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Abstract

Agraph polynomialP (G, x) is called reconstructible ifitis uniquely determined by the polynomials
ofthe vertex-deleted subgraphs®for every graplts with atleast three vertices. In this note itis shown
that subgraph-counting graph polynomials of increasing families of graphs are reconstructible if and
only if each graph from the corresponding defining family is reconstructible from its polynomial deck.
In particular, we prove that the cube polynomial is reconstructible. Other reconstructible polynomials
are the clique, the path and the independence polynomials. Along the way two new characterizations
of hypercubes are obtained.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a simple graph with a vertex sét= {v1, v2, ..., v,} and letG; = G — v;,
1<i<n, be its vertex-deleted subgraph. Then, the multiget, Go, ..., G,} is called
the deckof G. A graphG is calledreconstructibleif it is uniquely determined (up to
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isomorphism) by its deck. The well-knowaconstruction conjecturéalso known as the
Kelly—-Ulam conjecture) asserts that all finite graphs on at least three vertices are recon-
structible, cf[1].

More generally, graph property is reconstructibli it is uniquely determined by the
deck of a graph. Many graph properties have been proved to be reconstructible, for instance,
the number of Hamiltonian cycles and the number of one-factor$18jf.for these and
many more properties. In addition, Tuff26] proved that the characteristic polynomial,
the chromatic polynomial, and their generalizations are also reconstructible, in addition to
the matching polynomigl,13]. For more information on the reconstruction of classical
graph polynomials see the survgg]. In the same paper Farrell also observed that the
reconstruction conjecture can be stated in terms of reconstructible graph polynomials.

Given a graph property, do we really need the deck of a graph for its reconstruction? In
particular, given agraph polynomial, can it be reconstructed fropoligromial deckthat is,
from the multiset of the polynomials of the vertex-deleted subgraphs? For the characteristic
polynomial, Gutman and Cvetkav{15] posed this question in 1975, but the problem
remains open. Recently, Hagld$] proved that the characteristic polynomial of a graph is
reconstructible from the polynomial deck of a graph together with the polynomial deck of
its complement. For related results $§28] and[24]; in the latter paper Schwenk supposes
that the answer to the question is negative.

In this paper we consider the problem of reconstructing a graph polynomial from its
polynomial deck for a class of polynomials that are defined as generating functions for the
numbers of subgraphs from given increasing families of graphs. These subgraph-counting
polynomials are instances Bfpolynomials in the sense of Farréd].

In the next section we formally introduce these polynomials and prove that such poly-
nomials are reconstructible from the polynomial deck if and only if each graph from the
corresponding defining family is reconstructible from its polynomial deck. The well-known
clique, independence, star and path polynomial as well as the recently introduced cube
polynomial[3] are of this type . In Section 3 we prove that the cube polynomial is also re-
constructible. Two related characterizations of hypercubes are given, for example, a graph
is a hypercube if and only if its cube polynomial is of the fogmi 2)%.

2. Reconstruction of #-polynomials

Let# ={Hop, H1, H>, ...} be afamily of graphs such th&f = K1 andH; is an induced
subgraph off; 1 fori =0, 1, 2, ... . We call such a family of graphs amcreasing family
Given an increasing family?, and an arbitrary grap8, we denote by, (G) the number
of inducedH;’s in G. The#-polynomialP,» (G, x) of a graphG is the generating function
for the p; (G), that is,

Py (G,x)=Y_ pi(G)x'. (1)

i=0

For example, settingl; = K;, respectivelyH; = K; or H; = Q;, one obtains thelique
polynomial[10,17], theindependence polynomift,14,17] and thecube polynomial3].
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Definition (1) is often stated in a slightly different form as

Py (G, x) =14 pi-1(G)x',
i1

or even as

Py (G, x) =1+ (=1 pi-a(G)x',

i=1
but for our purposes any one of these definitions is practicable, so we will adhere to (1).

Remark 1. Let # = {Ho, Hi, ...} be an increasing family of graphs, aRde the corre-
sponding# -polynomial. Then, each element &f is characterized by the polynomial
in the sense of Farrefl8]. Indeed, suppose th&tis a graph such tha (G, x) = P(Hj, x).
ThenG should contain; as an induced subgraph. SiNd&(G)| = |V (H;)| this is only
possible whers and H; are isomorphic.

Let# be an increasing family of graphs. We say that@rpolynomial is reconstructible
from the polynomial deckf for every graphG on at least three vertices, the multiset
{Py(G — v, x); v € V(G)} uniquely determine®, (G, x). Furthermore, we say that a
graph G is reconstructible from the polynomial detkhe multiset{P» (G — v, x); v €
V(G)} uniquely determine& (up to isomorphism).

Since a graph on two vertices is not reconstructible (in the usual sense), it is also not
reconstructible from its polynomial deck. Nevertheless, we wish to observe that our def-
initions allow thatH; is a graph on two vertices. In fact, it isky for all polynomials
considered here with the exception of the independence polynomial. In thaticas& ».

Inthe following theorem we will make use of Kelly’'s lemma, [df2, p. 62, Lemma 4.5.1]

By pu (G) we denote the number of induced subgraphs of a g@afiat are isomorphic
toH.

Lemma 2 (Kelly's lemma. Let H be an arbitrary graph on m vertice& be a graph on n
(n > m) verticesandG;,i =1, ..., n be its vertex-deleted subgraphs. Then

(n—m)pu(G)=_ pu(G).

i=1

The same formula holds ji 4 (G) denotes the number of (induced or noninduced) sub-
graphs ofG that are isomorphic tél. The restriction to induced subgraphs is important in
the following theorem.

Theorem 3. Let # = {Hp, H1, ...} be an increasing family of graphand P, be the
corresponding#’-polynomial. TherP,, is reconstructible from the polynomial deck if and
only if eachH; (where|V (H;)| > 3) is reconstructible from its polynomial deck
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Proof. Let G be a graph with/ (G) = {vy, v2, ..., v,},n >3, andG; =G —v;, 1<i <n.

Suppose, first, that eadt;, j = 1,2, ..., on at least three vertices is reconstructible
from its polynomial deck. FolV (H;)| < n Kelly's lemma implies
i1 pi(G)
pj(G) = =————. 2
! n—|V(H)) @)

Let ¢ be the largest index such thgt (Hy)|<n. If |V(H¢)| <n then P(G, x) can be
reconstructed using (2). Now suppose thatHy)| = n.

If{ P(G;,x),i =1,...,n}is different from the polynomial deck dfly, thenG # H,.
SinceG and H; have the same number of verticés, cannot be an induced subgraph of
G. Hence, eaclp; (G) can be reconstructed using (2), andA@, x) is determined.

Onthe other hand, if?(G;, x),i=1, ..., n} coincides with the polynomial deck &f,,
thenG is isomorphic taH, by the assumptions of the theorem. Heneé;, x) = P (Hy, x).

For the converse suppose tl@ais not isomorphic taH,, but that the polynomial deck
of H, coincides with{ P(G;, x),i = 1, ..., n} for somet. ThenP(Hy, x) is of degree/,
whereasP (G, x) is of degree at mogt— 1, a contradiction. [

Let
A ={K1, K2, K3, ...} be the family of complete graphs (cliques),

4 ={K1, K>, K3, ...} the family of totally disconnected graphs,
Y ={K1, K11, K12, . ..} the family of stars, and

P = {P1, P2, P3, ...} the family of paths.

All these families are increasing. For an arbitrary grépletk (G, x),i(G, x), s(G, x), and

p(G, x) denote itxlique polynomialindependence polynomjaitar polynomial andpath
polynomia) respectively. We wish to prove that all these polynomials are reconstructible
from their polynomial decks. By Theorem 3 it suffices to show for each polynomial that for
any graph of the corresponding increasing family of graphs its polynomial deck is unique.

Theorem 4. The clique polynomialthe independence polynomighe star polynomial
and the path polynomial are reconstructible from their polynomial decks

Proof. Let G be a graph om >3 vertices withk(G;, x) = k(K,—1,x) fori =1,...,n.
Note thatk (K, 1, x) uniquely determine&’,,_; because it states that,_1 is an induced
subgraph of such a graph. Hence, e&glisisomorphic tak,, 1, which in turn implies that
G=K,.

Let G be a graph om >3 vertices withi (G;, x) = i(K,,_1,x) fori =1, ..., n. Since
i1(G;) = <”§1> it follows that theG; are edgeless, but th&must be edgeless too.

Let G be a graph om > 3 vertices such thdk(G;, x),i =1, ..., n} coincides with the
set of star polynomials of vertex-deleted subgraph& @f,_1. Note that the number of
edges is determined by these polynomials, and thakitidl. Since there is &; such that
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s(G;, x) =n — 1, itfollows thatG; is totally disconnected. Hence, the remaining vertex of
G must be incident with alt — 1 edges ofs. This is only possible iG is K1 ,,—1.

Finally, suppose thdip(G;, x),i =1, ..., n} coincides with the set of path polynomials
of the vertex-deleted subgraphs®f. As above, we conclude that the number of edg&s of
isn— 1. Moreover, there are two subgraghs G ; with p(G;, x)=p(G, x)=p(Py—1, x)
which readily impliesG; = G; = P,_1. They have: — 2 edges; henc& must be obtained
by adding toP,_; one edge incident with a new vertex, and tlthiss a tree. All other
subgraphg;; are forests, and their polynomigh$Gy, x) imply that they are disconnected
with exactly two components (assuming that a forest has two components precisely when
the number of vertices minus the number of edges equals 2). Here®, as claimed.

O

3. Reconstructing the cube polynomial and characterizing hypercubes

Then-cubeQ,,, n>1, is a graph with vertex s¢0, 1}", two vertices being adjacent if
the corresponding tuples differ in precisely one place. We als@set K. Let Q;; denote
the graph obtained fror®,, by removing one of its vertices.

Let2={Qo, 01, Q2, ...} be the family of hypercubes. Itis clear thats an increasing
family of graphs. Following3], let; (G) denote the number of inducédubes of a graph
G. Then thecube polynomiat (G, x) of a graphG is

dam:§:mmnh

i>0
By Remark 1 we obtain the following new characterization of hypercubes.

Proposition 5. Let G be a graph. Then G is a hypercube if and only if for sd@meD,
c(G,x) = (x + 2.

Now we come to the main result of this section.
Theorem 6. The cube polynomial is reconstructible from its polynomial deck

Proof. Let G be a graph with/ (G) = {v1, v2, ..., v,},n>3,andG; = G — v;, 1<i <n.
By Theorem 3 it is sufficient to prove that evdegube is uniquely determined by the deck
of all 2-polynomials of its vertex-deleted subgraphs.
Let G be a graph with the same polynomial deck (with respect to the cube polynomial)
asQy, thatis,

d

c(Gi.x)=c(Qz. )=} (‘,f) @77 =1,

k=0
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fori=1,2,...,n. Sincec(Qq, x) = (x + 2)%, we obtain

. _ddd—kk_ddk_ _ddk
c(G,,x)—Z X 297 x Z P E: =c(Qg4, x) Z PR 3)

k=0 k=0 k=0

We claim thatG = Q4 and soc(G, x) = (x + 2)¢. The claim is clear fod = 2, since then
G has four vertices of degree two. Hence in the rest of the proof we asétie

Let 0<k<d — 1. By Kelly's lemma we can deduce from the polynomial deck that
andQ, have the same number of indudedubes. Hence (3) implies that after an arbitrary

vertex ofG is removed, the number of inducketubes is reduced b@) In other words,

every vertex ofG is contained i ‘,f) k-cubes. In particulaG is ad-regular graph.

Let u be an arbitrary vertex o6. Then, by the abovey is contained in a subgraph
isomorphic toQ,_1 which we denote byd. SinceG is d-regular, every vertex dofl has
exactly one neighbor not iH. Let K be the subgraph & induced by vertices d& not in
H. Note that| V (K)| = |V (H)| = 2¢-1.

Suppose two vertices bfhave acommon neighborl (This assumption will eventually
lead us to a contradiction.) Then there is a veitéx K that does not have a neighbortn
Using (3) againy also lies in a subgraph isomorphic@y_1 which we denote by. Note
that all neighbors of are inK. We claim thaty C K.

Let x be an arbitrary vertex dfi. We prove the claim by induction an= dy (v, x). For
s = 1 this is clear since has no neighbor ikl. Now lets > 2. SinceU is a(d — 1)-cube x
has at least two neighbors, sayandx,, in U at distance — 1 from v. By the induction
assumptiony; andx2 belong toK. Thenx belongs tK as well, for otherwise it would have
two distinct neighbors ifK (this is not possible because then the degreewbuld be at
leastd + 1). This proves the claim.

Combining the facts thaV (K)| = 2¢~1andU c K, we infer thatk = U. This is again
not possible, since then the degreevah G would be less thad. Hence the assumption
that two vertices oH have a common neighbor K leads to a contradiction. Therefore,
the edges betwedt andK form a matching, let it be denotéd.

We next show tha induces an isomorphism betweklnandK. Let xy be an arbitrary
edge ofH and letx’ andy’ be the neighbors of andy in K. We wish to show that’y’ is

an edge oK. The vertexx lies in (4 ) 4-cycles ofG and insideH there are(dgl) such

4-cycles. The remaining — 1 such 4-cycles must have a nonempty intersection iith
SinceM is matching, any such cycle must contain an edgkl.ofhe degree ok in H is
d — 1; hence any edgew must yield a 4-cycle, and in particulafy’ must be an edge of
K. As G hasd2?~1 edges, there are no other edgeSiaxcept those it together withM
and those irK induced byM. ThusM induces an isomorphism. Sinkkis a(d — 1)-cube,
we conclude tha® is ad-cube. [J

We continue with yet another characterization of hypercubes. (For other characterizations
of hypercubes s48,5,11,21,23) For this purpose we invoke the following result of Mulder
[22, p. 55]about(0, 2)-graphs; cf. als§19]. (A connected grapt is a(0, 2)-graphif any
two distinct vertices irG have exactly two common neighbors or none at allj29,22])
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Theorem 7. Let G be a d-regular0, 2)-graph. TherjV (G)| = 2¢ if and only ifG = Q.

Corollary 8. Let G be aK» 3- and K3-free graph ore? vertices with the largest degree d.
Then G contains at mog&f —2 (‘é) 4-cycles. Equality holds if and only & = Q.

Proof. Letube a vertex ofz. SinceG is K3 free, any 4-cycle containingalso contains a
vertex at distance 2 from. Let X (1) be the set of vertices of G such thatiandv lie in a
common 4-cycle and(u, v) = 2. Becaus& is K> 3 free, any vertex oK (1) determines a
unique 4-cycle containing. By the degree assumption there are at i@gt— 1) vertices

at distance 2 fronu; hence by the abowve lies in at mostd(d — 1)/2 = (“2’) 4-cycles.
ConsequentlyG contains at most

IV(G)] (‘é) _ -2 (g)

4

4-cycles. Suppose that equality holds. Then every vertex is in exé@yﬂ,-cycles. This
implies thatG must be a-regular(0, 2)-graph. By Theorem 7 we infer thét= Q,. O

4. Concluding remarks

We have considered five increasing families of graphs whose counting polynomials are
reconstructible. These families are rather natural and we are sure that other such families
exist.

The reader might ask whether one can prove the reconstruction conjecture for some
particular classes of graphs by using-polynomials that uniquely determine graphs of
these classes. For trees with respect to the path and star polynomial the answer is negative.

The counterexample is not difficult to describe: Rebe a path of length four (i.e. on
five vertices) with centep, andQ be obtained fronK 3 by subdivision of an edge by a
vertexq. We joinp andq by an edge and add a pendant edge eith@rdoq to obtain the
treesT, andT7,, respectively; seEig. 1 Itis easy to see thdt, andT, are notisomorphic;
nevertheless, they have the same path and star polynomials.

T Tq

Fig. 1. Nonisomorphic trees.



166 B. BreS3ar et al. / Discrete Mathematics 297 (2005) 159166
Acknowledgements

We wish to thank the referees for their suggestions and comments.

References

[1] L. Babai, Automorphism Groups, isomorphism, reconstruction, in: R.L. Graham, M. Grétschel, L. Lovasz
(Eds.), Handbook of Combinatorics, Elsevier, Amsterdam, 1995, pp. 1447-1540.
[2] A. Berrachedi, M. Mollard, Median graphs and hypercubes, some new characterizations, Discrete Math.
208/209 (1999) 71-75.
[3] B. BreSar, S. Klavzar, R. Skrekovski, The cube polynomial and its derivatives: the case of median graphs,
Electron. J. Combin. 10 (R3) (2003) 11pp.
[4] J.1. Brown, R.J. Nowakowski, Bounding the roots of independence polynomials, Ars Combin. 58 (2001) 113
-120.
[5] M. Buratti, Edge-colourings characterizing a class of Cayley graphs and a new characterization of hypercubes,
Discrete Math. 161 (1996) 291—-295.
[6] E.J. Farrell, On a general class of graph polynomials, J. Combin. Theory Ser. B 26 (1979) 111-122.
[7] E.J. Farrell, OrF-polynomials and reconstruction, in: V.R. Kulli (Ed.), Advances in Graph Theory, Vishwa,
Gulbarga, 1991, pp. 155-162.
[8] E.J. Farrell, The impact of -polynomials in graph theory, Quo vadis, Graph Theory? Annals of Discrete
Mathematics, vol. 55, North-Holland, Amsterdam, 1993, pp. 173-178.
[9] E.J. Farrell, S.A. Wahid, On the reconstruction of the matching polynomial and the reconstruction conjecture,
Internat. J. Math. Math. Sci. 10 (1987) 155-162.
[10] D.C. Fisher, A.E. Solow, Dependence polynomials, Discrete Math. 82 (1990) 251-258.
[11] S. Foldes, A characterization of hypercubes, Discrete Math. 17 (1977) 155—-159.
[12] C.D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.
[13] C.D. Godsil, I. Gutman, On the theory of the matching polynomial, J. Graph Theory 5 (1981) 285-297.
[14] 1. Gutman, An identity for the independence polynomials of trees, Publ. Inst. Math. (Beograd) (N.S.) 50
(1991) 19-23.
[15] I. Gutman, D. Cvetkow, The reconstruction problem for the characteristic polynomial of graphs, Univ.
Beograd. Publ. Elektrotehn. Fak. Ser. Fiz. 498 (541) (1975) 45-48.
[16] E.M. Hagos, The characteristic polynomial of a graph is reconstructible from the characteristic polynomials
of its vertex-deleted subgraphs and their complements, Electron. J. Combin. 7 (R12) (2000) 9pp.
[17] C. Hoede, X. Li, Clique polynomials and independent set polynomials of graphs, Discrete Math. 125 (1994)
219-228.
[18] W.L. Kocay, Some new methods in reconstruction theory, Combinatorial Mathematics, IX, Brisbane, 1981,
Lecture Notes in Mathematics, vol. 952, Springer, Berlin, New York, 1982, pp. 89-114.
[19] M. Mollard, Two characterizations of generalized hypercube, Discrete Math. 93 (1991) 63—-74.
[20] H.M. Mulder, (0, 1)-graphs anah-cubes, Discrete Math. 28 (1979) 179-188.
[21] H.M. Mulder,n-Cubes and median graphs, J. Graph Theory 4 (1980) 107-110.
[22] H.M. Mulder, The interval function of a graph, Mathematical Centre Tracts, vol. 132, Mathematisch Centrum,
Amsterdam, 1980.
[23] R. Scapellato, Or-geodetic graphs, Discrete Math. 80 (1990) 313-325.
[24] A.J. Schwenk, Spectral reconstruction problems, Ann. N.Y. Acad. Sci. 328 (1979) 183-189.
[25] S.K. Simi, A note on reconstructing the characteristic polynomial of a graph, Fourth Czechoslovakian
Symposium on Combinatorics, Graphs and Complexity, Prachatice, 1990, Annals of Discrete Mathematics,
vol. 51, North-Holland, Amsterdam, 1992, pp. 315-319.
[26] W.T. Tutte, All the king's horses, in: J.A. Bondy, U.S.R. Murty (Eds.), Graph Theory and Related Topics,
Academic Press, New York, 1979, pp. 15-33.



	Reconstructing subgraph-counting graph polynomials of increasing families of graphs62626262
	Introduction
	Reconstruction of HHHH-polynomials
	Reconstructing the cube polynomial and characterizing hypercubes
	Concluding remarks
	Acknowledgements
	References


