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Abstract. Mutual-visibility sets were motivated by visibility in distributed systems and social
networks, and intertwine with several classical mathematical areas. Monotone properties of
the variety of mutual-visibility sets, and restrictions of such sets to convex and isometric
subgraphs are studied. Dual mutual-visibility sets are shown to be intrinsically different from
other types of mutual-visibility sets. It is proved that for every finite subset Z of positive
integers there exists a graph G that has a dual mutual-visibility set of size i if and only if
i ∈ Z ∪ {0}, while for the other types of mutual-visibility such a set consists of consecutive
integers. Visibility polynomials are introduced and their properties derived. As a surprise,
every polynomial with nonnegative integer coefficients and with a constant term 1 is a dual
visibility polynomial of some graph. Characterizations are given for total mutual-visibility
sets, for graphs with total mutual-visibility number 1, and for sets which are not total
mutual-visibility sets, yet every proper subset is such. Along the way an earlier result from
the literature is corrected.
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1. Introduction

Let G = (V (G), E(G)) be a graph and X ⊆ V (G). Then vertices x and y of G
are X-visible, if there exists a shortest x, y-path P such that no internal vertex
of P belongs to X. The set X is a mutual-visibility set if any two vertices from
X are X-visible, while X is a total mutual-visibility set if any two vertices from
V (G) are X-visible. Let X = V (G) \ X. Then X is a dual mutual-visibility
set if any two vertices from X and any two vertices from X are X-visible.
Finally, X is an outer mutual-visibility set if any two vertices from X are X-
visible, and any two vertices x ∈ X, y ∈ X are X-visible. The cardinality of
a largest mutual-visibility set (resp. total/dual/outer mutual-visibility set) is
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the mutual-visibility number (resp. total/dual/outer mutual-visibility number)
μ(G) (resp. μt(G), μd(G), μo(G)) of G. A mutual-visibility set of cardinality
μ(G) is called a μ-set. We have analogous meaning for μt-sets, μd-sets, and
μo-sets. The key definitions are summarized in Table 1, where for arbitrary
vertices x, y ∈ V (G), we denote by “+” if x and y are required to be X-visible,
and by “−” if it is not required.

Mutual-visibility sets were introduced by Di Stefano in [14] motivated by
mutual visibility in distributed computing and social networks. Although the
motivation came from theoretical computer science, it is a graph theoretical
concept. It needs to be said that the term mutual-visibility is also used in other
contexts, for instance in robotics, where the mutual visibility problem asks for
a distributed algorithm that repositions robots to a configuration where they
all can see each other, cf. [1].

The graph theoretic mutual-visibility has received a lot of interest and was
investigated in a series of papers [2,4,5,8,9,11–13,19,20,26]. In addition to
being an interesting concept, the fact that the topic is intertwined with several
other areas has also contributed to the interest. These include the Zarankiewicz
problem [11], Turán type problems on graphs and hypergraphs [4,6,13], and
a close relationship with the Bollobás-Wessel theorem [3,29] as established in
[5]. Also, Axenovich and Liu [2] proved that μ(Qn) ≥ 0.186 · 2n by using a
recent breakthrough result on daisy-free hypergraphs due to Ellis, Ivan, and
Leader [15].

The investigations from [12] raised the need to introduce the total mutual-
visibility which was in turn studied in [2,4,6,22,28]. The remaining two types
of visibility were introduced in [10] and further considered in [5,20,26].

In this paper we first consider monotone properties of the variety of mutual-
visibility sets, and restrictions of such sets to convex and isometric subgraphs.
Along the way an earlier result from the literature is corrected. In Section 3 we
introduce visibility polynomials, show some examples, and derive some prop-
erties of these polynomials. Since it is observed in Section 2 that dual mutual-
visibility sets are intrinsically different from other types of mutual-visibility
sets, we introduce in Section 4 the dual visibility spectrum as the counting
vector of dual mutual-visibility sets of different sizes. The main result of the
section shows that the nonnegative entries can be arbitrarily prescribed and
a graph with this visibility spectrum exists. In other words, every polyno-
mial with nonnegative integer coefficients and with a constant term 1 is a
dual visibility polynomial of some graph. In the final section we consider total
mutual-visibility sets. We give a general characterization, describe graphs G
with μt(G) = 1, and characterize sets which are not total mutual-visibility
sets, yet every proper subset is such.

In the rest of the introduction we give additional definitions needed. If G
is a graph and v ∈ V (G), then NG(v) denotes the set of vertices adjacent to
v. The degree degG(v) of v is |NG(v)|.
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For vertices u and v of G, the length of a shortest u, v-path is the distance
between u and v and denoted by dG(u, v). A subgraph H of G is isometric, if
dH(u, v) = dG(u, v) for every two vertices u and v of H. Further, H is convex,
if for every two vertices of H, all shortest u, v-paths belong to H. A graph
G is geodetic if the shortest path between each pair of vertices is unique, cf.
[16,25,27].

Finally, unless stated otherwise, all graphs in this paper are connected, and
for a positive integer k we use the notation [k] = {1, . . . , k}.

2. Monotonicity of mutual-visibility sets

In this section, for a given visibility set we consider monotonicity of its subsets
and monotonicity of its restriction to convex and isometric subgraphs. We
recall the previous results and round off the picture so that all four variants
are treated systematically. Applying one of our findings we also correct an
earlier result from the literature.

Our starting point is the following result.

Proposition 2.1. [10, Proposition 2.5] If X is a mutual-visibility set (resp.
outer, total mutual-visibility set) of a graph G and Y ⊆ X, then Y is a mutual-
visibility set (resp. outer, total mutual-visibility set) of G.

Proposition 2.1 does not hold for dual mutual-visibility sets. For instance,
if x and y are adjacent vertices of C6, then {x, y} is a μd-set of C6, but neither
{x} nor {y} is a dual mutual-visibility set.

Dual mutual-visibility therefore stands out because in contrast to the other
three types of visibility sets, they are not necessarily closed for taking subsets.
On the other hand, all four concepts are monotone for subsets in the following
sense.

Proposition 2.2. [13, Lemma 5.4] If X is a mutual-visibility set (resp. outer,
dual, or total mutual visibility set) of a graph G and x ∈ X, then X \ {x} is a
mutual-visibility set (resp. outer, dual, or total mutual visibility set) of G − x.

In the seminal paper on the mutual-visibility, the following useful property
was observed.

Lemma 2.3. [14, Lemma 2.1] Let H be a convex subgraph of G and let X be a
mutual-visibility set of G. Then X ∩ V (H) is a mutual-visibility set of H.

We now show that Lemma 2.3 extends to all the other three mutual-
visibility concepts.

Lemma 2.4. Let X be a dual (outer, total) mutual-visibility set of G. If H is a
convex subgraph of G, then X ∩ V (H) is a dual (outer, total) mutual-visibility
set of H.
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Proof. Let X ⊆ V (G) and Y = X ∩ V (H).
Assume first that X is a dual mutual-visibility set of G. We claim that Y is

a dual mutual-visibility set of H. By Lemma 2.3, Y is a mutual-visibility set of
H, hence any two vertices from Y are Y -visible in H. Consider two vertices u
and v from V (H)\Y . In G, there exists a shortest u, v-path P with all internal
vertices from V (G) \ X. Since H is a convex subgraph of G, the path P lies
completely in H. As V (H) \ Y = V (H) \ X, the vertices u and v are Y -visible
in H. We can conclude that Y is a dual mutual-visibility set of H.

If X is an outer mutual-visibility set of G, then, using Lemma 2.3 again,
we can proceed as above to prove that Y is an outer mutual-visibility set of
H. Finally, if X is a total mutual-visibility set of G, then combining the above
arguments we get that Y is a total mutual-visibility set of H. �

Let Gn, n ≥ 2, be the graph obtained from n disjoint 5-cycles by selecting
one edge in each of them and identifying these n edges into a single edge uv.
Note that degGn

(u) = degGn
(v) = n + 1 while the other vertices have degree

2. In [10, Proposition 5.1] it was stated that that μd(Gn) = n + 1. We now
apply Lemma 2.4 to show that this is not the case. The correct result reads as
follows.

Proposition 2.5. If n ≥ 2, then μd(Gn) = 2.

Proof. Let X be a dual mutual-visibility set of Gn. Note first that a dual
mutual-visibility set of C5 is either the empty set or consists of two adjacent
vertices. Since each 5-cycle of Gn is convex, Lemma 2.4 implies that X re-
stricted to an arbitrary 5-cycle of Gn is either empty or contains two adjacent
vertices.

Let the vertices of the ith cycle of Gn, i ∈ [n], be u, xi, yi, zi, v. Assuming
that X �= ∅, by the above argument, at least one of the 5-cycles of Gn has
exactly two vertices in X. We may assume without loss of generality that this
is the cycle C : u, x1, y1, z1, v. Up to symmetry, there are three cases to be
considered.

Assume first that X ∩ V (C) = {u, v}. Since u and v lie in each of the 5-
cycles, the above argument yields that X cannot contain further vertices. We
may observe that this case is not possible since then x1 and x2 cannot see each
other. Assume next that X ∩ V (C) = {u, x1}. Then the cycle u, x2, y2, z2, v
must contain another vertex of X which is adjacent to u, and this can only be
x2. But then x1 and x2 both belong to X and are not X-visible, hence this case
is also not possible. The last case to be considered is X ∩ V (C) = {x1, y1}.
There is nothing to show if X has no vertices in the other 5-cycles, hence
assume that, without loss of generality, X ∩ {u, x2, y2, z2, v} �= ∅. As u, v /∈ X,
we either have x2, y2 ∈ X or y2, z2 ∈ X. In the first case x2 and y1 are not
X-visible, in the second case y1 and y2 are not X-visible. We can conclude
that if X is nonempty, then X intersects only one 5-cycle.
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To complete the argument we claim that X = {x1, y1} is a dual mutual-
visibility set. Clearly, x1 and y1 are X-visible. Consider next arbitrary vertices
x, y ∈ V (Gn) \ {x1, y1}. If x and y lie on the same 5-cycle, they are X-visible.
And if x and y lie on different 5-cycles, then every shortest path between them
lies completely inside V (Gn) \ X. �

Lemma 2.4 is no longer true if instead of the convexity of the subgraph H
we assume that H is isometric. Consider Kn,n, n ≥ 4. Then it is not difficult
to see that μ(Kn,n) = μo(Kn,n) = μd(Kn,n) = μt(Kn,n) = 2(n − 1), and that
every largest mutual-visibility set X is of the form X = V (Kn,n) \ {u, v},
where u and v belong to different bipartition sets of Kn,n. The subgraph
H = Kn,n \ {u, v} ∼= Kn−1,n−1 is isometric, but X ∩ V (H) = V (H) is clearly
not a mutual-visibility set of H (and hence neither an outer, a dual, or a total
mutual-visibility set).

We also emphasize that the “converse” of Lemma 2.4 does not hold. That
is, if some set of vertices has the required visibility property on a convex
subgraph, it is not always extendable to a set having the same property in the
whole graph. For instance, in C7, two adjacent vertices form a convex subgraph
and its vertices are of course a total/dual/outer mutual-visibility set of this
subgraph. However, two adjacent vertices of C7 do not lie together in a total,
a dual, or an outer mutual-visibility set.

We now turn to isometric subgraphs. Note that two adjacent vertices of
Cn, n ≥ 7, form a mutual-visibility set, but the remaining subgraph is not
isometric. Similarly, two antipodal vertices x and x′ of Cn, n ≥ 6, form a
μo-set of Cn, but the graph Cn − {x, x′} is not even connected. On the other
hand, we have the following positive result.

Proposition 2.6. Let G be a connected graph. If X ⊆ V (G) is a dual or a total
mutual-visibility set of G, then the subgraph G − X is isometric.

Proof. Assume that X is a dual mutual-visibility set of G and consider any
two vertices x and y from V (G) \ X. Since X is a dual mutual-visibility set,
the vertices x and y are X-visible, say via a x, y-path P . But then the path
P is also a shortest x, y-path in G − X, which already implies that G − X is
isometric. The same argument applies if X is a total mutual-visibility set. �

Proposition 2.6 cannot be strengthened by replacing “isometric” with “con-
vex.” For instance, if x is a vertex of C4, then {x} is a total mutual-visibility
set (and hence also a dual mutual-visibility set), but C4 − x is not convex.

3. Visibility polynomials

If G is a graph and X ⊆ V (G), then X is a general position set [7,24] if for
any two vertices of X, no shortest path between them contains an internal
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vertex from X. In order to better understand these sets, the general position
polynomial was introduced in [17]. Here we extend this idea to mutual-visibility
sets and pose:

Definition 3.1. The visibility polynomial of a graph G is the polynomial

V(G) =
∑

i≥0

rix
i ,

where ri is the number of distinct mutual-visibility sets of G with cardinality
i.

Clearly, the degree of V(G) is μ(G), and its constant term is 1. For instance,
if n ≥ 1, then

V(Pn) = 1 + nx +
(

n

2

)
x2 .

In a completely analogous way we define the dual visibility polynomial, the
outer visibility polynomial, and the total visibility polynomial, which are, for a
given graph G, respectively denoted by Vd(G), Vo(G), and Vt(G). For paths
Pn, n ≥ 3, we have

Vd(Pn) = 1 + 2x + 3x2 ,

Vo(Pn) = 1 + nx + x2 ,

Vt(Pn) = 1 + 2x + x2 .

As a further example, we determine these four polynomials for balanced
complete bipartite graphs. Note that the polynomials for a general complete
bipartite graph Km,n can be obtained in the same way but by considering
more cases. Here we restrict our attention to the simpler case of Kn,n.

Proposition 3.2. For n ≥ 3, the complete bipartite graph Kn,n has the following
polynomials:

V(Kn,n) = ((x + 1)n − xn)2 + 2nxn+1 + 2xn ,

Vo(Kn,n) = ((x + 1)n − xn)2 + 2xn ,

Vd(Kn,n) = Vt(Kn,n) = ((x + 1)n − xn)2 .

Proof. Let A and B be the partite classes of Kn,n and consider a set X ⊆
V (Kn,n). It can be readily checked that X is a mutual-visibility set in each of
the following cases:
(a) |X ∩ A| ≤ n − 1 and |X ∩ B| ≤ n − 1;
(b) X = A or X = B;
(c) A ⊆ X and |X ∩ B| = 1;
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(d) B ⊆ X and |X ∩ A| = 1.
Further, if neither of (a)-(d) holds, then X contains all vertices from one partite
class and at least two vertices, say u and v, from the other class. Then u and
v are not X-visible. Thus X is a mutual-visibility set in Kn,n if and only if X
satisfies one of (a)-(d). This in particular implies that μ(Kn,n) = 2n − 2.

If 0 ≤ i ≤ n + 1, then each i-element subset of the vertex set satisfies one
of (a)-(d) and therefore, we have ri =

(
2n
i

)
for the visibility polynomial. If

n+2 ≤ i ≤ 2n−2, then only case (a) can be satisfied. There are
(

n
2n−i

)
sets A′

of cardinality i such that A ⊆ A′, and there are
(

n
2n−i

)
sets B′ of cardinality

i such that B ⊆ B′. Consequently, ri =
(
2n
i

) − 2
(

n
2n−i

)
, which in turn implies

that

V(Kn,n) =
2n−2∑

i=0

(
2n

i

)
xi − 2

2n−2∑

i=n+2

(
n

2n − i

)
xi

=
2n∑

i=0

(
2n

i

)
xi − 2xn

n∑

j=0

(
n

j

)
xj − 2nx2n−1 − x2n

+ 2xn + 2nxn+1 + 2nx2n−1 + 2x2n

= (x + 1)2n − 2xn(x + 1)n + x2n + 2xn + 2nxn+1

= ((x + 1)n − xn)2 + 2nxn+1 + 2xn.

For the remaining part of the statement, we note that X ⊆ V (Kn,n) is an
outer mutual-visibility set if and only if condition (a) or (b) holds; and X is
a dual mutual-visibility set (or a total mutual-visibility set) if and only if (a)
holds. Then, respectively subtracting 2nxn+1 and 2nxn+1 +2xn from V(Kn,n)
we obtain the polynomials Vo(Kn,n) and Vd(Kn,n) = Vt(Kn,n).

�

Below we give two general properties of the polynomials V, Vo, and Vt. For
a real number x and an integer k with x ≥ k > 0, the binomial coefficient

(
x
k

)

is defined as
(

x

k

)
=

k∏

s=1

x − s + 1
s

.

The “shadow theorem” of Kruskal [21] and Katona [18] was reformulated by
Lovász in [23] as follows:

Theorem 3.3. [18,21,23] Let F be a family of k-element sets with |F| =
(
x
k

)

for some real number x ≥ k. Then the number of different (k −1)-element sets
covered by F is at least

(
x

k−1

)
.

Theorem 3.3 and Proposition 2.1 imply the following general property of
the coefficients in the polynomials V(G), Vo(G), and Vt(G).
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Proposition 3.4. Let G be a graph and let P ∈ {V,Vo,Vt}. Suppose that ri and
ri−1 are the coefficients of xi and xi−1, respectively, in P(G). If ri =

(
z
i

)
for

a real number z, then ri−1 ≥ (
z

i−1

)
.

The second general property of the polynomials V(G), Vo(G), and Vt(G) is
that they can be deduced from the set of all maximal visibility sets as follows,
where we set P(X) = (1 + x)|X| for X ⊆ V (G) and P ∈ {V,Vo,Vt}.

Proposition 3.5. Let G be a graph and let P ∈ {V,Vo,Vt}. If X1, . . . , Xn is
the set of maximal mutual-visibility (resp. outer mutual-visibility, resp. total
mutual-visibility) sets of G, then

P(G) =
n∑

k=1

(−1)k−1
∑

{i1,...,ik}⊆[n]

P(Xi1 ∩ · · · ∩ Xik) .

Proof. By Proposition 2.1, any subset of a mutual-visibility set X is a mutual-
visibility set. Hence the contribution of X to V(G) is (1 + x)|X|. The formula
for V(G) then follows by the inclusion-exclusion principle. The same argument
applies to Vo(G) and to Vt(G). �

As an example of the use of Proposition 3.5, we will determine Vo(P ), where
P is the Petersen graph. We first infer the following.

Proposition 3.6. Let P be the Petersen graph and X ⊆ V (P ). Then X is an
outer mutual-visibility set of P if and only if X is an independent set of P .

Proof. Assume that X is an outer mutual-visibility set. If two vertices x and
y from X are adjacent, and z is a neighbor of y different from x, then x and
z are not X-visible as P is geodetic, a contradiction.

Conversely, assume that X is an independent set of P . If x, y ∈ X, then
they are clearly X-visible. Assume now that x ∈ X and y /∈ X. There is
nothing to show if xy ∈ E(P ). Assume hence that dP (x, y) = 2 and let z be
the common neighbor of x and y. Since X is independent and x ∈ X, we have
z /∈ X. We can conclude that a vertex x ∈ X and a vertex y /∈ X are also
X-visible. �

Concerning Proposition 3.6 we remark that one direction of it is a conse-
quence of [13, Lemma 5.2] which asserts that in a graph of girth at least 5
every outer mutual-visibility set is an independent set.

Consider the usual drawing of P and let u0, u1, u2, u3, u4 be the consecutive
vertices of its outer 5-cycle, and v0, v1, v2, v3, v4 their respective neighbors in
the inner 5-cycle. Using Proposition 3.6 and the fact that the independence
number of P is 4, it is straightforward to establish that the only μo-sets of P
are:

{u0, u2, v3, v4}, {u1, u3, v4, v0}, {u2, u4, v0, v1}, {u3, u0, v1, v2}, {u4, u1, v2, v3} .
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In addition, there are precisely ten maximal outer mutual-visibility sets of P
of size 3, they are:

{u0, v2, v3}, {u1, v3, v4}, {u2, v4, v0}, {u3, v0, v1}, {u4, v1, v2},

{v0, u1, u4}, {v1, u2, u0}, {v2, u3, u1}, {v3, u4, u2}, {v4, u0, u3} .

From here, by applying Proposition 3.5, we get:

Vo(P ) = 1 + 10x + 30x2 + 30x3 + 5x4 ,

where the coefficient at x3 was obtained with computer support.
We next determine the other three polynomials of P . For V(P ), we first

state the following result which is of independent interest.

Proposition 3.7. Let G be a geodetic graph and X ⊆ V (G). Then X is a general
position set if and only if X is a mutual-visibility set.

Proof. A general position set is a mutual-visibility set in general. Hence assume
that X is a mutual-visibility set and let x, y ∈ X. Then there exists a shortest
x, y-path R such that all internal vertices of R lie in V (G) \ X. But since G
is geodetic, R is the unique shortest u, v-path, hence x and y lie in general
position. We can conclude that X is a general position set. �

Since P is geodetic, Proposition 3.7 implies that

V(P ) = ψ(P ) = 1 + 10x + 45x2 + 90x3 + 80x4 + 30x5 + 5x6 ,

where ψ(P ) is the general position polynomial of P . The latter polynomial
was introduced in [17], where the second above equality was also deduced.

Finally, since μd(P ) = μt(P ) = 0, we have Vd(P ) = Vt(P ) = 1.

4. Gaps in the dual visibility spectrum

As observed in Section 2, a subset of a dual mutual-visibility set is not necessar-
ily a dual mutual-visibility set. Further, there are graphs admitting k-element
dual mutual-visibility sets but no (k − 1)-element ones. For this phenomenon,
C5 is the smallest example. We have μd(C5) = 2, but no single vertex forms a
dual mutual-visibility set. This leads to the following concept.

The dual visibility spectrum of a graph G is the vector (r0, . . . , rk), where
k = μd(G), and ri is the number of different dual mutual-visibility sets of size
i in G. Equivalently, the entries r0, . . . , rk are the coefficients of x0, . . . , xk,
respectively, in Vd(G). We have already observed that r0 = 1 for every graph.

For example, we have the following dual visibility spectra for cycles:
• (1, 3, 3, 1) for C3;
• (1, 4, 4, 4) for C4;
• (1, 0, n) for Cn if n ∈ {5, 6}; and
• (1) for Cn with n ≥ 7.
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Figure 1. The graph F5

In this section, we show that there can be arbitrarily large gaps, that is,
arbitrary zero sequences between positive entries in the dual visibility spec-
trum of a graph. Moreover, the next result quite surprisingly shows that the
spectrum entries can be arbitrarily prescribed, that is, if r0 = 1, rk > 0, and
the other entries are arbitrary nonnegative integers, a graph with the given
dual visibility spectrum exists.

Theorem 4.1. For every k ≥ 0 and nonnegative integers r0 = 1, r1, . . . , rk with
rk > 0, there exists a graph G such that μd(G) = k and the dual visibility
spectrum of G is (1, r1, . . . , rk).

Proof. First, we construct graphs with dual visibility spectra (1, 0, . . . , 0, 1)
and (1, �), then we build a graph with the spectrum (1, r1, . . . , rk).

Construction of Ft. For every t ≥ 2, we take t− 1 5-cycles that share the edge
v0v1. For every i ∈ [t − 1], let this cycle be v0v1v2,iv3,iv4,iv0. Further, we add
a vertex v5 and edges v5v2,i, v5v3,i for every i ∈ [t − 1]. Let Yt = {v2,i : i ∈
[t − 1]} ∪ {v1}. To finish the construction, we put a 7-cycle onto every vertex
outside Yt; that is, for each of the vertices v0, v5, v3,i, v4,i, where i ∈ [t − 1], we
take six new vertices and form a 7-cycle together with the vertex itself. Vertex
v0 is designated as the connecting vertex in Ft. The construction is illustrated
in Fig. 1 for the case t = 5, where the gray square emphasizes that v0 is the
connecting vertex and where the 7-cycles are shown as closed ovals. �

Remark that vertex v5 and the incident 7-cycle may be removed from the
graph if t = 2. In general, some of the 7-cycles can also be omitted from the
construction such that Claim 1 remains true.

Claim 1. For every t ≥ 2, it holds that μd(Ft) = t and the only nonempty dual
mutual-visibility set of Ft is Yt.
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Figure 2. The graph F1,4

Proof. Suppose that X is a dual mutual-visibility set in Ft. Observe that the
7-cycles in Ft are all convex subgraphs and that μd(C7) = 0. It follows by
Lemma 2.4 that X contains no vertices from these 7-cycles. In particular,
X ⊆ Yt. Observe that each of the t − 1 5-cycles is also a convex subgraph in
Ft. A nonempty dual mutual-visibility set of a 5-cycle consists of two adjacent
vertices. Since X ⊆ Yt, this pair of adjacent vertices may only be v1 and
v2,i. Therefore, if v1 ∈ X, then v2,i ∈ X for all i ∈ [t − 1]; and if a vertex
v2,i belongs to X, we get the same conclusion. We may conclude that X =
∅ or X = Yt. It can be checked directly that Yt is a dual mutual-visibility
set in Ft. (�)

Construction of F1,�. For every � ≥ 1, take an �-star with a center v0 and
leaves v1, . . . , v�. Then, for every two indices 1 ≤ i < j ≤ �, add a vertex
ui,j and the edges ui,jvi and ui,jvj . We add edges ui,jui′,j′ for every pair of
vertices with 1 ≤ i < j ≤ � and 1 ≤ i′ < j′ ≤ �, that is, the vertices ui,j ,
1 ≤ i < j ≤ �, induce a complete subgraph of F1,�. We put a 7-cycle onto
each vertex outside Y1,� = {v1, . . . , v�} to finish the construction. Vertex v0
is designated as the connecting vertex in F1,�. We note that F1,1 is obtained
from P2 by putting a 7-cycle onto one vertex of it; F1,2 can be described as a
4-cycle where 7-cycles are put onto two opposite vertices of the 4-cycle. The
construction is illustrated in Fig. 2 for the case � = 4, where again the gray
square emphasizes that v0 is the connecting vertex and the 7-cycles are shown
as closed ovals.

Claim 2. μd(F1,�) = 1 and there are exactly � different μd-sets of F1,�, namely
the sets {v1}, . . . , {v�}.

Proof. Let X be a nonempty dual mutual-visibility set in F1,�. Since the 7-
cycles are convex subgraphs in F1,� and μd(C7) = 0, we may infer X ⊆ Y1,�.
Suppose now that |X| ≥ 2. Then at least two different vertices vi and vj

from Y1,� belong to X. Since vi and vj are the only common neighbors of the
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(nonadjacent) vertices v0 and ui,j , the latter two vertices are not X-visible that
is a contradiction as both v0 and ui,j are outside X. It shows that |X| = 1.
Finally, it suffices to check directly that X = {vi} is a dual mutual-visibility
set for every i ∈ [�]. (�)

Construction of F (1, r1, . . . , rk). If k = 0, we set F (1) ∼= C7. If k ≥ 1, we take
the following graphs:

• if r1 ≥ 1, we take a copy of the graph F1,r1 ;
• for every i ≥ 2, if ri ≥ 1, we take ri copies of the graph Fi.

The set of these graphs is denoted by G. Thus, |G| =
∑k

i=2 ri if r1 = 0,
otherwise |G| = 1 +

∑k
i=2 ri. Finally, we get F (1, r1, . . . , rk), by merging the

connecting vertices of the graphs in G into one vertex v∗.

Claim 3. The dual visibility spectrum of F (1, r1, . . . , rk) is (1, r1, . . . , rk).

Proof. The statement is true for k = 0 as the dual visibility spectrum of C7 is
(1). From now on, we suppose that k ≥ 1. Let G = F (1, r1, . . . , rk). If k = 1,
then G ∼= F1,r1 and the statement follows from Claim 2. If k ≥ 2, rk = 1, and
ri = 0 for all i ∈ [k − 1], then G ∼= Fk and the statement follows from Claim 1.
In the remaining cases, G is constructed from at least two graphs.

Let X be a dual mutual-visibility set of G. Observe that each graph Gs ∈ G
is a convex subgraph of G (with the connecting vertex of Gs renamed as v∗).
By Lemma 2.3, the set X ∩ V (Gs) is a dual mutual-visibility set in Gs.

Suppose that X contains vertices from two different graphs Gs ∈ G and
Gp ∈ G. If Gs

∼= Ft and Gp
∼= Ft′ then, by Claim 1, the sets X ∩ V (Gs) and

X ∩ V (Gp) correspond to the dual mutual-visibility sets Yt and Yt′ in Ft and
Ft′ . Naming the vertices as in the construction, we consider vertex v1 from Gs

and v2,1 from Gp. Both vertices belong to X, and the unique shortest path
between them goes through the vertex v1 from Gp. As the latter vertex is also
included in X, the set X cannot be a dual mutual-visibility set. In the other
case, Gs

∼= F1,� and Gp
∼= Ft′ . Here, we choose vertex vi from X ∩ V (Gs)

and consider the shortest path between vi from Gs and v2,1 from Gp. The
contradiction then comes from the fact that the shortest path is unique and
contains vertex v1 from X ∩ V (Gs).

We conclude that X cannot intersect two different graphs from G, and
therefore, X = ∅ or X is a nonempty dual mutual-visibility set in a graph
Gs ∈ G. By construction of G and by Claims 1 and 2 , the dual visibility
spectrum of G is (1, r1, . . . , rk). (�)

Claim 3 directly implies the theorem. �
The following result is a direct corollary of Theorem 4.1.

Corollary 4.2. Every polynomial with nonnegative integer coefficients and with
a constant term r0 = 1 is a dual visibility polynomial of some graph.
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By definition, every total mutual-visibility set is a dual mutual-visibility
set. All subsets of a μt-set are total and, consequently, dual mutual-visibility
sets according to Proposition 2.1. This establishes the following statement:

Observation 4.3. If (1, r1, . . . , rk) is the dual visibility spectrum of a graph G

and i ∈ [μt(G)], then ri ≥ (
μt(G)

i

)
. In particular, there are no gaps in the dual

visibility spectrum until the entry rj with j = μt(G).

We point out a further relation between dual and total mutual-visibility
sets.

Proposition 4.4. Let (1, r1, . . . , rk) be the dual visibility spectrum of a graph G.
Then r1 = 0 if and only if μt(G) = 0.

Proof. If μt(G) > 0, there is a one-element total mutual-visibility set and, by
definition, it is also a dual mutual-visibility set. Therefore, we have r1 > 0.

If r1 > 0, let X = {x} be a dual mutual-visibility set. To show that X is also
a total mutual-visibility set, we observe that, for every v ∈ V (G)\X, a shortest
x, v-path never contains an internal vertex from X. It implies μt(G) ≥ 1. �

With respect to the last result we add that the graphs G with μt(G) = 0
were characterized in a different way in [28].

5. Revisiting total mutual-visibility

In this section, we characterize total mutual-visibility sets, graphs G with
μt(G) = 1, and sets which are not total mutual-visibility sets, yet every proper
subset is such.

The vertex v of G is simplicial if NG(v) induces a complete subgraph of G.
The set of simplicial vertices of G is denoted by S(G) and its cardinality by
s(G).

To start, let us show the following result.

Proposition 5.1. If G is a geodetic graph, then μt(G) = s(G) and S(G) is the
unique μt-set of G.

Proof. S(G) is a total mutual-visibility set of G because a vertex from S(G)
cannot be an inner vertex of a shortest path.

To prove that μt(G) ≤ s(G), suppose on the contrary that there exists
some μt-set X of G with |X| ≥ s(G) + 1. Then X contains a vertex x /∈ S(G).
Let x1 and x2 be two neighbors of x such that x1x2 /∈ E(G). As x ∈ X,
and X is a total mutual-visibility set, there exists a vertex x′ �= x such that
x′ ∈ NG(x1)∩NG(x2). But then there exists at least two shortest x1, x2-paths,
a contradiction.

We have thus seen that μt(G) = s(G). Moreover, the above argument also
implies that S(G) is the unique μt-set of G. �
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In the proof of Proposition 5.1 it was sufficient to consider only vertices at
distance 2. The announced characterization of total mutual-visibility sets says
it is no coincidence.

Theorem 5.2. If G is a connected graph and X ⊆ V (G), then the following
statements are equivalent.
(i) X is a total mutual-visibility set of G.
(ii) Any two vertices u and v of G with dG(u, v) = 2 are X-visible.
(iii) Any two vertices u and v of G with dG(u, v) = 2 satisfy NG(u)∩NG(v) �⊆

X.

Proof. Let X ⊆ V (G) be a total mutual-visibility set. Then in particular each
pair of vertices at distance 2 is X-visible, that is, (i) implies (ii).

To see that (ii) implies (iii), let u and v be vertices with dG(u, v) = 2. Then
by (ii), there exists a shortest u, v-path such that its middle vertex, say w,
does not lie in X. Hence w ∈ (NG(u) ∩ NG(v)) \ X.

It remains to prove that (iii) implies (i). That is, we need to show that if (iii)
holds, then any two vertices u′, v′ ∈ V (G) are X-visible. To do so, we proceed
by induction on k = dG(u′, v′). There is nothing to prove if k = 1, while if
k = 2, the condition (iii) immediately implies that u′ and v′ are X-visible.
Assume now that k ≥ 3. Let P be a shortest u′, v′-path, and let u′ = x0, x1, x2

be its first three vertices. Then dG(x0, x2) = 2, hence by (iii) there exists a
vertex y ∈ NG(x0) ∩ NG(x2) such that y /∈ X. (It is possible that y = x1.)
Since dG(y, v′) = k − 1, the vertices y and v′ are X-visible by induction. Let
Q be a shortest y, v′-path such that no internal vertex lies in X. Since y /∈ X,
the concatenation of the edge u′y with Q is a shortest u′, v′-path such that no
internal vertex lies in X. Hence u′ and v′ are X-visible. �

The equivalence between (i) and (iii) in Theorem 5.2 has been earlier es-
tablished in [6, Theorem 2.3] for the case of Hamming graphs.

As already mentioned, in [28] the graphs G with μt(G) = 0 were charac-
terized. Moreover, an open problem to characterize the graphs with μt(G) = 1
was also posed. In the second main result of this section we solve the problem
as follows. For its formulation we recall that a vertex v of a graph G is a bypass
vertex [28] if v is not the central vertex of a convex path on three vertices. The
number of bypass vertices of G is denoted by bp(G).

Theorem 5.3. For a graph G, it holds that μt(G) = 1 if and only if bp(G) ≥ 1
and every two different bypass vertices v1 and v2 satisfy the following condition:

(�) there exist nonadjacent vertices u1, u2 with NG(u1) ∩ NG(u2) =
{v1, v2}.

Proof. First suppose that μt(G) = 1 and {v} is a μt-set of G. Then v is a
bypass vertex and bp(G) ≥ 1. Consider now two bypass vertices v1 and v2.
Since X = {v1, v2} is not a total mutual-visibility set in G, Theorem 5.2
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implies the existence of two vertices x and y with dG(x, y) = 2 that satisfy
NG(x) ∩ NG(y) ⊆ X. On the other hand, we know the following facts:

• NG(x) ∩ NG(y) �= ∅ as dG(x, y) = 2;
• NG(x) ∩ NG(y) �= {vi}, for i ∈ [2], as vi is a bypass vertex.

Therefore, the only possibility to have NG(x)∩NG(y) ⊆ X is NG(x)∩NG(y) =
{v1, v2}. This proves that every pair of bypass vertices satisfies (�).

To prove the other direction, we take the contrapositive of the implication
and assume that μt(G) �= 1. If μt(G) = 0, then bp(G) = 0. If μt(G) ≥ 2,
consider a 2-element total mutual-visibility set X = {v1, v2}. Note that, by
Proposition 2.1, such a set exists even if μt(G) > 2. Clearly, v1 and v2 must
be bypass vertices. We state that (�) does not hold for v1 and v2. Indeed, the
existence of vertices u1 and u2 with NG(u1) ∩ NG(u2) = {v1, v2} would imply
that u1 and u2 are not X-visible, a contradiction. �

We note that graphs with bp(G) = � and μt(G) = 1 exist for arbitrarily
large �. Graphs F1,� constructed in the proof of Theorem 4.1 provide such
examples for not only μd(F1,�) = 1 but also μt(F1,�) = 1 holds.

Finally, in view of our considerations in Section 2, and as an application of
Theorem 5.2, we provide a characterization for sets that are not total-mutual-
visibility sets, although all their proper subsets have this property.

Proposition 5.4. Let X be a nonempty set of vertices in a graph G and sup-
pose that every proper subset X ′ ⊂ X is a total mutual-visibility set in G.
Then X itself is not a total mutual-visibility set if and only if there exist two
nonadjacent vertices v1 and v2 with NG(v1) ∩ NG(v2) = X.

Proof. First observe that v1v2 /∈ E(G) and NG(v1) ∩ NG(v2) = X imply that
each shortest v1, v2-path contains an internal vertex from X. Consequently, X
is not a total mutual-visibility set in G.

Now, assume that X is not a total mutual-visibility set in G, but all proper
subsets of X have that property. By Theorem 5.2, there exist vertices v1 and
v2 with dG(v1, v2) = 2 that satisfy NG(v1) ∩ NG(v2) ⊆ X. Then Theorem 5.2
also implies that X ′ = NG(v1) ∩ NG(v2) is not a total mutual-visibility set
of G. Therefore, by our condition in the statement, X ′ is not a proper subset
of X, and we may conclude that X = X ′, that is, NG(v1) ∩ NG(v2) = X as
stated. �
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