Results Math (2025) 80:207
Online First

© 2025 The Author(s) . .

https://doi.org/10.1007 /s00025-025-02529-9 I Results in Mathematics
Check for
updates

Counting Largest Mutual-Visibility and
General Position Sets of Glued t-ary Trees

Sandi Klavzar®, Aparna Lakshmanan S, and Dhanya Roy

Abstract. All four invariants of the mutual-visibility problem and, all four
invariants of the general position problem are determined for glued binary
trees. The number of the corresponding extremal sets is obtained in each
of the eight situations. The results are further extended to glued t-ary
trees, and some of them also to generalized glued binary trees.
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1. Introduction

General position and mutual-visibility are two fresh areas of metric and al-
gorithmic graph theory. The concepts are complementary to each other, and
together represent a flourishing area of research.

Based on the motivation of robotic visibility, the graph mutual-visibility
problem was introduced by Di Stefano [8]. Given a set S of vertices in a graph
G, two vertices u and v are mutually-visible with respect to S, shortly S-visible,
if there exists a shortest u, v-path P such that V(P) NS C {u,v}. The set S
is a mutual-visibility set if any two vertices from S are S-visible. A largest
mutual-visibility set of G is a p-set and its size is the mutual-visibility number
1w(@) of G.

In [7], the total mutual-visibility number was introduced, while the vari-
ety of mutual-visibility invariants was rounded off in [5] by adding to the list
the outer mutual-visibility number and the dual mutual-visibility number. A
set S C V(G) is an outer mutual-visibility set in G if S is a mutual-visibility
set and every pair of vertices u € S, v € V(G) \ S are S-visible. S is a
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dual mutual-visibility set if S is a mutual-visibility set and every pair of ver-
tices u,v € V(G) \ S are S-visible. Finally, S is a total mutual-visibility set
if every pair of vertices in G are S-visible. Largest outer/dual/total mutual-
visibility sets are respectively called p,-sets, pq-sets, py-sets, their sizes being
the outer/dual/total mutual-visibility number of G, respectively denoted by
:U'O(G)a :ud(G)v Mt(G)'

Given a set S of vertices in a graph G, two vertices u and v are S-
positionable, if for every shortest u, v-path P we have V(P)NS C {u,v}. (Note
that if uv € E(G), then u and v are S-positionable.) Then S is a general
position set, if every u,v € S are S-positionable. A largest general position
set is a gp-set and its size is the general position number gp(G) of G. These
concepts were independently introduced in [4] and in [19], where the latter
paper is the origin of the terminology and notation we now use. We should add
that the concept has been previously explored in the context of hypercubes [14].

Following the pattern of mutual-visibility, the variety of general position
invariants was presented in [24]. The definition of the outer/dual/total general
position set in G is analogous, we just need to replace everywhere “S-visible”
by “S-positionable.” Largest corresponding sets are called gp,-sets, gpq-sets,
gp,-sets and their sizes are the outer/dual/total general position number of G,
respectively denoted by gp,(G), gpq(G), gp.(G).

The literature on general position and mutual-visibility is already too
vast to list in full. In the area of the general position problem, we highlight
the following early papers [1,9,13,20,26] and the following recent ones [2,10,
11,15,17,21,22,25], and in the area of the mutual-visibility, we highlight the
following papers [3,6,16,18,21,23].

In addition to the general topicality of the field, the research in this
paper has two specific motivations. First, in the seminal paper [19], the general
position number was determined for glued binary trees. Here we build on this
result by determining all the other seven related invariants of glued binary
trees. Second, in [12, Theorem 2.1], the gp-sets of the Cartesian product of two
paths were enumerated. To our knowledge, this is so far the only (nontrivial)
enumeration result in the area. Here we add to this the enumeration results
for all eight invariants studied on glued binary trees.

We proceed as follows. In the rest of this section, we give the other nec-
essary definitions and call up inequality chains we need in the following. In
Sect. 2, we determine the general position and the mutual-visibility invariants
of glued binary trees and also determine the number of the corresponding ex-
tremal sets. At the end of the section the results are extended to glued t-ary
trees. In Sect. 3, we discuss generalized glued binary trees and extend some of
the obtained results to this more general context.

For a positive integer k& we will use the convention [k] = {1,...,k}. If
X C V(@), then the subgraph of G induced by X is denoted by G[X]. The
open neighborhood of a vertex u will be denoted by N(u) and its degree by
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deg(u). For vertices u and v of G, the length of a shortest u, v-path is called
distance and it is denoted by dg(u,v). A subgraph H of G is isometric, if
dp(u,v) = dg(u,v) for every two vertices v and v of H.

If G is a graph and 7 € {pu, o, fta, i4t, EP; EPo» EPq, Dt > then the number
of T-sets of G will be denoted by #7(G).

To conclude the introduction, we state the following sequences of inequal-
ities which follow directly from the definitions and will be needed throughout.
If G is a graph, then:

gp(G) < pe(G) < min{puo(G), pa(G)} < max{uo(G), pa(G)} < pu(G)
gpi(G) < min{gp,(G), gpq(G)} < max{gp,(G),gpq(G)} < gp(G) < u(G

2D, (G) < po(G)
gpa(G) < pa(G)

2. Glued t-ary Trees

In this section we determine the four mutual-visibility invariants and the four
general position invariants for all glued t-ary trees, where ¢t > 2. The arguments
for the general case are parallel to the arguments for the case ¢t = 2. From this
reason, and not to introduce too much notation unnecessarily, we will elaborate
the proofs for the case t = 2.

A perfect t-ary tree Ty, of depth r > 1, is a rooted tree in which all
non-leaf vertices have t children, and all leaves have depth r. In particular,
Tv+ = Ky 4. The perfect t-ary tree T ; has tT:_ll’ L vertices and ¢" leaves. For
t>2,and r > 1, a glued t-ary tree GI'(r,t) is obtained from two copies of T, ;
by pairwise identifying their leaves. The vertices obtained by identification are
called quasi-leaves of GT'(r,t), the set of the quasi-leaves of GT'(r,t) will be
denoted by L(GT(r,t)). If v and v are quasi-leaves with N(u) = N(v), then
we say that u and v are twin quasi-leaves. Note that if r > 2, then a vertex u
of GT(r,t) is a quasi-leaf if and only if deg(u) = 2 and u lies in a Cj.

If w is a vertex of GT'(r,t), then let T, denote the tree rooted in u which
has as the leaves all the descendants of u that are quasi-leaves. We say that
vertices u and v of GT'(r,t) are quasi-twins, if T,, and T, have the same leaves.

Perfect 2-ary trees and glued 2-ary trees are respectively called perfect
binary trees and glued binary trees. We will simplify the notation by setting
GT(r) = GT(r,2). See Fig. 1 for GT(3). We will denote the two copies of

T,.2, from which GT'(r) is constructed, by 7Y and T, so that L(GT(r)) =
V(T™M) N V(T?). Moreover, we set V") = V(T\)\ L(GT(r)) and V;'? =
V(T,gz)) \ L(GT(r)). Note that the mapping V(T,El)) — V(TT(Q)) which maps
each vertex of Vr(l) to its quasi-twin in VT(2 , and maps each quasi-leaf to itself,

is an isomorphism between Tr(l) and T,@.
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The following observation will be used implicitly or explicitly throughout
this section. Its proof follows by the construction of GT'(r).

Lemma 2.1. If r > 2, then GT(T)[TTU)], i € [2], is an isometric subgraph of
GT(r). In addition, if u,v € V(Tr(l)), then there exist exactly two shortest
w, v-paths if u and v are quasi-leaves, otherwise the shortest u, v-path is unique.

2.1. Mutual-Visibility in Glued Binary Trees

In this subsection we determine the mutual-visibility invariants of GT'(r) and
begin with the mutual-visibility itself.

Lemma 2.2. Let S be a mutual-visibility set of GT(r). If |S N Vr(1)| > 2, then

corresponding to each vertex v € SN Vr(l), we can find a pair of twin quasi-
leaves in T, that are not in S such that these pairs are pairwise disjoint for all

vertices from S N Vr(l).

Proof. Let S be a mutual-visibility set of GT'(r) such that |S N V,«(l)\ > 2.

If there exist two vertices u,v € 5N V" such that u € V(T,), then
let w be the descendant of v which is not on the shortest u,v-path. Now,
snv ¢ V(T,)\V (T,). Moreover, for any two vertices z,y € (SﬁVr(l))\{v},
the rooted trees T and T, are disjoint, since otherwise, one of x and y is not
S-visible to v. Also, the quasi-leaves of T, (as well as T,) are not in S, as
they are not S-visible to v and the quasi-leaves of T, are not in S as they are
not S-visible to u. Therefore, any vertex = € S N V(! \ {v} can be assigned
a pair of twin quasi-leaves from V(T,) and v can be assigned a pair of twin
quasi-leaves from V(T,).

In the other case, for every z,y € SN Vr(l)7 the rooted trees T, and T,
are disjoint and the quasi-leaves of T, cannot be present in S as they are not
S-visible to y. Then again, any vertex = € SN Vr(l) can be assigned a pair of
twin quasi-leaves from V(77).

In either case, to every vertex v € SN Vr(l) we can assign a pair of
twin quasi-leaves in T, that are not in S such that these pairs are pairwise

disjoint. O
Theorem 2.3. Ifr > 2, then
w(GT(r)) =2"+1 and #u(GT(r)) =2"""—-2.

Proof. Let v be an arbitrary vertex from V,»(l) U V7~(2). We may assume with-
out loss of generality that v € VvV Set § = L(GT(r)) U {v}. Then any
two quasi-leaves from S are S-visible because GT(T)[T,@)] is isometric by
Lemma 2.1. Moreover, an arbitrary quasi-leaf and the vertex v are also S-

visible by Lemma 2.1. Hence S is a mutual-visibility set of GT'(r) and conse-
quently u(GT'(r)) > 2" + 1.
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To prove that u(GT(r)) < 2" + 1, suppose on the contrary that there
exists a mutual-visibility set S of GT'(r) with cardinality at least 2" 4 2.

Let |SﬂV7-(1)| =k and |SﬂV,-(2)| = ko. Without loss of generality, suppose
k1 > ko. If k1 = ko = 1, then S contains all the quasi-leaves, but then the
(unique) vertex of S from v,V and the (unique) vertex of S from V,'?) are not
S-visible. It follows that k; > 2.

Let u be an arbitrary vertex from S ﬂW(l). Recall that T}, denotes the tree
rooted in u having as the leaves all the descendants of u which are quasi-leaves.
Since k1 > 2, by Lemma 2.2 we can assign to each vertex in S N Vr(l) a pair
of twin quasi-leaves which do not lie in S such that these pairs are pairwise
disjoint. This in turn implies that

|S| = k1 + ko + [SNL(GT(r))|
<k 4k + (27— 2k)
=2".
By this contradiction we can conclude that u(GT'(r)) < 2" + 1.

We have thus proved the first formula of the theorem. To prove the sec-
ond, we claim that each p-set of GT'(r) is of the form L(GT(r)) U {v}, where
ve VY UV?. Solet S be an arbitrary p-set of GT'(r). As already proved,
S| =2"+1.Set ky =1[SN V,«(1)|, ky= 1SN VT(Z)\, and assume without loss of
generality that ky > ks. We need to prove that ki + ko = 1.

If k1 > 2, then by the above argument we get that |S| < 2", a contra-
diction. There is nothing to prove if ko = 0. Hence we are left with the case
ki=ko=1 Letue SN Vr(l) and v € SN W(Q). Consider now the set D; of
quasi-leaves in T, and the set Dy of quasi-leaves in T),. If D1 N Dy # (), then
|Dy N Dy| > 2 and no vertex from D; N Do lies in S. Hence |S| < 27, which is
not possible. To complete the argument we claim that the case Dy N Dy = ()
also cannot happen. Indeed, if this would be the case, then a vertex from D,

would not be S-visible with a vertex from D.
We have thus established that p-set of GT'(r) are of the form L(GT'(r))U

{v}, where v € Vr(l) U VT(Q). This means that
#W(GT(r)) = VD UV =27+ 2,
hence the second formula. 0
Theorem 2.4. If r > 2, then
1o(GT(r) =2 and #1o(GT(r)) = 1.
Proof. From Theorem 2.3 we know that u-sets of GT'(r) are of the form S =

L(GT(r))U{v}, where v € VYUV Assume without loss of generality that

v E Vr(l). Then no pair of vertices v, u, where u € Vr(Q) is S-visible. Hence S is
not an outer mutual-visibility set. Using (1) we get

po(GT (1)) < p(GT(r)) =2"+1.
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On the other hand, using Lemma 2.1 we infer that L(GT(r)) is an outer
mutual-visibility set of GT'(r), so that u,(GT(r)) > 2". We can conclude that
1o (GT'(r)) = 2.

To prove that # uo(GT(r)) = 1, we claim that L(GT(r)) is the unique
to-set. Let S be a po-set of GT(r). Let v € Vr(l) be a vertex of depth at most
r—2.If v € S, then let x and y be the children of v. No vertex from V(T})
is S-visible to a vertex in V(T}), hence they cannot be present in S. Also,
and y are not S-visible to any of the vertices in V;\" \ V(T,) and hence any
vertex in V(" \ V(T,) cannot be present in S. Therefore, S N V(Tr(l)) = {v}
and hence, |S| = 2" if only if v cs. Clearly, this is not possible and hence
a vertex of depth less than r — 2 cannot be present in S.

The remaining vertices which may be present in S can be partitioned
into 277! sets, each of which contains a pair of twin quasi-leaves and their
neighbors, so that each set induces a convex Cy. Since, 11,(Cy) < 2, at most
two vertices from each of this set can be present in S. Now, if a vertex v of
depth r — 1 is present in .S, then none of the vertices from the C4 containing
this v can be in S, so that |S| < 2" — 1, which is a contradiction. Therefore,

the only possibility is to choose the twin quasi-leaves from each Cj4 so that,
S = L(GT(r)). O

Theorem 2.5. If r > 2, then
m(GT(r) = pa(GT(r)) =21 and  # p(GT(r)) = #pa(GT(r) =2

Proof. Set L = L(GT(r)). Let L = {v1,va,...,v2r}, where vgr_1 and
vor are twin quasi-leaves for k& € [2"7!]. From Lemma 2.1, we infer
that {v1,v3,...,v2r_1} is a total mutual-visibility set of GT'(r), so that
we(GT(r)) > 271 In view of (1), the proof of the first formula will be com-
pleted by proving that pq(GT(r)) <271

Let S be an arbitrary pg-set of GT'(r). We first claim that S N vi) =g
and suppose on the contrary that there exists a vertex u € SN W(l). Assume
first that u is not the root of Tr(l). Let «' and " be the children of v and let w
be the parent of u. Then S N{u',u"”} # 0, for otherwise u’ and v are not S-
visible. Assume without loss of generality that v’ € S. Further, SN{u",w} # 0,
for otherwise u” and w are not S-visible. But now if v” € S, then v/ € S and
u” € S are not S-visible, and if w € S, then v’ € S and w € S are not S-
visible. Assuming that u is the root of T7§1)7 we arrive to a contradiction using
a similar argument.

We have thus proved that SN v = . By the symmetry of GT'(r), we
also have SN V;'? = . From this it readily follows that for any k € [271], at
most one of the vertices vor_1 and v can belong to S, that is, at most one

vertex of twin quasi-leaves can be in S. We can conclude that uq(GT(r)) =
|S| < 27~1. This proves the first formula.
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FIGURE 1. GT'(3) and its (a) p-set (b) unique po-set (c) ps-
set, pq-set

To derive the second formula, the above arguments imply that each pq-
set and each pt-set contains exactly one vertex from an arbitrary pair of twin
quasi-leaves. As there are 277! such pairs, the result follows. O

In Fig. 1, examples of a p-set, po-set (unique), pi-set and pqg-set are
shown.

2.2. General Position in Glued Binary Trees

In this subsection we determine the four general position invariants for glued
binary trees. The general position number was earlier determined in [19, Propo-
sition 3.8] by using the isometric path number of a graph. In the next theorem
we reprove this result using an alternate argument. We further classify the
gp-sets as well as the gp, -sets.

The next lemma follows directly from Lemma 2.2, since every general
position set is a mutual-visibility set.

Lemma 2.6. Let S be a general position set of GT(r). If |S N VT(l)| > 2, then
corresponding to each vertex v € SOVT(I), we can find a pair of quasi-leaves in
T, that are not in S such that these pairs are pairwise disjoint for all vertices

from SN /A
Theorem 2.7. If r > 2, then gp,(GT(r)) = gp(GT(r)) = 2". Moreover,
#ep, (GT(r)) =1 and #gp(GT(r))=2""1+1.

Proof. By Lemma 2.1, L(GT(r)) is an outer general position set of G and
hence gp,(G) > 2". In view of (2), the proof of the first two formulas will be
completed by proving that gp(GT(r)) < 27.

Consider an arbitrary general position set S of GT'(r). If S C V(TT(i)),
for some i € [2], then S is also a general position set of T” and hence it
follows that |S| < 2". Therefore, assume that S N v s non-empty and let
SN Vr(i)| =t;, i € [2]. Assume without loss of generality that ¢; > t2. Now,
by Lemma 2.6, corresponding to each vertex in S N VT(I), we can find a pair
of quasi-leaves that are not in S, such that these pairs are pairwise disjoint.
Therefore,

|S‘ <"ty Ftg— 2t 2T+ tg — 1 <27
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Hence, gp(GT(r)) = 2", thus establishing the first two formulas.

By the above argument, |S| = 2" only when ¢; = ¢, hence let t = t; =
to. Using Lemma 2.6, assign a pair of quasi-leaves from T, to each vertex
u e SN Vr(l) which are pair-wise disjoint and assign a pair of quasi-leaves from
T, to each vertex v € SN VT(Q) which are also pair-wise disjoint. Note that
|S] = 2" if and only if the quasi-leaves which are not present in S are exactly
the pairs which are assigned to the vertices of SN Vr(i)7 i € [2] and every pair of
quasi-leaves assigned to a vertex in SN V,-(l) should also be assigned to a vertex
in SN %(2). Let z € SN Vr(l) and let y € SN %(2) be such that the quasi-leaves
assigned to x and y are the same. Without loss of generality assume that y
is of depth less than or equal to that of x. Then every quasi-leaf in T is an
internal vertex of a shortest z, y-path. Hence, none of them can be present in
S. If x is of depth less than r — 1, then there are more pairs of quasi-leaves
in T, than which are assigned to x and these quasi-leaves must be assigned
to some vertices in S N Vr(l), as well as to some vertices in S N ‘/}(2). But, if
a vertex z € SN V,«(z) of depth less than that of y is assigned a pair of these
quasi-leaves in T}, then y will be an internal vertex of a shortest x, z-path and
if a vertex z € SN VT(2) of depth greater than that of y is assigned a pair of
these quasi-leaves in T}, then z will be an internal vertex of a shortest x,y-
path, both of which contradicts S is a general position set. Hence, x must be
of depth r — 1. If y is also of depth r — 1, then x and y are quasi-twins and we
cannot have any more vertices in S N (VT(l) U VT(Q)) and hence, t = 1.

Now, if y is of depth less than » — 1 then ¢t > 1. Since, t > 1, there is at
least one more vertex z € SN VT-(Z). Also, y is an internal vertex of a shortest
x, v-path for every v € v, \V(T,). Therefore, z € V(T,) and z should not be
an internal vertex of a shortest z, y-path. Now, let w € SN Vr(l) be the vertex
which is assigned the same quasi-leaves as that of z. If w is of depth less than or
equal to that of y, then x is an internal vertex of a shortest w, y-path and if w
is of depth greater than y, then z is an internal vertex of a shortest w, y-path.
In either case S is not a general position set. Therefore ¢t > 1 is not possible.

We have thus proved that a gp-set of GT'(r) is either L(GT(r)), or has
the form

(L(GT(r)) \ {u, v}) UN(u),
where u and v are twin quasi-leaves. Since, there are 2" ! twin quasi-leaves in
GT(r), it follows that # gp(GT'(r)) = 2"~ + 1.
Note that (L(GT'(r))\ {u,v})UN(u) is not an outer general position set,

since u and v are not S-positionable with the remaining quasi-leaves of GT'(r).
Therefore, the only gp,-set is L(GT'(r)) and hence #gp,(GT'(r)) = 1. O

In Fig. 2, the unique gp,-set and example of a gp-set are shown.

Theorem 2.8. Ifr > 2, then gp,(GT(r)) = gp4(GT(r)) = 0.
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(a) (b)

FIGURE 2. GT(3) and its (a) unique gp,-set and (b) a gp-set

TABLE 1. Mutual-visibility and general position invariants in
glued binary trees

poo 2041 H#po 27T —2 gp 2" Hgp 27741

to 27 #po 1 gp, 2" #gp, 1
r—1

pa 2771 H#pa 22 gpg 0 #egpy -

Mt 2r—1 # L 92" gh¢ 0 #ED; -

Proof. In [24, Theorem 2.1] it was proved that if G is a connected graph and
X C V(G), then X is a total general position set of G if and only if it consists
of (some of the) simplicial vertices of G. (Recall that a vertex is simplicial if its
neighborhood induces a complete graph.) Since the glued binary trees GT'(r)
do not contain simplicial vertices, we can conclude that gp,(GT'(r)) = 0.
Recall from [24, Proposition 3.3] that if each edge of a connected graph G
is Py-inner isometric, then gpy(G) = 0, where an edge is P,-inner isometric, if
it is the middle edge of some isometric P;. Applying this result we immediately
get gpq(GT'(r)) = 0. O

The results of Subsections 2.1 and 2.2 are summarized in Table 1.

2.3. Extension to Glued t-ary Trees

The results of Subsections 2.1 and 2.2 can be naturally extended to glued t-
ary trees for any ¢ > 2. The relevant proofs run in parallel with the proofs
produced, so only the result is quoted here.

Theorem 2.9. Ifr > 2 andt > 2, then
1. w(GT(r,t)) =t" +1 and #u(GT(r,t)) ="+ — 2.
2. uo(GT(r,t)) =t" and # uo(GT(r,t)) = 1.
8. If 7 € {ug, pa}, then T(GT(r,t)) = t"~1(t — 1) and #7(GT(r,t)) = t*"

—1
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4+ 8po(GT(r,0)) = ¢ and #gp,(GT(r, 1) = 1.
5. ¢p(GT(r,t)) =t" and #gp(GT(r,t)) =t""1 + 1.
6. gpi(GT'(r,t)) = gpa(GT(r,t)) = 0.

3. On Generalized Glued Binary Trees

In this paper we found the exact value of four variants each of mutual-visibility
and general position for glued binary trees. Moreover, we have also enumerated

the number of 7-sets for T € {u, fto, fid, fit, EDs €Dy, €D D4 }-

Furthermore, we have seen that the results obtained can be directly ex-
tended to glued t-ary trees for any ¢ > 2. Now, the concept of glued t-ary trees
can be further generalized by gluing n perfect t-ary trees, instead of two. More
precisely, the n'? generalized glued binary tree GTT(") of depth r is obtained
from n copies of GT'(r) by identifying their leaves. These copies will be denoted
by Tfl), i € [n], and the vertices obtained by the identification are again called
quasi-leaves of GT™ . The set of the quasi-leaves will be denoted by L(GTT(H)).
Also, GT"" denotes the subgraph induced by V(Tr(i)) U V(Tﬁj)). Note that
GT™) = GT(r). Finally, for i € [n] set V") = V(1) \ L(GT™).

Below, we extend some of the previous results to this generalized situa-
tion. First, for the total mutual-visibility, dual mutual-visibility, total general
position and the dual general position, proofs are similar to those earlier, hence
we can state:

Proposition 3.1. If r > 2 and n > 3, then
L p(GTY) = pa(GT™) = 201 and #m(GT) = #ua(GT™) =
22r_1, and
2. gpt(GTr(n)) = gpd(GTr(n)) = 0.

In the case of the outer general position number and the outer mutual-
visibility number, we have the following result.

Theorem 3.2. If r > 2 and n > 3, then gpo(GT,gn)) = ,uO(GTT(”)) = 2" and
#800(GT"™) = # 1o (GTF") = 1.

Proof. By Lemma 2.1, L(GT#”)) is an outer general position set of GTﬁn).
Consequently, ng(GTT(")) > 2". In view of (3), the proof of ng(GTygn)) =
1o(GT ™) = 27 will be completed by proving that po(GT™) < 27. Then
since every outer general position set is an outer mutual-visibility set, the
proof of #ng(GTr(n)) = #MO(GTr(n)) = 1 will be completed by proving that
L(GTT(n)) is the unique pio-set of GT™.

Set V = V(Gﬂ(n)) and L = L(GTrn)). We claim that if S is a uo-set
of GT™ then |[SN(V\ L) =0.If there exist z,y € SN V' then z is not
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FIGURE 3. gp,-set and po-set of GTQ(S)

S-visible to the descendants of y, which is not possible. Thus |S N VT(Z)| <1,
for i € [n].3

Now, if z € SN V") then none of the descendants of z including quasi-
leaves can be in S. In addition, if z € SN Vr(i) and y € SN Vr(j) are such
that = and y have a common pair of twin quasi-leaves as descendants, then
without loss of generality assume z has depth greater than or equal to that
of y in which case, there exists a vertex z € T(j ) such that = and 2 are not
S-visible. Hence we can assign to each vertex in S N (V \ L) a pair of twin
quasi-leaves which is not in S such that these pairs are pairwise disjoint. Thus
if [SN(V\L)| =k then |S| < 2" —2k+k = 2" — k. Since |S| > 2", this implies
that [S N (V' \ L)] = 0. We have thus proved that L is the unique po-set of
GT™ and hence we are done. a

Moving on to the general position problem in generalized glued binary
trees, it is a direct observation that in any maximal general position set quasi-
leaves appear as twins, that is, if a quasi-leaf appears in a maximal general
position set, then its twin quasi-leaf will also be there in S. Now, as in the case
of general position set in glued binary trees, (L(GTT(")) \ {u,v}) UN(u) is a
general position set of cardinality 2" +n — 2, so that gp(GT,(-n)) >2"4+n—-2,
for n,r > 2.

Though we do not have a proof, we have strong reasons to believe that

gp(GT™W) =27 4 n —2.

For the time being, we leave it as an open problem.

If n is large enough, then (GT ™) can be much larger than gp(GT\™).
For instance, we can define a mutual-visibility set as follows. In each copy
of the perfect binary tree, we have 2”1 vertices of depth r — 1. Therefore,
we can choose (2:1) = 2"=2(27~1 — 1) distinct subsets of cardinality two. If
n > 2"72(2"=1 — 1), then corresponding to each two element subset, choose
two vertices of corresponding index from different copies of perfect binary
trees. Clearly, this is a mutual-visibility set. Also, we can add one more vertex
from each copy of the perfect binary tree from which vertices are not yet
taken. The resultant set remains to be a mutual-visibility set and hence, if
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n>2""2(2"~1 — 1), then
M(GTT(H)) > 2(2r—2(2r—1 _ 1)) +n— 2r—2(2r—1 _ 1) =n4+ 22r—3 _ 27“—2 )

Still, if n is small enough, then ,u(GTr(")) may come down to 2" +n — 2, which
is the expected value of gp(GT™).
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