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Abstract

AgraphpolynomialP(G, x) is called reconstructible if it is uniquely determinedby thepolynomials
of thevertex-deletedsubgraphsofG for everygraphGwithat least threevertices. In thisnote it is shown
that subgraph-counting graph polynomials of increasing families of graphs are reconstructible if and
only if each graph from the corresponding defining family is reconstructible from its polynomial deck.
In particular, we prove that the cube polynomial is reconstructible. Other reconstructible polynomials
are the clique, the path and the independence polynomials. Along the way two new characterizations
of hypercubes are obtained.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a simple graph with a vertex setV = {v1, v2, . . . , vn} and letGi = G − vi ,
1� i�n, be its vertex-deleted subgraph. Then, the multiset{G1,G2, . . . ,Gn} is called
the deckof G. A graphG is called reconstructibleif it is uniquely determined (up to
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isomorphism) by its deck. The well-knownreconstruction conjecture(also known as the
Kelly–Ulam conjecture) asserts that all finite graphs on at least three vertices are recon-
structible, cf.[1].
More generally, agraph property is reconstructibleif it is uniquely determined by the

deck of a graph. Many graph properties have been proved to be reconstructible, for instance,
the number of Hamiltonian cycles and the number of one-factors, cf.[18] for these and
many more properties. In addition, Tutte[26] proved that the characteristic polynomial,
the chromatic polynomial, and their generalizations are also reconstructible, in addition to
the matching polynomial[9,13]. For more information on the reconstruction of classical
graph polynomials see the survey[7]. In the same paper Farrell also observed that the
reconstruction conjecture can be stated in terms of reconstructible graph polynomials.
Given a graph property, do we really need the deck of a graph for its reconstruction? In

particular, givenagraphpolynomial, can it be reconstructed from itspolynomial deck, that is,
from themultiset of the polynomials of the vertex-deleted subgraphs? For the characteristic
polynomial, Gutman and Cvetkovi´c [15] posed this question in 1975, but the problem
remains open. Recently, Hagos[16] proved that the characteristic polynomial of a graph is
reconstructible from the polynomial deck of a graph together with the polynomial deck of
its complement. For related results see[25] and[24]; in the latter paper Schwenk supposes
that the answer to the question is negative.
In this paper we consider the problem of reconstructing a graph polynomial from its

polynomial deck for a class of polynomials that are defined as generating functions for the
numbers of subgraphs from given increasing families of graphs. These subgraph-counting
polynomials are instances ofF-polynomials in the sense of Farrell[6].
In the next section we formally introduce these polynomials and prove that such poly-

nomials are reconstructible from the polynomial deck if and only if each graph from the
corresponding defining family is reconstructible from its polynomial deck. The well-known
clique, independence, star and path polynomial as well as the recently introduced cube
polynomial[3] are of this type . In Section 3 we prove that the cube polynomial is also re-
constructible. Two related characterizations of hypercubes are given, for example, a graph
is a hypercube if and only if its cube polynomial is of the form(x + 2)k.

2. Reconstruction ofH-polynomials

LetH={H0, H1, H2, . . .} be a family of graphs such thatH0=K1 andHi is an induced
subgraph ofHi+1 for i=0,1,2, . . . . We call such a family of graphs anincreasing family.
Given an increasing familyH, and an arbitrary graphG, we denote bypi(G) the number
of inducedHi ’s inG. TheH-polynomialPH(G, x) of a graphG is the generating function
for thepi(G), that is,

PH(G, x)=
∑
i�0

pi(G)x
i . (1)

For example, settingHi = Ki , respectively,Hi = Ki or Hi = Qi , one obtains theclique
polynomial[10,17], the independence polynomial[4,14,17], and thecube polynomial[3].



B. Brešar et al. / Discrete Mathematics 297 (2005) 159–166 161

Definition (1) is often stated in a slightly different form as

PH(G, x)= 1+
∑
i�1

pi−1(G)x
i ,

or even as

PH(G, x)= 1+
∑
i�1

(−1)ipi−1(G)x
i ,

but for our purposes any one of these definitions is practicable, so we will adhere to (1).

Remark 1. LetH = {H0, H1, . . .} be an increasing family of graphs, andP be the corre-
spondingH-polynomial. Then, each element ofH is characterized by the polynomialP
in the sense of Farrell[8]. Indeed, suppose thatG is a graph such thatP(G, x)=P(Hj , x).
ThenG should containHj as an induced subgraph. Since|V (G)| = |V (Hj )| this is only
possible whenG andHj are isomorphic.

LetH be an increasing family of graphs.We say that anH-polynomial is reconstructible
from the polynomial deck, if for every graphG on at least three vertices, the multiset
{PH(G − v, x); v ∈ V (G)} uniquely determinesPH(G, x). Furthermore, we say that a
graph G is reconstructible from the polynomial deckif the multiset{PH(G − v, x); v ∈
V (G)} uniquely determinesG (up to isomorphism).
Since a graph on two vertices is not reconstructible (in the usual sense), it is also not

reconstructible from its polynomial deck. Nevertheless, we wish to observe that our def-
initions allow thatH1 is a graph on two vertices. In fact, it is aK2 for all polynomials
considered here with the exception of the independence polynomial. In that caseH1 =K2.
In the following theoremwewill make use of Kelly’s lemma, cf.[12, p. 62, Lemma4.5.1].

By pH (G) we denote the number of induced subgraphs of a graphG that are isomorphic
toH.

Lemma 2 (Kelly’s lemma). Let H be an arbitrary graph on m vertices,G be a graph on n
(n>m) vertices, andGi, i = 1, . . . , n be its vertex-deleted subgraphs. Then

(n−m)pH (G)=
n∑
i=1

pH (Gi).

The same formula holds ifpH (G) denotes the number of (induced or noninduced) sub-
graphs ofG that are isomorphic toH. The restriction to induced subgraphs is important in
the following theorem.

Theorem 3. LetH = {H0, H1, . . .} be an increasing family of graphs, andPH be the
correspondingH-polynomial. ThenPH is reconstructible from the polynomial deck if and
only if eachHj (where|V (Hj )|�3) is reconstructible from its polynomial deck.
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Proof. LetG be a graph withV (G)= {v1, v2, . . . , vn}, n�3, andGi =G− vi , 1� i�n.
Suppose, first, that eachHj , j = 1,2, . . . , on at least three vertices is reconstructible

from its polynomial deck. For|V (Hj )|<n Kelly’s lemma implies

pj (G)=
∑n

i=1pj (Gi)

n− |V (Hj )| . (2)

Let � be the largest index such that|V (H�)|�n. If |V (H�)|<n thenP(G, x) can be
reconstructed using (2). Now suppose that|V (H�)| = n.
If { P(Gi, x), i = 1, . . . , n} is different from the polynomial deck ofH�, thenG 	= H�.

SinceG andH� have the same number of vertices,H� cannot be an induced subgraph of
G. Hence, eachpj (G) can be reconstructed using (2), and soP(G, x) is determined.
On the other hand, if {P(Gi, x), i=1, . . . , n} coincides with the polynomial deck ofH�,

thenG is isomorphic toH� by the assumptions of the theorem. Hence,P(G, x)=P(H�, x).
For the converse suppose thatG is not isomorphic toH�, but that the polynomial deck

of H� coincides with{P(Gi, x), i = 1, . . . , n} for some�. ThenP(H�, x) is of degree�,
whereasP(G, x) is of degree at most�− 1, a contradiction. �

Let

K = {K1,K2,K3, . . .} be the family of complete graphs (cliques),

I = {K1,K2,K3, . . .} the family of totally disconnected graphs,

S = {K1,K1,1,K1,2, . . .} the family of stars, and

P = {P1, P2, P3, . . .} the family of paths.
All these families are increasing. For an arbitrary graphG, letk(G, x), i(G, x), s(G, x), and
p(G, x) denote itsclique polynomial, independence polynomial, star polynomial, andpath
polynomial, respectively. We wish to prove that all these polynomials are reconstructible
from their polynomial decks. By Theorem 3 it suffices to show for each polynomial that for
any graph of the corresponding increasing family of graphs its polynomial deck is unique.

Theorem 4. The clique polynomial, the independence polynomial, the star polynomial,
and the path polynomial are reconstructible from their polynomial decks.

Proof. Let G be a graph onn�3 vertices withk(Gi, x) = k(Kn−1, x) for i = 1, . . . , n.
Note thatk(Kn−1, x) uniquely determinesKn−1 because it states thatKn−1 is an induced
subgraph of such a graph. Hence, eachGi isisomorphic toKn−1, which in turn implies that
G=Kn.
Let G be a graph onn�3 vertices withi(Gi, x) = i(Kn−1, x) for i = 1, . . . , n. Since

i1(Gi)=
(
n−1
2

)
it follows that theGi are edgeless, but thenGmust be edgeless too.

LetG be a graph onn�3 vertices such that{s(Gi, x), i = 1, . . . , n} coincides with the
set of star polynomials of vertex-deleted subgraphs ofK1,n−1. Note that the number of
edges is determined by these polynomials, and that it isn− 1. Since there is aGi such that
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s(Gi, x)= n− 1, it follows thatGi is totally disconnected. Hence, the remaining vertex of
Gmust be incident with alln− 1 edges ofG. This is only possible ifG isK1,n−1.
Finally, suppose that{p(Gi, x), i=1, . . . , n} coincides with the set of path polynomials

of the vertex-deleted subgraphs ofPn.As above, we conclude that the number of edges ofG
isn−1. Moreover, there are two subgraphsGi,Gj with p(Gi, x)=p(Gj , x)=p(Pn−1, x)

which readily impliesGi =Gj =Pn−1. They haven− 2 edges; henceGmust be obtained
by adding toPn−1 one edge incident with a new vertex, and thusG is a tree. All other
subgraphsGk are forests, and their polynomialsp(Gk, x) imply that they are disconnected
with exactly two components (assuming that a forest has two components precisely when
the number of vertices minus the number of edges equals 2). HenceG= Pn as claimed.

�

3. Reconstructing the cube polynomial and characterizing hypercubes

Then-cubeQn, n�1, is a graph with vertex set{0,1}n, two vertices being adjacent if
the corresponding tuples differ in precisely one place.We also setQ0=K1. LetQ−

n denote
the graph obtained fromQn by removing one of its vertices.
LetQ={Q0,Q1,Q2, . . .} be the family of hypercubes. It is clear thatQ is an increasing

family of graphs. Following[3], let�i (G) denote the number of inducedi-cubes of a graph
G. Then thecube polynomialc(G, x) of a graphG is

c(G, x)=
∑
i�0

�i (G)xi .

By Remark 1 we obtain the following new characterization of hypercubes.

Proposition 5. Let G be a graph. Then G is a hypercube if and only if for somek�0,
c(G, x)= (x + 2)k.

Now we come to the main result of this section.

Theorem 6. The cube polynomial is reconstructible from its polynomial deck.

Proof. LetG be a graph withV (G)= {v1, v2, . . . , vn}, n�3, andGi =G− vi , 1� i�n.
By Theorem 3 it is sufficient to prove that everyk-cube is uniquely determined by the deck
of all Q-polynomials of its vertex-deleted subgraphs.
LetG be a graph with the same polynomial deck (with respect to the cube polynomial)

asQd , that is,

c(Gi, x)= c(Q−
d , x)=

d∑
k=0

(
d

k

)
(2d−k − 1)xk,
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for i = 1,2, . . . , n. Sincec(Qd, x)= (x + 2)d , we obtain

c(Gi, x)=
d∑
k=0

(
d

k

)
2d−kxk −

d∑
k=0

(
d

k

)
xk = c(Qd, x)−

d∑
k=0

(
d

k

)
xk. (3)

We claim thatG=Qd and soc(G, x)= (x + 2)d . The claim is clear ford = 2, since then
G has four vertices of degree two. Hence in the rest of the proof we assumed�3.
Let 0�k�d − 1. By Kelly’s lemma we can deduce from the polynomial deck thatG

andQd have the same number of inducedk-cubes. Hence (3) implies that after an arbitrary

vertex ofG is removed, the number of inducedk-cubes is reduced by
(
d
k

)
. In other words,

every vertex ofG is contained in
(
d
k

)
k-cubes. In particular,G is ad-regular graph.

Let u be an arbitrary vertex ofG. Then, by the above,u is contained in a subgraph
isomorphic toQd−1 which we denote byH. SinceG is d-regular, every vertex ofH has
exactly one neighbor not inH. LetK be the subgraph ofG induced by vertices ofG not in
H. Note that|V (K)| = |V (H)| = 2d−1.
Suppose twoverticesofHhaveacommonneighbor inK. (Thisassumptionwill eventually

lead us to a contradiction.) Then there is a vertexv in K that does not have a neighbor inH.
Using (3) again,v also lies in a subgraph isomorphic toQd−1 which we denote byU. Note
that all neighbors ofv are inK. We claim thatU ⊆ K.
Let x be an arbitrary vertex ofU. We prove the claim by induction ons = dU(v, x). For

s = 1 this is clear sincev has no neighbor inH. Now lets�2. SinceU is a(d − 1)-cube,x
has at least two neighbors, sayx1 andx2, in U at distances − 1 from v. By the induction
assumption,x1 andx2 belong toK. Thenxbelongs toK as well, for otherwise it would have
two distinct neighbors inK (this is not possible because then the degree ofx would be at
leastd + 1). This proves the claim.
Combining the facts that|V (K)| = 2d−1 andU ⊂ K, we infer thatK =U . This is again

not possible, since then the degree ofv in G would be less thand. Hence the assumption
that two vertices ofH have a common neighbor inK leads to a contradiction. Therefore,
the edges betweenH andK form a matching, let it be denotedM.
We next show thatM induces an isomorphism betweenH andK. Let xybe an arbitrary

edge ofH and letx′ andy′ be the neighbors ofx andy in K. We wish to show thatx′y′ is
an edge ofK. The vertexx lies in

(
d
2

)
4-cycles ofG and insideH there are

(
d−1
2

)
such

4-cycles. The remainingd − 1 such 4-cycles must have a nonempty intersection withK.
SinceM is matching, any such cycle must contain an edge ofH. The degree ofx in H is
d − 1; hence any edgexwmust yield a 4-cycle, and in particularx′y′ must be an edge of
K. AsG hasd2d−1 edges, there are no other edges inG except those inH together withM
and those inK induced byM. ThusM induces an isomorphism. SinceH is a(d − 1)-cube,
we conclude thatG is ad-cube. �

Wecontinuewith yet another characterization of hypercubes. (For other characterizations
of hypercubes see[2,5,11,21,23].) For this purposewe invoke the following result ofMulder
[22, p. 55]about(0,2)-graphs; cf. also[19]. (A connected graphG is a(0,2)-graph if any
two distinct vertices inG have exactly two common neighbors or none at all, cf.[20,22].)
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Theorem 7. Let G be a d-regular(0,2)-graph. Then|V (G)| = 2d if and only ifG=Qd .

Corollary 8. Let G be aK2,3- andK3-free graph on2d vertices with the largest degree d.

Then G contains at most2d−2
(
d
2

)
4-cycles. Equality holds if and only ifG=Qd .

Proof. Let u be a vertex ofG. SinceG isK3 free, any 4-cycle containingu also contains a
vertex at distance 2 fromu. LetX(u) be the set of verticesv of G such thatu andv lie in a
common 4-cycle andd(u, v)= 2. BecauseG isK2,3 free, any vertex ofX(u) determines a
unique 4-cycle containingu. By the degree assumption there are at mostd(d − 1) vertices

at distance 2 fromu; hence by the aboveu lies in at mostd(d − 1)/2 =
(
d
2

)
4-cycles.

Consequently,G contains at most

|V (G)|
(
d
2

)
4

= 2d−2
(
d

2

)

4-cycles. Suppose that equality holds. Then every vertex is in exactly
(
d
2

)
4-cycles. This

implies thatGmust be ad-regular(0,2)-graph. By Theorem 7 we infer thatG=Qd . �

4. Concluding remarks

We have considered five increasing families of graphs whose counting polynomials are
reconstructible. These families are rather natural and we are sure that other such families
exist.
The reader might ask whether one can prove the reconstruction conjecture for some

particular classes of graphs by usingH-polynomials that uniquely determine graphs of
these classes. For trees with respect to the path and star polynomial the answer is negative.
The counterexample is not difficult to describe: letP be a path of length four (i.e. on

five vertices) with centerp, andQ be obtained fromK1,3 by subdivision of an edge by a
vertexq. We joinp andq by an edge and add a pendant edge either top or q to obtain the
treesTp andTq , respectively; seeFig. 1. It is easy to see thatTp andTq are not isomorphic;
nevertheless, they have the same path and star polynomials.

p q p q

Tp Tq

Fig. 1. Nonisomorphic trees.
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