsH . A subgraphH of a graphG is calledgated in G if for
everyx ∈ V (G) there exists a vertexu in H such thatu ∈ I (x, v) for all v ∈ V (H ). Note
that if for somex such a vertexu in V (H ) exists, it must be unique.

An induced connected subgraphH of a graphG is 2-convex if for any two verticesu
andv of H with dG(u, v) = 2, every common neighbour ofu andv belongs toH . We call
an induced subgraphH of a graphG weakly 2-convex if for any two verticesu, v ∈ V (H )

with dH (u, v) = 2, every common neighbour ofu andv belongs toH . The path on five
vertices is a weakly 2-convex but not 2-convex subgraph ofC6. Chepoi [9] and Bandelt
and Chepoi [2, Lemma 1] observed that a connected subgraph of a weakly modular graph
is weakly 2-convex if and only if it is convex. In addition, a convex subgraph is gated if
and only if it is triangle-closed, where a subgraphH of a graphG is triangle-closed if H
contains a triangle as soon it contains one of its edges. For further reference we thus state:

Lemma 2.1. Let G be a weakly modular graph. For an induced subgraph H of G the
following assertions are equivalent:

(i) H is gated.

(ii) H is convex and triangle-closed.

(iii) H is connected, triangle-closed, and weakly 2-convex.

The equivalence between (i) and (ii) has also been noticed in [1, Lemma 2]. It is easy to
see that an isometric subgraph is weakly 2-convex if and only if it is 2-convex. Therefore,
we can also deduce a result of Vesel [30] which claims that subgraphs of pseudo-median
graphs are gated precisely when they are 2-convex, triangle-closed, and isometric.

The Cartesian product G = G1 � G2 � · · · � Gk of graphsG1, G2, . . . , Gk has
verticesV (G) = V (G1) × V (G2) × · · · × V (Gk) and verticesu = (u1, . . . , uk),
v = (v1, . . . , vk) of G are adjacent if there exists an indexj (1 ≤ j ≤ k) such thatu jv j ∈
E(G j ) andui = vi for all i ∈ {1, 2, . . . , k}\{ j}. If all the factors in a Cartesian product are
complete graphs thenG is called aHamming graph and in particular if allk factors areK2
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Fig. 1. Connected expansion.

thenG is a hypercube denotedQk . Isometric subgraphs of hypercubes are calledpartial
cubes and isometric subgraphs of Hamming graphs arepartial Hamming graphs.

Next we introduce several relations defined on the edge set of a graphG that are
essential for our investigations. For an edgeab of a graphG let Wab = {x ∈ V (G) :
d(x, a) < d(x, b)}. Then Djoković’s relation∼ is defined as follows [13]: edgesxy,
ab ∈ E(G) are in relation∼ if x ∈ Wab and y ∈ Wba . The relation is reflexive and
symmetric but it is in general not transitive, cf.K2,3. It is well known that∼ is a transitive
relation for partial Hamming graphs (see [31]).

A relation≈ was introduced in [3] (denoted there by�) on the edge set of a connected
graph as follows. Edgese, f are in relation≈, if e ∼ f or there exist edgese′, f ′ ∈ E(G)

of the same clique, such thate ∼ e′ and f ∼ f ′. (Note the meaning of our notation:≈
is used because, roughly speaking, we extend the relation∼ by double applications of it
over cliques.) Obviously,≈ is reflexive, symmetric, and∼ ⊆ ≈. The relation≈ is transitive
for partial Hamming graphs [3]. It is illustrated inFig. 1, where we infer that the marked
edges, obtained in an expansion step, form an equivalence class of this relation.

Edgese and f are in relationδ if e = f or e and f are opposite edges of an induced
square inG. (By a square we mean a 4-cycle.) We say that edgese and f are in relationκ
if e and f belong to a common complete subgraph ofG.

Finally, a graph obtained fromK2 � K3 by deletion of a vertex is called ahouse, Q−
3

denotes the 3-cube minus a vertex,K4 − e is the complete graph on four vertices minus an
edge, and〈X〉 stands for the subgraph induced by the vertex setX .

3. Quasi-(semi)median graphs

Recall that for an edgeab of a graphG, Wab = {x ∈ V (G) : d(x, a) < d(x, b)}. In
addition let

Uab = {x ∈ Wab : x has a neighboury in Wba}.
A graph isquasi-median if every clique (that is, a maximal complete subgraph) in a graph
is gated and for any edgeab, Uab is convex. We will need the following characterization
of quasi-median graphs due to Chung et al. [12].
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Theorem 3.1 ([12]). A graph G is quasi-median if and only if G is weakly modular and
does not contain K4 − e or K2,3 as an induced subgraph.

Semimedian graphs were introduced in [18] as partial cubes for which every set
Uab is connected. A natural nonbipartite extension of semimedian graphs arequasi-
semimedian graphs introduced as partial Hamming graphs for which every setUab is
connected [3]. Note that in [3] these graphs were called semi-quasi-median since they
lie between partial Hamming graphs and quasi-median graphs, just as semimedian graphs
lie between partial cubes and median graphs. Clearly, bipartite quasi-semimedian graphs
are precisely semimedian graphs which is reflected in their new name—quasi-semimedian
graphs.

It was shown in [18] that a bipartite graph is a semimedian graph if and only ifδ∗ = ∼.
This result can be extended to quasi-semimedian graphs as follows.

Proposition 3.2. A graph is quasi-semimedian if and only if it is a partial Hamming graph
with δ∗ = ∼.

Proof. Let G be quasi-semimedian. Since in partial Hamming graphs∼ is transitive,
and we always haveδ ⊆ ∼, it follows that δ∗ ⊆ ∼. On the other hand, ifab ∼ uv for
ab, uv ∈ E(G) thenu ∈ Uab, and sinceUab is connected there exists a path fromu to a
which lies entirely inUab. We now easily deduce thatabδ∗uv.

Conversely, letδ∗ = ∼ and suppose thatUab is not connected forab ∈ E(G). Then
there exists an edgeuv in relation∼ with ab such that any path inWab betweenu anda
has at least one vertex inWab\Uab. We claim that thenuv is not in relationδ∗ with ab.
Indeed, ifuv were in relationδ∗ with ab, then the vertices of one side of edges which are
in relationδ∗ with ab would induce a path inUab betweenu anda. �

Odd cycles are examples of graphs for whichδ∗ = ∼ holds. Indeed, both relations are
trivial. As odd cycles of length at least 5 are not partial Hamming graphs (on the other hand,
they can be embedded as induced subgraphs into Hamming graphs), we must assume in
the above proposition thatG is a partial Hamming graph.

Let us present a class of quasi-semimedian graphs that are not quasi-median. Take the
Cartesian product ofk paths, and select a set ofk-cubes such that for any twok-cubes
their edges are from different∼ equivalence classes. Then to eachk-cube of this set add
all possible edges between its vertices, that is, eachQk is transformed intoK2k . Note
that the resulting graph is not quasi-median (unless the product of paths is in some sense
trivial), but it is a partial Hamming graph which can be derived from the definitions of
both classes (alternatively, one can use an expansion procedure described below to see
that they are partial Hamming graphs). ByProposition 3.2this partial Hamming graph is
quasi-semimedian.

The notion of expansion was first introduced by Mulder in [24]; all other notions
of expansion were derived from this. For our purposes, we recall the following general
expansion, introduced by Chepoi [8] in the following way.

Definition 3.3. Let G be a connected graph and letW1, W2, . . . , Wk be subsets ofV (G)

such that:
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(1) Wi ∩ W j �= ∅ for all i , j ∈ {1, 2, . . . , k};
(2) ∪k

i=1Wi = V (G);
(3) there are no edges between setsWi\W j andW j\Wi for all i , j ∈ {1, 2, . . . , k};
(4) subgraphs〈Wi 〉, 〈Wi ∪ W j 〉 are isometric inG for all i , j = 1, 2, . . . , k.

Then to each vertexx ∈ V (G) we associate a set{i1, i2, . . . , it } of all indicesi j , where
x ∈ Wi j . A graphG∗ is called anexpansion of G relative to the sets W1, W2, . . . , Wk if it
is obtained fromG in the following way:

(5) replace each vertexx of G with a clique with verticesxi1, xi2, . . . , xit ;
(6) if an indexis belongs to both sets{i1, i2, . . . , it }, {i ′

1, i ′
2, . . . , i ′

l } corresponding to
adjacent verticesx andy in G then letxis yis ∈ E(G∗).

Moreover, by imposing extra conditions to the above definition, we obtain some special
expansions. IfWi ∩ W j induce connected subgraphs, then this is called aconnected
expansion. If, in addition,Wi ∩ W j = U for all i, j = 1, 2, . . . , k where〈U〉 is a gated
subgraph inG, and all subgraphs〈Wi 〉 are also gated, then this is called agated expansion.
If the numberk of subsets involved in the expansion equals 2, then the expansion is called
binary. An example of a (connected) expansion is given onFig. 1.

The following theorem collects expansion theorems that are of interest to us. The first
result is due to Chepoi [8], the second to Mulder [25], cf. also Bandelt et al. [1], while the
last one is given in [18] for the bipartite case and extended in [3] to the general case.

Theorem 3.4. Let G be a graph.

(i) G is a partial Hamming graph if and only if it can be obtained from K1 by a sequence
of expansions.

(ii) G is a quasi-median graph if and only if G can be obtained from K1 by a sequence
of gated expansions.

(iii) If G is a quasi-semimedian (resp. semimedian) graph then it can be obtained from
K1 by a sequence of (resp. binary) connected expansions.

4. Characterizing quasi-median graphs

For a relationR, let R∗ stand for its transitive closure. We can prove straightforwardly
that in quasi-semimedian graphs the relation≈ equals(δ ∪ κ)∗. Hence, this is also true for
quasi-median graphs. The reverse implication need not be true in general. Nevertheless,
these relations are important for the main result of this section:

Theorem 4.1. The following assertions are equivalent for a connected graph G:

(i) G is a quasi-median graph.
(ii) G is a partial Hamming graph with ≈ = (δ ∪ κ)∗, and G has neither a Q−

3 nor a
house as a convex subgraph.

(iii) G is a quasi-semimedian graph, and G has neither a Q−
3 nor a house as a convex

subgraph.
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For the proof of this theorem we need a lemma. It states that setsWi from Definition 3.3
enjoy the so-calledHelly property. (It is well known that this property holds for gated
subsets [29], hence the present lemma is seemingly a stronger variation of this result.)

Lemma 4.2. Let G be a connected graph and let Wi , i = 1, . . . , k be subsets of V (G)

which satisfy Definition 3.3. Then ∩k
i=1Wi �= ∅.

Proof (Induction onk). The claim is true fork = 2. Suppose that the claim holds for
k ≥ 2, and letWi , i = 1, . . . , k + 1, be the subsets ofV (G′) that satisfy the conditions
in Definition 3.3. Observe that the setsWi for i = 1, . . . , k satisfy the conditions in
Definition 3.3also in a graph induced by∪k

i=1Wi hence by induction∩k
i=1Wi is nonempty.

Set U = ∩k
i=1Wi . Suppose thatU ∩ Wk+1 = ∅, and letx ∈ Wk+1 ∩ [∪k

i=1Wi ] be a
vertex as close toU as possible. Then there exist indicesj, � ∈ {1, . . . , k} such that
x ∈ [Wk+1 ∩ W j ]\W� and lety be a vertex ofU closest tox . Since, by definition the
subgraph induced byWk+1∪W� is isometric, it follows byDefinition 3.3(3) that there exists
a vertexz ∈ Wk+1∩W� such thatz ∈ I (x, y). Hence, we haved(x, y) = d(x, z)+d(z, y),
thusz is closer toU thanx , moreoverz ∈ Wk+1 ∩ [∪k

i=1Wi ]. This is a contradiction to the
choice ofx . �

Proof (Of Theorem 4.1). For (i) ⇒ (ii) we only need to observe that a graph, having
convexQ−

3 or a convex house, cannot be quasi-median.
(ii) ⇒ (iii): By Proposition 3.2it is enough to prove thatδ∗ = ∼, and we know already

thatδ∗ ⊆ ∼.
Let ab ∼ uv. Using (ii) and the fact∼ ⊆ ≈, it follows thatab(δ ∪ κ)∗uv. Let ab =

x0y0, x1y1, x2y2, . . . , xk yk = uv be a sequence of edges such thatxi yi (δ ∪ κ) xi+1yi+1
for i = 0, . . . , k − 1. Assume thatab anduv are selected such that consecutive edges of
the above sequence are in relationκ as few times as possible and, among such sequences,
k is as small as possible. Clearly, ifκ is not involved at all, we are done. Otherwise, by the
minimality assumptions,ab andx1y1 are in the same clique,x2y2 is not in it, andx1y1 and
x2y2 are opposite edges of an induced square.

Assume first thata, b, x1, andy1 are pairwise different vertices. Then the verticesa, x1,
y1, x2, y2 as well asb, x1, y1, x2, y2 induce houses, and as there is no convex house inG,
any of these two houses gives a convexK3 � K2. Let x ′

1, respectivelyy ′
1, be the vertices

of the convex closure of the two houses. AsG contains noK4 − e it follows thatx ′
1 �= y ′

1.
By the same argumentx ′

1y ′
1 is an edge which is the opposite edge of a square containing

ab and lies in the same clique asx2y2. As ab ∼ uv andab ∼ x ′
1y ′

1, transitivity implies
x ′

1y ′
1 ∼ uv. By minimality, x ′

1y ′
1δ

∗uv, and sinceabδx ′
1y ′

1 we conclude thatabδ∗uv.
Let now a = x1 (and, of course,b �= y1). Then the verticesa, b, y1, x2, y2 induce a

house whose convex closure isK3 � K2. Let x ′
2 be the remaining vertex of theK3 � K2.

Thenx2x ′
2κx2y2 and sox2x ′

2(δ ∪ κ)∗uv. By the minimality we infer thatx2x ′
2δ

∗uv and as
abδx2x ′

2 we conclude again thatabδ∗uv.
(iii) ⇒ (i): We will prove thatG is a quasi-median graph by showing thatG can be

obtained by a sequence of gated expansions. FromTheorem 3.4(iii) we know thatG can
be obtained fromK1 by a sequence of connected expansions.

We first claim that for each expansion the setsWi corresponding to it have the same
pairwise intersections, i.e.Wi ∩ W j = W1 ∩ W2 for all pairs of indices 1≤ i < j ≤ k.
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Note that this also means that the common intersection of all setsWi is the same set, which
we shall callU .

The claim is trivial fork = 2, so letW1, W2, . . . , Wk , k ≥ 3, be the sets corresponding
to the expansion. ByLemma 4.2these sets have a common nonempty intersection. Suppose
thatWi ∩ W j �= Wi ∩ Wl for some indexesi , j , l ∈ {1, . . . , k}. Then, since the expansion
is connected, there exists a vertexx ∈ Wi ∩ W j \Wl which is adjacent to a vertex
y ∈ Wi ∩ W j ∩ Wl . Let xi , yi , x j , y j , yl be vertices of the graphG that is obtained
from G′ by this expansion, so that the indices of vertices and sets naturally corresponds.
Obviously these vertices form a convex houseG. Now, if this is not the last expansion in
the sequence further expansions cannot change that we have a convex house in a graph.
Indeed, this is obvious if the house lies entirely in one of theWi ’s of an expansion. If not,
then byDefinition 3.3(3) the intersection of two setsWi , W j in which the house is lying
must include two vertices of the triangle of the house which are a cutset of the house.
Clearly we also obtain the convex house in the graph obtained by this expansion. This
contradiction proves the claim.

Now, let us assume that in one of the expansions of the sequence, the subgraph induced
by U = ⋂k

i=1 Wi is not gated. Assume first that this happens in the last expansion step.
ThusG′ is quasi-median andG is obtained fromG′ by an expansion relative to the sets
Wi , i = 1, . . . , k, having a common intersectionU . SinceG′ is quasi-median it is a weakly
modular graph,〈U〉 is its triangle closed subgraph (this again follows from nonexistence
of convex houses), therefore byLemma 2.1, 〈U〉 is not weakly 2-convex. Thus there exist
verticesu, v ∈ U such thatd〈U 〉(u, v) = 2, and there isx ∈ V (G)\U which is a common
neighbour ofu andv. Let w ∈ U be a common neighbour ofu andv. Let u′, v′, w′, u′′,
v′′, w′′ be vertices inG corresponding to verticesu, v, andw. (There can be more than
two such triples, but we need just two.) Thenu′, v′, w′, u′′, v′′, w′′ andx form a convex
Q−

3 in G which is a contradiction. Similarly as above one can check that if this was not
the last expansion step, further expansions cannot change that we have a convexQ−

3 in a
graph. �

From the above theorem we immediately obtain the following characterization of
median graphs:

Corollary 4.3 ([4]). A graph G is a median graph if and only if G is a semimedian graph
that contains no convex Q−

3 .

Proof. Use that median graphs are precisely bipartite quasi-median graphs, that bipartite
partial Hamming graphs are precisely partial cubes, and that in bipartite graphsδ = δ ∪ κ

and∼ = ≈. Then apply the first two assertions ofTheorem 4.1. �
To get another characterization of quasi-median graphs, we recall the following result.

Theorem 4.4 ([3]). A connected graph G is a partial Hamming graph if and only if

(i) the relation ≈ is transitive,
(ii) for edges ab, xy ∈ E(G): if ab ∼ xy then Wab = Wxy, and
(iii) G has no isometric cycles C2n+1 for n ≥ 2.

Note that condition (iii) of the above theorem can be replaced by (cf. [3]):
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Fig. 2. Semi-quadrangle and semi-triangle property.

(iii ′) If P is a path connecting the endpoints of an edgexy, thenP contains an edgeab
with xy ≈ ab.

CombiningTheorem 4.4with 4.1we get:

Corollary 4.5. A connected graph G is a quasi-median graph if and only if

(i) ≈ = (δ ∪ κ)∗,
(ii) for edges ab, xy ∈ E(G): if ab ∼ xy then Wab = Wxy,
(iii) G has no isometric cycles C2n+1 for n ≥ 2, and
(iv) G has no convex Q−

3 and no convex house.

5. Characterizing quasi-semimedian graphs

In this section we examine quasi-semimedian graphs more closely. We extend a result
from [18] by characterizing quasi-semimedian graphs among partial Hamming graphs.
Then we prove a characterization of quasi-semimedian graphs which, together with
Theorem 4.1, gives another characterization of quasi-median graphs. We begin with a
new concept—a semi-quadrangle property. It generalizes the concept of the quadrangle
property and will be used in a characterization of quasi-semimedian graphs.

A graphG satisfies thesemi-quadrangle property if for any u, x , y, z ∈ V (G) such that
d(u, x) = d(u, y) = d(u, z) − 1 andd(x, y) = 2 with z a common neighbour ofx andy,
there exists an edgewv such thatvwδ∗xz andd(u, v) = d(u, x) − 1, cf.Fig. 2. (Note that
in the definition of the quadrangle property a part of the condition that usesδ∗ is changed
to vwδxz andw = y.)

For our next result we recall:

Lemma 5.1 ([8]). Let G be a partial Hamming graph, and K a clique in G. Then for any
vertex u ∈ V (G) the distances from u to vertices of K are either equal or there exists a
unique x ∈ K that is closer to u than other vertices of K .
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Proposition 5.2. A graph is quasi-semimedian if and only if it is a partial Hamming graph
that satisfies the semi-quadrangle property.

Proof. Let G be quasi-semimedian and let verticesu, x , y, z be as above. LetP1 be a
shortest path fromx to u, andP2 a shortest path fromu to y. Without loss of generality, we
may assume thatu is the only common vertex ofP1 and P2. By Theorem 4.4(iii ′) there
exists an edgeab which lies on a pathx → P1 → u → P2 → y → z and is in relation≈
with xz. Suppose that there exists a clique with edgese, f such thatxz ∼ e and f ∼ ab.
Sinceab is on a shortest path fromu to z, one of the verticesa or b is closer tou than the
other. Hence byTheorem 4.4(ii) one of the endvertices off is closer tou than the other,
and byLemma 5.1we deduce that this endvertex off is closer tou than both endvertices
of e. This is a contradiction tou ∈ Wxz , since byTheorem 4.4(ii) u should be closer to one
endvertex ofe. Thus, the remaining option is thatxz ∼ ab. SinceG is quasi-semimedian,
we derive byProposition 3.2that xzδ∗ab, and the semi-quadrangle property now easily
follows.

If G is not quasi-semimedian then byProposition 3.2there exist edgesxy, uv such that
xy ∼ uv, but xy is not in relationδ∗ with uv. In addition, we may choosexy anduv in
such a way that the distances between their endvertices are as small as possible. Now, the
semi-quadrangle property does not hold for verticesx , u, a neighbour ofv which lies on a
shortest path toy, andv. �

Proposition 5.2is analogous to the following characterization of median graphs from
[21]: G is a median graph if and only ifG is a partial cube satisfying the quadrangle
property. Also, it implies the following characterization of semimedian graphs.

Corollary 5.3. A graph is semimedian if and only if it is a partial cube that satisfies the
semi-quadrangle property.

We now introduce yet another concept—semi-triangle property. A graphG satisfies a
semi-triangle property if for any verticesu, x , y ∈ V (G) whered(u, x) = d(u, y) = k ≥ 2
such thatxy ∈ E(G), there exists a triangle with verticesa, b, c such thatxyδ∗ab, and
d(u, a)−1 = d(u, b)−1 = d(u, c) < k, cf. Fig. 2. (Note that in the definition of ordinary
triangle property we havea = x andb = y.) A graph issemi-weakly-modular if it satisfies
both the semi-quadrangle and the semi-triangle property.

It is not hard to see that quasi-semimedian graphs are semi-weakly-modular. Indeed, let
G be a quasi-semimedian graph, and verticesu, x , y as above. Letu′ be the last vertex on
a shortest path fromu to x for which d(u′, x) = d(u′, y). Thereby, there exist neighbours
a, b of u′ such thata ∈ Wxy andb ∈ Wyx . Wilkeit showed:

Lemma 5.4 ([31]). If G is a partial Hamming graph then: if a vertex w ∈ V (G) has the
same distance to adjacent vertices x and y of G, then any two neighbours a ∈ Wxy and
b ∈ Wyx of w are adjacent.

From this we infer thata, b and u′ are in a triangle, and obviouslyd(u, a) − 1 =
d(u, b) − 1 = d(u, u′) < d(u, x). Finally, by Proposition 3.2it follows thatabδ∗xy, so
the semi-triangle property holds.
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Fig. 3. GraphH7.

In the search for an analogue ofTheorem 3.1we first observe that excluding graphs
K4−e andK2,3 is not enough. For this sake consider graphsHn obtained from grid graphs
P2 � Pn by attaching a triangle to each of both the edges with endvertices of degree 2,
cf. Fig. 3. The graphsHn are semi-weakly-modular but not quasi-semimedian. Moreover,
they are not even partial Hamming graphs.

WheneverHn is an induced subgraph of a graphG we shall denote its vertices by
Hn(u, v) where u and v are the unique vertices of degree 2 inHn. In the following
theorem we prove that one must exclude graphsHn as induced subgraphs for which
IG (u, v) ∩ Hn(u, v) �= {u, v} holds. Also, instead of just excluding subgraphsK2,3 we
need a stronger condition taken fromTheorem 4.4(ii). Note that this condition implies
transitivity of the relation∼, cf. [31].

Theorem 5.5. A graph G is quasi-semimedian if and only if

(i) G is semi-weakly-modular,
(ii) for every induced Hn, n ≥ 1, we have IG(u, v) ∩ Hn(u, v) = {u, v},
(iii) for edges ab, xy ∈ E(G): if ab ∼ xy then Wab = Wxy.

Proof. By the above discussion we only need to prove that conditions are sufficient, and
by Proposition 5.2it is enough to show that conditions (i)–(iii) ensure thatG is a partial
Hamming graph. Moreover, byTheorem 4.4we only need to prove conditions (i) and (iii)
of that theorem.

First we claim that the condition ofLemma 5.1holds forG. (In the proof we shall recall
thatδ∗ ⊆ ∼, since∼ is transitive.) Assume that there is a clique with verticesx , y, z, and
a vertexu ∈ V (G) such thatd(u, x) = d(u, y) = d(u, z) − 1. Letu be a vertex closest to
z with this property, hence the neighbourx ′ on a shortest path fromu to x is in Wxy . By
the semi-triangle property there exists a triangle with verticesa, b, c such thatabδ∗xy, and
d(u, c) = d(u, a) − 1 = d(u, b) − 1. Note that, by condition (iii) of the theorem, since
x ′ ∈ Wxy , alsox ′ ∈ Wab. It is clear that we have an induced subgraphHn with vertex set
Hn(c, z), henceIG(c, z)∩ Hn(c, z) = {c, z}. Thusz ∈ Wca , and again by (iii) we infer that
z ∈ Wux ′ (becauseux ′ ∼ ca), which is a contradiction.

Secondly, we prove that the condition ofLemma 5.4holds forG. Let w ∈ V (G) be a
vertex having the same distance to adjacent verticesx and y of G, and letu ∈ Wxy and
v ∈ Wyx be the neighbours ofw. By the semi-triangle property there exists a triangle
with verticesa, b, c such thatabδ∗xy, and d(w, c) = d(w, a) − 1 = d(w, b) − 1.
By condition (iii) of the theorem we haveu ∈ Wab, v ∈ Wba , and by the claim of the
previous paragraphu ∈ Wac. Hence, again using (iii), we deduced(u, v) = d(u, w) = 1
as claimed.

We next prove condition (i) ofTheorem 4.4. Suppose not: then there exist edgese,
f , andg such thate ≈ f and f ≈ g but e and g are not in relation≈. Now, in both
cases where relation≈ holds, it is clear that it is not equal to∼. Hence there exist cliques
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C and C ′, and edgese′ of C and g′ of C ′, such that f ∼ e′ and f ∼ g′. Now, it is
not hard to prove thatf δ∗e′ and f δ∗g′. (Use the semi-quadrangle property in the cycle
formed by f , e′ and shortest paths between their endvertices, and then use the induction
on the distance between endvertices of two edges in relation∼.) Thus we have at least
one Hn in G, moreover, using a shortestδ∗ sequence we can choose aHn which is
induced. (The number of inducedHn’s in G depends on the sizes ofC andC ′.) By the
condition ofLemma 5.1each vertex ofC is either closest to exactly one of the vertices
of C ′, or is at the same distance to all of them. If the latter holds for a vertexz of C,
then obviouslyHn(z, w) ∩ I (z, w) �= {z, w} for anyw of C ′, and we are through in this
case. On the other hand, if all vertices ofC and C ′ have their unique closest vertices,
then we deduce thate′ and g′ are in relation∼, hencee ≈ g, and so≈ is transitive
in G.

Finally, we prove the condition (iii) ofTheorem 4.4. Suppose that the odd cycle
C : x → z1 → z2 → · · · → z2k+1 = x is isometric. Then the condition
of Lemma 5.4 can be used forx, zk, zk+1, and z1, z2k , which says thatz1 and
z2k are adjacent. This proves thatG is a partial Hamming graph, and thus quasi-
semimedian. �

Combining Theorem 5.5with 4.1 we obtain yet another characterization of quasi-
median graphs:

Corollary 5.6. A connected graph G is a quasi-median graph if and only if

(i) G is semi-weakly-modular,

(ii) G has no induced Hn, n ≥ 1, for which IG(u, v) ∩ Gn(u, v) �= {u, v},
(iii) for edges ab, xy ∈ E(G): if ab ∼ xy then Wab = Wxy, and

(iv) G has no convex Q−
3 and no convex house.

6. Tree-like equalities for quasi-median graphs

Median graphs simultaneously generalize trees and hypercubes. Moreover, they are
considered to be the class which reflects all important properties shared by these two
classes (see Mulder’s metaconjecture [26]). Soltan and Chepoi [28] and Škrekovski
[27] proved tree-like equalities for median graphs which shed a surprising light on the
metaconjecture. Indeed, letqr be the number of subgraphs of a median graph isomorphic
to Qr , and letk be the number of its equivalence classes with respect to the relation∼.
Then∑

i≥0

(−1)i qi = 1 and k = −
∑
i≥0

(−1)i iqi .

Note that the second one applied to trees tells that the number of equivalence classes with
respect to the relation∼ equals the number of edges—a less known characterizing property
of trees. These relations also imply the Euler-type formulae from [22, 23], and they were
widely generalized in [5]. In the following result we will extend the above equalities to
the quasi-median graphs by using subgraphs which are isomorphic to Hamming graphs.
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(We note here that invariant (with respect to automorphisms) Hamming subgraphs of quasi-
median graphs were studied by Chastand and Polat [7].)

For a Hamming graphH = Kk1 � Kk2 � · · · � Kkn , with ki > 1 for all i , we say that
n is thedimension of H . Thedimension of a partial Hamming graphG is the dimension of
a Hamming graph of smallest dimension into whichG can be isometrically embedded.
Alternatively, the dimension ofG is the number of expansion steps with whichG is
obtained fromK1, which in turn coincides with the number of≈ classes inG (using
Lemma 4.2). Note that the dimension ofQn is n.

Theorem 6.1. Let G be a quasi-median graph of dimension t and let αi (i ≥ 0) be the
number of induced Hamming subgraphs of G of degree i . Then

∑
i≥0

(−1)iαi = 1 and − t =
∑
i≥0

(−1)i iαi .

Proof. The proof is by induction on the number of vertices. The claim is obviously true
for G ∼= K1. So, we may assume thatG is constructed by a gated expansion from a
quasi-median graphG′ with respect toU , W1, . . . , Wn . Let α0

i (resp.α′
i ) be the number

of induced subgraphs of〈U〉 (resp.G′) isomorphic to some Hamming graph of degree
i . Denote byt0 andt ′ the dimensions of〈U〉 andG′, respectively. SinceG′ and〈U〉 are
quasi-median graphs, by induction, we assume that the above two relations are valid for
these two graphs. It is not hard to observe that

αk = α′
k − α0

k +
k∑

i≥0

α0
k−i

(
n

i + 1

)
.

Recall that

(
n
i

)
= 0 wheneveri > n. In what follows, we will use the following two

identities:

∑
i≥1

(−1)i
(

n
i

)
= −1 and

∑
i≥0

(−1)i i

(
n
i

)
= 0.

We can now derive

∑
k≥0

(−1)kαk =
∑
k≥0

(−1)kα′
k −

∑
k≥0

(−1)kα0
k +

∑
k≥0

(−1)k
k∑

i≥0

α0
k−i

(
n

i + 1

)

= 1 − 1 +
∑
k≥0

(
(−1)k−1α0

k

∑
j≥1

(−1) j
(

n
j

))

=
∑
k≥0

(−1)kα0
k = 1.
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Observe thatt = t ′ + 1. For the second equality,

∑
k≥0

(−1)kkαk =
∑
k≥0

(−1)kkα′
k −

∑
k≥0

(−1)kkα0
k

+
∑
k≥0

(
(−1)kk

k∑
i≥0

α0
k−i

(
n

i + 1

))

= −t ′ + t0 +
∑
k≥0

(
(−1)k−1α0

k

(∑
j≥0

(−1) j+1(k + j)

(
n

j + 1

)))

= −t ′ + t0 +
∑
k≥0

(
α0

k

∑
j≥0

(−1)k+ j (k + j)

(
n

j + 1

))

= −t ′ + t0 +
∑
k≥0

(
(−1)k−1(k − 1)α0

k

∑
j≥0

(−1) j+1
(

n
j + 1

))

+
∑
k≥0

(
(−1)kα0

k

∑
j≥0

(−1) j+1( j + 1)

(
n

j + 1

))

= −t ′ + t0 +
∑
k≥0

(−1)k(k − 1)α0
k +

∑
k≥0

(−1)kα0
k 0

= −t ′ + t0 +
∑
k≥0

(−1)k(k − 1)α0
k

= −t ′ + t0 +
∑
k≥0

(−1)kk α0
k −

∑
k≥0

(−1)kα0
k

= −t ′ + t0 − t0 − 1 = −t . �

The equalities ofTheorem 6.1cannot be extended to quasi-semimedian graphs, not
even in the bipartite case. However, these relations imply an Euler-type formula which
can be extended to a larger class of graphs. We are going to prove it for graphs that can be
obtained by a connected expansion procedure. Note that these graphs include the class of
quasi-semimedian graphs, and that this result extends all such previously known formulae
[4, 22].

Theorem 6.2. Let G be a graph with n vertices, m edges and of dimension k, that is
obtained by a sequence of connected expansions from K1. Then 2n −m − k ≤ 2. Moreover
equality holds if and only if G is Ct � K2-free (t ≥ 3) and K4-free.

Proof. The proof is by induction onk. Let G be obtained from a graphG′ by a connected
expansion with respect toW1, W2, . . . , Wr . Let W∗ = ⋃

1≤i< j≤r (Wi ∩ W j ). For i =
1, . . . , r denote byai andbi the number of vertices and edges, respectively, that lie in at
leasti covering subsets ofG′. Let k ′ be the dimension ofG′, thenk = k ′ + 1.
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Clearly,a1 andb1 are the number of vertices and edges, respectively, ofG′. Moreover,∑r
i=2 bi is the number of edges added by the expansion to the≈ classes ofG′, while∑k
i=1(i − 1)ai is the number of edges of the new≈ class. Hence,

n =
r∑

i=1

ai and m =
r∑

i=1

(bi + (i − 1)ai),

from which we obtain

2n − m − k =
r∑

i=1

(3 − i)ai −
r∑

i=1

bi − (k ′ + 1)

= (2a1 − b1 − k ′) +
r∑

i=2

(3 − i)ai −
r∑

i=2

bi − 1.

By the induction hypothesis, 2a1 − b1 − k ′ ≤ 2 holds forG′, therefore

2n − m − k ≤
r∑

i=2

(3 − i)ai −
r∑

i=2

bi + 1

= (a2 − b2 + 1) +
r∑

i=3

(3 − i)ai −
r∑

i=3

bi

≤ a2 − b2 + 1.

Now, a2 andb2 are the numbers of vertices and edges of〈W∗〉, respectively. Since〈W∗〉 is
connected, we havea2 − b2 ≤ 1, which proves the theorem’s inequality.

For the second part of the theorem observe that the equality will hold precisely whenG
is obtained by an expansion procedure in such a way that in all the expansions the numbers
ai , i ≥ 4, andb j , j ≥ 3, are zero anda2 − b2 = 1. This holds precisely when in each
expansion step at most three covering sets are involved, no edge lies in all three covering
sets (which means that their common intersection is a vertex), and〈W∗〉 is a tree. Obviously
no K4, C3 � K2, C4 � K2, C5 � K2 can then appear inG, and it is straightforward to check
by induction on the dimension, that this holds also forCt � K2 (t ≥ 6). The converse is
obvious. �

Corollary 6.3. Let G be a planar graph with n vertices and of dimension k, that is
obtained by a sequence of connected expansions from K1. Let f be the number of faces in
its planar embedding. Then f ≥ n−k, where equality holds if and only if G is Ct � K2-free
(t ≥ 3) and K4-free.

Proof. CombineTheorem 6.2with Euler’s formulan − m + f = 2. �
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