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Abstract
Two relationships between the injective chromatic number and, respectively, chro-
matic number and chromatic index, are proved. They are applied to determine the 
injective chromatic number of Sierpiński graphs and to give a short proof that 
Sierpiński graphs are Class 1. Sierpiński-like graphs are also considered, including 
generalized Sierpiński graphs over cycles and rooted products. It is proved that the 
injective chromatic number of a rooted product of two graphs lies in a set of six 
possible values. Sierpiński graphs and Kneser graphs K(n,  r) are considered with 
respect of being perfect injectively colorable, where a graph is perfect injectively 
colorable if it has an injective coloring in which every color class forms an open 
packing of largest cardinality. In particular, all Sierpiński graphs and Kneser graphs 
K(n, r) with n ≥ 3r − 1 are perfect injectively colorable, while K(7, 3) is not.
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1  Introduction

Throughout the paper, we consider G as a finite simple graph with vertex set V(G) 
and edge set E(G). The (open) neighborhood of a vertex v is denoted by NG(v), and 
NG[v] = NG(v) ∪ {v} is its closed neighborhood (we omit the index G if the graph 
G is clear from the context). The minimum and maximum degrees of G are denoted 
by δ(G) and ∆(G), respectively. For terminology and notation not explicitly defined 
here, we refer to [36]. Recall that a (vertex) coloring of G is a labeling of the vertices 
of G so that any two adjacent vertices have distinct labels. The chromatic number 
of G, denoted χ(G), is the smallest number of labels in a coloring of G. For some 
additional information on coloring problems, we refer the reader to [19]. A function 
f : V (G) → {1, . . . , k} is an injective k-coloring if no vertex v is adjacent to two ver-
tices u and w with f(u) = f(w). For an injective k-coloring f, the set of color classes {

{v ∈ V (G) | f(v) = i} : 1 ≤ i ≤ k
}

 is also called an injective k-coloring of G (or 
simply an injective coloring if k is clear from the context). The minimum k for which 
a graph G admits an injective k-coloring is the injective chromatic number of G, and 
is denoted by χi(G). An injective k-coloring for which k = χi(G) is called a χi(G)
-coloring. The study of injective coloring was initiated in [14], and then intensively 
pursued, see, for example, [5, 8, 27, 31]. In particular, the injective colorings of some 
products and graphs operations have been studied in [3, 32, 35]. A set B ⊆ V (G) is 
an open packing in G if N(u) ∩ N(v) = ∅ for all distinct vertices u, v ∈ B, and the 
maximum cardinality of an open packing in G is the open packing number, ρo(G), 
of G. An open packing of cardinality ρo(G) is a ρo(G)-set. The concept was intro-
duced in [15], and was studied in several papers mainly due to its relation with total 
domination. It was noticed in [4] that an injective coloring of a graph G is equivalent 
to a partition of V(G) into open packings, i.e., the vertices colored with the same 
color in the injective coloring form an open packing in G. In connection with this, 
the following concept was introduced in [4], and further on, partially investigated for 
hypercubes in [3]. A graph G is perfect injectively colorable if it admits an injective 
coloring in which every color class forms an open packing of maximum cardinality. 
Note that such an injective coloring is necessarily a χi(G)-coloring.

Section 2 is devoted to two auxiliary lemmas based on establishing some help-
ful relationships between injective coloring and, respectively, vertex coloring and 
edge coloring. They will be efficiently used in Sect. 3 in order to prove for each 
Sierpiński graph Sn

p  that (i) χi(Sn
p ) = p = ∆(Sn

p ) with p ≥ 3 and n ≥ 1, and that 
(ii) Sn

p  belongs to Class 1 with n, p ≥ 2. (Recall that a simple graph G is Class 1 if 
χ′(G) = ∆(G), in which χ′ stands for the edge-chromatic number.) Note that the 
assertion (ii) was already proved by Hinz and Parisse in 2012 ( [17]). However, our 
proof is much shorter based on the present, different approach.

The injective coloring of the rooted product graph G ◦v H , as a Sierpiński-type 
product graph, is discussed in Sect. 4. It is readily seen that χi(G ◦v H) can be 
bounded from below and from above by max{χi(G), χi(H)} and χi(G) + χi(H), 
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respectively. We prove that χi(G ◦v H) only assumes 6 values from this interval. As 
an immediate consequence of this result, we derive a related result for this parameter 
in the case of corona product graphs already given in [32].

We also investigate the perfect injectively colorability of Sierpiński graphs and 
Kneser graphs. It is proved that each Sierpiński graph Sn

p  with p ≥ 3 and n ≥ 1 is 
perfect injectively colorable, while this is not the case for generalized Sierpiński 
graphs by giving a special counterexample. Finally, we prove that all Kneser graphs 
K(n, r) with n ≥ 3r − 1 are perfect injectively colorable. Moreover, this result is best 
possible as the Kneser graph K(7, 3) does not satisfy this property.

2  Two Lemmas on Injective Colorings Versus (Edge) Colorings

In this section, we prove two relationships between the injective chromatic number 
and, respectively, the chromatic number and the chromatic index. Their proofs are not 
difficult, but we will later demonstrate that the results can be very useful.

For the first result, consider the following concept. Let G be a graph. A collection 
C = {C1, . . . , Ck} of cliques in G is an edge clique cover of G if every edge of G 
belongs to some Ci ∈ C. For more information on edge clique covers see the survey 
[33] and recent papers [7, 30]. We say that an edge clique cover C is sparse if every 
vertex of G belongs to at most two cliques in C. Note that not every graph has a sparse 
edge clique cover. For instance, among the triangle-free graphs G only the graphs 
with ∆(G) ≤ 2 admit sparse edge clique covers.

Let G be the class of graphs that admit a sparse edge clique cover. If G ∈ G and 
C = {C1, . . . , Ck} is a sparse edge clique cover of G, then we introduce the graph 
GC  constructed from G as follows. First, considering the vertex sets of the cliques Ci 
to be pairwise disjoint in GC , we set V (GC) =

∪k
i=1 V (Ci). Note that by this con-

vention, |V (GC)| =
∑k

i=1 |V (Ci)|. Second, two vertices in GC  are adjacent if they 
are either in the same clique from C or they correspond to the same vertex from two 
cliques of C. See Fig. 1 for an example of this construction.

Our first result now reads as follows.

Lemma 2.1  If G ∈ G with a sparse edge clique cover C = {C1 , . . . , Ck}, then 
χi(GC) ≤ χ(G).

Fig. 1  A graph G, its sparse edge clique cover C (consisting of the circled cliques), and the derived 
graph GC
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Proof  Let c : V (G) → [k] be a proper coloring of G, where k = χ(G). Let the color-
ing c∗ : V (GC) → [k] be defined by c∗(x) = c(x) if x ∈ V (G) belongs to only one 
clique of C, and c∗(xi) = c(x) = c∗(xj) when x belongs to Ci and Cj  (note that 
xi ∈ Ci and xj ∈ Cj  in GC  correspond to x ∈ Ci and x ∈ Cj  in G, respectively). See 
Fig. 2 for an example of such a derived coloring.

We claim that c∗ is injective, so we need to show that no two vertices in the 
neighborhood of any vertex x in GC  receive the same color. Assume that x is a vertex 
of G that lies in only one clique, say Ci, of C. Then, its neighbors are all in Ci, and 
since c is a proper coloring, they have pairwise different colors (according to c∗ and 
c). Secondly, assume that x = xi, that is, x belongs to two cliques of G from C, one 
of which being Ci, and let the other be Cj . In this case, NGC (xi) = V (Ci) ∪ {xj}. 
Then, the neighbors of xi in Ci have pairwise different colors (by c and c∗), which 
are all different from c(x) = c∗(xi) = c∗(xj). In both cases, all neighbors of x get 
pairwise different colors by c∗. � □

Our second result detects a new family of Class 1 graphs based on their injective 
chromatic number. (Recall that by Vizing’s theorem, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1 
holds for any graph G, where the graphs achieving the lower bound are said to belong 
to Class 1.)

Lemma 2.2  If χi(G) = ∆(G), then G belongs to Class 1.

Proof  Let ∆ = ∆(G), and let c : V (G) → {0, 1, . . . , ∆ − 1} be an injective color-
ing of G. Define an edge coloring c′ : E(G) → {0, 1, . . . , ∆ − 1} arising from c as 
follows. For each edge uv ∈ E(G), let c′(uv) = c(u) + c(v) (mod ∆). To see that 
c′ is a proper edge coloring of G, let uv and uw be two incident edges in G. Since 
c(v) ̸= c(w), we infer that c′(uv) = c(u) + c(v) ̸= c(u) + c(w) = c′(uw), where 
summations are taken with respect to modulo ∆. Thus, χ′(G) ≤ ∆, which by Viz-
ing’s theorem implies that G is in Class 1. � □

3  Sierpiński Graphs

This section is devoted to obtain the injective chromatic number of Sierpiński graphs, 
and to give some consequences of these computations. In particular, we give a short 
proof of the fact that all Sierpiński graphs belong to Class 1, a result which was first 
proved in [17] with a lengthy argument.

Fig. 2  An optimal coloring of G and an optimal injective coloring of GC
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When the Switching Tower of Hanoi game was introduced in [23], it was natural 
to introduce Sierpiński graphs. This family of graphs has subsequently attracted a 
great deal of interest for various reasons, see a very comprehensive 2017 survey 
paper [16], where, in addition to an overview of the results on the Sierpiński graphs, 
a classification of Sierpiński-type graphs is proposed. For some later related papers, 
we refer to [1, 10, 28].

For p ≥ 1 and n ≥ 1, the Sierpiński graph Sn
p  has the vertex set V (Sn

p ) = [p]n, 
and two vertices (u1, . . . , un) and (v1, . . . , vn) are adjacent if there exists an index 
d ∈ [n] such that (i) ui = vi for i ∈ [d − 1], (ii) ud ̸= vd, and (iii) vi = ud and 
ui = vd for i ∈ {d + 1, . . . , n}. The family of Sierpiński triangle graphs Ŝn

p  was first 
introduced by Jakovac in [18]. These graphs can be defined in various ways, but for 
our purposes we do it for p ≥ 3 as follows. If p ≥ 3 and n ≥ 1, then Ŝn

p  is the graph 
obtained from Sn

p  as follows. For any edge uv which does not lie in a complete graph 
of order p, remove the edge uv and identify the vertices u and v. See Fig. 3 where the 
graphs S3

3  and Ŝ3
3  are drawn.

Theorem 3.1  If p ≥ 3  and n ≥ 1 , then χi(Sn
p ) = p. Moreover, Sn

p  is perfect injec-
tively colorable.

Proof  As ∆(Sn
p ) = p, we have χi(Sn

p ) ≥ p.

Let C be the edge clique cover of Ŝn
p  consisting of all the cliques of order p of 

Ŝn
p  which are obtained from the cliques of order p of Sn

p  after contacting the edges 
of Sn

p  which lie in no such clique. (Note that the vertex set of Sn
p  is partitioned into 

pn−1 cliques of cardinality p.) See Fig. 3 where the described clique-edge cover of 
Ŝ3

3  is shown. By the way this cover is constructed, we infer that C is a sparse clique-

Fig. 3  The graph Ŝ3
3  and its sparse edge clique cover (left), and the graph S3

3  (right)
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edge cover. Hence we can consider (Ŝn
p )C  and again by the construction we see that 

(Ŝn
p )C ∼= Sn

p , see Fig. 3 again. Applying Lemma 2.1 we then get

	 χi(Sn
p ) = χi((Ŝn

p )C) ≤ χ(Ŝn
p ) = p,

where the last equality is a result due to Jakovac proved in [18]. This proves the first 
assertion of the theorem.

To prove the second assertion, recall that the vertex set of Sn
p  is partitioned into 

pn−1 cliques of cardinality p. Combining this with χi(Sn
p ) = p, we infer that each 

color class of any χi(Sn
p )-coloring has a non-empty intersection with each such 

clique of Sn
p . Since each color class is an open packing, we infer ρo(Sn

p ) ≥ pn−1. On 
the other hand, note that if P is an open packing of a graph , then no two vertices of 
P can lie in a triangle in G. Therefore, when p ≥ 3, we have ρo(Sn

p ) ≤ pn−1. Hence, 
ρo(Sn

p ) = pn−1, and moreover, every color class of any χi(Sn
p )-coloring has ρo(Sn

p ) 
vertices. This proves the second assertion. � □  

We next give a short proof of the following result which was proved first by Hinz 
and Parisse [17] by a lengthy argument.

Corollary 3.2  If p ≥ 2  and n ≥ 2 , then Sn
p  is a Class 1 graph.

Proof  The case p = 2 is clear since Sn
2

∼= P2n . So, assume in the rest that p ≥ 3. 
By Theorem 3.1 we have χi(Sn

p ) = p = ∆(Sn
p ), which by Lemma 2.2 immediately 

gives the conclusion. � □

Gravier, Kovše, and Parreau [13] defined generalized Sierpiński graphs Sn
p  as fol-

lows. Let G be an arbitrary graph. Then the generalized Sierpiński graph Sn
G is the 

graph with the vertex set V (G)n, where two vertices (u1, . . . , un) and (v1, . . . , vn) 
are adjacent if there exists a d ∈ [n] such that (i) ui = vi for i ∈ [d − 1], (ii) 
udvd ∈ E(G), and (iii) ui = vd and vi = ud for i > d. See [24], where the packing 
coloring of generalized Sierpiński graphs was investigated.

Clearly, χi(Sn
G) ≤ |V (G)| follows from Theorem 3.1 and the fact that Sn

G is a 
spanning subgraph of Sn

p , where p = |V (G)|. The next result shows that this bound 
need not be sharp. In other words, Theorem 3.1 does not have a counterpart in gen-
eralized Sierpiński graphs.

Proposition 3.3  If n ≥ 2 , then χi(Sn
C4

) = 3  and Sn
C4

 is not perfect injectively 
colorable.

Proof  Let n ≥ 2. Then ∆(Sn
C4

) = 3, which implies that χi(Sn
C4

) ≥ 3. To see that 
χi(Sn

C4
) ≤ 3 consider the labeling of S2

C4
 as presented in the left-hand side of Fig. 4.

The labeling of S2
C4

 from Fig. 4 is easily checked to be injective. Now we itera-
tively proceed as indicated in the figure, that is, we four times use the labeling of S2

C4
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to get a labeling of S3
C4

. Based on the distribution of the color 3, it is straightforward 
to check that also the labeling of S3

C4
 is injective. The process can be repeated to get 

the desired conclusion.

Finally, notice that Sn
C4

 is not perfect injectively colorable because |V (Sn
C4

)| = 4n, 
which is not divisible by χi(Sn

C4
) = 3 for n ≥ 2. � □

4  Rooted Product Graphs

A rooted graph is a graph in which one vertex is labeled in a special way to dis-
tinguish it from other vertices. This vertex is called the root of the graph. Let G 
be a graph with vertex set {v1, . . . , vn}. Let H be a sequence of n rooted graphs 
H1, . . . , Hn. The rooted product graph G(H) is the graph obtained by identifying the 
root of Hi with vi (see [12]). We here consider the particular case of rooted product 
graphs where H consists of n isomorphic rooted graphs [34]. More formally, assum-
ing that the root of H is v, we define the rooted product graph G ◦v H = (V, E), 
where V = V (G) × V (H) and

	
E =

(
n∪

i=1
{(vi, h)(vi, h′) | hh′ ∈ E(H)}

) ∪ {
(vi, v)(vj , v) | vivj ∈ E(G)

}
.

We remark that rooted product graphs can be seen as an instance of the opera-
tion called Sierpiński product introduced in [25], and denoted by G ⊗f H , where 
f : V (G) → V (H) is a function. The graph G ⊗f H  has vertex set V (G) × V (H) 

Fig. 4  An injective coloring of S2
C4

 (left) and its lift up to an injective coloring of S3
C4

 (right)
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and two vertices (g, h), (g′, h′) ∈ V (G ⊗f H) are adjacent if (i) g = g′ and 
hh′ ∈ E(H), or (ii) gg′ ∈ E(G), h = f(g′) and h′ = f(g). In this sense, it can 
be readily seen that a rooted product graph G ◦v H  represents a Sierpiński prod-
uct G ⊗f H , where f is a constant function in the product, i.e., f(u) = v for any 
u ∈ V (G).

It is somehow natural to think that the injective chromatic number of a rooted 
product graph relates to that of the factors of the product. Indeed, the following basic 
bounds can be easily deduced for any graph G and any rooted graph H with root v.

	 max{χi(G), χi(H)} ≤ χi(G ◦v H) ≤ χi(G) + χi(H).� (1)

Both bounds above are realizable, as will be seen by the families of graphs pre-
sented later in this section (see the paragraph preceding Subsect.  4.1). How-
ever, not all possible values between these bounds are reached. We next focus on 
these facts and show that χi(G ◦v H) achieves only six values from the interval 
[max{χi(G), χi(H)}, χi(G) + χi(H)].

From now on, in order to facilitate our exposition, given an integer k ∈ [n], by 
Fk we represent the subgraph of G ◦v H  induced by the vertices in V (G) ∪ V (Hk).

To show that only six values from the interval 
[max{χi(G), χi(H)}, χi(G) + χi(H)] (according to the bounds from (1)) can be 
realized, we proceed with a series of lemmas that give all the values of the injective 
chromatic number of Fk, under some conditions happening in G and in H. For the 
sake of convenience, by assigning/giving a color to a vertex subset S of a graph G we 
mean assigning such color to all vertices in S.

We first remark that the root v ∈ V (H) is identified with vk ∈ V (G) when refer-
ring to Fk. In this case, for simplicity (and if there is no confusion), we will denote 
vk simply as v. Throughout the remainder of this section, we consider g as a χi(G)
-coloring, and in this sense, {U1, . . . , Uχi(G)} as the vertex partition of V(G) into 
open packings associated with g. We may assume that g assigns the color i to Ui 
for each i ∈ [χi(G)]. Now, in order to consider an injective coloring of Fk for 
each k ∈ [n], in concordance with the χi(G)-coloring g, we may also assume that 
NG(vk) ⊆ U1 ∪ . . . ∪ UdG(vk). Moreover, by simplicity we write H = Hk in the 
proofs of the following lemmas, as Hk

∼= H .
We first observe that such a subgraph Fk satisfies that

	 χi(Fk) ≥ max
{

χi(G), χi(H), dG(vk) + dH(v)
}

� (2)

as both G and H are subgraphs of Fk and χi(Fk) ≥ ∆(Fk) ≥ dG(vk) + dH(v). The 
proof of this is based on a case-by-case analysis. The general procedure is to extend 
g to Fk in such a way that the restriction of the resulting function to V(H) turns out 
to be a χi(H)-coloring using the colors in [χi(G)] along with the least number of 
colors not in [χi(G)].

Our first lemma regarding the injective chromatic number of the graph Fk reads 
as follows.

1 3

   83   Page 8 of 22



Graphs and Combinatorics           (2025) 41:83 

Lemma 4.1  If g(vk) /∈ [dG(vk)] and h(v) ∈ h
(
NH (v)

)
 for some χi(H )-function h 

with the associated partition (V1 , . . . , Vχi(H)), then

	 χi(Fk) = max
{

χi(G), χi(H), dG(vk) + dH(v)
}

.

Proof  As stated before, we shall write v instead of vk to simplify the notation. We first 
observe that χi(G) ≥ dG(v) + 1 since g(v) /∈ [dG(v)] (i.e., v and all its neighbors 
have different colors). We need to distinguish two cases depending on the behav-
iors of χi(G) and χi(H). Without loss of generality, for the graph H = Hk, assume 
that NH(v) ⊆ V1 ∪ . . . ∪ VdH (v) and that v ∈ V1. Also, for the graph G, assume that 
v ∈ UdG(v)+1.

Case 1. χi(G) ≥ dH(v)+dG(v). We first extend g as g1 by respectively 
assigning the colors dG(v) + 1, . . . , dG(v)+dH(v) to V1, . . . ,VdH (v). If 
χi(H) = dH(v), then the function g1 is an injective coloring of Fk with χi(G) 
colors. Therefore, χi(Fk) ≤ χi(G), which is indeed an equality since G is 
a subgraph of Fk. Now, if χi(H) > dH(v), then we proceed as follows. If 
η = χi(G) − dG(v) − dH(v) ≥ χi(H) − dH(v) = φ, then we extend g1 to a new 
function g2, by respectively giving the colors dG(v) + dH(v) + 1, . . . , dG(v) + χi(H) 
to VdH (v)+1, . . . , Vχi(H). It is readily seen that g2 is an injective coloring of Fk with 
χi(G) colors. This similarly results in the equality χi(Fk) = χi(G). Hence, assume 
η < φ and consider two cases depending on η.

Subcase 1.1. η = 0. If φ ≤ dG(v), then we assign φ colors from [dG(v)] to Vi 
for i = dH(v) + 1, . . . , χi(H). This gives us an injective coloring of Fk using 
χi(G) colors, and hence χi(Fk) = χi(G). If φ > dG(v), then we assign the colors 
from [dG(v)] to Vi with i = dH(v) + 1, . . . , dH(v) + dG(v). In addition, we need 
χi(H) − dG(v) − dH(v) new colors for the rest of open packings in H. This results 
in an injective coloring of Fk with χi(H) − dG(v) − dH(v) + χi(G) = χi(H) col-
ors, and therefore χi(Fk) = χi(H).

Subcase 1.2. η > 0. Let g2 be an extension of g1 that respectively assigns the val-
ues dG(v) + dH(v) + 1, . . . , χi(G) to VdH (v)+1, . . . , Vχi(G)−dG(v). In view of this, 
Vχi(G)−dG(v)+1, . . . , Vχi(H) are open packings of H which have not been injectively 
colored by g2. We need to consider two possibilities.

Subcase 1.2.1. χi(G) ≥ χi(H). It follows that ζ = χi(H) − χi(G)
+dG(v) ≤ dG(v). In such a situation, g2 can be extended to Fk by assigning the 
colors 1, . . . , ζ to the rest of open packings in H. Note that the resulting function is an 
injective coloring of Fk with χi(G) colors, and hence χi(Fk) = χi(G).

Subcase 1.2.2. χi(G) < χi(H). This shows that ζ > dG(v). In such a situation, 
we first assign the color i to Vχi(G)−dG(v)+i for each i ∈ [dG(v)]. We next assign 
χi(H) − χi(G) new colors to the rest of open packings in H. This results in an injec-
tive coloring of Fk with χi(H) colors, and hence χi(Fk) = χi(H).

Case 2. χi(G) < dH(v) + dG(v).
We extend g to g1 by respectively assigning the colors dG(v) + 1, . . . , χi(G) to 

V1, . . . , Vχi(G)−dG(v), as well as, we assign dH(v) − χi(G) + dG(v) new colors to 
Vχi(G)−dG(v)+1, . . . , VdH (v). If χi(H) = dH(v), then g1 turns out to be an injective 
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coloring of Fk with dG(v) + dH(v) colors. Therefore, χi(Fk) = dH(v) + dG(v). 
Assume now that χi(H) > dH(v). We distinguish two more possibilities.

Subcase 2.1. χi(H) ≤ dG(v) + dH(v).
In such a situation, the function g1 can be extended to Fk by respectively assigning 

the colors 1, . . . , χi(H) − dH(v) to VdH (v)+1, . . . , Vχi(H). This gives us an injective 
coloring of Fk with dH(v) + dG(v) colors. So, χi(Fk) = dH(v) + dG(v).

Subcase 2.2. χi(H) > dG(v) + dH(v).
Now, in order to extend g1 to Fk, we respectively assign the colors 1, . . . , dG(v) 

to VdH (v)+1, . . . , VdH (v)+dG(v), as well as, χi(H) − dG(v) − dH(v) new colors to 
the rest of open packings in H. This leads to an injective coloring of Fk with χi(H) 
colors, and hence χi(Fk) = χi(H).

One might think that in order to complete our proof, some other cases like for 
instance χi(H) ≤ dH(v) + dG(v) or χi(H) > dH(v) + dG(v) need to be consid-
ered. However, they are indeed implicitly checked in the two cases above (with the 
corresponding subcases).

In conclusion, we have proved that χi(Fk) ∈ {χi(G), χi(H), dG(v) + dH(v)}. 
This leads to χi(Fk) = max{χi(G), χi(H), dG(v) + dH(v)} due to (2). � □

From this point on, three similar lemmas to the one above shall be proved. These 
lemmas consider the remaining cases regarding the inclusion or exclusion of g(vk) 
and h(v) in [dG(vk)] and h

(
NH(v)

)
 (for some/each χi(H)-function h), respectively. 

In their proofs, we shall also write v instead of vk to simplify the notations. Some of 
the arguments are similar to the ones in the proof of Lemma 4.1.

Lemma 4.2  If g(vk) /∈ [dG(vk)] and h(v) /∈ h
(
NH (v)

)
 for each χi(H )-function h, 

then

	 χi(Fk) ∈
{

χi(G), χi(H), dG(vk) + dH(v), dG(vk) + dH(v) + 1
}

.

Proof  The assumptions imply that χi(G) ≥ dG(v) + 1 and χi(H) ≥ dH(v) + 1. We 
need to distinguish two cases depending on χi(G), dG(v) and dH(v). For the sake 
of simplicity, we assume NH(v) ⊆ V1 ∪ . . . ∪ VdH (v), v ∈ VdH (v)+1 for any χi(H)
-function h with the associated partition (V1, . . . , Vχi(H)) and v ∈ UdG(v)+1.

Case 1. χi(G) ≥ dG(v) + dH(v) + 1.
First, let g1 be the extension of g that respectively assigns the colors 

dG(v) + 1, dG(v) + 2, . . . , dG(v) + dH(v) + 1 to VdH (v)+1, V1, . . . , VdH (v). If 
χi(H) = dH(v) + 1, then g1 defines an injective coloring of Fk using χi(G) colors. 
This leads to χi(Fk) = χi(G). Assumne now that χi(H) > dH(v) + 1. If

µ = χi(G) − dG(v) − dH(v) − 1 ≥ χi(H) − dH(v) − 1 = ξ,
then an extension g2 of g1 assigning the color i to Vi−dG(v), for each 

i = dG(v) + dH(v) + 2, . . . , dG(v) + χi(H), defines an injective coloring of F with 
χi(G) colors. Hence, χi(Fk) = χi(G). Letting µ < ξ, we need to consider two more 
possibilities.

Subcase 1.1. µ = 0.
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First note that the ξ open packings VdH (v)+2, . . . , Vχi(H) of H have not been injec-
tively colored under g1. If ξ ≤ dG(v), then we respectively assign the colors 1, . . . , ξ 
to VdH (v)+2, . . . , Vχi(H). Note that the resulting function is an injective coloring 
with χi(G) colors. So, χi(Fk) = χi(G). If ξ > dG(v), then we first respectively 
assign the colors 1, . . . , dG(v) to VdH (v)+2, . . . , VdH (v)+dG(v)+1. Next, we assign 
ξ − dG(v) new colors to the rest of the open packings of H. The resulting function 
turns out to be an injective coloring of Fk using

χi(G) + ξ − dG(v) = χi(G) + χi(H) − dH(v) − 1 − dG(v) = χi(H)
colors. So, we deduce that χi(Fk) ≤ χi(H), which means χi(Fk) = χi(H) in 

view of the inequality (2).
Subcase 1.2. µ > 0.
As an extension of g1, we first assign the color i to Vi−dG(v) when 

i ∈ {dG(v) + dH(v) + 2, . . . , χi(G)}. In this situation, the ξ − µ open packings 
Vχi(G)−dG(v)+1, . . . , Vχi(H) have not been colored under g1. We now distinguish 
two possibilities.

Subcase 1.2.1. χi(G) ≥ χi(H). This implies that ξ − µ ≤ dG(v). So, by respec-
tively assigning the colors 1, . . . , ξ − µ to Vχi(G)−dG(v)+1, . . . , Vχi(H), we obtain an 
injective coloring of Fk with χi(G) colors. Therefore, χi(Fk) = χi(G).

Subcase 1.2.2. χi(G) < χi(H).
This shows that ξ − µ > dG(v). In this situation, we respectively assign the values 

1, . . . , dG(v) to Vχi(G)−dG(v)+1, . . . , Vχi(G). Also, we assign χi(H) − χi(G) new 
colors to the rest of open packings in H. Note that the resulting coloring of Fk is 
injective, and that it uses χi(H) colors. Hence, χi(Fk) = χi(H).

Case 2. χi(G) < dH(v) + dG(v) + 1.
Consider first that χi(H) = dH(v) + 1. In such a situation, let g1 be an exten-

sion of g that respectively assigns the colors dG(v) + 1, dG(v) + 2, . . . , χi(G) to 
VdH (v)+1, V1, . . . , Vχi(G)−dG(v)−1, as well as, φ = χi(H) − χi(G) + dG(v) new 
colors to Vχi(G)−dG(v), . . . , Vχi(H). This defines an injective coloring of Fk with 
φ + χi(G) = dG(v) + dH(v) + 1 colors, and hence χi(Fk) ≤ dG(v) + dH(v) + 1. 
This shows that χi(Fk) ∈ {dG(v) + dH(v), dG(v) + dH(v) + 1} due to (2). Assume 
now that χi(H) > dH(v) + 1. We need to consider two possibilities.

Subcase 2.1. χi(G) ≥ χi(H).
Due to the initial inequality of Case 2, we get 

dG(v) + dH(v) + 1 > χi(H). Therefore, dG(v) > χi(H) − dH(v) − 1 = ψ. 
Hence, g1 can be extended to Fk by respectively assigning the colors 1, . . . , ψ to 
VdH (v)+2, . . . , Vχi(H). This gives an injective coloring of Fk with dG(v) + dH(v) + 1 
colors. Consequently, χi(Fk) ∈ {dG(v) + dH(v), dG(v) + dH(v) + 1}.

Subcase 2.2. χi(G) < χi(H).
If ψ ≤ dG(v), then we have the same conclusion as in Subcase 2.1. So, let 

ψ > dG(v). Let g2 be an extension of g1 that assigns the color i to Vi+dH (v)+1 for 
each i ∈ [dG(v)]. In such a situation, we give ψ − dG(v) new colors to the rest of the 
open packings in H. This process leads to an injective coloring of Fk with at most 
dG(v) + dH(v) + 1 + ψ − dG(v) colors. Therefore, χi(Fk) ≤ χi(H). This implies 
that χi(Fk) = χi(H). � □
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Lemma 4.3  Let g(vk) ∈ [dG(vk)] and h(v) ∈ h
(
NH (v)

)
 for some χi(H )-function h 

with the associate partition (V1 , . . . , Vχi(H)). Then,

	 χi(Fk) ∈
{

χi(G), χi(H), χi(G) + 1, χi(H) + 1, dG(vk) + dH(v)
}

.

Proof  With the assumptions given in the statement of the lemma, we may assume that 
NH(v) ⊆ V1 ∪ . . . ∪ VdH (v), v ∈ V1 and v ∈ U1. We distinguish two cases depend-
ing on χi(G), dG(v) and dH(v).

Case 1. χi(G) ≥ dH(v) + dG(v).
Assume g1 respectively assigns the colors dG(v)+1, . . . , dG(v) + dH(v)

dG(v) + dH(v) to V1 \ {v}, V2, . . . , VdH (v). Now, let first χi(H) = dH(v). In such a 
situation, this results in the existence of an injective coloring of Fk with χi(G) colors, and 
hence χi(Fk) = χi(G). Now let χi(H) > dH(v). If ϑ = χi(G) − dG(v) − dH(v) ≥
χi(H) − dH(v) = ϵ, then we consider g1 is extended to g2 by assigning i to Vi−dG(v) 
for each i = dG(v) + dH(v)+1, . . . ,dG(v) + χi(H). This defines an injective color-
ing of Fk using χi(G) colors. Hence, χi(Fk) = χi(G). Letting ϑ < ϵ we need to 
consider two more cases depending on ϑ.

Subcase 1.1. ϑ = 0.
If ϵ ≤ dG(v) − 1, then in order to extend g1, we respectively assign the colors 

2, . . . , ϵ + 1 to VdH (v)+1, . . . , Vχi(H). Note that the resulting function is an injective 
coloring of Fk using χi(G) colors, and hence χi(Fk) = χi(G). Assume now that 
ϵ ≥ dG(v). As an extension of g1, we first respectively assign the colors 2, . . . , dG(v) 
to VdH (v)+1, . . . , VdH (v)+dG(v)−1. We next give ϵ − dG(v) + 1 new colors to the rest 
of open packings in H. The resulting function is an injective coloring of Fk using

	 χi(G) + ϵ − dG(v) + 1 = χi(G) + χi(H) − dH(v) − dG(v) + 1 = χi(H) + 1� (3)

colors (since χi(G) − dG(v) − dH(v) = ϑ = 0). We infer, in this case, that 
χi(Fk) ∈ {χi(H), χi(H) + 1} due to (2).

Subcase 1.2. ϑ > 0.
Let g2 be an extension of g1 such that the color i is assigned to 

Vi−dG(v) for each i = dG(v) + dH(v) + 1, . . . , χi(G). In such a situation, 
ς = χi(H) − χi(G) + dG(v) ≥ 1 open packings in H have not been colored under 
g2. We consider two cases depending on χi(G) and χi(H).

Subcase 1.2.1. χi(G) ≥ χi(H).
This shows that ς ≤ dG(v). Let ς ≤ dG(v) − 1. In such a situation, g2 can be 

extended to g3 by assigning ς  colors from {2, . . . , dG(v)} to the rest of open packings 
in H. The resulting coloring is injective and uses χi(G) colors. So, χi(Fk) = χi(G). 
If ς = dG(v), then g3 can be extended to Fk by assigning a new color to the last open 
packing in H. Therefore, χi(Fk) ∈ {χi(G), χi(G) + 1}.

Subcase 1.2.2. χi(H) > χi(G).
We then have ς > dG(v). In this situation, let g3 be an extension of g2 that respec-

tively assigns the colors 2, . . . , dG(v) to Vχi(G)−dG(v)+1, . . . , Vχi(G)−1. We now 
assign χi(H) − χi(G) + 1 new colors to the remaining open packings in H. This 
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leads to the existence of an injective coloring of Fk with χi(H) + 1 colors. There-
fore, χi(Fk) ∈ {χi(H), χi(H) + 1}.

Case 2. χi(G) < dH(v) + dG(v).
Let first σ = χi(G) − dG(v) = 0. Assume now that 

χi(H) = dH(v). Let g1 be an extension of g which respectively assigns the colors 
dG(v) + 1, dG(v) + 2, . . . , dG(v) + dH(v) to V1 \ {v}, V2, . . . , VdH (v). Hence, g1 is 
an injective coloring of Fk with dG(v) + dH(v) colors, and so χi(Fk) = dG(v) + dH(v). 
Assume now that χi(H) > dH(v). If χi(H) < dG(v) + dH(v), then g1 can be extended 
by assigning χi(H) − dH(v) colors from {2, . . . , dG(v)} to the rest of open pack-
ings in H. This gives an injective coloring of Fk using dG(v) + dH(v) colors, and 
therefore χi(Fk) = dG(v) + dH(v). Now let χi(H) ≥ dG(v) + dH(v). In such a 
situation, as an extension of g1, we first respectively give the colors 2, . . . , dG(v) 
to VdH (v)+1, . . . , VdG(v)+dH (v)−1. We next assign χi(H) − dG(v) − dH(v) + 1 new 
colors to the rest of open packings in H. This leads to an injective coloring of Fk with 
χi(H) + 1 colors, and therefore χi(Fk) ∈ {χi(H), χi(H) + 1}.

Consider now that σ > 0. Note that g can be extended to a function g1 by respec-
tively assigning dG(v) + 1, dG(v) + 2, . . . , χi(G) to V1 \ {v}, V2, . . . , Vσ, as well 
as, dH(v) − σ new colors to Vσ+1, . . . , VdH (v). If χi(H) = dH(v), then this defines 
an injective coloring of Fk using χi(G) + dH(v) − σ = dG(v) + dH(v) colors. 
Therefore, χi(Fk) = dG(v) + dH(v). So, let χi(H) > dH(v). Again, we need to 
consider two more possibilities.

Subcase 2.1. χi(H) < dG(v) + dH(v).
In view of this, let g2 be an extension of g1 to Fk by giving χi(H) − dH(v) colors 

from {2, . . . , dG(v)} to the rest of open packings in H. This process injectively colors 
Fk by dG(v) + dH(v) colors. So, we again have χi(Fk) = dG(v) + dH(v).

Subcase 2.2. χi(H) ≥ dG(v) + dH(v).
Respectively assigning the colors 2, . . . , dG(v) to VdH (v)+1, . . . , VdH (v)+dG(v)−1, 

as well as, χi(H) − dG(v) − dH(v) + 1 new colors to the rest of open packings in H, 
we obtain an extension of g1 to Fk. It is easy to see that the resulting function is an injec-
tive coloring using χi(H) + 1 colors. Therefore, χi(Fk) ∈ {χi(H), χi(H) + 1}. �□

Lemma 4.4  Let g(vk) ∈ [dG(vk)] and h(v) /∈ h
(
NH (v)

)
 for each χi(H )-function h. 

Then,

	χi(Fk) ∈
{

χi(G), χi(H), χi(G) + 1, χi(H) + 1, dG(vk) + dH(v), dG(vk) + dH(v) + 1
}

.

Proof  We first observe, by the assumption given in the statement of the lemma, that 
χi(H) ≥ dH(v) + 1. For the sake of simplicity, we let NH(v) ⊆ V1 ∪ . . . ∪ VdH (v), 
v ∈ VdH (v)+1 for any χi(H)-function h with the associated partition (V1, . . . , Vχi(H)) 
and v ∈ U1. We again need to distinguish two possibilities depending on χi(G), 
dG(v) and dH(v).

Case 1. χi(G) ≥ dH(v) + dG(v) + 1.
We again consider the extension g1, of g, that respectively assigns dG(v) + 1, . . ., 

dG(v) + dH(v) + 1 to V1, . . . , VdH (v)+1 \ {v}. Assume first that χi(H) = dH(v) + 1. 
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Hence, g1 is an injective coloring of Fk with χi(G) colors. Thus, χi(Fk) = χi(G) (note 
that if VdH (v)+1 \ {v} = ∅, then the color dG(v) + dH(v) + 1 is not used in H). So, 
let χi(H) > dH(v) + 1. Again, we need to consider two more cases.

Subcase 1.1. λ = χi(G) − dG(v) − dH(v) − 1 ≥ χi(H) − dH(v) − 1 = ε.
We observe that a function g2 defined, as an extension of g1, by assigning the color 

i to Vi−dG(v) for every i = dG(v) + dH(v) + 2, . . . , χi(H) + dG(v) is an injective 
coloring of Fk with χi(G) colors. Therefore, χi(Fk) = χi(G).

Subcase 1.2. λ < ε. Assume first that λ = 0. There exist two possibilities depend-
ing on χi(G) and χi(H).

Subcase 1.2.1. χi(G) ≥ χi(H).
This implies that ε ≤ dG(v) by taking λ = 0 into account. If ε ≤ dG(v) − 1, then 

an extension of g1 that assigns ε colors from {2, . . . , dG(v)} to VdH (v)+2, . . . , Vχi(H) 
gives an injective coloring of Fk with χi(G) colors. Therefore, χi(Fk) = χi(G). Now 
let ε = dG(v). In such a situation, we first respectively assign the colors 2, . . . , dG(v) to 
VdH (v)+2, . . . , Vχi(H)−1, and a new color to Vχi(H). The resulting function is an injec-
tive coloring of Fk with χi(G) + 1 colors. Therefore, χi(Fk) ∈ {χi(G), χi(G) + 1}.

Subcase 1.2.2. χi(H) > χi(G).
We then have ε > dG(v) since λ = 0. Let g2 be an extension of g1 that 

respectively assigns 2, . . . , dG(v) to VdH (v)+2, . . . , VdG(v)+dH (v). Notice that 
χi(H) − dG(v) − dH(v) open packings in H have not received colors under g2. In 
such a situation, we obtain an injective coloring of Fk with χi(H) + 1 colors by 
assigning χi(H) − dG(v) − dH(v) new colors to the remaining open packings. 
Hence, χi(Fk) ∈ {χi(H), χi(H) + 1}.

Assume now that λ > 0. Let g2 be an extension of g1 that assigns the 
color i to Vi−dG(v) when i ∈ {dG(v) + dH(v) + 2, . . . , χi(G)}. We note that 
υ = χi(H) − χi(G) + dG(v) open packings in H have not received colors under 
g2. If χi(H) ≥ χi(G), then we respectively assign the colors 2, . . . , dG(v) to 
Vχi(G)−dG(v)+1, . . . , Vχi(G)−1. Also, we give χi(H) − χi(G) + 1 new colors to the 
rest of open packings in H. This leads to an injective coloring of Fk using χi(H) + 1 
colors, and hence χi(Fk) ∈ {χi(H), χi(H) + 1}.

On the other hand, if χi(G) > χi(H), then υ < dG(v). In such a case, g2 can be 
extended to Fk by assigning υ colors from {2, . . . , dG(v)} to the rest of open pack-
ings in H. This defines an injective coloring of Fk with χi(G) colors, and therefore 
χi(Fk) = χi(G).

Case 2. χi(G) < dH(v) + dG(v) + 1.
We need to distinguish two more possibilities depending on χi(G) − dG(v).
Subcase 2.1. χi(G) = dG(v).
If χi(H)= dH(v) + 1, then assume g1 respectively assigns the colors 

dG(v) + 1, . . . , dG(v)+dH(v) + 1 to V1, . . . , VdH (v)+1\{v} (if VdH (v)+1 \ {v}
= ∅, then the color dG(v) + dH(v) + 1 is not used in H). This gives an injec-
tive coloring of Fk using at most dG(v) + dH(v) + 1 colors. This shows that 
χi(Fk) ∈ {dG(v) + dH(v),dG(v) + dH(v) + 1}. Let χi(H) > dH(v) + 1. If 
ε < dG(v), then g1 can be extended as an injective coloring of Fk by assigning ε 
colors from {2, . . . , dG(v)} to VdH (v)+2, . . . ,Vχi(H). Therefore, χi(Fk) ∈ {dG(v)
+dH(v),dG(v) + dH(v) + 1}. So, we let ε ≥ dG(v). Let g2 be an extension of g1 
that respectively assigns the colors 2, . . . , dG(v) to VdH (v)+2, . . . , VdG(v)+dH (v). We 
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now give χi(H) − dG(v) − dH(v) new colors to the rest of open packings in H. This 
process ends with an injective coloring of Fk using χi(H) + 1 colors, and hence 
χi(Fk) ∈ {χi(H), χi(H) + 1}.

Subcase 2.1. χi(G) > dG(v).
Let χi(H) = dH(v) + 1. Assume g1 is an extension of g that respectively 

assigns dG(v) + 1, . . . , χi(G) to V1, . . . , Vχi(G)−dG(v). We then give at most 
χi(H) − χi(G) + dG(v) new colors to Vχi(G)−dG(v)+1, . . . , VdH (v)+1 \ {v} (trivi-
ally, VdH (v)+1 \ {v} does not receive any color if VdH (v)+1 = {v}). This results 
in an injective coloring of Fk with at most dG(v) + dH(v) + 1 colors. Therefore, 
χi(Fk) ∈ {dG(v) + dH(v), dG(v) + dH(v) + 1}.

Let χi(H)> dH(v) + 1. Consider now that g2 extends g1 by giv-
ing dH(v) + 1−χi(G) + dG(v) new colors to Vχi(G)−dG(v)+1,
. . . , VdH (v)+1 \ {v} (note that VdH (v)+1 \ {v} does not receive any color if 
VdH (v)+1 = {v}). In such a situation, ε open packings in H have not received col-
ors under g2. If ε < dG(v), then we assign ε colors from {2, . . . , dG(v)} to the 
rest of open packings in H. This defines an injective coloring of Fk with at most 
dG(v) + dH(v) + 1 colors. Hence, χi(Fk) ∈ {dG(v) + dH(v), dG(v) + dH(v) + 1}. 
So, we let ε ≥ dG(v). In this situation, we extend g2 by respectively assigning the col-
ors 2, . . . , dG(v) to VdH (v)+2, . . . , VdG(v)+dH (v), as well as, χi(H) − dG(v) − dH(v) 
new colors to the rest of open packings in H. This leads to the existence of an injective 
coloring of Fk with at most χi(H) + 1 colors. Thus, χi(Fk) ∈ {χi(H), χi(H) + 1}. 
This completes the proof. � □

Altogether, Lemmas 4.1–4.4 imply that

	 χi(Fk) ∈
{

χi(G), χi(H), χi(G) + 1, χi(H) + 1, dG(vk) + dH(v), dG(vk) + dH(v) + 1
}
� (4)

for each k ∈ [n] and any graphs G and H with vk ∈ V (H).
For every k ∈ [n], by renaming the colors assigned to V (Hk) \ {vk} if neces-

sary, we may assume that the optimal injective coloring of Fk uses the colors from 
[χi(Fk)]. Recall that such an injective coloring uses the colors from [χi(G)] in G.

We observe that V (G ◦v H) =
∪n

k=1 V (Fk) and that V (Fi) ∩ V (Fj) = V (G) 
for every distinct i, j ∈ [n]. Assume in the rest that F ∈ {F1, . . . , Fn} has the prop-
erty that

	
χi(F ) = max

k∈[n]
{χi(Fk)}.

With these notations in mind, we prove the following simple but useful lemma.

Lemma 4.5 	
χi(F) ∈

{
χi(G), χi(H ), χi(G) + 1 , χi(H ) + 1 , ∆(G) + dH (v), ∆(G) + dH (v) + 1

}
.

Proof  Since F = Fk for some k ∈ [n], we have
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	χi(F ) ∈
{

χi(G), χi(H), χi(G) + 1, χi(H) + 1, dG(vk) + dH(v), dG(vk) + dH(v) + 1
}

.

by (4). Moreover, for each vertex vj  in G of maximum degree, (4) implies that

	χi(Fj) ∈
{

χi(G), χi(H), χi(G) + 1, χi(H) + 1, ∆(G) + dH(v), ∆(G) + dH(v) + 1
}

= M∆.

Suppose to the contrary that χi(F ) /∈M∆. This necessarily implies that χi(F ) ≥
χi(G) + 2 and that χi(F ) ≥ χi(H) + 2. If χi(F )= dG(vk) + dH(v), then 
dG(vk) + dH(v)= χi(F ) ≥χi(Fj) ≥∆(G) + dH(v). This necessarily implies 
that dG(vk) = ∆(G), contradicting the supposition χi(F ) /∈ M∆. Therefore, 
χi(F )= dG(vk)+dH(v) + 1. Similarly, we have dG(vk)+dH(v) + 1= χi(F ) ≥
χi(Fj) ≥∆(G) + dH(v). Hence, dG(vk) + 1 ∈ {∆(G),∆(G) + 1}, contradicting 
χi(F ) /∈ M∆. So, the statement of the lemma holds. � □

We are now in a position to prove the main result of this section.

Theorem 4.6  For any graph G and any graph H with root v ∈ V (H ),

	χi(G ◦v H) ∈
{

χi(G), χi(H), χi(G) + 1, χi(H) + 1, ∆(G) + dH(v), ∆(G) + dH(v) + 1
}

.

Proof  Note that χi(G ◦v H) ≥ χi(F ) as F = Fk is a subgraph of G ◦v H . Let fj  
be a χi(Fj)-coloring for each j ∈ [n], as constructed along the proofs of Lemmas 
4.1–4.4. We now define f on V (G ◦v H), as an extension of g, by f(x) = fj(x) when 
x ∈ V (Fj). Notice that f is well-defined because fi(x) = fj(x) for each x ∈ V (G) 
and every distinct i, j ∈ [n].

Suppose to the contrary that there exist distinct vertices x, y, z ∈ V (G ◦v H) 
such that y, z ∈ NG◦vH(x) and f(y) = f(z). Since the restrictions of f to V(G) and 
V (Hj), are injective colorings for each j ∈ [n], it follows that neither “y, z ∈ V (G)
" nor “y, z ∈ V (Hj) for some j ∈ [n]" happens. So, without loss of generality, we 
may assume that z ∈ V (G) and y ∈ V (Hj) for some j ∈ [n]. By the structure, this 
necessarily implies that x = v = vj . This contradicts the fact that fj  is an injective 
coloring of Fj . So, we deduce that f is an injective coloring of G ◦v H .

Recall that for every j ∈ [n], fj  assigns the colors in [χi(Fj)] so as to injec-
tively color Fj . Due to this fact, we observe that f assigns χi(F ) colors to 
V (G ◦v H), and hence χi(G ◦v H) ≤ χi(F ). This leads to the desired equality 
χi(G ◦v H) = χi(F ) ∈ {χi(G), χi(H), χi(G) + 1, χi(H) + 1, ∆(G) + dH(v), ∆(G) + dH(v) + 1} 
by Lemma 4.5. � □

It can be readily seen that the six possible values for χi(G ◦v H) given in Theo-
rem 4.6 can indeed be presented in the following way.

Corollary 4.7  For any graph G and any graph H with root v ∈ V (H ),

	max {χi(G), χi(H), ∆(G) + dH(v)} ≤ χi(G ◦v H) ≤ max {χi(G), χi(H), ∆(G) + dH(v)} + 1.
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In what follows, we show that χi(G ◦v H) can indeed reach each of the six val-
ues appearing in Theorem 4.6, depending on our choice for G and H. Assume first 
that G ∼= Kn on n ≥ 3 vertices and let H be obtained from Km, with m ≥ 3, by 
joining a new vertex v to only one vertex of Km. It is then readily checked that 
χi(G ◦v H) = n = χi(G) if n ≥ m, and that χi(G ◦v H) = m = χi(H) if 
m > n. Let G ∼= K1,a and H ∼= K1,b for some integers a, b ≥ 1. It is then clear 
that χi(G ◦v H) = a + b = ∆(G) + dH(v), in which v is the center of H. This in 
particular shows that χi(G ◦v H) = a + b = χi(G) + 1 when b = 1. Let G ∼= C4n 
and H ∼= Km for some integers n ≥ 1 and m ≥ 3. Recall that χi(C4n) = 2. We 
then have χi(G ◦v H) = m + 1 = χi(H) + 1. Finally, let G ∼= Kn and H ∼= Km 
for some integers m, n ≥ 3, in which v is any vertex of Km. It is easy to see that 
χi(G ◦v H) = n + m − 1 = ∆(G) + dH(v) + 1.

4.1  Corona Products Viewed as Rooted Products

Let G and H be graphs where V (G) = {v1, . . . , vn}. The corona product G ⊙ H  of 
the graphs G and H is obtained from the disjoint union of G and n disjoint copies of H, 
say H1, . . . , Hn, such that vi ∈ V (G) is adjacent to all vertices of Hi for each i ∈ [n]. 
Recall that the join of graphs G and H, written G ∨ H , is a graph obtained from the 
disjoint union G and H by adding the edges {gh | g ∈ V (G) and h ∈ V (H)}.

As an immediate consequence of Theorem 4.6, we obtain a related result for the 
injective chromatic number of corona product graphs given in [32]. To do so, we 
need some routine observations. Let G and H have no isolated vertices. Moreover, 
we may assume that they are connected. We observe that G ⊙ H  is isomorphic to 
G ◦v (K1 ∨ H), in which the root v is the unique vertex of K1. Due to this and 
the fact that χi(K1 ∨ H) = |V (H)| + 1 = dK1∨H(v) + 1, Theorem 4.6 implies that 
χi(G ⊙ H) belongs to the set

	
{

χi(G), |V (H)| + 1, χi(G) + 1, |V (H)| + 2, ∆(G) + |V (H)|, ∆(G) + |V (H)| + 1}.� (5)

On the other hand, it is a routine matter to see that χi(K2 ⊙ H) = |V (H)| + 1
= ∆(K2) + |V (H)|. In view of this, we may assume that ∆(G) ≥ 2. Since 
χi(G ⊙ H) ≥ ∆(G ⊙ H) = ∆(G) + |V (H)|, it follows that |V (H)| + 1 can be 
excluded from the set in (5). By a similar fashion, |V (H)| + 2 can also be excluded 
when ∆(G) ≥ 2.

We observe, in view of Lemmas 4.1–4.4, that the equality χi(G ⊙ H) = χi(G) + 1 
may only occur in Lemma 4.4 (note that h(v) /∈ h

(
NK1∨H(v)

)
, for each χi(K1 ∨ H)

-function h, since H has no isolated vertices). Suppose now that χi(G ⊙ H) = χi(G) + 1. 
By the proof of Lemma 4.4, it only happens when χi(K1 ∨ H) > |V (H)| + 1, which 
is a contradiction.

Corollary 4.8  ( [32]) For any graphs G and H with no isolated vertices,

χi(G ⊙ H ) ∈
{

χi(G), |V (H )| + ∆(G), |V (H )| + ∆(G) + 1}.
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5  Kneser Graphs

For positive integers n and r, where n ≥ 2r, the Kneser graph K(n, r) has the r-subsets 
of an n-set as its vertices and two vertices are adjacent in K(n, r) if the corresponding 
sets are disjoint. Kneser graphs are among the most studied classes of graphs, since 
the two classical results concerning their independence and chromatic numbers were 
proved roughly half a century ago [11, 26].

Given a graph G, a set P ⊆ V (G) is a 2-packing in G if for any two distinct verti-
ces x, y ∈ P , NG[x] ∩ NG[y] = ∅. The maximum cardinality of a 2-packing in G is 
the 2-packing number of G, denoted by ρ2(G). We also recall the definition of 2-dis-
tance coloring of graphs, initiated back in 1969 in [21, 22]. A 2-distance coloring is 
a restricted version of a proper coloring in which two vertices are allowed to receive 
the same color only if they are at distance greater than 2. The minimum number of 
colors for which there exists a 2-distance coloring of G is the 2-distance chromatic 
number of G, denoted by χ2(G). Clearly, color classes in a 2-distance coloring are 
2-packings.

In two recent papers [2, 9], the 2-packing numbers of Kneser graphs were stud-
ied, and we will use some results from these papers for finding the open packing 
numbers and discussing their perfect injective colorability. It is well known and easy 
to see that diam(K(n, r)) = 2 if and only if n ≥ 3r − 1. This immediately gives 
ρ2(K(n, r)) = 1 if and only if n ≥ 3r − 1. Now, we invoke the result about perfect 
injectively colorable graphs with diameter 2 from [4].

Proposition 5.1  ( [4, Proposition 13]) If G is a graph with diam(G) = 2 , then G is a 
perfect injectively colorable graph if and only if either each edge of G lies in a trian-
gle, or there exists a perfect matching M in G such that no edge of M lies in a triangle.

If n ≥ 3r, then every edge of K(n, r) clearly lies in a triangle, hence by Proposi-
tion 5.1, it is a perfect injectively colorable graph. Now, if n = 3r − 1, we claim that 
K(n, r) has a perfect matching. Indeed, one can see this by using the recent result from 
[29] that all Kneser graphs with the sole exception of the Petersen graph are Ham-

iltonian, and the fact that 
(

3r − 1
r

)
 is an even number. (The latter claim follows 

directly from the fact that 
(

n
k

)
= n−k+1

k

(
n

k − 1

)
 for any k ∈ [n].) Thus, since 

K(n, r) has no triangles, we infer by Proposition 5.1 again, that K(n, r) is a perfect 
injectively colorable graph. We state the obtained remarks as follows.

Observation 5.2  If n ≥ 3r − 1 , then K(n, r) is a perfect injectively colorable graph.

In [9], the authors studied the Kneser graphs K(n, r) with n = 3r − 2, which are 
in a sense the closest to diameter-2 Kneser graphs. They obtained the exact values of 
the 2-packing number for all these Kneser graphs as follows:
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ρ2

(
K(3r − 2, r)

)
=

{ 7 if r = 3,
5 if r = 4,
3 if r ≥ 5.

� (6)

Let S be a maximum open packing of K(3r − 2, r), and assume that S is not a 2-packing. 
Therefore, there exist vertices u and v in S, which are adjacent in K(3r − 2, r). With-
out loss of generality, let u = [r] and v = {r + 1, . . . , 2r}. Since ρ2(G) ≤ ρo(G) for 
all graphs G, the equality (6) implies that there exists a vertex w ∈ S \ {u, v}. Clearly, 
d(w, u) > 2 and (w, v) > 2. In particular, w ∩ u ̸= ∅. Suppose that |w ∩ u| ≥ 2. 
Then |w ∪ u| ≤ 2r − 2. Since n = 3r − 2, we infer that there exists a vertex x which 
is adjacent to both w and u, a contradiction to (w, u) > 2. Therefore, |w ∩ u| = 1, and 
by a similar argument |w ∩ v| = 1. This yields {2r + 1, . . . , 3r − 2} ⊂ w. Hence, if 
w′ is any other vertex in S, we infer that |w ∩ w′| ≥ r − 2. In the case r > 3, this 
gives |w ∩ w′| ≥ 2 implying |w ∪ w′| ≤ 2r − 2, yet this yields that w and w′ have 
a common neighbor, which is impossible. We have thus shown that if S is an open 
packing in K(3r − 2, r), with r > 3, which is not a 2-packing in K(3r − 2, r), then 
|S| ≤ 3. Therefore, using also (6), we infer ρo

(
K(3r − 2, r)

)
= ρ2

(
K(3r − 2, r)

)
 

as soon as r > 3.    
If r = 3, then ρo

(
K(3r − 2, r)

)
≥ 7 by (6). Notice that every vertex in S \ {u, v} 

is of the form w = {a, b, 7}, in which a ∈ u and b ∈ v. Moreover, |w ∩ w′| = 1 for 
any two vertices w, w′ ∈ S \ {u, v} as (w, w′) > 2. Hence, we can add at most three 
vertices to u = {1, 2, 3} and v = {4, 5, 6} in order to get an open packing. This con-
tradicts the fact that ρo

(
K(3r − 2, r)

)
≥ 7. In fact, we have proved that every maxi-

mum open packing in K(3r − 2, r) is a 2-packing. In particular, we have

	
ρo

(
K(3r − 2, r)

)
=

{ 7 if r = 3,
5 if r = 4,
3 if r ≥ 5.

� (7)

by the equality (6).
Note that Observation 5.2 is in a sense best possible as there exists a Kneser graph 

K(n, r) with n = 3r − 2, for some positive integer r, which is not perfect injectively 
colorable.

Proposition 5.3  Kneser graph K(7, 3) is not perfect injectively colorable.

Proof  Note that a maximum 2-packing P in K(7, 3) consists of seven 3-subsets of the 
set [7], where each i ∈ [7] appears in exactly three of these seven subsets. Thus, P 
corresponds to the Fano plane.

Suppose to the contrary that K(7, 3) admits an injective coloring such that each 
color class is a maximum open packing. Hence, all color classes are of cardinality 
7 by (7), and by the remark preceding the proposition, we infer that every color 
class is a 2-packing of cardinality 7. Therefore, there exists a 2-distance coloring of 
K(7, 3) with 5 colors such that each color class has 7 vertices. In particular, we infer 
χ2(K(7, 3)) = 5. This is a contradiction due to the fact that one cannot partition 
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V
(
K(7, 3)

)
 into five Fano planes, which goes back to Cayley [6]. Therefore, K(7, 3) 

is not a perfect injectively colorable graph. � □
We remark that the exact value χ2(K(7, 3)) = 6 was proved in [20].

6  Concluding Remarks

Edge clique covers have been extensively investigated so far, see the survey [33]. 
On the other hand, the concept of sparse edge clique covers, which turned out to be 
very useful for our purpose, seems to be a new notion. We believe that such a notion 
deserves an independent interest.

In Sect.  3, we have briefly considered the generalized Sierpiński graphs. The 
results presented indicate that an investigation of the injective chromatic number 
of generalized Sierpiński graphs deserves attention, in particular describing those 
that are perfect injectively colorable. Notice that this task also requires the study of 
the open packing number of generalized Sierpiński graphs. In particular, in relation 
with Proposition 3.3, we strongly suspect that for any n ≥ 2 and k ≥ 5, we have 
χi(Sn

Ck
) = 3.

In Sect. 4, we have considered the rooted product graphs that can be seen as an 
instance of the operation called Sierpiński product (see [25]). In this sense, it is of 
interest to continue investigating the injective chromatic number of other Sierpiński 
products. In addition, the open packing number of such graphs is worthy of attention.

In Sect. 5, we have shown that Kneser graphs K(n, r) are perfect injectively col-
orable as soon as n ≥ 3r − 1, and that K(7, 3) is not a perfect injectively colorable 
graph. The latter graph is the only Kneser graph for which we know that it is not 
perfect injectively colorable, and it would be interesting to determine for which r > 3 
graphs K(3r − 2, r) are (not) perfect injectively colorable. The same question can 
be posed for the odd graphs (Kneser graphs of the form K(2r + 1, r)) and Kneser 
graphs in general.
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