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Scope and Purpose---Multicast routing refers to delivery of the same message from a source node to an arbitrary 
number of destination nodes. Multicasting in point-to-point networks can be implemented as a virtual multipoint 
connection consisting of a set of point-to-point connections with an appropriate routing mechanism implemented 
in the nodes. 

The problem of determining a minimum cost multipoint connection which can be modelled as a minimum cost 
connected subgraph that spans a given subset of nodes, is known as the Steiner tree problem in graph theory. As 
there is no central node with global information about the network connections in wide-area point-to-point 
networks, execution of the algorithm for a Steiner tree construction has to be distributed across the network 
nodes in such a way that each node can contribute its local information about the network connections. 

This article describes a distributed heuristic algorithm for the construction of a minimum cost multipoint 
connection in point-to-point networks that substantially surpasses earlier used algorithms as regards time 
complexity. 

Abs t r ac t - -A  new mechanism for effectively routing packets from a source to multiple destinations in large 
point-to-point communication networks is presented in this article. As there is no central node with the complete 
knowledge of network topology, and therefore conventional Steiner tree algorithms can not be used, the need for 
a distributed approach emerges where each node is supposed to know only the topology of its vicinity. 

A distributed algorithm based on the cheapest insertion heuristics is proposed in this article. Simulation results 
have shown that the efficiency of the proposed distributed algorithm is practically identical to that of the 
distributed Kou-Markowsky-Berman algorithm, whereas it substantially surpasses DKMB as regards time 
complexity. © 1997 Elsevier Science Ltd 

1. I N T R O D U C T I O N  

Multicasting is an important mechanism for group communications in communication networks, i.e. in 
cases when the same information must be sent from a single source to more than one destination. It 
reduces transmission overheads for the sender since only one copy of  each packet carrying the 
information needs to be sent. At the same time, it reduces the overall network traffic as only one copy 
of  each packet passes particular network connections. 

For networks in which all hosts share a common transmission channel, such as bus, ring, or satellite 
networks, the multicast capability can be provided trivially and, at least from the network point of  view, 
at the same cost as unicasting. We considered the more complex case where local networks, or individual 
hosts, are interconnected by a point-to-point network consisting of a number of  packet switches and 
connections between them. 

The multicast capability in point-to-point networks can be implemented as a virtual multicast 
connection consisting of  a set of  point-to-point virtual connections, above one or more physical layer 
connections, between nodes from the multicast group, and with an appropriate routing mechanism 
implemented in the nodes. 

There are two main optimality criteria to evaluate the goodness of  a route from a given source to a set 
of  destinations. The first relates to minimization of  destination cost, which is a measure of  the average 
delay experienced by each destination. We were more interested in the second, the network cost. In this 
case, the utilization of  network resources is considered. The problem of determining a minimum cost 
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connected network that spans a given subset of nodes is known as the Steiner tree problem. For a review 
of this problem and the algorithms for solving it we refer to Winter [1] and Ravi [2]. 

2. STE1NERTREEALGORITHMS AND MULTICASTCONNECTIONS 

It is well known that the Steiner tree problem is NP-complete [3]. There are a number of heuristic 
algorithms for deriving solutions to the Steiner tree problem in graphs that run in polynomial time, cf. 
[l]. The Kou-Markowsky-Berman (KMB) algorithm [4] and the Rayward-Smith (RS) algorithm [5] are 
typical heuristics. They are based on two different concepts. While the KMB algorithm is based on the 
stepwise growth of a single tree, the RS algorithm deals with a forest of smaller trees, which are gradually 
joined into bigger trees. Both standard algorithms have been modified by Jiang [6] in such a way that link 
capacities were integrated into the conventional algorithm. 

The approximation algorithms described above are not practical for very large networks, since they 
assume a complete knowledge of the entire network in the single node where they are executed, and do 
not operate in a distributed fashion. When the algorithm is executed in a centralized fashion, we can 
assume that all the information needed is available at that place. In the distributed version, a set of node 
algorithms is executed in the selected network nodes. All nodes that will be included in a tree should be 
notified about it in advance, provided with the required initial parameters, and the execution of node 
algorithms should be started. This is practically not possible for routing trees based on Steiner trees since, 
except for the terminal nodes from a multicast group, we do not know which subset of nodes will be 
involved. 

Therefore, we tried to find an algorithm that could take into account the limited availability of 
information about the global network in particular network nodes. As it turned out, cf. Jaffe [7], the 
minimal information that is needed by nodes to do any sensible routing calculation consists of the 
distance to each destination, as well as the first node on the shortest path toward the destination. This 
information is called local information. 

RS type algorithms are based on merging of smaller subtrees into a larger one in each step. This 
method allows a high degree of parallelization, but it is impractical for distributed implementation. The 
problem of notification and activation of a limited subset of nodes for distributed algorithm execution is 
better solved in the second group of Steiner tree algorithms, which are based on the growth of a single 
tree. After careful examination of known algorithms for Steiner tree construction based on single tree 
growth, we found that the cheapest insertion (CI) heuristics, introduced by Takahashi and Matsuyama [8], 
best suit distributed environments in point-to-point networks. We will describe its distributed 
implementation in the next section and compare it in the last section with the distributed implementation 
of the KMB algorithm, as a typical representative of this type of algorithm. 

3. DISTRIBUTED CHEAPEST INSERTIONALGORITHM (DCI) 

The CI algorithm for constructing Steiner trees is a straightforward extension of the classical Prim 
algorithm for obtaining minimum spanning trees [9]. The algorithm begins with one singleton tree and 
iteratively connects the nearest unconnected terminal node to it, until all terminal nodes are connected. 

In point-to-point networks, where in general particular pairs of nodes cannot communicate directly, it 
is inevitable that the distributed tree construction should be based on a single tree growth. The existing 
partially built tree is used for the distributed decision making and for the dissemination of information 
about the construction process. The node, selected in each phase, is activated only after it has been 
connected to that tree. 

We next formalize the DCI algorithm by means of which a multicast virtual connection is set up. A 
communication network is modeled by a network (V, E, c), where (V, E) is a simple, undirected, 
connected graph, with a set of nodes V and a set of connections E and c:E--*IR + is a cost function. Let 
d(v) denote the degree of a node v and let A(G) be the largest degree of a graph G. We shall denote the 
depth of a tree S by depth (S). The distance between nodes u, v ~ V, d(u, v), is equal to the minimum 
length of a path between u and v, where the length of a path P is the sum of costs of the connections of 
P. By T, TCV, we will denote the set of terminal nodes, which represent entry points where members of 
a multicast group are connected to the network. A routing tree is a rooted subtree of the network (V, E, 
c). Its root is any of the terminal nodes; it contains all the other terminal nodes, and a set of intermediate 
nodes L IC_ V -  T. The nodes in the subset I belong to paths between terminal nodes. Nodes in I with 
d(v)>2 are called Steiner nodes and play an active role in multicasting. In the algorithm, let U be the set 
of terminal nodes which are not yet selected, and let S stand for the set of connected terminal nodes and 
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adopted intermediate nodes on the paths between already connected terminal nodes. For v e S let sons(v) 
be the set of sons of v in the growing tree. Let s E T be a root node. 

The global DCI algorithm is implemented as a set of node algorithms which are executed in the 
activated nodes. Here we describe the distributed algorithm as a parallel program which represents its 
global behavior in the network. 

4. DISTRIBUTED CHEAPEST INSERTION ALGORITHM 

Input: source node s, set of terminal nodes T, 
local information on neighboring connections in each particular node 

Output: virtual multicast connection 
Procedure send_p(destination, distance, nearest, proposer); and 
Procedure receive_p(destination, distance, nearest, proposer); 

(*gathering the information about the not yet selected node that is nearest to the subtree*) 
Procedure send_s(destination, nearest, proposer); 
Procedure receive_s(destination, nearest, proposer); 

(*the dissemination of selected node across partially built tree*) 
Procedure send_c(destination, nearest, unselected); 

(*activities required to activate selected nearest node and intermediate nodes on the path to it*) 
1 begin 
2 U*--T- [s]; S,---[s}; 
3 while U # O  do 
4 (*each node locates the nearest unselected node, f(v), and the distance to it, l(v); p(v) contains 
5 identification of the proposer*) 
6 foreaeh v E S do in parallel 
7 l(v),---min{d(v,w); w ~ U}; 
8 f(v),----w, where w ~ U fulfills d(v,w)=l(v); 
9 p(v)---*v; 

10 end foreaeh; 
11 (*selection of a node is made as the info wave propagates from leaves toward the root of 
12 partially built tree *) 
13 foreaeh v ~ S do in parallel 
14 foreach sons(v) do in parallel 
15 (*each node collects selections made in the subtrees, rooted in sons*) 
16 recei v e_p( sons( v ), l( sons( v ) ), f(  sons( v ) ), p( sons( v ) ) ) ; 
17 if l(sons(v)) < l(v) then 
18 l(v)~--l(sons(v)); 
19 f (  v )~--f( sons( v ) ) ; 
20 p( v ),--p( sons( v ) ); 
21 endif 
22 end foreach; 
23 (*selection in the subtree is communicated to father, except from the root*) 
24 if v # s  then send_p(father(v), l(v), f(v), p(v)); 
25 end foreach 
26 U*--U - f (s) ;  
27 (*bounced info wave, originating in the root, announces which node was selected in this step*) 
28 foreach v ~ S do in parallel 
29 i f  v # s  then receive_s(father(v), f(s), p(s)); 
30 foreach sons(v)  do in parallel send_s(sons(v), f(s), p(s)); 
31 if  p (  s ) = v then 
32 u~--v; w*-f(s); 
33 (*all intermediate nodes on the path to the selected node are activated*) 
34 while u ~ w  do 
35 sons(u)*--sons(u) U [first(u, w)}; 
36 send_c(first(u, w), w, U); 
37 S*---S U [first(u, w)}; 
38 u*---first(u, w); 
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39 end while 
40 end if 
41 end foreach 
42 end while 
43 end. 

The node algorithm running in the activated nodes in each phase, according to its local information, finds 
f(v), a non-selected terminal node which is closest to the node, and l(v), the distance to that node. p(v) 
contains identification of the proposer (l. 4-9). Each node then participates with its candidate (f(v)) in the 
global distributed decision; it is implemented as an information wave generated in the leaf nodes of a 
partially built subtree and propagating towards its root (L 11-25). By the term information wave we 
denote a sequence of messages that are being sent across the network connections of a subtree. In our 
representation of the algorithm they are represented by pairs of send and receive procedures. The father 
node collects the data about the selections from its sons (l. 16). Comparing these values and its own 
selection, it chooses a terminal node that has the cheapest connection to the subtree (l. 17-20) and 
communicates its identity and connection cost towards the root, to its father (l. 24). When this 
information wave reaches the root, the decision made by the root represents the final selection. 

Since there is no father node for the root, the wave bounces back, in the direction of the leaves, and 
on its way informs all activated nodes about the global decision, i.e., which node will be connected in 
the current step (l. 28-30). When the node whose candidate has been selected learns the decision (l. 31), 
it must do all that is necessary to connect and activate its candidate as well as all intermediate nodes on 
the path to the candidate (l. 32-39). 

The application of DCI to a seven node network with four terminal nodes is illustrated in Fig. 1. As 
exactly one node is connected to the growing tree at each step of iteration of the DCI algorithm, the tree 
is constructed in three iterations. The behavior of the algorithm is best characterized by the sequence of 
messages exchanged during the construction (Fig. 2). send_p messages represent an information wave 
propagating towards the root in a distributed selection phase and sends  messages represent the 
communication of the selected node. Finally, send_c messages are used for the activation of the selected 
nodes and the nodes on the path to it from the partially built tree. 

After the virtual connection (or at least a part of it) is established, the multicast routing mechanism is 
simple. Each node forwards each incoming packet with the multicast connection identifier to all point-to- 
point connections that are elements of the multicast connection, except to the incoming one. 

In the next theorem we summarize the important properties of the DCI algorithm. We will assume that 
send_p, send_s, and send_c are performed in unit cost time. 

Theorem 1 
(i) Procedure DCI is a distributed version of the CI algorithm and uses only local information. 
(ii) The computed tree S is no more than 2(1-1/ITI) times more expensive than an optimal Steiner 

one. 
(iii) The time complexity of DCI is bounded by O(ITl.(A(S)-l).depth(S)). 

Proof 
(i) Let v be an activated node and let w be a destination. Note first that v need not know the set S, 

which is used only to clarify the presentation of the procedure. Clearly, v uses its local information, the 
distances to other nodes and the first node on a shortest path to w, first(v, w). Hence besides its local 
information, v uses only the set U, i.e. the subset of non-selected terminal nodes T. As this information 
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Fig. 1. The applicat ion o f  DCI to a seven-node graph. 
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To A: send_c (G, C, {B,D}) 

G: send_c (C, C, {B,D}) 

T1 C: send__p (G, 3, B, C) 

G: send_p (A, 3, D, G) 

A: send_s (G, D, G) 

G: send_c (F, D, {B}) 

F: send_c (D, D, {B}) II G: send_s (G, D, G) 

T2 C: send__p (G, 3, B, C) II D: send__p (F, 7, B, D) 

F: send_p (G, 6, B, F) 

G: send_p (A, 3, B, C) 

A: send_s (G, B, C) 

G: send_s (F, B, C) 

F: send_s (D, B, C) II G: send_s (C, B, C) 

C: send_c (B, B, {}) 

Fig. 2. A sequence of messages exchanged during the construction of a tree in Fig. 1. 

is distributed locally along S we conclude that DCI is a distributed implementation of the CI algorithm 
which uses only local information. 

(ii) This is a direct consequence of Theorem 1 from [8]. 
(iii) It is clear that the most time consuming part of the DCI procedure is the distributed selection of 

a node. This selection is performed 17] times. In each distributed selection an activated node v computes 
a minimum from its neighbours' candidates, which is done in at most d(v) - 1 steps. The decisions of all 
activated nodes reach the root in depth(S) steps. It follows that the time complexity of DCI is bounded 
by O(17]- (A(S)-  1).depth(S)). 

The upper bound from Theorem 1 (iii) in general cannot be improved, as can be seen by considering 
the case when S is isomorphic to a path on n vertices. Then the time complexity from (iii) reduces to 
O(n 2), where n denotes the number of nodes in the network. 

5. PERFORMANCE MEASURES 

The number of messages that are exchanged between nodes during an execution of the algorithm 
represents a basis for estimation of the temporal complexity of the algorithm. Since the overall 
complexity strongly depends on the topology of a network and on the proportions between the size of the 
network, the number of terminal nodes, as well as on the average number of intermediate nodes on each 
virtual connection, it is not possible to make a trustworthy analytical assessment for the general case. 

We therefore built a simulation package that allows observation of the behavior of algorithms on a 
large number of randomly generated networks and a comparison between different algorithms. In the 
simulator, we implemented the distributed CI (DCI) and the distributed KMB (DKMB) algorithm as a set 
of independent processes, each representing a node in the network. We observed the exchanged messages 
in a large number of simulation runs (500) and on different, randomly generated network topologies of 
small and medium size (between 16 and 30 nodes). The domains of selected parameters for the number 
of terminal nodes and for the density of graphs can be seen in Figs 3 and 4, respectively. 

As can be seen in the figures resulting from the simulations, the DCI algorithm ranks above DKMB, 
as we expected due to its essentially different design approach. 

An interesting result can be seen in Fig. 4, where the overall complexity of the algorithms decreases 
as the density of the network increases. This can be explained by the fact that more direct connections 
can be established and therefore less intermediate nodes are activated. 

Another interesting feature is the cost of the virtual multicast connections that have been constructed 
by means of different algorithms. Costs in the range 1-30 were randomly assigned to individual point-to- 
point connections in the network. Since we are interested in the cost relations between the results of 
different algorithms, the absolute values are of no practical significance. Therefore we defined the 
multicast cost efficiency of an algorithm as the ratio between the cost of a set of point-to-point 
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Fig. 3. Number of exchanged messages with regard to 171. 

connections and the cost of a multicast connection between the selected set of nodes. It can be seen that 
the results of both DKMB and DCI in Fig. 5 are practically identical and much better than the results of 
the simple distributed minimum spanning tree algorithm (DMST) [10]. In contrast, from the multicast 
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connections obtained we can summarize that for the simulation parameters selected the efficiency of our 
algorithm is limited to 2. 

As can be seen in the figures, the distributed algorithm that we developed based on the concept of the 
CI centralized algorithm turned out to have an attractive complexity-efficiency ratio compared with the 
distributed KMB algorithm. 

The original algorithm can be easily upgraded to support dynamic changes in the multicast group 
during the multipoint connection's lifetime. 
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