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General Position Polynomials
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Abstract. A subset of vertices of a graph G is a general position set if
no triple of vertices from the set lie on a common shortest path in G.
In this paper we introduce the general position polynomial as

∑
i≥0 aix

i,
where ai is the number of distinct general position sets of G with cardi-
nality i. The polynomial is considered for several well-known classes of
graphs and graph operations. It is shown that the polynomial is not uni-
modal in general, not even on trees. On the other hand, several classes of
graphs, including Kneser graphs K(n, 2), with unimodal general position
polynomials are presented.
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1. Introduction

Given a graph G = (V (G), E(G)), a set S ⊆ V (G) of vertices of G is a general
position set if no triple of vertices from S lie on a common shortest path in
G. The cardinality of a largest general position set of G is called the general
position number of G and is denoted by gp(G). These sets were independently
introduced in [7,20] and have already been studied from many perspectives,
cf. [4,15,16,18,22,23,26]. In this paper, we explore general position sets from
the point of view of the counting polynomial defined in the following standard
way.

Definition 1.1. The general position polynomial of a graph G is the polynomial

ψ(G) =
∑

i≥0

aix
i,
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where ai is the number of distinct general position sets of G with cardinality
i.

A polynomial is said to be unimodal if its coefficients are non-decreasing
and then non-increasing. Unimodality is one of the most important and most
studied properties of counting polynomials in graph theory. In the next para-
graph, we give a very brief justification for our claim.

Since the matching polynomial of a graph has only real zeros [11], it is
unimodal. The unimodality of the chromatic polynomial has been established
in [13]. In [3] it has been conjectured that the domination polynomial of an
arbitrary graph G is also unimodal. The conjecture has been approached from
different perspectives, see [2,5,6,19], but it remains open. On the other hand,
it is known that the independence polynomial is not unimodal in general, but it
has been conjectured by Alavi, Malde, Schwenk, and Erdős that the indepen-
dence polynomial of a tree is unimodal [1], a conjecture which is also still open.
It was very recently demonstrated that the conjecture cannot be strengthened
up to its log-concave version [14]. On the other hand, the independence poly-
nomial of a claw-free graph is unimodal [8].

The rest of the paper is organised as follows. In the next section we
determine the general position polynomial of several families of graphs and
give an inclusion–exclusion-like formula for the polynomial. We also construct
an infinite number of pairs of non-isomorphic trees with the same general
position polynomial. In Sect. 3 we consider the general position polynomials of
disjoint unions of graphs, joins of graphs, and Cartesian products of graphs. In
particular, we express the general position polynomial of the join of two graphs
with the clique polynomial and the independent union of cliques polynomial
(to be defined in Sect. 3) of the factors, and determine ψ(Pr � Ps). Then, in
Sect. 4, we consider unimodality of the polynomial. We first demonstrate that
it is not unimodal in general and not even unimodal on the class of trees. On
the other hand, we prove that it is unimodal on combs, Kneser graphs K(n, 2),
and a family of graphs containing complete bipartite graphs minus a matching.
The paper is concluded with some open problems and suggestions for future
research.

2. Basic Results and Examples

Let G be a graph. Then, clearly, the degree of ψ(G) is gp(G). It was shown
in [7, Theorem 2.10] that C4 and Pn, n ≥ 2, are the only connected graphs G
with gp(G) = 2, hence among connected graphs the degree of a general position
polynomial is equal to 2 precisely for C4 and for Pn, n ≥ 2. In addition, if G
is of order n, then since every set of at most two vertices is a general position
set, its general position polynomial starts as

ψ(G) = 1 + nx +
(

n

2

)

x2 + · · · (1)
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We now derive general position polynomials for some standard families
of graphs.

Proposition 2.1. (i) If n ≥ 1, then ψ(Kn) = (1 + x)n.
(ii) If n ≥ 1, then ψ(Pn) = 1 + nx +

(
n
2

)
x2.

(iii) If n ≥ 3 is odd, then ψ(Cn) = 1 + nx +
(
n
2

)
x2

+
((

n
3

) − n
(�n

2 �
2

))
x3.

(iv) If n ≥ 4 is even, then ψ(Cn) = 1 + nx +
(
n
2

)
x2

+
((

n
3

) − n
(n

2 −1
2

) − n(n−2)
2

)
x3.

(v) If m ≥ n ≥ 1, then ψ(Km,n) = 1 + (m + n)x +
(
m+n

2

)
x2

+
∑m

i=3

((
m
i

)
+

(
n
i

))
xi.

Proof. (i) Any subset of i vertices in Kn for 0 ≤ i ≤ n is in general position,
so the coefficient at xi in ψ(G) is

(
n
i

)
. Thus ψ(G) =

∑n
i=0

(
n
i

)
xi = (1 + x)n.

(ii) Follows from (1) and the previously mentioned fact that gp(Pn) = 2
for n ≥ 2.

(iii) Consider C2d+1, d ≥ 1. We count the number of triples of vertices
that are on a common geodesic. For 2 ≤ r ≤ d there are exactly n pairs of
vertices at distance r on the cycle and each such pair corresponds to exactly r−
1 sets from

(
V (Cn)

3

)
that are on a common geodesic. Thus there are n

∑d
r=1(r−

1) = n
(
d
2

)
triples that are on a common geodesic and hence there are exactly

(
n
3

) − n
(
d
2

)
triples that are in general position.

(iv) Consider C2d, d ≥ 2. The reasoning for odd cycles applies to pairs
of vertices at distance at most d − 1 from each other; however, each pair of
vertices at distance d now corresponds to n−2 sets from

(
V (Cn)

3

)
on a common

geodesic. Therefore there are

n

2
(n − 2) + n

d−1∑

r=1

(r − 1) = n

(
d − 1

2

)

+
n

2
(n − 2)

triples of vertices that are on a common geodesic.
(v) The formula follows since gp(Km,n) = max{m,n} = m and since a

general position set S of Km,n of cardinality at least 3 is an independent set,
so that S is a subset of one of the bipartition sets of Km,n. �

The general position polynomial can also be expressed via the inclusion–
exclusion principle as follows. For a positive integer n, let [n] = {1, . . . , n}.

Proposition 2.2. Let G be a graph and let X1, . . . , Xn be the maximal general
position sets of G. Then

ψ(G) =
n∑

k=1

(−1)k−1
∑

{i1,...,ik}⊆[n]

ψ(Xi1 ∩ · · · ∩ Xik).
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Table 1. Number of different occurrences of the same num-
ber of maximal general position sets in an intersection having
the same size of intersection

No. of maximal sets Intersection size
0 1 2 3 4 5

2 5 10 0 30 0 0
3 50 40 30 0 0 0
4 160 50 0 0 0 0
5 242 10 0 0 0 0
6 210 0 0 0 0 0
7 120 0 0 0 0 0
8 45 0 0 0 0 0
9 10 0 0 0 0 0
10 1 0 0 0 0 0

Proof. Any subset of a general position set X is also a general position set
and the number of subsets of size i is

(|X|
i

)
. It follows that for every general

position set X we have ψ(X) = (1 + x)|X|. The formula then follows by the
inclusion–exclusion principle. �

As an example, consider the Petersen graph P = K(5, 2). In the stan-
dard drawing of it denote the consecutive vertices of the outer 5-cycle by
u0, u1, u2, u3, u4, and their respective neighbors on the inner 5-cycle by u0, u1,
u2, u3, u4. It is known from the seminal paper [20] that gp(P ) = 6. By in-
spection it can be checked that there are precisely five general position sets of
cardinality 6:

{u0, u1, u3, v2, v3, v4}, {u0, u2, u3, v0, v1, v4}, {u0, u2, u4, v1, v2, v3},

{u1, u2, u4, v0, v3, v4}, {u1, u3, u4, v0, v1, v2} .

Moreover, the remaining maximal general position sets are the five independent
sets of cardinality 4:

{u0, u2, v3, v4}, {u0, u3, v1, v2}, {u1, u3, v0, v4}, {u1, u4, v2, v3}, {u2, u4, v0, v1} .

Since every vertex of P lies in five different maximal general position sets, the
intersection of six or more such sets is empty. In Table 1 it is shown how many
different occurrences of the same number of sets in an intersection have the
same size of intersection.

Combining Proposition 2.2 with Table 1 yields:

ψ(P ) =
[
5(x + 1)6 + 5(x + 1)4)

] − [
5(x + 1)0 + 10(x + 1)1 + 30(x + 1)3)

]

+
[
50(x + 1)0 + 40(x + 1)1 + 30(x + 1)2

]

− [
160(x + 1)0 + 50(x + 1)1

]
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Figure 1. Trees T
(1)
1 and T

(1)
2

+
[
242(x + 1)0 + 10(x + 1)1

] − 210 + 120 − 45 + 10 − 1

= 1 + 10x + 45x2 + 90x3 + 80x4 + 30x5 + 5x6.

To conclude the section we point out that the general position polynomial
does not determine a graph uniquely. For example, 1 + 4x + 6x2 is a general
position polynomial of both P4 and C4. Furthermore, the general position
polynomial does not even determine a tree uniquely. For example, let k ∈ N

and take T
(k)
1 to be the tree obtained from identifying one leaf of P13k, P5k

and P4k, and T
(k)
2 to be the tree obtained from identifying one leaf of P10k,

P9k and P3k. The case k = 1 is shown in Fig. 1.
Both trees T

(k)
1 and T

(k)
2 have 20k vertices and three leaves, thus gp(T (k)

1 ) =
gp(T (k)

2 ) = 3 by [20, Corollary 3.7]. Observe that

ψ(T (k)
1 ) = 1 + 20kx +

(
20k

2

)

x2 + 144k3x3,

ψ(T (k)
2 ) = 1 + 20kx +

(
20k

2

)

x2 + 144k3x3,

where the coefficient at x3 is obtained by taking one vertex from each pendent
path. The key property that achieves the equality of polynomials is that 12 +
4 + 3 = 9 + 8 + 2 and 12 · 4 · 3 = 9 · 8 · 2. Note that this is not the only pair of
triples with this property.

3. The General Position Polynomial of Some Graph Operations

In this section we consider the general position polynomials of disjoint unions
of graphs, joins of graphs, and Cartesian products of graphs.

Let G ·∪ H denote the disjoint union of graphs G and H. Then S ⊆
V (G ·∪H) is a general position set of G ·∪H if and only if S ∩V (G) is a general
position set of G and S ∩ V (H) is a general position set of H. Using this fact,
the following result readily follows.

Proposition 3.1. If G1, . . . , Gr, r ≥ 2, are graphs, then

ψ(G1 ·∪ · · · ·∪ Gr) = ψ(G1) · · · ψ(Gr).
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Proposition 3.1 extends as follows.

Proposition 3.2. Let G be a graph, V1, V2 a partition of V (G), and G1 = G[V1],
G2 = G[V2]. Then ψ(G) = ψ(G1)ψ(G2) if and only if G = G1 ·∪ G2 or G is
complete.

Proof. Sufficiency follows by Proposition 3.1 and Proposition 2.1(i).
Conversely, we need to prove that ψ(G) = ψ(G1)ψ(G2) implies either

that G is a clique or that G is the disjoint union of G1 and G2. Examine the
subsets of order three of V (G); in order to have equality in the x3 term, we
must have that every set of three vertices with two vertices in one of G1, G2

and one vertex in the other must be in general position. Suppose that there is
an edge between G1 and G2 in G; we show that G must be complete. Let e be
an edge from G1 to G2 with endpoints u ∈ V (G1) and v ∈ V (G2). Let u′ be
any neighbour of u in G1; as {u, u′, v} must be in general position, it follows
that v ∼ u′. Inductively, we conclude that u is adjacent to every vertex of G1;
furthermore, it follows that if u1 and u2 are non-adjacent vertices in G1, then
u1, v, u2 would not be in general position, so G1 is a clique. Similarly G2 must
be a clique and we must have every edge between G1 and G2. �

If G and H are disjoint graphs, then the join G ∨ H of G and H is
the graph with the vertex set V (G ∨ H) = V (G) ∪ V (H), and the edge set
E(G∨H) = E(G)∪E(H)∪{xy : x ∈ V (G), y ∈ V (H)}. Setting ρ(G) to denote
the maximum number of vertices in a union of pairwise independent cliques
of G, it was proved in [10, Proposition 4.2] that gp(G ∨ H) = max{ω(G) +
ω(H), ρ(G), ρ(H)}.

The clique polynomial C(G) of a graph G is the counting polynomial of
cliques, that is,

C(G) = c0 + c1x + c2x
2 + · · · ,

where ci is the number of cliques of order i in G, cf. [12]. Similarly, the indepen-
dent union of cliques polynomial Ci(G) has coefficients equal to the number
of independent union of cliques in G. Since a set S ⊆ V (G1 ∨ G2) is in gen-
eral position if and only if either it induces a clique in both G1 and G2, or
S is an induced union of cliques in G1 or G2, the above discussion yields the
following relation between the general position polynomial and the two clique
polynomials.

Proposition 3.3. If G1 and G2 are graphs, then

ψ(G1 ∨ G2) = (C(G1) − 1)(C(G2) − 1) + Ci(G1) + Ci(G2)) − 1.

We now turn our attention to the Cartesian product of graphs. Recall
that the Cartesian product G � H of graphs G and H has the vertex set
V (G � H) = V (G) × V (H) and the edge set E(G � H) = {(g, h)(g′, h′) :
gg′ ∈ E(G) and h = h′, or, g = g′ and hh′ ∈ E(H)}.
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For the general position number of the Cartesian product of two paths
we have (cf. [21]):

gp(Pr � Ps) =

⎧
⎪⎨

⎪⎩

2; r = s = 2,

3; r = 2, s ≥ 3,

4; r, s ≥ 3.

(2)

Moreover, in [17, Theorem 2.1] it was proved that the number of general po-
sition sets in Pr � Ps of cardinality gp(Pr � Ps) is equal to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

6; r = s = 2,

s(s − 1)(s − 2)
3

; r = 2, s ≥ 3,

rs(r − 1)(r − 2)(s − 1)(s − 2)(r(s − 3) − s + 7)
144

; r, s ≥ 3.

(3)

From (3) we immediately obtain the general position polynomial of thin grids:

Corollary 3.4. If r, s ≥ 2, then

ψ(Pr � Ps) =

{
6x2 + 4x + 1; r = s = 2,
s(s−1)(s−2)

3 x3 +
(
2s
2

)
x2 + 2sx + 1; r = 2, s ≥ 3.

For larger grids we have:

Theorem 3.5. If r, s ≥ 3, then

ψ(Pr � Ps) =
rs(r − 1)(r − 2)(s − 1)(s − 2)(r(s − 3) − s + 7)

144
x4

+
1
18

(r − 1)r(s − 1)s(r(2s − 1) − s − 4) x3

+
(

rs

2

)

x2 + rsx + 1.

Proof. Let r, s ≥ 3. It follows from (2) that ψ(Pr � Ps) is of degree 4. From (3)
we get the leading coefficient, while coefficients of x2, x1 and x0 are obviously(
rs
2

)
, rs and 1, respectively. Consider the number of general position sets with

three vertices. There are
(
rs
3

)
3-subsets of V (Pr � Ps), but some of them are

not in general position. In the following, we count the number of 3-subsets of
V (Pr � Ps) that are not in general position.

1. There are r
(
s
3

)
and s

(
r
3

)
sets where all vertices are in the same horizontal

or vertical layer.
2. Consider the case where exactly two are in the same horizontal layer (the

case where they are in the same vertical layer is similar). Suppose that
the second coordinate is k. The one with smaller first coordinate has r−1
possibilities; suppose it is i, while the one with greater coordinate can be
in {i + 1, . . . , r}, say j. Since the triplet is not in general position, the
third vertex can have any other second coordinate (any of {1, . . . , k −
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1, k+1, . . . , s}), and for its first coordinate x either x ≤ i or x ≥ j. Using
the same reasoning for the case where two coordinates are in the same
vertical layer and subtract the cases where both of them are the same,
we obtain that in this case the number of sets that are not in general
position is equal to

r
s−1∑

i=1

s∑

j=i+1

(s − (j − i − 1))(r − 1)

+ s
r−1∑

i=1

r∑

j=i+1

(r − (j − i − 1))(s − 1) − 4
(

r

2

)(
s

2

)

.

3. The last case is vertices (x1, y1), (x2, y2) and (x3, y3), where x1 < x2 < x3

and either y1 < y2 < y3 or y1 > y2 > y3. There are:

2
r−2∑

i=1

s−2∑

j=1

r∑

k=i+2

s∑

l=j+2

(k − i − 1)(l − j − 1)

such sets.
By subtracting from the number of all sets the number of sets that are

not in general position, we get this simplified expression:
1
18

(r − 1)r(s − 1)s(r(2s − 1) − s − 4),

representing the coefficient of the x3 term in the general position
polynomial. �

4. Unimodality

In this section we consider the unimodality of the general position polynomial.
First, it is not unimodal in general as shown by the following example, which
follows from Proposition 2.1(v):

ψ(K8,4) = 1 + 12x1 + 66x2 + 60x3 + 71x4 + 56x5 + 28x6 + 8x7 + x8.

Another complete bipartite graph for which the general position polynomial
is not unimodal is K9,7.

In view of the above example and the situation with the independence
polynomial, we can ask ourselves whether the general position polynomial is
unimodal on trees. The answer is negative as we now demonstrate.

A broom Bs,r, s ≥ 0, r ≥ 0, is a graph with vertices u0, . . . , us, v1, . . . , vr,
and edges uiui+1 for i ∈ {0, . . . , s − 1} and u0vj for j ∈ [r]. See Fig. 2 for an
example.
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Figure 2. The broom B4,6

It is straightforward to check that

ψ(Bs,r) =
∑

k≥0

bkx
k

= 1 + (s + r + 1)x +
(

s + r + 1
2

)

x2 +
∑

k≥3

(

s

(
r

k − 1

)

+
(

r

k

))

xk .

The smallest broom whose general position polynomial is not unimodal is
B17,6; its general position polynomial is

ψ(B17,6) = 1 + 24x + 276x2 + 275x3 + 355x4 + 261x5 + 103x6 + 17x7.

Moreover, one can calculate that if

r ≥ 6 and s ≥
⌈

1
2

(
r2 − 3r − 1

)
+

√
3r4 − 14r3 − 3r2 + 14r + 3

2
√

3

⌉

,

then b1 < b2 > b3 < b4 holds, and hence there are infinitely many brooms for
which the general position polynomial is not unimodal.

On the positive side, we first prove that the general position polynomial
of comb graphs are unimodal. Recall that the comb Gn, n ≥ 1, is obtained
from the path Pn by respectively attaching a pendent vertex to each of its
vertices.

Theorem 4.1. If n ≥ 1, then ψ(Gn) is unimodal.

Proof. Let ψ(Gn) =
∑

k≥0 akx
k. Clearly, a0 = 1, a1 = 2n, and a2 =

(
2n
2

)
. For

k ≥ 3, we can determine ak by distinguishing between zero, one or two vertices
from the general position set belonging to the path Pn in G:

ak =
(

n

k

)

+
n∑

i=1

((
i − 1
k − 1

)

+
(

n − i

k − 1

))

+
n−1∑

i=1

n∑

j=i+1

(
j − i − 1

k − 2

)

=
1
k

(
(n − 1)n

k − 1

(
n − 2
k − 2

)

+ n

(
n − 1
k − 1

)

+ (n − k + 1)
(

n

k − 1

)

+ k

(
n

k

))

.

In particular, a3 = 2
3 (n − 2)(n − 1)n, and a3 ≥ a2 if and only if n ≥ 6.
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If n = 1, then G1 = K2, while if n = 2, then G2 = P4, and their
polynomials are unimodal. For n ∈ {3, 4, 5}, we calculate the polynomials
explicitly to check that they are also unimodal:

ψ(G3) = 4x3 + 15x2 + 6x + 1

ψ(G4) = 4x4 + 16x3 + 28x2 + 8x + 1

ψ(G5) = 4x5 + 20x4 + 40x3 + 45x2 + 10x + 1

For n ≥ 6, we already know that a0 ≤ a1 ≤ a2 ≤ a3, thus it only remains
to show that the sequence (ak)k≥3 is unimodal. The difference between two
terms in ψ(G) for 3 ≤ k ≤ n − 1 can be simplified as follows:

ak − ak+1 =
4n!(2k − n + 1)
(k + 1)!(n − k)!

,

which implies that for 3 ≤ k ≤ n−1
2 , ak ≤ ak+1, and that for n−1

2 ≤ k ≤ n− 1,
ak ≥ ak+1, so (ak)k≥3 is indeed unimodal. �

Another family of graphs for which the general position polynomial is
unimodal is the class of Kneser graphs K(n, 2). Recall that the vertex set of
K(n, 2) contains all 2-subsets of an n-set, two vertices being adjacent if the
corresponding sets are disjoint. At the end of Sect. 2 we have considered the
special case P = K(5, 2).

Theorem 4.2. If n ≥ 2, then ψ(K(n, 2)) is unimodal.

Proof. We first determine the general position polynomial of K(n, 2). Recall
from [20] that

gp(K(n, 2)) =

{
6; n ≤ 6,

n − 1; n ≥ 7.

General position sets of size j ∈ {2, . . . , n − 1} can be cliques or independent
sets, and for j ≥ 7 this is the only possibility. To form a clique on j vertices
in K(n, 2), select 2j elements of the n-set (this can be done in

(
n
2j

)
ways) and

put them into unordered pairs (
(

2j
2,...,2

)
1
j! = (2j)!

2jj! options). An independent
set on j vertices can be of the form {ax1, . . . , axj}, where a, x1, . . . , xj are
distinct elements of the n-set. There are n

(
n−1
j

)
such sets. For j ≥ 4, all

independent sets are of this form. However, for j = 3, independent sets can
also take the form {ab, bc, ac}, where a, b, c are distinct elements of the n-set.
For j ∈ {3, . . . , 6}, several additional types of general position sets are possible.
On six vertices, 3K2 forms a general position set, and there are

(
n
4

)
such sets

(they are of the form {ab, cd, ac, bd, ad, bc}). On five vertices, 2K2 ·∪ K1 is also
a general position set, and it can be obtained by removing one vertex from the
general position set on six vertices, thus there are 6

(
n
4

)
of them. Similarly, on

four vertices, 2K2 or K2 ·∪2K1 are also independent sets. They are obtained by
removing two vertices from the general position set on six vertices, so there are
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(
6
2

)(
n
4

)
= 12

(
n
4

)
of them. On three vertices, we need to consider the additional

type of independent sets as well, and there are
(
n
3

)
of them. By removing

three vertices from a general position set on six vertices we can also obtain a
set of three vertices in general position that induces a copy of K2 ·∪ K1, but
these vertices must not belong to three copies of different K2. Thus there are((

6
3

) − 23
) (

n
4

)
= 12

(
n
4

)
. Therefore:

ψ(K(n, 2)) =
n−1∑

k=0

akx
k = 1 +

(
n

2

)

x

+
((

n

3

)

+ 12
(

n

4

))

x3 + 15
(

n

4

)

x4 + 6
(

n

4

)

x5 +
(

n

4

)

x6

+
n−1∑

j=2

((
n

2j

)
(2j)!
2jj!

+ n

(
n − 1

j

))

xj .

We can check by computer that ψ(K(n, 2)) is unimodal for 2 ≤ n ≤ 16.
For n ≥ 17, the following inequalities hold: a0 ≤ a1 ≤ · · · ≤ a6 ≤ a7. Thus it
remains to show that (ak)k≥7 is unimodal. Since k ≥ 7, ak = n

(
n−1
k

)
+ (2k)!

2kk!

(
n
2k

)
.

To show unimodality, we simplify the difference

ak − ak+1 =

(
n

k+1

)

2k+1

(
2k+1(2k + 2 − n)

+ (n + 2 − (n − 2k)2)(n − 2k + 1)(n − 2k + 2) · · · (n − k − 1)
)

.

To determine for which k the difference ak − ak+1 ≥ 0 and for which k it is
ak − ak+1 ≤ 0, we only need to consider the terms

A = 2k+1(2k + 2 − n),

B = (n + 2 − (n − 2k)2)(n − 2k + 1)(n − 2k + 2) · · · (n − k − 1) .

First observe that if k > n
2 , then (2k)!

2kk!

(
n
2k

)
= 0, thus ak −ak+1 = ( n

k+1)
2k+1 ·A > 0.

If n
2 − 1 ≤ k ≤ n

2 + 1, then A ≥ 0, and since n + 2 − (n − 2k)2 ≥ 0 and
for all j ∈ [k − 1], n − 2k + j ≥ 0, we also have B ≥ 0. Thus ak − ak+1 ≥ 0.

For n
2 −

√
n+1
2 ≤ k ≤ n

2 − 1, we have A ≤ 0 and B ≥ 0. In the following
we will prove that B ≥ |A|. Observe that n + 2 − (n − 2k)2 ≥ 1, n − 2k + 1 >
|2k + 2 − n| and for all j ∈ {2, . . . , k − 1}, n − 2k + j ≥ 4. Thus

B ≥ 1 · |2k + 2 − n| · 4k−2 > |2k + 2 − n| · 2k+1 = |A|
since k ≥ 7. Hence we have ak − ak+1 ≥ 0.

For 7 ≤ k ≤ n
2 −

√
n+2
2 , we have A < 0, n + 2 − (n − 2k)2 ≤ 0 and for all

j ∈ [k − 1], n − 2k + j ≥ 0, thus B ≤ 0. It follows that ak − ak+1 < 0.
It remains to prove that the above cases indeed cover all integers k,

7 ≤ k ≤ n − 1. To see this we need to prove that no integer lies in the
interval

(
n
2 −

√
n+2
2 , n

2 −
√
n+1
2

)
. Suppose that there exists m ∈ N such that
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n
2 −

√
n+2
2 < m < n

2 −
√
n+1
2 . Simplifying and squaring this chain of inequalities

yields n + 1 < (n − 2m)2 < n + 2. But since n + 1 and n + 2 are consecu-
tive integers, we obtain a contradiction. Thus we have proved that (ak)k≥7 is
unimodal. �

The following family of graphs T ∗(r, a) from [25] yields another family of
graphs with unimodal general position polynomial. Take a complete a-partite
graph, each part of which contains r vertices and label the vertices in part i
by i1, . . . , ir. Then for each i ∈ [r], delete the edges of the clique induced by
the vertices i1, . . . , ia.

Now suppose that S is a general position set of T ∗(r, a). Any subset
lying in a single partite set is in general position. Suppose that S contains
three vertices (say with labels 1,2,3) in part A; then S can contain no vertices
from other partite sets, for when we add a new vertex x from another part,
the label of x will differ from that of at least two vertices of S. Suppose then
that S contains two vertices a1, a2 of a part A (say with labels 1,2); by the
same reasoning S can only contain vertices with labels 1 and 2. If S intersects
only two parts, it will be in general position, inducing either a K2 ·∪ K1 or a
2K2. However, S cannot contain vertices from more than two partite sets; if S
contains a vertex b1 with label 1 in a part B and a vertex c1 with label 1 in a
part C, then b1, a2, c1 is a shortest path, whereas if S contains a vertex b1 in
B with label 1 and a vertex c2 with label 2 in C, then b1, c2, a1 would again be
a shortest path. It follows that the general position polynomial of this graph
is given by

ψ(T ∗(r, a)) =1 + nx +
(

n

2

)

x2 + 2a(a − 1)
(

r

2

)

x3 +
(

a

2

)(
r

2

)

x4

+
∑

i≥3

[

a

(
r

i

)

+ ri
(

a

i

)]

xi ,

where n = ra.

Proposition 4.3. If a ∈ {1, 2}, then T ∗(r, a) is unimodal.

Proof. If a = 1, then T ∗(r, 1) = Kr, which is unimodal. If a = 2, then T ∗(r, 2)
is a complete bipartite graph without a perfect matching. Simplifying its gen-
eral position polynomial gives

ψ(T ∗(r, 2)) = 1 + 2rx +
(

2r

2

)

x2 + 4
(

r

2

)

x3 +
(

r

2

)

x4 +
∑

i≥3

2
(

r

i

)

xi.

Observe that the sequence (2
(
r
i

)
)i≥3 is unimodal. Thus if we can prove that the

initial coefficients of ψ(T ∗(r, 2)) are increasing, the general position polynomial
is also unimodal. This holds for r ≥ 10, as 1 ≤ 2r ≤ (

2r
2

) ≤ 4
(
r
2

)
+ 2

(
r
3

) ≤(
r
2

)
+ 2

(
r
4

) ≤ 2
(
r
5

)
holds for r ≥ 10.

The unimodality of the remaining cases can be checked by hand, see
Table 2. �
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Table 2. General position polynomials for a = 2 and small
values of r

r ψ(r, 2)

1 x2 + 2x + 1
2 x4 + 4x3 + 6x2 + 4x + 1
3 3x4 + 14x3 + 15x2 + 6x + 1
4 8x4 + 32x3 + 28x2 + 8x + 1
5 2x5 + 20x4 + 60x3 + 45x2 + 10x + 1
6 2x6 + 12x5 + 45x4 + 100x3 + 66x2 + 12x + 1
7 2x7 + 14x6 + 42x5 + 91x4 + 154x3 + 91x2 + 14x + 1
8 2x8 + 16x7 + 56x6 + 112x5 + 168x4 + 224x3 + 120x2 + 16x + 1
9 2x9 + 18x8 + 72x7 + 168x6 + 252x5 + 288x4 + 312x3 + 153x2 + 18x + 1

5. Concluding Remarks

Recall that the corona G ◦ K1 of a graph G is obtained from G by attaching
a pendent vertex to each the vertices of G. We wonder whether the following
extension of Theorem 4.1 holds:

Problem 5.1. Assume that ψ(G) is unimodal. Then is ψ(G ◦ K1) also uni-
modal?

In Proposition 4.3 we have proved that if a ∈ {1, 2}, then T ∗(r, a) is
unimodal. This leads to:

Problem 5.2. For which pairs (r, a) is the graph T ∗(r, a) unimodal?

For example, T ∗(r, 3) is unimodal if r ≥ 19, but also for some smaller
values of r.

Several variations of the general position number have been investigated
in the literature. For example, a set S ⊆ V (G) is in monophonic position if no
induced path of G contains three vertices of S (see [24]), whilst S is a mutual-
visibility set if for any u, v ∈ S there exists a shortest u, v-path in G that does
not pass through S \ {u, v} (see [9]). We suggest than an interesting direction
for future research would be to explore the polynomials counting such sets and
their relation to the general position polynomials.
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