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Abstract

Three characterizations of quasi-median graphs are proved, for instance, they are partial
Hamming graphs without convex house and con@@gx such that certain relations on their edge sets
coincide. Expansion procedures, weakly 2-convexity, and several relations on the edge set of a graph
are essential for these results. Quasi-semimedian graphs are characterized which yields an additional
characterization of quasi-median graphs. Two equalities for quasi-median graphs are proved. One of
them asserts thatdfi, i > 0, denotes the number of induced Hamming subgraphs of a quasi-median
graph, then) j-o (—1)' «j = 1. Finally, an Euler-type formula is derived for graphs that can be
obtained by a sequence of connected expansions fgm
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1. Introduction

Median and quasi-median graphs are well studied classes of grapfisycii?, 17, 19—
21, 25, 32). Quasi-median graphs have been introduced by Mul@&} s a natural
nonbipartite extension of median graphs. Chung et H#l] and independently Wilkeit
[32] proved that they are the weak retracts of Hamming graphs. On the other hand,
Hamming graphs are the regular quasi-median graphls Chastand 6] extended the
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above retraction result to infinite graphs. If] p survey of characterizations of quasi-
median graphs is given including some new ones.

Quasi-median graphs have an interesting application in location theory. Namely, they
are precisely the graphs for which a certain dynamic location problem provides a finite
solution, seeq1, 12] or [19] for more details. From the algorithmic point of view it is an
easy observation that quasi-median graphs can be recognized in polynomial time. Feder’s
general approach ofLf] yields an O(mn) algorithm, wherem is the number of edges
andn the number of vertices of a given graph. The fastest known recognition algorithm is
due to Hagauerd[7] and is of complexityO(M (m, n) + mlogn), whereM (m, n) denotes
the complexity of recognizing median graphs. (CurreMlym, n) = O(n**1(logn)%82?),
see [L9].)

Partial cubes, that is, isometric subgraphs of hypercubes, were first investigated
by Graham and Pollaklf], see also 10, 13, 33]. Nonbipartite extensions of this
class are isometric subgraphs of Hamming graphs, called partial Hamming graphs, see
[8, 16, 31]. Since (weak) retracts are isometric subgraphs, quasi-median graphs are partial
Hamming graphs. In addition, quasi-median graphs are also quasi-semimedian graphs,
the class of graphs that forms a nonbipartite extension of semimedian graphs introduced
in [18].

In this paper we consider the quasi-median graphs and their generalizations: weakly
modular graphs, partial Hamming graphs, quasi-semimedian graphs, and graphs that can
be obtained fronK1 by connected expansions.

In the next section we introduce necessary concepts and recall some known results.
We follow with a section in which quasi-median graphs are introduced and relevant
characterizations are given. Quasi-semimedian graphs are also presented and a result of
[18] is extended from semimedian to quasi-semimedian graphs. We continue with a section
containing three characterizations of quasi-median graphs. We show that quasi-median
graphs are precisely partial Hamming graphs which include no convex hou®g or
and for which certain relations on their edge sets coincide. We also prove that quasi-
median graphs can be described as quasi-semimedian graphs which contain no convex
house orQ; . In Section Swe study quasi-semimedian graphs, in particular we give their
characterization. This in turn enables us to obtain another characterization of quasi-median
graphs. In the last section we first prove that for a quasi-median deattte following
holds:

Z(—l)ioq =1 and —t= Z(—l)iioq.

i>0 i>0

Heret is a dimension ofc ande«; the number of induced Hamming subgraph<obf
degreei. These results generalize such equalities for median gr&yhswWe conclude

the paper by proving that for a graghthat can be obtained by a sequence of connected
expansions fronK1, 2n — m — k < 2 holds, where we have equality if and onlyGfis

Ci OKp-free (t > 3) andKy-free. This result extends all such previously known Euler-
type formulae.



B. BreSar et al. / European Journal of Combinatorics 24 (2003) 557-572 559

2. Preliminaries

The interval | (u, v) between verticesl, v of a connected grapls is the set of
vertices of all shortest paths betweerand v in G. A graph G is a median graph if
[1(u,v) NI (v, w) NI (w,u)| = 1forall triples of verticesl, v, w of G.

A graph G satisfies thdriangle property if for any verticesu, x, y € V(G) where
d(u,x) = d(u,y) = k > 2 such thaxy € E(G), there exists a common neighbaur
of x andy with d(u, v) = k — 1. A graphG satisfies thejuadrangle property if for any
u, X, ¥, Z € V(G) such thatd(u, x) = d(u,y) = d(u,z) — 1 andd(x,y) = 2 with
z a common neighbour of andy, there exists a common neighbauof x andy such
thatd(u, v) = d(u, x) — 1. A graph which fulfils the quadrangle property and the triangle
property is calledveakly modular.

A subgraphH of a graphG is calledisometric if dy(u,v) = dg(u, v) for all u,

v € V(H), wheredg(u, v) denotes the length of a shortest pathGnfrom u to v. A
connected subgrap of G is calledconvex if for every two vertices fronH all shortest
paths are contained iH . It is easy to see that the intersection of two convex subgraphs
is also convex. Aconvex closure of a subgraptH of G is defined as the smallest convex
subgraph ofG which containsH . A subgraphH of a graphG is calledgated in G if for
everyx € V(G) there exists a vertexin H such thau € | (x, v) forall v € V(H). Note

that if for somex such a vertexi in V (H) exists, it must be unique.

An induced connected subgraphof a graphG is 2-convex if for any two verticesu
andv of H with dg(u, v) = 2, every common neighbour afandv belongs toH . We call
an induced subgrapH of a graphG weakly 2-convex if for any two verticesu, v € V(H)
with dy (u, v) = 2, every common neighbour efandv belongs toH. The path on five
vertices is a weakly 2-convex but not 2-convex subgrap@gfChepoi P] and Bandelt
and Chepoi2, Lemma 1] observed that a connected subgraph of a weakly modular graph
is weakly 2-convex if and only if it is convex. In addition, a convex subgraph is gated if
and only if it is triangle-closed, where a subgraptof a graphG is triangle-closed if H
contains a triangle as soon it contains one of its edges. For further reference we thus state:

Lemma 2.1. Let G be a weakly modular graph. For an induced subgraph H of G the
following assertions are equivalent:

() H isgated.
(i) H isconvexand triangle-closed.
(iii) H isconnected, triangle-closed, and weakly 2-convex.

The equivalence between (i) and (ii) has also been noticel] lcejmma 2]. It is easy to
see that an isometric subgraph is weakly 2-convex if and only if it is 2-convex. Therefore,
we can also deduce a result of Ves&lj[which claims that subgraphs of pseudo-median
graphs are gated precisely when they are 2-convex, triangle-closed, and isometric.

The Cartesian product G = G10G200 .- OGk of graphsGy, G, ..., Gk has
verticesV(G) = V(G x V(G2) x --- x V(Gk) and verticesu = (uy, ..., Uk),
v = (v1, ..., vx) Of G are adjacent if there exists an indgxl < j < k) such thaujv;
E(Gj)andu; = vj foralli € {1,2,...,k}\{j}. If all the factors in a Cartesian product are
complete graphs the@ is called aHamming graph and in particular if alk factors areK,
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Fig. 1. Connected expansion.

then G is ahypercube denotedQy. Isometric subgraphs of hypercubes are cafladial
cubes and isometric subgraphs of Hamming graphspartial Hamming graphs.

Next we introduce several relations defined on the edge set of a @aiiat are
essential for our investigations. For an eddeof a graphG let Wy, = {x € V(G) :
d(x,a) < d(x,b)}. Then DjokovE’s relation~ is defined as follows13]: edgesxy,
ab € E(G) are in relation~ if X € Wy, andy € Wha. The relation is reflexive and
symmetric but it is in general not transitive, & 3. It is well known that~ is a transitive
relation for partial Hamming graphs (sexl]).

A relation~ was introduced in3] (denoted there by\) on the edge set of a connected
graph as follows. Edges f are in relatiorre, if e ~ f or there exist edges, f' € E(G)
of the same clique, such that~ € and f ~ f’. (Note the meaning of our notatior:
is used because, roughly speaking, we extend the relatiby double applications of it
over cliques.) Obviously is reflexive, symmetric, ang C ~. The relatiorr: is transitive
for partial Hamming graph<3]. It is illustrated inFig. 1, where we infer that the marked
edges, obtained in an expansion step, form an equivalence class of this relation.

Edgese and f are in relations if e = f oreand f are opposite edges of an induced
square inG. (By a square we mean a 4-cycle.) We say that edgasl f are in relationc
if eand f belong to a common complete subgraptGof

Finally, a graph obtained frorz [J K3 by deletion of a vertex is calledlouse, Q3
denotes the 3-cube minus a vert&x, — e is the complete graph on four vertices minus an
edge, and X) stands for the subgraph induced by the vertexset

3. Quasi-(semi)median graphs

Recall that for an edgab of a graphG, Wap = {x € V(G) : d(x,a) < d(x, b)}. In
addition let
Uap = {X € Wayp : X has a neighbouy in Wya}.

A graph isquasi-median if every clique (that is, a maximal complete subgraph) in a graph
is gated and for any edgd, Uy is convex. We will need the following characterization
of quasi-median graphs due to Chung et 2] [
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Theorem 3.1 ([12]). A graph G isquasi-median if and only if G is weakly modular and
does not contain K4 — e or K3 3 as an induced subgraph.

Semimedian graphs were introduced in 18] as partial cubes for which every set
Uap is connected. A natural nonbipartite extension of semimedian graphgquase
semimedian graphs introduced as partial Hamming graphs for which every dgi is
connected J]. Note that in B] these graphs were called semi-quasi-median since they
lie between partial Hamming graphs and quasi-median graphs, just as semimedian graphs
lie between partial cubes and median graphs. Clearly, bipartite quasi-semimedian graphs
are precisely semimedian graphs which is reflected in their new name—quasi-semimedian
graphs.

It was shown in 18] that a bipartite graph is a semimedian graph if and ondy i= ~.
This result can be extended to quasi-semimedian graphs as follows.

Proposition 3.2. Agraphisquasi-semimedianif and onlyifitisa partial Hamming graph
with §* = ~.

Proof. Let G be quasi-semimedian. Since in partial Hamming graphis transitive,
and we always haveé C ~, it follows thats* < ~. On the other hand, idb ~ uv for
ab, uv € E(G) thenu € Ugp, and sinceJyy, is connected there exists a path frono a
which lies entirely inUap. We now easily deduce thabs*uv.

Conversely, let* =~ and suppose thal,y, is not connected foab € E(G). Then
there exists an edge in relation~ with ab such that any path i,y betweeru anda
has at least one vertex Wyp\Uap. We claim that themwv is not in relations™ with ab.
Indeed, ifuv were in relations* with ab, then the vertices of one side of edges which are
in relations* with ab would induce a path itlgp betweeru anda. O

Odd cycles are examples of graphs for whi¢h= ~ holds. Indeed, both relations are
trivial. As odd cycles of length at least 5 are not partial Hamming graphs (on the other hand,
they can be embedded as induced subgraphs into Hamming graphs), we must assume in
the above proposition th& is a partial Hamming graph.

Let us present a class of quasi-semimedian graphs that are not quasi-median. Take the
Cartesian product of paths, and select a set kfcubes such that for any twio-cubes
their edges are from different equivalence classes. Then to e&ebube of this set add
all possible edges between its vertices, that is, aghs transformed intd«. Note
that the resulting graph is not quasi-median (unless the product of paths is in some sense
trivial), but it is a partial Hamming graph which can be derived from the definitions of
both classes (alternatively, one can use an expansion procedure described below to see
that they are partial Hamming graphs). Byoposition 3.2his partial Hamming graph is
guasi-semimedian.

The notion of expansion was first introduced by Mulder #]{ all other notions
of expansion were derived from this. For our purposes, we recall the following general
expansion, introduced by Chepéj jn the following way.

Definition 3.3. Let G be a connected graph and &4, Wa, ..., Wi be subsets o¥ (G)
such that:
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(1) WinWj #@foralli, j e {1,2,...,k};

(2) U, W = V(G);

(3) there are no edges between 38t§W; andWj\W; foralli, j € {1,2,...,k};
(4) subgraphgw), (Wi U W) are isometricirG foralli, j =1,2,...,k.

Then to each vertex € V(G) we associate a sy, i, . .., it} of all indicesij, where
xeW;. A graphG* is called arexpansion of G relativeto the sets Wy, Wo, . .., W if it
is obtained fronG in the following way:

(5) replace each vertexof G with a clique with vertices;, , Xi,, . . ., Xi;
(6) if an indexis belongs to both setfy, iz, ...,it}, {i1.i5,...,i]} corresponding to
adjacent verticex andy in G then letx;, yi; € E(G*).

Moreover, by imposing extra conditions to the above definition, we obtain some special
expansions. W, N W; induce connected subgraphs, then this is callebranected
expansion. If, in addition, W, "W = U foralli,j = 1,2,...,k where(U) is a gated
subgraph irG, and all subgraph@\;) are also gated, then this is calledaied expansion.

If the numbek of subsets involved in the expansion equals 2, then the expansion is called
binary. An example of a (connected) expansion is giveriFan 1

The following theorem collects expansion theorems that are of interest to us. The first
result is due to Chepo8], the second to Mulder2f], cf. also Bandelt et al.1], while the
last one is given in18] for the bipartite case and extended 8} {o the general case.

Theorem 3.4. Let G bea graph.

(i) Gisapartial Hamming graphif and only if it can be obtained from K by a sequence
of expansions.
(i) G isaquasi-median graph if and only if G can be obtained from K1 by a sequence
of gated expansions.
(i) If G is a quasi-semimedian (resp. semimedian) graph then it can be obtained from
K1 by a sequence of (resp. binary) connected expansions.

4. Characterizing quasi-median graphs

For a relationR, let R* stand for its transitive closure. We can prove straightforwardly
that in quasi-semimedian graphs the relatorquals(s U «)*. Hence, this is also true for
guasi-median graphs. The reverse implication need not be true in general. Nevertheless,
these relations are important for the main result of this section:

Theorem 4.1. Thefollowing assertions are equivalent for a connected graph G:

(i) Gisaquasi-mediangraph.
(i) Gisapartial Hamming graph with ~ = (§ U «)*, and G has neither a Q3 nor a
house as a convex subgraph.
(i) G isaquasi-semimedian graph, and G has neither a Q5 nor a house as a convex
subgraph.
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For the proof of this theorem we need a lemma. It states thatdtem Definition 3.3
enjoy the so-calledHelly property. (It is well known that this property holds for gated
subsets?9], hence the present lemma is seemingly a stronger variation of this result.)

Lemma4.2. Let G be a connected graph and let Wi, i = 1, ..., k be subsets of V (G)
which satisfy Definition 3.3 Then NK_, W, # .

Proof (Induction onk). The claim is true fok = 2. Suppose that the claim holds for
k> 2,and letW,i = 1,...,k + 1, be the subsets &f (G’) that satisfy the conditions
in Definition 3.3 Observe that the set8; fori = 1,...,k satisfy the conditions in
Definition 3.3also in a graph induced y’_, Wi hence by inductiomikzlvvi is nonempty.
SetU = nk_,W. Suppose that! N Wis1 = @, and letx € W1 N UK, W] be a
vertex as close t&J as possible. Then there exist indicg € {1,...,k} such that
X € [Wiktr1 N WjI\W, and lety be a vertex olU closest tox. Since, by definition the
subgraphinduced By 1 UW, is isometric, it follows byDefinition 3.33) that there exists
avertexz € W1 "W, such that € | (x, y). Hence, we havd(x, y) = d(x, 2) +d(z, y),
thuszis closer taJ thanx, moreoverz € Wk4+1 N [U!(:1V\/i ]. This is a contradiction to the
choice ofx. O

Proof (Of Theorem 4.} For (i) = (ii) we only need to observe that a graph, having
convexQ or a convex house, cannot be quasi-median.

(i) = (iii): By Proposition 3.2t is enough to prove that* = ~, and we know already
thats* C ~.

Let ab ~ uv. Using (ii) and the fact- C =, it follows thatab(s U «)*uv. Letab =
XoYo, X1Y1, X2Y2, . .., XkYk = Uv be a sequence of edges such that (8 U k) Xi+1VYi+1
fori =0,...,k— 1. Assume thaab anduv are selected such that consecutive edges of
the above sequence are in relatioas few times as possible and, among such sequences,
k is as small as possible. Clearlygifis not involved at all, we are done. Otherwise, by the
minimality assumptionsab andxyy; are in the same cliquepy- is notin it, andx; y; and
X2Y2 are opposite edges of an induced square.

Assume first thad, b, x1, andy; are pairwise different vertices. Then the vertiagx;,
y1, X2, Y2 as well ad, X1, y1, X2, y2 induce houses, and as there is no convex hou& in
any of these two houses gives a convex K». Let x], respectivelyy;, be the vertices
of the convex closure of the two houses. Bsontains ndK,4 — et follows thatx] # y;.

By the same argumemnty; is an edge which is the opposite edge of a square containing
ab and lies in the same clique asy,. As ab ~ uv andab ~ x]y;, transitivity implies
X1Y; ~ uv. By minimality, x; y;8*uv, and sinceabsx;y; we conclude thaabs*uv.

Let nowa = xj (and, of courseb # yi1). Then the verticeg, b, yi1, X2, y2 induce a
house whose convex closureks [ K». Let x, be the remaining vertex of thigz (I K».
Thenxzx5k X2y2 and soxzX5(8 U k) *uv. By the minimality we infer thakzx,6*uv and as
absxzx, we conclude again thaibs*uv.

(i) = (i): We will prove thatG is a quasi-median graph by showing ti@atcan be
obtained by a sequence of gated expansions. Hrieeorem 3.4iii) we know thatG can
be obtained fronkK by a sequence of connected expansions.

We first claim that for each expansion the sétscorresponding to it have the same
pairwise intersections, i.&V; N W; = Wy N Wx for all pairs of indices 1< i < j < k.
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Note that this also means that the common intersection of alVgeitsthe same set, which
we shall callU.

The claim is trivial fork = 2, so letWy, Wo, . .., Wk, k > 3, be the sets corresponding
to the expansion. Byemma 4.2hese sets have a common nonempty intersection. Suppose
thatW, N Wj # Wi N W for some indexes, j, | € {1,...,k}. Then, since the expansion
is connected, there exists a vertexe W, N Wj\W which is adjacent to a vertex
y € Wi N Wj NW. Letx, yi, Xj, ¥j, ¥ be vertices of the grapl that is obtained
from G’ by this expansion, so that the indices of vertices and sets naturally corresponds.
Obviously these vertices form a convex hoseNow, if this is not the last expansion in
the sequence further expansions cannot change that we have a convex house in a graph.
Indeed, this is obvious if the house lies entirely in one of\é& of an expansion. If not,
then byDefinition 3.33) the intersection of two setsf, W;j in which the house is lying
must include two vertices of the triangle of the house which are a cutset of the house.
Clearly we also obtain the convex house in the graph obtained by this expansion. This
contradiction proves the claim.

Now, let us assume that in one of the expansions of the sequence, the subgraph induced
byU = mik:lvvi is not gated. Assume first that this happens in the last expansion step.
ThusG’ is quasi-median an is obtained fromG’ by an expansion relative to the sets
W,i =1,...,k, having a common intersectidh. SinceG’ is quasi-median itis a weakly
modular graph(U) is its triangle closed subgraph (this again follows from nonexistence
of convex houses), therefore hgmma 2.1 (U) is not weakly 2-convex. Thus there exist
verticesu, v € U such thaty,(u, v) = 2, and there ix € V(G)\U which is a common
neighbour ofu andv. Letw € U be a common neighbour ofandv. Letu’, v/, w’, u”,

v”, w” be vertices inG corresponding to verticas, v, andw. (There can be more than
two such triples, but we need just two.) Thenv’, w’, u”, v”, w” andx form a convex

Q3 in G which is a contradiction. Similarly as above one can check that if this was not
the last expansion step, further expansions cannot change that we have a@gnvea
graph. O

From the above theorem we immediately obtain the following characterization of
median graphs:

Corollary 4.3 ([4]). Agraph G isamedian graphif andonlyif G isa semimedian graph
that contains no convex Qs .

Proof. Use that median graphs are precisely bipartite quasi-median graphs, that bipartite
partial Hamming graphs are precisely partial cubes, and that in bipartite graplisJ «
and~ = ~. Then apply the first two assertionsfeorem 4.1 [

To get another characterization of quasi-median graphs, we recall the following result.

Theorem 4.4 ([3]). A connected graph G isa partial Hamming graph if and only if

() therelation~ istransitive,
(i) for edgesab, xy € E(G): if ab ~ xy then Wap = Wiy, and
(iif) G hasno isometric cycles Cony1 for n > 2.

Note that condition (iii) of the above theorem can be replaced by3pf. [
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Fig. 2. Semi-quadrangle and semi-triangle property.

(ii”) If P is a path connecting the endpoints of an edgethenP contains an edgab
with xy ~ ab.

CombiningTheorem 4.4vith 4.1we get:
Corollary 4.5. A connected graph G isa quasi-median graph if and only if

(i) ~=@Ur)*,

(i) for edgesab, xy € E(G): if ab ~ xy then Wap = Wky,
(iif) G hasnoisometric cycles Cop1 for n > 2, and
(iv) G hasno convex Q3 and no convex house.

5. Characterizing quasi-semimedian graphs

In this section we examine quasi-semimedian graphs more closely. We extend a result
from [18] by characterizing quasi-semimedian graphs among partial Hamming graphs.
Then we prove a characterization of quasi-semimedian graphs which, together with
Theorem 4.1 gives another characterization of quasi-median graphs. We begin with a
new concept—a semi-quadrangle property. It generalizes the concept of the quadrangle
property and will be used in a characterization of quasi-semimedian graphs.

A graphG satisfies theemi-quadrangle property if for any u, X, y, z € V(G) such that
d(u, x) =d(u,y) =d(u, z) — 1 andd(x, y) = 2 with za common neighbour of andy,
there exists an edgev such thabws*xz andd(u, v) = d(u, x) — 1, cf. Fig. 2 (Note that
in the definition of the quadrangle property a part of the condition thatdisisschanged
tovwéxz andw = y.)

For our next result we recall:

Lemma5.1 ([8]). Let G bea partial Hamming graph, and K a cliquein G. Then for any
vertex u € V(G) the distances from u to vertices of K are either equal or there exists a
unique X € K that is closer to u than other vertices of K.
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Proposition 5.2. Agraphisquasi-semimedianif and onlyifitisa partial Hamming graph
that satisfies the semi-quadrangle property.

Proof. Let G be quasi-semimedian and let vertiagsx, y, z be as above. LeP; be a
shortest path from to u, andP, a shortest path from to y. Without loss of generality, we
may assume that is the only common vertex dP; and P,. By Theorem 4.4iii ") there
exists an edgab which lies on a patk - P; - u — P, — y — zand s in relatiorr
with xz. Suppose that there exists a clique with edget such thatxz ~ eand f ~ ab.
Sinceab is on a shortest path fromto z, one of the verticea or b is closer tou than the
other. Hence byrheorem 4.4ii) one of the endvertices of is closer tou than the other,
and byLemma 5.1we deduce that this endvertex bfis closer tou than both endvertices
of e. This is a contradiction ta € Wk, since byTheorem 4.4ii) u should be closer to one
endvertex ok. Thus, the remaining option is that ~ ab. SinceG is quasi-semimedian,
we derive byProposition 3.2hat xzs*ab, and the semi-quadrangle property now easily
follows.

If G is not quasi-semimedian then Byoposition 3.2here exist edgesy, uv such that
Xy ~ uv, butxy is not in relations* with uv. In addition, we may choosey anduv in
such a way that the distances between their endvertices are as small as possible. Now, the
semi-quadrangle property does not hold for verticas, a neighbour of which lies on a
shortest path tg, andv. O

Proposition 5.4s analogous to the following characterization of median graphs from
[21]: G is a median graph if and only & is a partial cube satisfying the quadrangle
property. Also, it implies the following characterization of semimedian graphs.

Corollary 5.3. Agraph is semimedian if and only if it is a partial cube that satisfies the
semi-quadrangle property.

We now introduce yet another concept—semi-triangle property. A géaphtisfies a
semi-triangle property if for any verticeau, x, y € V(G) whered(u, x) = d(u,y) =k > 2
such thatxy € E(G), there exists a triangle with verticas b, ¢ such thatxys*ab, and
d(u,a)—1=d(u,b)—1=d(u,c) <Kk, cf. Fig. 2 (Note that in the definition of ordinary
triangle property we have = x andb = y.) A graph issemi-weakly-modular if it satisfies
both the semi-quadrangle and the semi-triangle property.

Itis not hard to see that quasi-semimedian graphs are semi-weakly-modular. Indeed, let
G be a quasi-semimedian graph, and vertices, y as above. Letl’ be the last vertex on
a shortest path from to x for whichd(u’, x) = d(u’, y). Thereby, there exist neighbours
a, b of u’ such thas € Wyy andb € Wyy. Wilkeit showed:

Lemma5.4 ([31]). If G isa partial Hamming graph then: if a vertex w € V (G) hasthe
same distance to adjacent vertices x and y of G, then any two neighboursa € Wyy and
b € Wyx of w are adjacent.

From this we infer thaf, b andu’ are in a triangle, and obviously(u,a) — 1 =
d(u,b) — 1 = d(u,u’) < d(u, x). Finally, by Proposition 3.4t follows thatabs*xy, so
the semi-triangle property holds.
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Fig. 3. GraphHy.

In the search for an analogue ©heorem 3.1we first observe that excluding graphs
K4 —eandKy 3 is not enough. For this sake consider grapla®btained from grid graphs
P, O P, by attaching a triangle to each of both the edges with endvertices of degree 2,
cf. Fig. 3 The graphdH,, are semi-weakly-modular but not quasi-semimedian. Moreover,
they are not even partial Hamming graphs.

WheneverH, is an induced subgraph of a graghwe shall denote its vertices by
Hnh(u, v) whereu and v are the unique vertices of degree 2 k. In the following
theorem we prove that one must exclude graphsas induced subgraphs for which
lc(u,v) N Hy(u,v) # {u, v} holds. Also, instead of just excluding subgrapfiss we
need a stronger condition taken frohheorem 4.4(ii). Note that this condition implies
transitivity of the relation~, cf. [31].

Theorem 5.5. A graph G isquasi-semimedian if and only if

() G issemi-weakly-modular,
(i) for everyinduced Hp, n > 1, we have Ig(u, v) N Hp(u, v) = {u, v},
(i) for edgesab, xy € E(G): if ab ~ xy then Wap = Wky.

Proof. By the above discussion we only need to prove that conditions are sufficient, and
by Proposition 5.4t is enough to show that conditions (i)—(iii) ensure tkais a partial
Hamming graph. Moreover, bijheorem 4.4ve only need to prove conditions (i) and (iii)
of that theorem.

First we claim that the condition aemma 5.1holds forG. (In the proof we shall recall
thaté* C ~, since~ is transitive.) Assume that there is a clique with vertigey, z, and
a vertexu € V(G) such thatd(u, x) = d(u, y) = d(u, z) — 1. Letu be a vertex closest to
z with this property, hence the neighbatron a shortest path from to x is in Wky. By
the semi-triangle property there exists a triangle with vericés c such thabbs*xy, and
d(u,c) = d(u,a) — 1 = d(u, b) — 1. Note that, by condition (iii) of the theorem, since
X" € Wyy, alsox” € Wyp. It is clear that we have an induced subgraphwith vertex set
Hn(c, 2), hencelg(c, 2y N Hp(c, 2) = {c, z}. Thusz € W¢a, and again by (iii) we infer that
z € Wyx (becauseix’ ~ ca), which is a contradiction.

Secondly, we prove that the conditionlodmma 5.4holds forG. Letw € V(G) be a
vertex having the same distance to adjacent verticesdy of G, and letu € Wy and
v € Wyx be the neighbours ab. By the semi-triangle property there exists a triangle
with verticesa, b, ¢ such thatabs*xy, andd(w,c) = d(w,a) — 1 = d(w,b) — 1.
By condition (iii) of the theorem we have € Wy, v € Wha, and by the claim of the
previous paragraph € W;c. Hence, again using (iii), we dedudéu, v) = d(u, w) = 1
as claimed.

We next prove condition (i) ofheorem 4.4 Suppose not: then there exist edges
f, andg such thate ~ f and f ~ g bute andg are not in relatiorr=. Now, in both
cases where relatioss holds, it is clear that it is not equal te. Hence there exist cliques
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C andC’, and edge® of C andg’ of C’, such thatf ~ € and f ~ ¢’. Now, it is
not hard to prove that§*¢ and f§*g’. (Use the semi-quadrangle property in the cycle
formed by f, € and shortest paths between their endvertices, and then use the induction
on the distance between endvertices of two edges in relatipdhus we have at least
one Hy in G, moreover, using a shortedt sequence we can chooseHy which is
induced. (The number of induced,’s in G depends on the sizes 6f andC’.) By the
condition ofLemma 5.1each vertex ofC is either closest to exactly one of the vertices
of C/, or is at the same distance to all of them. If the latter holds for a verteiC,
then obviouslyHn(z, w) N I (z, w) # {z, w} for anyw of C’, and we are through in this
case. On the other hand, if all vertices©fand C’ have their unique closest vertices,
then we deduce that andg’ are in relation~, hencee ~ g, and so~ is transitive

in G.

Finally, we prove the condition (iii) ofTheorem 4.4 Suppose that the odd cycle
C: X > 721 > 2 »> -+ — Zx41 = X is isometric. Then the condition
of Lemmab5.4can be used forx, z, z«+1, and z1, zpk, which says thatz; and
Zox are adjacent. This proves th& is a partial Hamming graph, and thus quasi-
semimedian. [

Combining Theorem 5.5with 4.1 we obtain yet another characterization of quasi-
median graphs:

Corollary 5.6. A connected graph G is a quasi-median graph if and only if

() G issemi-weakly-modular,

(i) G hasnoinduced Hp, n > 1, for which Ig(u, v) N Gn(u, v) # {u, v},
(iii) for edgesab, xy € E(G): if ab ~ xy then Wap = Wy, and
(iv) G hasno convex Q3 and no convex house.

6. Tree-like equalitiesfor quasi-median graphs

Median graphs simultaneously generalize trees and hypercubes. Moreover, they are
considered to be the class which reflects all important properties shared by these two
classes (see Mulders metaconjectug$]]. Soltan and Chepoi2g] and Skrekovski
[27] proved tree-like equalities for median graphs which shed a surprising light on the
metaconjecture. Indeed, lgt be the number of subgraphs of a median graph isomorphic
to Qr, and letk be the number of its equivalence classes with respect to the retation
Then

Z(—l)iqi =1 and k=- Z(—l)iiqi.

i>0 i>0
Note that the second one applied to trees tells that the number of equivalence classes with
respect to the relatior equals the number of edges—a less known characterizing property
of trees. These relations also imply the Euler-type formulae fran43], and they were
widely generalized ing]. In the following result we will extend the above equalities to
the quasi-median graphs by using subgraphs which are isomorphic to Hamming graphs.
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(We note here that invariant (with respect to automorphisms) Hamming subgraphs of quasi-
median graphs were studied by Chastand and Pdiat

For a Hamming grapi = Ky, O Ky, O - - - O K,, with ki > 1 for alli, we say that
n is thedimension of H. Thedimension of a partial Hamming grap@ is the dimension of
a Hamming graph of smallest dimension into whi@hcan be isometrically embedded.
Alternatively, the dimension o6 is the number of expansion steps with whi€his
obtained fromK+1, which in turn coincides with the number &f classes inG (using
Lemma 4.2. Note that the dimension &, is n.

Theorem 6.1. Let G be a quasi-median graph of dimensiont and let «; (i > 0) be the
number of induced Hamming subgraphs of G of degreei. Then

Z(—l)ioq =1 and —t= Z(—l)iioci.

i>0 i>0

Proof. The proof is by induction on the number of vertices. The claim is obviously true
for G = Kji. So, we may assume th& is constructed by a gated expansion from a
quasi-median grapts’ with respect tdJ, Wy, ..., Wy. Let aio (resp.«]) be the number

of induced subgraphs gfJ) (resp.G’) isomorphic to some Hamming graph of degree

i. Denote byty andt’ the dimensions ofU) and G/, respectively. Sinc&’ and (U) are
guasi-median graphs, by induction, we assume that the above two relations are valid for
these two graphs. Itis not hard to observe that

k
0 Z 0 n
ak:a/k_aﬁpoak’i (i +1>'

Recall that ?) = 0 whenever > n. In what follows, we will use the following two

identities:
2(—1)‘ (?) — -1 and Xg(—l)ii (T‘) —o.

We can now derive

k
YDk = D (=Dfoy — ) (DX + D (=D el (i _ﬂ 1)

k>0 k>0 k>0 k>0 i>0

=1-1+) ((—1)“049 GL <T>>

k>0 j>1

= > (-Dro =1

k>0
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Observe that = t’ + 1. For the second equality,

D Dok = Y (= Dk — D (=1 fkey?

k>0 k>0 k>0
k
e (comser (1)
k>0 i>0
= —t'+t0+ ) ((—1)k_1ot|(() (Z(—l)j“(k +1) < i 1)))
k>0 i>0 J
= —t'+t0+ ) (“EZ(—l)k” K+ ) < i 1))
k>0 i>0 J
= —t'+to+ ) ((—1)“(k— Dy ) _(~1I* ( ! 1))
k>0 i>0 I+
k0 i+l n
+§)(( 1 akj;( DI +1)<j +1>>
= —t'+to+ Y DXk—Dag+ Y (-1 g0
k>0 k>0
= —t'+t0+ ) (-D*k - Doy
k>0
= —t'+1o+ Y (DK = Y (—Dey
k>0 k>0

= —t'+to—tp—1=-t. O

The equalities ofTheorem 6.1cannot be extended to quasi-semimedian graphs, not
even in the bipartite case. However, these relations imply an Euler-type formula which
can be extended to a larger class of graphs. We are going to prove it for graphs that can be
obtained by a connected expansion procedure. Note that these graphs include the class of
guasi-semimedian graphs, and that this result extends all such previously known formulae

[4, 22].

Theorem 6.2. Let G be a graph with n vertices, m edges and of dimension k, that is
obtained by a sequence of connected expansionsfrom K. Then 2n — m—k < 2. Moreover
equality holdsif and only if G is C; [0 Kp-free (t > 3) and Ks-free.

Proof. The proof is by induction ok. Let G be obtained from a grap®’ by a connected
expansion with respect tay, Wo, ..., W,. Let W* = (J;j_j (W N Wj). Fori =
1,...,r denote bya; andb; the number of vertices and edges, respectively, that lie in at
leasti covering subsets d&'. Letk’ be the dimension o&’, thenk = k' + 1.
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Clearly,a; andb; are the number of vertices and edges, respectivel@g, oMoreover,
> i_,bi is the number of edges added by the expansion toxteasses ofG’, while

Zik:l(i — D)a; is the number of edges of the newclass. Hence,

r
n:Za and m=
i=1 i=1

(bi + (i — Day),

r
from which we obtain

r r
> @-ia - bi—K+1)
i—1 i—1

r r
= Qa—b—K)+Y @-ia—) bi-1
i =2

i=2

2n—m-—Kk

By the induction hypothesisa2 — by — k' < 2 holds forG/, therefore

r r
2n—m-k < Z(3—i)a—2bi+l
i—2 i—2
r r
= (@-b+D+)Y B-a-) b
i—3 i—3
< ap—by+ 1

Now, ap andby are the numbers of vertices and edge&if), respectively. SincéN*) is
connected, we hawe — by < 1, which proves the theorem’s inequality.

For the second part of the theorem observe that the equality will hold precisely@vhen
is obtained by an expansion procedure in such a way that in all the expansions the numbers
aj,i > 4, andbj, j > 3, are zero andy — by = 1. This holds precisely when in each
expansion step at most three covering sets are involved, no edge lies in all three covering
sets (which means that their common intersection is a vertex)\aiigis a tree. Obviously
noK4, C30 Ko, C4Ky>, Cs K> can then appear i@, and it is straightforward to check
by induction on the dimension, that this holds also@f1 K5 (t > 6). The converse is
obvious. O

Corollary 6.3. Let G be a planar graph with n vertices and of dimension k, that is
obtained by a sequence of connected expansionsfrom K. Let f be the number of facesin
itsplanar embedding. Then f > n—k, whereequality holdsif and only if G isC; 0 K,-free
(t > 3) and K4-free.

Proof. CombineTheorem 6.2vith Euler’'s formulan —m+ f =2. O
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