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1 Introduction

Given a profile (that is, a multiset of vertices) on a graph, the location theory
quests for vertices whose remoteness (the sum of distances to the vertices of the
profile) is minimum or maximum, and these sets are called median and antimedian
sets, respectively. The problem of locating median sets for profiles on graphs was
considered by many authors; see, for example, [2, 4, 5, 15, 16]. On the other hand,
not much work has been done so far on the antimedian problem for profiles on
graphs, and though the two problems look similar, there are important differences.
For instance, while it is clear that any vertex can be in the median set of a graph
for some profile, this is not always true for the antimedian set.

In this paper we give a closer look at the remoteness function in median graphs
with the aim to shed more light on the antimedian problem in this class. Median
graphs form a closely investigated and well understood class of graphs, and are
probably the most important class of graphs in metric graph theory (we refer to a
comprehensive survey on median graphs [13]). Hence it is not surprising that they
were investigated also in location theory. For instance, it is known that in median
graphs median sets are always intervals between two vertices [4], and in particular,
for any odd profile they consist of exactly one vertex [15].

We show in this paper that for any odd profile the antimedian set is an inde-
pendent set of vertices that lie in a strict boundary of a median graph. On the
other hand, it can happen in a special class of median graphs that the entire ver-
tex set is the antimedian set of some even profile. These are precisely the median
graphs with geodetic number 2, that were studied previously in [6], where several
characterizations of these graphs were obtained. In this paper we add two more
characterizations, and one of them is used in the algorithm for the recognition of
median graphs with geodetic number 2 in Section 4.

In the next section we fix the notation and state some preliminary results. In
Section 3 we prove two characterizations of median graphs with geodetic number two,
one of which involves the remoteness function. In addition we obtain some properties
of antimedian sets in median graphs. Section 4 is concerned with an algorithm for the
recognition of median graphs with geodetic number 2. Median graphs are a subclass
of the class of isometric subgraphs of hypercubes. The complexity of recognizing
whether a given graph G with n vertices and m edges is such a graph is O(mn)
in general. For median graphs this essentially reduces to O(m

√
n); see [9]. There

is little hope to reduce it further in general, since it is closely related to that of
recognizing triangle-free graphs (see [12]). However, in special cases the complexity
is much lower. For example, it is O(m) for planar median graphs. Here we show
that median graphs with geodetic number 2 can be recognized in O(m log n) time.

In Section 5 we study the remoteness function in hypercubes (and Hamming
graphs) which is then used in the final section. There a theorem is proved which es-
tablishes a connection between antimedian sets on a median graph G and antimedian
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sets on the hypercube, into which G is embedded isometrically.

2 Preliminaries

In this paper we consider simple, undirected, finite, and connected graphs. The
distance considered in this paper is the usual shortest path distance d. A shortest
path between vertices u and v will be called a u, v-geodesic. The set of vertices on
all u, v-geodesics is called the interval between u and v, denoted I(u, v). A set S of
vertices in a graph G is called the geodetic set of G if for every vertex x ∈ V (G) there
exist u, v ∈ S such that x ∈ I(u, v). The geodetic number g(G) of a graph G is the
least size of a set of vertices S such that any vertex from G lies on a u, v-geodesic,
where u, v ∈ S. For a connected graph G and subsets of vertices X, Y ⊆ V (G) we
will write d(X,Y ) = min{d(x, y) | x ∈ X, y ∈ Y }. In particular, for a vertex u of G
and a set of vertices X we have d(u,X) = min{d(u, x) | x ∈ X}.

A profile π = (x1, . . . , xk) on a graph G is a finite sequence of vertices of G, and
k = |π| is called the size of the profile π. Note that in a profile a vertex may be
repeated. Given a profile π on G and a vertex u of G, the remoteness D(u, π) (see
[14]) is

D(u, π) =
∑
x∈π

d(u, x) .

The vertex u is called a median (antimedian) vertex for π if D(u, π) is minimum
(maximum). The median (antimedian) set M(π,G) (AM(π, G)) of π in G is the set
of all median (antimedian) vertices for π.

A (connected) graph G is a median graph if for any three vertices x, y, z there
exists a unique vertex that lies on geodesics between all pairs of x, y, z. Two of the
most important classes of median graphs are trees and hypercubes. The hypercube
or n-cube Qn, n ≥ 1, is the graph with vertex set {0, 1}n, two vertices being adjacent
if the corresponding tuples differ in precisely one position. A vertex u of Qn will
be written in its coordinate’s form as u = u(1) . . . u(n). A natural generalization of
hypercubes are Hamming graphs, whose vertices are m-tuples u = u(1) . . . u(m), such
that 0 ≤ u(i) ≤ mi − 1, where mi ≥ 2 for each i, and adjacency is defined in the
same way (that is, two vertices are adjacent precisely when they differ in exactly one
coordinate). Note that the distance between vertices in Hamming graphs coincides
with the Hamming distance (that is, the number of coordinates in which the m-
tuples differ).

A subgraph H of a (connected) graph G is an isometric subgraph if dH(u, v) =
dG(u, v) holds for any vertices u, v ∈ H. Let G be an isometric subgraph of some
hypercube. The smallest integer d such that G is an isometric subgraph of Qd is
called the isometric dimension of G and denoted idim(G). An important structural
result due to Mulder [17] asserts that every median graph G can be isometrically
embedded in a hypercube such that the median of every profile π of cardinality three
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in G on the hypercube coincides with the median of π in G. A subset S of vertices
in a graph G is convex in G if I(u, v) ⊆ S for any u, v ∈ S. It is well-known that
convex sets in median graphs enjoy the Helly property, that is, any family of pairwise
disjoint convex sets has a common intersection.

For a connected graph and an edge xy of G we denote

Wxy = {w ∈ V (G) | d(x,w) < d(y, w)}.

Note that if G is a bipartite graph then V (G) = Wab ∪Wba holds for any edge ab.
Next, for an edge xy of G let Uxy denote the set of vertices u that are in Wxy and
have a neighbor in Wyx. Sets in a graph that are Uxy for some edge xy will be called
U -sets. Similarly we define W -sets. If for some edge xy, Wxy = Uxy, we call the set
Uxy peripheral set or periphery.

Edges e = xy and f = uv of a graph G are in the Djoković-Winkler relation
Θ [8, 21] if dG(x, u) + dG(y, v) 6= dG(x, v) + dG(y, u). Relation Θ is reflexive and
symmetric. If G is bipartite, then Θ can be defined as follows: e = xy and f = uv
are in relation Θ if d(x, u) = d(y, v) and d(x, v) = d(y, u). It is well-known that
the relation Θ is transitive in isometric subgraphs of hypercubes, and so it is an
equivalence relation on the edge set of every median graph. Note that peripheral
sets are precisely the U -sets that induce a connected component of G− F for some
Θ-class F .

3 Median graphs with geodetic number two

In this section we characterize median graphs with geodetic number 2. One char-
acterization is described in terms of so-called periphery transversal, a concept that
could be of independent interest in the study of median graphs. The other char-
acterization answers the following question from location theory: for which median
graphs G their vertex-set is the (anti)median set of some profile on G.

Let G be a median graph. We say that a set S is a periphery transversal if every
peripheral subgraph of G contains a vertex of S. It was proved in [6] that every
geodetic set is periphery transversal set. Let pt(G) denote the size of a minimum
periphery transversal in a median graph G. Then, clearly, pt(G) ≤ g(G) for any
median graph G. On the other hand, it may happen that any minimum geodetic
set of a median graph G must contain some vertices that are not in a peripheral
subgraph. For instance, in the graph G obtained from the 3-cube by attaching a
leaf to 3 independent vertices we have pt(G) = 3 < 4 = g(G).

We need the following well-known facts, see [11].

Lemma 3.1 Let G be a median graph, C a cycle, P a geodesic, and F a Θ-class of
G. Then

(i) F ∩ C 6= ∅ ⇒ |F ∩ C| ≥ 2;
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(ii) F ∩ P 6= ∅ ⇒ |F ∩ P | = 1.

We also recall the following theorem from [6].

Theorem 3.2 Let G be a median graph. Then g(G) = 2 if and only if there exist
vertices a, b ∈ V (G) and an a, b-geodesic that contains edges from all Θ-classes of
G.

Combining Lemma 3.1 with Theorem 3.2 we infer that if a and b are as in the
theorem above, then on any geodesic from a to b all Θ-classes appear. Conversely,
g(G) > 2 implies that for any two vertices a and b in G there exists a Θ-class whose
edges are outside I(a, b).

Theorem 3.3 For a median graph G the following statements are equivalent.

(i) g(G) = 2,
(ii) pt(G) = 2,
(iii) D(x, π) is constant on G for some profile π.

Proof. (i)⇒(ii): Let G be a median graph with g(G) = 2. As every W -set in
a median graph contains a periphery, we infer that pt(G) ≥ 2. We have already
observed that in general pt(G) ≤ g(G), hence pt(G) = 2.

(ii)⇒(i): Let G be a median graph with pt(G) = 2, and assume to the contrary
that g(G) > 2. Then for any two vertices a, b ∈ V (G), I(a, b) 6= V (G), and by The-
orem 3.2 we infer that there exists a Θ-class F that lies outside I(a, b). Then there
also exists a W -set Wxy that has an empty intersection with I(a, b). In addition,
Wxy contains a periphery that does not contain a and b. Thus {a, b} is not a periph-
ery transversal, and since a and b were chosen arbitrarily we infer that pt(G) > 2, a
contradiction.

(i)⇒(iii): Let a and b be vertices in G such that I(a, b) = V (G). Set π = (a, b).
Since for any x ∈ V (G) we have d(a, x) + d(x, b) = d(a, b) = diam(G) we get
D(x, π) = diam(G).

(iii)⇒(i): For this direction we recall a result by Bandelt and Barthélemy [4,
Proposition 6] which says that for any profile π on a median graph G, the median
set M(π,G) coincides with the interval I(α(π), β(π)) (where α(π) and β(π) are two
vertices in G obtained by a formula in the associated median semilattice). Hence,
if D(x, π) is constant on G for a profile π, then V (G) = M(π,G) = I(α(π), β(π)),
which in turn implies g(G) = 2. ¤

By the above theorem, in a median graph G the whole vertex set is (anti)median
if and only if g(G) = 2. However, even if g(G) > 2, every vertex can be in some
median set of G (e.g., by taking this vertex as the unique vertex in the profile). We
believe that the antimedian case is different, and suspect that if a median graph G
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has geodetic number greater than two then there are vertices that cannot lie in the
antimedian set for any profile on G. We present two partial results that confirm
this; in the first one we show this for an arbitrary odd profile.

A vertex v of a graph G is a strict boundary vertex (with respect to v′) of G if
there exists a vertex v′ such that for any neighbor u of v, d(v′, v) > d(v′, u) (in other
words, the neighborhood of v is contained in I(v, v′)). The strict boundary ∂G of a
graph G is the set of strict boundary vertices in G.

For an edge uv in a median graph G and a profile π, we let πuv = Wuv ∩ π. As
usually, |πuv| denotes the size of the profile π in Wuv. Note that |πuv| > |πvu| implies
that the median set of π on G lies in Wuv which in turn implies that if u and v are
both in a median set then |πuv| = |πvu|. These observations are a basis for several
strategies to find median sets in median-like graphs, see [2, 16].

Lemma 3.4 Let π be an odd profile in a median graph G, then every vertex in
AM(π, G) is a strict boundary vertex.

Proof. Let v ∈ AM(π,G) and |π| be odd. Since for every neighbor ui of v, |πuiv| >
|πvui | we infer that

|πuiv| >
|π|
2

.

Hence πuiv and πujv intersect for any neighbors ui,uj of v, where i 6= j. Since
πuiv ⊆ Wuiv, the sets Wuiv also pairwise intersects for all neighbors ui of v. Since
W -sets are convex, by the Helly property for convex sets there exists a vertex

v′ ∈
⋂

ui∈N(v)

Wuiv.

Hence ui is strictly closer to v′ than v for any i, and so v is a strict boundary vertex
(with respect to v′). ¤

From the proof of the lemma above we also see that no neighbor of v ∈ AM(π, G)
achieves D(v, π), hence we derive the following result.

Proposition 3.5 Let π be an odd profile in a median graph G. Then AM(π, G) is
an independent set in G and AM(π,G) ⊆ ∂G .

We leave the structure of antimedian sets for even profiles in median graphs as
an open problem. Note that in this case antimedian vertices need not be in a strict
boundary, even if g(G) > 2. For instance, let G be obtained from the 3 × 3 grid
(that is the Cartesian product P32P3) so that to the central vertex another vertex a
is attached, and let the profile π consist of two vertices u, v of degree two such that
d(u, v) = 2. Then AM(π, G) = {x, y, z, a}, where x and y are another two vertices of
degree two (different from u and v), and z is their common neighbor. Note that z is
not a strict boundary vertex in G. However, we suspect that the following question
has affirmative answer.
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Question 3.6 Let G be a median graph and g(G) > 2. Is it true that there exists a
vertex in G that is not in AM(π, G) for all profiles π on G?

We end this section with another result that partially confirms the positive an-
swer to the above question. It describes the antimedian set in median graphs in the
special case when the profile is the whole vertex set, each vertex appearing exactly
once. This problem is known in the literature as the obnoxious center problem, and
has been quite well studied, cf. [7, 19, 20, 22].

Figure 1: An antimedian vertex that is not peripheral.

In the case when the profile is the vertex set, one might ask the following question:
is it true that every antimedian vertex lies in a periphery of a median graph? The
answer is negative, as can be seen in the example from Fig. 1. The black vertex is
the unique antimedian vertex of this graph, as soon as there are sufficiently many
gray pendant vertices. Note that the black vertex is not in any periphery of this
median graph. However, we can prove a result similar to Proposition 3.5.

Proposition 3.7 Let G be a median graph, and let π be the profile, consisting of
vertices of V (G) (with no repetitions). If v ∈ AM(π, G) then v is a strict boundary
vertex.

Proof. Let v ∈ AM(π, G). We infer that for every neighbor ui of v, |Wuiv| ≥ |Wvui |,
hence

|Wuiv| ≥
|V (G)|

2
.

Let u1, . . . , ut be the neighbors of v. If t = 1, that is, v has only one neighbor, then
v is clearly a strict boundary vertex with respect to any other vertex. Suppose that
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ui, uj are neighbors of v and i 6= j. Then by the above

|Wuiv|+ |Wujv| ≥ |V (G)|.
Since v /∈ Wuiv, for any i, we find that Wuiv and Wujv intersect. Since W -sets are
convex, we infer by the Helly property for convex sets that there exists a vertex

v′ ∈
t⋂

i=1

Wuiv .

Hence v is a strict boundary vertex with respect to v′ which completes the proof of
the proposition. ¤

4 Recognition of median graphs with geodetic number
two

As already mentioned, median graphs are isometric subgraphs of hypercubes (partial
cubes for short), and the recognition complexity for such graphs is O(mn). In other
words, there exists an algorithm that recognizes whether any given graph G with n
vertices and m edges is a partial cube in O(mn) time. The algorithm also provides
an embedding of G. In the rest of this section n and m will denote the number of
vertices and edges of a given graph.

However, if it is known that a graph G is a median graph, then G can be embed-
ded isometrically into a hypercube in O(m log n) time. This discrepancy between
the embedding complexity and the recognition complexity was a strong motivation
to find better recognition algorithms for median graphs. The algorithm of Hagauer,
Imrich and Klavžar [9] with complexity O(m

√
n) was the first of this kind. Later

Imrich [11, Theorem 7.27] derived the asymptotically better result O((m log n)1.41).
Here the exponent 1.41 actually is 2ω/(ω+1), where ω is the exponent of matrix mul-
tiplication with its current value 2.376. By a result of Imrich, Klavžar and Mulder
[12] this recognition complexity is closely related with the recognition complexity of
triangle-free graphs. Hence improvements of the recognition complexity of median
graphs seem to be very difficult.

Nonetheless, some classes of median graphs can be recognized much faster. This
includes planar median graphs [12], which can be recognized in linear time and
acyclic cubical complexes [10], which can be recognized in O(m log n) time. Here
we show that median graphs with geodetic number two can also be recognized in
O(m log n) time. This is possible because of a bound on the maximum degree of a
median graph with geodetic number two and the fact that every peripheral subgraph
meets geodetic set, see Brešar and Tepeh Horvat [6].

We begin with the bound on the maximum degree ∆(G) of a median graph G
with g(G) = 2.
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Lemma 4.1 Let G be a median graph with g(G) = 2. Then ∆(G) ≤ 2 log2 n.

Proof. Suppose G = IG(v, w) and let L0, L1, . . . , Lr be the levels of the BFS-
ordering of the vertices of G with respect to a root v; see e.g. [11, p. 41]. Let
x ∈ Li and xy ∈ E(G). Since G is bipartite y /∈ Li. If y ∈ Li−1 we call the edge
xy a down-edge and otherwise an up-edge. Clearly y is closer to v than x if xy is a
down-edge, and closer to w if xy is an up-edge. In other words, the up-edges with
respect to v are the down-edges with respect to w. By [11, Lemma 3.35] the number
of down-edges of every vertex x in a median graph is bounded by log2 n. Clearly the
number of up-edges satisfies the same bound, hence d(v) ≤ 2 log2 n for all v ∈ V (G).
¤

Next we show how to check efficiently whether a given induced subgraph of a
graph G is also a convex subgraph. For a subgraph H of a graph G let ∂H be the
set of edges with one endvertex in H and the other in G \H.

Lemma 4.2 Let H be an induced connected subgraph of a partial cube for which
the Θ-classes are already known. Then the complexity of recognizing whether H is a
convex subgraph of G is O(|E(H)|+ |∂H|).

Proof. By the convexity lemma [11, Lemma 2.7] it suffices to show that no edge of
∂H is in the relation Θ with an edge of H. In other words, we have to show that
the list of Θ-classes that meet E(H) is disjoint from the list of Θ-classes that meet
∂H.

Let E1, . . . , Ek, where k < n, be the Θ-classes of G and vH the 0,1-vector of
length k with vH(i) = 0 if Ei ∩ E(H) = ∅ and vH(i) = 1 otherwise. Since the Θ-
classes are known, we can assume that there exists a function c : E(G) → {1, . . . , k}
that computes the index i for which e ∈ Ei in constant time. With a well known trick,
see [1], the vector vH can be determined in O(|E(H)|) time, even if |E(H)| < k, by
scanning all edges of H. Moreover we scan all edges of ∂H. If e ∈ Ei and vH(i) = 1,
then H is not convex. We thus have to check whether vH(c(e)) = 0 for all e ∈ ∂H.
Clearly this can be done in O(|∂H|) time. ¤

Next we show how to efficiently check the convexity of U -sets.

Corollary 4.3 Let H be a partial cube for which the Θ-classes are already known,
and ∆ the maximum degree of vertices in G. Then one can check in O(m∆+m log n)
time whether all U -sets are convex.

Proof. First note that the total size of U -sets in G is m. Furthermore |E(Uab)| <
|Uab| log2 |Uab| by Graham’s density lemma [11, Proposition 1.24]. Hence, for the
total number of edges in the U -sets we have the following inequality

(
∑

|Uab|)max(log2 |Uab|) ≤ m log2 n .
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Let vUab
be defined as in Lemma 4.2. Then it is clear that the set of vectors vUab

can be determined in O(m log n) time. Since the total size of the sets ∂U over all
U -sets is bounded by m∆ the corollary follows. ¤

Proposition 4.4 Let G be a graph with ∆(G) ≤ 2 log2 n. Then one can check
in O(m log n) time whether G is a median graph, determine all Θ-classes and all
U -sets.

Proof. By [11, Lemma 7.15] one can check in O(m log n) time whether G is a partial
cube, determine all Θ-classes and all U -sets. By [11, Corollary 2.27] a partial cube
is a median graph if and only if all U -sets are convex. Now the proof is completed
by the observation that the convexity of the U -sets of a given partial cube can be
checked in O(m log n) by Corollary 4.3. ¤

Next we describe a procedure which can be used to construct all median graphs.
For a connected graph H and its convex subgraph P the peripheral expansion of H
along P is the graph G obtained as follows. Let P ′ be an isomorphic copy of P and
α a corresponding isomorphism. Take the disjoint union H +P ′ and join each vertex
v ∈ P by an edge with α(v) ∈ P ′. We call the new graph a peripheral expansion of
H along P and denote it by G = pe(H;P ). Mulder [18] proved that a graph is a
median graph if and only if it can be obtained from K1 by a sequence of peripheral
expansions.

We still have to find a geodetic set consisting of two elements. In order to
accomplish this, we will use this sequence of peripheral expansions to determine all
geodetic sets. We begin with a relationship between the geodetic sets of a median
graph H and the graph G = pe(H, P ).

Lemma 4.5 Let G = pe(H;P ) be a median graph and {x, y} a geodetic set of H,
where y ∈ P . Then the set {x, z}, where z is the neighbor of y in G\H is a geodetic
set in G. Moreover, all minimum geodetic sets of G are of this form.

Proof. We have to show that every vertex w of G is on a shortest xz-path. Suppose
first w ∈ H. Then, clearly w is on a xy-geodesic, since {x, y} is a geodetic set in
H. Thus w is also on xz-geodesic going through y. Suppose next w ∈ G \ H and
let w′ be a neighbor of w, where w′ ∈ H. Then w′ lies on xy-geodesic. Let L1

denote the yw′-geodesic and let L2 denote the w′x-geodesic. Since P is a convex
subgraph of H (and therefore also of G) L1 is completely contained in P . Recall
that in median graph for any edge ab we have Uab

∼= Uba and that the isomorphism
is induced by the edges between Uab and Uba. Let L′1 be the projection of L1 into
P ′ by this isomorphism. Then L′1 ∪ ww′ ∪ L2 is a zx-geodesic in G containing w.
Conversely if {x, z} is a geodetic set in G = pe(H; P ) then by [6, Lemma 2] x or z
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must be in P ′. Suppose z is in P ′. Then we can use the same arguments as above
to see that {x, y} is a geodetic set in H, where y is a neighbor of z in H. ¤

If {x, y} is a geodetic set in G then this is the only minimum geodetic set con-
taining x, since by Lemma 4.5 x is uniquely determined by y and vice versa.

Corollary 4.6 Let G = pe(H;P ) be a median graph with g(G) = 2. Then all
minimum geodetic sets of G can be obtained from the minimum geodetic sets of H
in O(|P |) time.

Proof. Let P ′ = Uab, where a ∈ G \H. To find the geodetic sets of G we scan all
vertices z of Uab. If the neighbor y of z in Uba is in the geodetic set {y, x} of H,
then by Lemma 4.5 {z, x} is a geodetic set of G. Clearly the complexity of this task
is O(|Uab|). ¤

Corollary 4.7 Let G be a median graph with g(G) = 2. If the representation of G
as a series of peripheral expansions, starting from K1, is known, then all minimum
geodetic sets of G can be obtained in O(n) time.

Proof. At every expansion step |Uab| vertices are added at a total cost of O(|Uab|).
The observation that n− 1 vertices are added altogether completes the proof. ¤

We are thus left with the task of representing G by a series of peripheral expan-
sions.

Theorem 4.8 Let G be a median graph with ∆(G) ≤ 2 log2 n. Then a representa-
tion of G by a series of peripheral expansions can be found in O(m log n) time.

Proof. By [11, Lemma 7.15] and Proposition 4.4 we know that one can recognize
G as a median graph, partition its edge set into Θ-classes, and determine all U -
sets in O(m log n) time. We show now that we can determine all peripheral U -sets
within the same time complexity. We first observe that the peripheral U -sets are
characterized by the fact that ∂U consist of |U | independent edges that meet every
vertex of a U -set. In other words Uab is peripheral if

degG(v) = degUab
(v) + 1 ,

for every v ∈ Uab. Clearly degUab
(v) + 1 ≤ degG(v) for v ∈ G. Thus, setting

exUab
(v) = degG(v)− degUab

(v)− 1

it is clear that Uab is peripheral if and only if

ex(Uab) =
∑

v∈Uab

exUab
(v) = 0 .

11



Intuitively, ex(v) is the excess of the degree of v above its minimum.
We thus need the degrees of every vertex in its U -sets and in G. The degrees

of all vertices from a given U -set Uxy can be determined in |E(Uxy)| time and the
degrees of all vertices in G in O(m) time. Since the total number of edges in the
U -sets is O(m log n) we can thus determine all degrees in O(m log n) time.

In a second run, scanning all vertices in the U -sets, we determine excesses of all
vertices of G and calculate the sum of all corresponding excesses of vertices from
some U -set. Since the total number of vertices in the U -sets is O(m), this can be
done in the required time too.

In this process we keep a record of all these numbers and consider the first
peripheral set we find, say Uab.

We now show that we can remove Uab from G and determine for H = G\Uab the
same data structure we had for G. In other words, we can determine the adjacency
list of all new U -sets in the graph H, all degrees and the new values of the excess
numbers for all vertices in H and all the new U -sets in O(|Uab| log n) time.

We first find the new adjacency list of the new U -sets of H. We first recall
that the removal of a vertex v and all incident edges from a graph is of complexity
O(deg(v)) if the graph is represented by an extended adjacency list or the adjacency
matrix; see pp. 37 in [11]. In G every vertex v is also a vertex of every Uvw, where
w is a neighbor of v in G. Thus every v ∈ Uab is in at most O(log n) sets Uvw.
The degree of the vertex v in such a Uvw is degG(v) − 1 = degUab

(v). The cost of
removing v from all Uvw is thus O(degUab

(v) log n). For all v ∈ Uab this amounts to
a total of O(|E(Uab)| log n).

We also have to determine all new degrees and the new excess numbers. This
concerns all vertices of Uab. Every such vertex is contained in at most 2 log n graphs
UH

xy. Hence all these numbers can be computed in O(log n|Uab|) time if all vertices of
Uab are removed. In other words, the data structure of H = G\Uab can be determined
from that of G in O(log n|Uab|) time, including all degrees, excess numbers etc. (In
the course of the action we take note of the first peripheral U -sets we encounter.)

We now repeat this process by removing peripheral U -sets until we reach K1.
The total complexity is then O(log n

∑ |Uab|) = O(m log n). ¤

Now all prerequisites are ready for the following algorithm that recognizes whether
a given graph G is a median graph with g(G) = 2.

Algorithm 1
Input: The adjacency list of a graph G.

Output: YES and a list of all geodetic pairs if G is a median graph with g(G) = 2.
NO otherwise.

Step 0: If ∆(G) > 2 log2 n, reject.
If G is not a median graph, reject.
Otherwise determine all Θ-classes and the adjacency lists of all U -sets.
Set i = k, where k = idim(G), and Gk = G.
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Step 1: Compute the excess for all vertices in the U -sets and of all U -sets.
Step 2: Find a peripheral Uab as in Theorem 4.8.
Step 3: Remove Uab to obtain Gi−1.
Step 4: Repeat step 2 and 3 (sequence of contractions) until G0 = K1.
Step 5: For i = 0 to k − 1 do:

Find all geodetic pairs of Gi and determine those of Gi+1 with the aid of
Corollary 4.7.

Step 6: If there are no such sets, return NO.
Otherwise return YES and the list of all geodetic pairs.

Theorem 4.9 Let G be a graph G. Then Algorithm 1 correctly recognizes whether
G is a median graph with g(G) = 2. It can be implemented to run in O(m log n)
time.

Proof. Combining Lemma 4.1 and Proposition 4.4 we infer that Step 0 can be
implemented in O(m log n) time. Steps 1–4 are an algorithmic interpretation of the
proof of Theorem 4.8. As stated in Theorem 4.8, one can perfom these steps in
O(m log n) time. From Corollary 4.7 we find that Step 5 can also be performed in
the desired time. ¤

5 Remoteness function in hypercubes

In this section we study the remoteness function in hypercubes which form the
fundamental example of median graphs. Some of the results will be used in the last
section where we will consider antimedians in median graphs in relation with their
embeddings in hypercubes.

For a vertex x of Qn let x be its antipodal vertex, that is, the vertex that is
obtained from x be reversing the roles of zeros and ones. Let X ⊆ V (Qn). Then

X = {x | x ∈ X}

is called the antipodal set of X. Since x 6= y for x 6= y it follows that X = X.
Let π = (x1, . . . , xk) be a profile on Qd. For i = 1, . . . , k let n

(i)
0 and n

(i)
1 be the

number of vertices from π with the ith coordinate equal 0 and 1, respectively. More
formally,

n
(i)
0 (π) = |{x ∈ π | x(i) = 0}|

and
n

(i)
1 (π) = |{x ∈ π | x(i) = 1}| .

13



Define Majority(π) as the set of vertices u = u(1) . . . u(d) of Qd, where

u(i)





= 0; n
(i)
0 (π) > n

(i)
1 (π),

= 1; n
(i)
0 (π) < n

(i)
1 (π),

∈ {0, 1}; n
(i)
0 (π) = n

(i)
1 (π) .

We say that vertices u ∈ Majority(π) are obtained by the majority rule. Minority(π)
and the minority rule are defined analogously. It is easy to verify (using that the
distance between vertices in hypercubes coincides with their Hamming distance)
that M(π,Qn) = Majority(π), and similarly AM(π, Qn) = Minority(π). We now
infer:

Lemma 5.1 Let π be a profile on Qn. Then M(π, Qn) induces a subcube of Qn.
Moreover, AM(π, Qn) = M(π, Qn).

Let Q and Q′ be two subcubes of Qn. Then we say that Q and Q′ are parallel
if they are of the same dimension, say r, and if vertices vi of Q and v′i of Q′ can be
ordered such that d(vi, v

′
i) = s for some integer s and for any i = 1, 2, . . . , 2r, where

the mapping vi 7→ v′i is an isomorphism Q → Q′.

Proposition 5.2 Let π be a profile on Qn and let Q be a subcube parallel to the
subcube induced by M(π, Qn). Then the function D(·, π) is constant on Q.

Proof. If |M(π, Qn)| = 1 there is nothing to be proved. Assume in the rest that
|M(π, Qn)| > 1, hence |π|must be even. By Lemma 5.1, M(π, Qn) induces a subcube
Q′ and let x′y′ be an edge of Q′. Partition the profile π into subprofiles π1 and π2,
where vertices of π1 lie in Wx′y′ and vertices of π2 in Wy′x′ . Since x′, y′ ∈ M(π, Qn),
we have D(x′, π) = D(y′, π). Therefore, the following reasoning

D(x′, π) = D(x′, π1) + D(x′, π2)
= D(y′, π1)− |π1|+ D(y′, π2) + |π2|
= D(y′, π1) + D(y′, π2) = D(y′, π)

implies that |π1| = |π2|.
Let d(Q,Q′) = s and let xy be the edge of Q with d(x, x′) = d(y, y′) = s. Then

xyΘx′y′ and consequently Wxy = Wx′y′ and Wyx = Wy′x′ . From the definition of
Wxy and because |π1| = |π2| it follows that D(x, π) = D(y, π). By the connectivity
of Q we conclude that D must be a constant function on Q. ¤

We can generalize the concept of antipodes from hypercubes to Hamming graphs,
noting that an antipode of a vertex x is any vertex that is farthest from x. In the
case of hypercubes this vertex is unique, but not in general Hamming graphs. Hence
for a vertex x of a Hamming graph H its antipodal vertex is any vertex y such that
y(i) 6= x(i) for all i = 1, . . . , m. For X ⊆ V (H), let the antipodal set X of X be the
set of all antipodal vertices over all vertices of X.
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Theorem 5.3 A Hamming graph H is a hypercube if and only if for any profile π

AM(π, H) = M(π, H).

Proof. Suppose H is a hypercube. Then AM(π, H) = (M(π, H)) for any profile π
by Lemma 5.1.

For the converse suppose that a Hamming graph H is not a hypercube and let
j be the index (coordinate) with mj ≥ 3. Consider the following profile π = (x, y)
of size 2 such that x(i) = y(i) = 0 for all i 6= j and let x(j) = 0, y(j) = 1. Then
M(π, H) = {x, y}, and M(π, H) consists of vertices z with z(i) > 0 for i 6= j. On
the other hand AM(π, H) consists of vertices z with z(i) > 0 for i 6= j and z(j) > 1.
Hence AM(π, H) ⊂ M(π, H) and the inclusion is strict, by which the theorem is
proved. ¤

6 The remoteness function in median graphs, embed-
ded in a hypercube

In this section we obtain some properties of the remoteness function in arbitrary
median graphs, by using their isometric embedding into hypercubes. Since the
properties of median sets have already been studied in several papers, we restrict
mainly to the properties of antimedian sets in median graphs.

A vertex v of G is called a local minimum of a function D(x, π) if D(v, π) ≤
D(u, π) for any neighbor u of v. It was proved in [5] that in a graph G the set
M(π, G) is connected for any profile π on G if and only if for any π the function
D(x, π) has the property that every local minimum is a global minimum. Since
median graphs have the property that M(π, G) is connected for every π, we derive
that in median graphs every local minimum is a global minimum.

For antimedian vertices (in other words, vertices achieving global maximum of
D(x, π)) the analogous result is not true for median graphs. Consider for example
the 3 × 4 grid, and one of the two vertices of degree 4 as the only vertex of the
profile π (all four vertices of degree 2 achieve a local maximum, but only two of
them are also global). Thus there are local maxima which are not global maxima
and, moreover, antimedians need not be connected.

Restricting to hypercubes the fact that local minima are global minima can
be strengthened as follows. First recall that by Lemma 5.1, the median of π is a
subcube in Qn, and the antimedian is its antipodal (hence parallel) subcube. By
Proposition 5.2, D(x, π) is constant on every subcube parallel to them. Hence on any
two shortest paths from M(π, Qn) to AM(π, Qn), the two corresponding sequences
of values of the remoteness function are the same. (Note also that any two distinct
intervals from vertices in M(π, Qn) to their (unique) closest vertices in AM(π, Qn)
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are disjoint, and every vertex of G lies on some shortest path from M(π, Qn) to
AM(π, Qn).)

Lemma 6.1 Let π be a profile on Qn and let xx′ be an edge of Qn such that
d(x′, AM(π, Qn)) < d(x, AM(π, Qn)). Then D(x, π) < D(x′, π).

Proof. Let k = |π| and let mj = min{n(j)
0 (π), n(j)

1 (π)} and Mj = max{n(j)
0 (π), n(j)

1 (π)}.
Since AM(π, Qn) can be obtained by the minority rule, for all a ∈ AM(π, Qn), we
have

D(a, π) =
n∑

j=1

Mj .

Let d(x′, AM(π, Qn)) = d(x′, ax′) = l, where ax′ is the unique closest vertex to x′

from AM(π, Qn). Then

D(x′, π) = D(ax′ , π)−
l∑

p=1

Mip +
l∑

p=1

mip ,

= D(ax′ , π)−
l∑

p=1

(Mip −mip)

where x′ and ax′ differ at coordinates ip, p = 1, . . . , l. Since x, x′ are adjacent and
d(x, ax′) = d(x′, ax′) + 1 there exists a coordinate pl+1, distinct from all coordinates
ip, 1 ≤ p ≤ l, such that

D(x, π) = D(ax′ , π)−
l+1∑

p=1

(Mip −mip)

and D(x, π) < D(x′, π). ¤

Theorem 6.2 Let G be a median graph embedded isometrically into Qn, and let
π be a profile on G. Let a ∈ AM(π,G) and let a′ be the closest vertex to a in
AM(π, Qn). Then

I(a, a′) ∩ V (G) = {a} .

Proof. Let b be the closest vertex to a′ in M(π, Qn). From Lemma 5.1 we find that
b is unique (as subcubes of a cube are gated; see [13], if necessary). In addition,
Lemma 6.1 implies that D(x, π) is strictly increasing on any shortest path from
b to a′. Since I(a, a′) ⊆ I(b, a′), it follows that D(x, π) is strictly increasing on
any shortest path from a to a′. Thus c ∈ I(a, a′) ∩ V (G), c 6= a, would imply that
D(c, π) > D(a, π), a contradiction with a ∈ AM(π,G). Hence I(a, a′)∩V (G) = {a}.
¤
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Figure 2: Example on antimedians.

In Fig. 2 we give an illustration of the above theorem. Vertices of a median
graph G are darkened, and G is isometrically embedded into the 3-cube. Let the
profile π consist of all five vertices of G. Then AM(π,Q3) consists of the vertex w,
where D(w, π) = 10. Vertices u and v are the only vertices from G that enjoy the
condition from the theorem, that is I(a,w) ∩ V (G) = {a} . Hence u and v are the
only candidates to be antimedian vertices with respect to G, and both achieve the
local maximum of D(·, π) with respect to G. Since D(u, π) = 8 and D(v, π) = 7, we
infer that AM(π, G) = {u}. Note that even though v is closer to AM(π,Qn) (that
is, to w) than u, it is not an antimedian vertex.

We proved in [3] that M(π, Qn) ∩ V (G) 6= ∅ holds for any profile π which is
used in an efficient algorithm for computing median sets in median graphs. In the
events when AM(π, Qn) ∩ V (G) 6= ∅ we have AM(π, G) = AM(π, Qn) ∩ V (G), and
then the antimedian set is also connected and it induces isometric subgraph of G.
Unfortunately AM(π,Qn) ∩ V (G) 6= ∅ is not true in general, as can be seen in the
example from Fig. 2. Nevertheless, Theorem 6.2 could occasionally be helpful in
finding the antimedian set for profiles on median graphs, since it can considerably
reduce the number of candidates for the antimedian set to the vertices that achieve
the condition from the theorem.
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