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Abstract
The cut method has been proved to be extremely useful in chemical graph theory. In
this paper the cut method is extended to hypergraphs. More precisely, the method is
developed for theWiener index of k-uniform partial cube-hypergraphs. The method is
applied to cube-hypergraphs and hypertrees. Extensions of the method to hypergraphs
arising in chemistry which are not necessary k-uniform and/or not necessary linear
are also developed.

Keywords Hypergraph · Wiener index · Cut method · Partial cube-hypergraph ·
Hypertree · Phenylene · Clar structure

1 Introduction

The cut method, whose standard form was introduced in 1995 in [19], has had a
remarkable response in chemical graph theory. The method originally designed for
the Wiener index of partial cubes was later developed for many other topological
indices and has undergonemany generalizations tomore general situations than partial
cubes. This applies in itself to many applications in mathematical chemistry where
topological indices play important role. The basic idea is to first find a partition of the
edges of a (molecular) graph and by removing parts of this partition construct smaller
(weighted) graphs, called quotient graphs. After that, we infer back to the original
graph from the quotient graphs. The state of research on the cut method up to 2015
is summarized in the survey article [18]. The method is still the subject of ongoing
research, see [1, 3, 4, 6, 11, 31, 32] as well as references therein.
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Hypergraphs form a structure that greatly generalizes the concept of a graph. In
chemical graph theory, the standard method of representing molecules is by means of
associated (chemical) graphs. However, some molecules are more complicated than
others and sometimes it is more convenient and more adequate to represent them as
hypergraphs, see [14, 21] for some chemical problems dealing with hypergraph the-
ory. As a result, various problems of importance in mathematical chemistry have been
investigated on hypergraphs, including spectral aspects [2, 24, 29] and different topo-
logical indices [33, 34]. Very recently, while investigating molecular representations
in drug design, a hypergraph-based topological framework was designed to character-
ize molecular structures and interactions at atomic level [26]. Interestingly, in the very
same year when the cut method was introduced, Burosch and Ceccherini published
the paper [7] on isometric embeddings into hypergraphs, which is the second main
source for the present paper.

The Wiener index is one of the most researched topics in the whole field of chem-
ical graph theory. As already mentioned, the cut method was first designed for the
Wiener index of graphs. In the last few years, the Wiener index has received a lot
of attention also on hypergraphs. In [30] the authors investigate, among others, 3-
uniform paths and lower bounds on the Wiener index of k-uniform hypergraphs. In
[12, 22] hypergraphs are constructed from trees and their Wiener index investigated.
The effect of some transformations on the Wiener index of a hypergraph and extremal
hypertrees with respect to theWiener index is studied in [25]. The k-uniform unicyclic
hypergraphs with maximum/minimum and second maximum/minimumWiener index
are determined in [35], while the Wiener index of some composite hypergraphs and
sunflower hypergraphs is the topic of [5]. Finally, in [8] the concept of the k-Wiener
index is introduced and studied on the so called k-plex hypergraphs, while in [36] the
maximum possible Wiener index of a connected n-vertex k-uniform hypergraph has
been determined and the extremal graphs characterized.

Weproceed as follows. In the next sectionwe introduce themathematicalmachinery
on hypergraphs needed latter on. In particular, partial cube-hypergraphs are defined
and their characterizations recalled. In Sect. 3wedevelop the cutmethod for theWiener
index of a hypergraph. In the last section we provide applications and extensions of the
cut method including cube-hypergraphs, hypertrees, and the so called linear phenylene
hypergraphs.

2 Preliminaries

In this section, we set the scene for the hypergraph cut method. In the first part, we
introduce the necessary concepts about hypergraphs, focusing on distance and their
Cartesian products. We then introduce partial cube-hypergraphs on which the cut
method will operate and recall two of their characterizations.
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2.1 Hypergraphs

A hypergraph H = (V (H), E(H)) has the vertex set V (H) and the edge set E(H),
where each edge e ∈ E(H) is a non-empty subset of V (H). H is k-uniform if the
size of every edge e ∈ E(H) is k and is linear if |e ∩ e′| ≤ 1 for every e, e′ ∈ E(H),
e �= e′. Let H and H ′ be hypergraphs. If V (H ′) ⊆ V (H) and E(H ′) ⊆ E(H) we
say that H ′ ⊆ H is a subhypergraph of H . Clearly, if H is k-uniform, then H ′ is also
k-uniform. If F ⊆ E(H), then H − F denotes the subhypergraph of H obtained from
H by removing all the edges from F .

Let u and v be different vertices of H . A u, v-path of length s ≥ 1 in H is a
sequence u0 = u, e1, u1, . . . , es, us = v, where ui are pairwise different vertices, ei
are pairwise different edges, and {ui−1, ui } ⊆ ei for i ∈ [s] = {1, . . . , s}. The distance
dH (u, v) between vertices u and v is the length of a shortest u, v-path. We also set
dH (u, u) = 0. A subhypergraph H ′ ⊆ H is isometric if dH ′(u, v) = dH (u, v) holds
for all u, v ∈ V (H ′). We further say that a set of vertices X ⊆ V (H) is convex in H if
for every u, v ∈ X and every z ∈ V (H), the equality dH (x, z)+dH (z, y) = dH (x, y)
implies z ∈ X . The Wiener index of a hypergraph H is defined as the sum of the
distances between all unordered pairs of vertices of H , that is,

W (H) =
∑

{u,v}∈(V (H)
2 )

dH (u, v).

The Cartesian product H � H ′ of hypergraphs H and H ′ is a hypergraph with the
vertex set V (H) × V (H ′) and the edge set

{{u} × e′ : u ∈ V (H), e′ ∈ E(H ′)
} ∪ {

e × {u′} : e ∈ E(H), u′ ∈ V (H ′)
}
.

Just as Cartesian products of graphs, Cartesian products of hypergraphs have several
nice properties, cf [15, 16]. In particular, if H and H ′ are k-uniform hypergraphs,
then H � H ′ is also k-uniform, and the Cartesian product operation is associative. For
k ≥ 2, let Qk denote the hypergraph with k vertices and a single edge containing all
the vertices. For n ≥ 1, the k-uniform n-cube Qn

k is the Cartesian product of k copies
of Qk . See Fig. 1where Q1

3, Q2
3, and Q3

3 are presented.
The k-uniform n-cube Qn

k can be equivalently described as follows. Its vertex set
is {0, 1, . . . , k − 1}n and an edge consists of all n-tuples which coincide on n − 1
coordinates while the remaining coordinate ranges over {0, 1, . . . , k − 1}. It follows
that |V (Qn

k )| = kn and |E(Qn
k )| = n · kn−1. Note that Qn

2 is a 2-uniform hypergraph
which is as a graph known as the n-cube.

2.2 Partial cube-hypergraphs

A k-uniform hypergraph H is a partial cube-hypergraph if H is an isometric
subhypergraph of some Qn

k .
A hypergraph H is edge-gated if for any edge e = {a1, . . . , ak} ∈ E(H) and any

vertex x ∈ V (H) there exists j ∈ [k] such that dH (x, ai ) = dH (x, a j )+1 for i ∈ [k],
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Fig. 1 Cube-hypergraphs

i �= j . We also say that a j is the gate of x in e. Note that if x ∈ e then x is its own
gate in e.

It is easy to see that in 2-uniform hypergraphs (alias graphs) H is edge-gated if and
only if H is bipartite. From this reason, edge-gated hypergraphs were named bipartite
hypergraphs in [7], where this concept was originally introduced. However, since there
are numerous ways how bipartite graphs can be extended to hypergraphs we decided
to change the terminology. The present terminology also mimics the established graph
terminology, cf. [10].

It is easy to see that if hypergraphs H and H ′ are both edge-gated then so is H � H ′.
Also, if H ′ is a connected isometric subgraph of an edge-gated hypergraph H , then H ′
is edge-gated as well. It follows that partial cube-hypergraphs and hence in particular
k-uniform n-cubes are edge-gated.

If x and y are two (adjacent) vertices of a hypergraph H , then let H(x, y) denote
the set of vertices that are closer to x than to y, that is,

H(x, y) = {z ∈ V (H) : dH (z, x) < dH (z, y)}.

Further, if e = {a1, . . . , ak} ∈ E(H), then let

H(ai , e) = {z ∈ V (H) : dH (z, ai ) < dH (z, a j ), j �= i}.

In addition, set

He = {H(a1, e), . . . , H(ak, e)}.

Let now H be an edge-gated hypergraph and e = {a1, . . . , ak} ∈ E(H). Since
ai ∈ H(ai , e) we have the following important facts.
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Lemma 2.1 [7, Lemma 1(ii), Lemma 2] If H is an edge-gated hypergraph and e =
{a1, . . . , ak} ∈ E(H), then the following statements hold.

(i) He is a partition of V (H).
(ii) If e′ ∈ E(H), then either |e′ ∩ H(ai , e)| = 1 for all i ∈ [k] or e′ ⊆ H(ai , e) for

some i ∈ [k].
We next recall the following, key definition from [7]. If H is a hypergraph, then the

binary relation � is defined on E(H) as follows:

e�e′ ≡ ∀A ∈ He : e′ ∩ A �= ∅.

Note first that for any edge e ∈ E(H) we have e�e. If H is edge-gated, then � is also
symmetric by Lemma 2.1(ii). Moreover, we recall the following important fact.

Lemma 2.2 [7, Lemma 3] If H is an edge-gated hypergraph and for every e ∈ E(H),
every A ∈ He is convex, then f � f ′ if and only if H f = H f ′ .

For hypergraphs which fulfil the conditions of Lemma 2.2, the relation � is an
equivalence relation where the transitivity is guaranteed by Lemma 2.2. Partial
cube-hypergraphs which are k-uniform can now be characterized as follows.

Theorem 2.3 [7, Theorem 1] A k-uniform hypergraph H is a partial cube-hypergraph
if and only if H is edge-gated and for every e ∈ E(H), every A ∈ He is convex.

Theorem 2.4 [7, Theorem 2] A k-uniform hypergraph H is a partial cube-hypergraph
if and only if H is edge-gated and � is transitive.

3 Cut method for hypergraphs

We now have all the tools needed for the main theorem of this article. But before we
can formulate it, we need two additional auxiliary results and the following concepts.

If H is a connected hypergraph, then F ⊆ E(H) is a cut if the edges from F are
pairwise disjoint and H − F consists of at least two components. We further say that
the cut F is a convex cut if the vertex set of each component of H − F is a convex set.

Let H be a k-uniform partial cube-hypergraph. Theorems 2.3 and 2.4 imply that
the � relation is an equivalence relation on E(H). We will denote its equivalence
classes by F1, . . . , Fm . In addition, if e ∈ E(H), then the equivalence class with the
representative e will also be denoted by Fe, that is, Fe = { f ∈ E(H) e� f }.

From Lemma 2.2 we infer that the hypergraph H − Fe consists of components
whose vertex sets are precisely the sets from He. This yields the following important
fact.

Proposition 3.1 Let H be k-uniform partial cube-hypergraph and let e ∈ E(H). Then
H − Fe has exactly k components.

We also need the following auxiliary result.

Proposition 3.2 Let H be k-uniform partial cube-hypergraph and let e ∈ E(H). If u
and v are vertices from different components of H − Fe, then every shortest u, v-path
contains exactly one edge from Fe.

123



Journal of Mathematical Chemistry (2023) 61:1592–1603 1597

Proof By Proposition 3.1, H − Fe contains k components which we denote by
H1, . . . Hk . We may without loss of generality assume that u ∈ H1 and v ∈ Hk .
Furthermore, let Fe = {e1, . . . , e�}. By Lemma 2.2(ii) the vertices ui and vi defined
as

{ui } = V (H1) ∩ ei and {vi } = V (Hk) ∩ ei

are well-defined for every i ∈ [�]. From the edge-gated property of H it follows that
dH (ui , v) = dH (vi , v) + 1. Since every u, v-path contains at least one of the vertices
ui , every shortest u, v-path contains exactly one of the edges ei , i ∈ [�]. 
�

Let H be a k-uniform partial cube-hypergraph and let F1, . . . , Fm be its �-classes.
By Proposition 3.1, H − Fi has k components, we denote them in the sequel by
H1(Fi ), . . . , Hk(Fi ). Set in addition

n j (Fi ) = |V (Hj (Fi ))|, j ∈ [k], i ∈ [m]. (1)

The cut method for hypergraphs now reads as follows.

Theorem 3.3 If H is a k-uniform partial cube-hypergraph, F1, . . . , Fm are its �-
classes, and integers n j (Fi ) are defined as in (1), then

W (H) =
m∑

i=1

∑

{ j, j ′}∈([k]
2 )

n j (Fi ) · n j ′(Fi ).

Proof Since F1, . . . , Fm form a partition of E(H), the idea is to consider the contribu-
tion of each edge to W (H). Consider arbitrary vertices u and v of H and an arbitrary
u, v-shortest path P . By Proposition 3.2, edges from P pairwise lie in different �-
classes of E(H). If e is an edge of P , then the contribution of Fe to the distance
dH (u, v) is exactly 1. Consequently, the contribution of Fe to W (H) is exactly

∑

{ j, j ′}∈([k]
2 )

n j (Fe) · n j ′(Fe).

Summing over all �-classes the result follows. 
�

4 Some applications

In this section we give some examples and applications of Theorem 3.3.

4.1 Cube-hypergraphs

Cube-hypergraphs are partial cube-hypergraphs by definition. Hence Theorem 3.3
applies to them and leads to the following result.
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Proposition 4.1 If n ≥ 1 and k ≥ 2, then

W (Qn
k ) = n

(
k

2

)
k2(n−1).

Proof To apply Theorem 3.3, we first determine the �-classes of Qn
k . Let an edge

e ∈ E(Qn
k ) be of the form {ai = (i, 0, . . . , 0) i ∈ {0, 1, . . . , k − 1}}. Then H(e, ai )

contains the vertices (i, v2, . . . , vn), where (v2, . . . , vn) ∈ {0, 1, . . . , k − 1}n−1. By
Theorem 2.3, sets H(e, ai ) are convex and the subhypergraphs induced by them are
isomorphic toQn−1

k . Then the�-class Fe = F1 contains all the edges whose last n−1
coordinates are fixed and the first coordinate ranges from 0 to k − 1. Using the same
reasoning we get that every �-class is of the above form. ThereforeQn

k has �-classes
F1, . . . , Fn whereQn

k −Fi has components which are isomorphic toQn−1
k for i ∈ [n].

It then follows that n j (Fi ) = kn−1 for every j ∈ [k] and i ∈ [n]. From Theorem 3.3
it follows that

W (Qn
k ) =

n∑

i=1

∑

{ j, j ′}∈([k]
2 )

kn−1 · kn−1 = n

(
k

2

)
k2(n−1),

which we wanted to show. 
�
Setting k = 2, the hypergraphQn

2 is the n-cube graph Qn and Proposition 4.1 implies
a well-known result W (Qn) = n4n−1, which can in particular be deduced from the
formula for the Wiener index of Cartesian products [13].

4.2 Hypertrees

A hypergraph T is a hypertree if it is connected, linear, and has no cycles. Here a
cycle in a hypergraph is defined just as we defined a path except that the first and the
last vertex from the corresponding sequence coincide. A hypertree which is linear and
k-uniform is a partial cube-hypergraph where every edge e is it own �-class. Hence
Theorem 3.3 as a special case yields the following result.

Corollary 4.2 If T is a k-uniform hypertree, then

W (T ) =
∑

e∈E(T )

∑

{ j, j ′}∈([k]
2 )

n j (e) · n j ′(e),

where n j (e) = n j (Fe).

Actually Corollary 4.2 holds also if we do not require that a hypertree is uniform.
For this sake one just needs to reformulate Proposition 3.1 such that its conclusion
asserts that for any edge e ∈ E(T ), the hypergraph T − e has exactly |e| components.
Moreover the second key auxiliary result, Proposition 3.2, also holds by the fact
that in a hypertree there is a unique shortest path between two vertices. In this way
Corollary 4.2 extends to
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Fig. 2 Hypertree T1

Theorem 4.3 [28, Theorem 3] If T is a hypertree, then

W (T ) =
∑

e∈E(T )

∑

{ j, j ′}∈([|e|]
2 )

n j (e) · n j ′(e).

For an example consider a hypertree T1 from Fig. 2 . The hypertree T1 has seven
vertices and four edges. We now apply Theorem 4.3. For instance consider the edge
e = {a1, a2, a3} as shown in the figure. Then n1(e) = 2, n2(e) = 1 and n3(e) = 4.
Therefore the contribution of e to the formula of Theorem 4.3 is 2 · 1 + 1 · 4 + 2 · 4.
Doing similar computations for the other three edges (see the bottom line of Fig. 2)
we get

W (T1) = 1 · 6 + (2 · 1 + 1 · 4 + 2 · 4) + (5 · 1 + 5 · 1 + 1 · 1) + 6 · 1 = 37.

A limitation of Theorem 4.3 is that it only works for linear hypertrees. On the other
hand, there exist many different definitions of acyclicity in hypergraphs, where some
of them also allow for non-linear hypergraphs. See for example [17]. We next show
with an example that the main idea of Theorem 4.3 can sometimes be generalized to
such cases as well.

Define the linear phenylene hypergraphs LPn , n ≥ 2, as follows. (For some recent
studies of phenylenes in mathematical chemistry see [9, 20, 23, 27].) LPn has vertex
set [6n]. It has 2n − 1 hyperedges. The first n of them are of the form {6i + 1, 6i +
2, . . . , 6i +6} where i ∈ {0, 1, . . . , n−1}, and the remaining n−1 hyperedges edges
are of the form {6i + 5, 6i + 6, 6i + 7, 6i + 8}, where i ∈ {0, 1, . . . , n − 2}. In Fig. 3
the hypergraph LP4 is drawn.

It is easy to see that every edge e ∈ E(LPn) is a convex cut with the following
property. Taking any two vertices u, v from different components of LPn − e, every
shortest u, v-path contains e (exactly once). Note, however, that the two vertices which
lie in the intersection of two hyperedges are not separated by any of the cuts. But it
is clear that the distance between such two vertices is 1. Together there are 2(n − 1)
such pairs and therefore this number needs to be added to the Wiener index of LPn .
This is enough to calculate the Wiener index of LPn using cut method as follows.
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Fig. 3 Hypergraph LP4

Removing an edge of the form {6i + 1, 6i + 2, . . . , 6i + 6}, where i ∈ [n − 2],
produces four componentswhere two of themcontain a single vertex and the remaining
two have 6i + 2 and 6(n − i − 1) + 2 vertices, respectively. The cases when i = 0
or i = n − 1 give five components each, four of them contain a single vertex, while
the remaining one contains 6n − 4 vertices. On the other hand, removing an edge of
the form {6i + 5, 6i + 6, 6i + 7, 6i + 8} produces two components with 6(i + 1) and
6(n − i − 1) vertices, respectively. Therefore, the contribution of all these cuts to the
Wiener index of LPn for n > 1 is

n−2∑

i=1

[2(6i + 2 + 6(n − i − 1) + 2) + (6i + 2)(6n − 6i − 4) + 1]

+ 2

((
4

2

)
+ 4(6n − 4)

)

+
n−2∑

i=0

[6(i + 1) · 6(n − i − 1)] = 12n3 + 6n2 − 5n + 2,

where the second line above comes from the contribution of the first hyperedge and
the last hyperedge containing six vertices. Adding to this expression the contribution
2(n − 1) from previous paragraph and performing a straightforward computation we
arrive to the following result.

Proposition 4.4 If n ≥ 2 then, W (LPn) = 12n3 + 6n2 − 3n.

4.3 More elaborate example

The cutmethod as developed in Sect. 3 assumes that a hypergraph is a k-uniformpartial
cube-hypergraph. In general this is a strong assumption. We have just demonstrated in
Sect. 4.2 that the method can be extended also when the hypergraph is not k-uniform
partial cube-hypergraph, provided that Propositions 3.1 and 3.2 remain valid. In the
subsequent example we further elaborate this idea on a mulecular hypergraph H of a
Clar structure which is shown in Fig. 4a and in [14, Fig. 3].

There are two different types of cuts in H . The cut of type I consists of the central
6-edge and three 2-edges that do not intersect it as can be seen in Fig. 4b. A cut of type
II consists of a non-central 6-edge and its opposite 2-edge as can be seen in Fig. 4c.
Both cuts are convex and also the conclusion of Proposition 3.2 holds. This, together
with the fact that E(H) partitions into one cut of type I and six cuts of type II, allows
us to use the cut method to calculate Wiener index of H as
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Fig. 4 Hypergraph H and its convex cuts

W (H) =
(
6

2

)
7 · 7 + 6

((
4

2

)
+ 4 · 7 + 4 · 31 + 7 · 31

)
= 2985.

Acknowledgements This work has been supported by the financial support from the Slovenian Research
Agency (research core funding P1-0297 and projects J1-2452 and N1-0285).

Funding Open access publishing supported by the Slovenian Research Agency and Central Technical
Library in Ljubljana.

Data availability Our manuscript has no associated data.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. S. Akhter, M. Imran, Z. Iqbal, Mostar indices of SiO2 nanostructures andMelem chain nanostructures.
Int. J. Quantum Chem. 121, e26520 (2021)

2. E. Andreotti, Spectra of hyperstars. Australas. J. Comb. 82, 74–94 (2022)
3. M. Arockiaraj, A.J. Shalini, Extended cut method for edge Wiener, Schultz and Gutman indices with

applications. MATCH Commun. Math. Comput. Chem. 76, 233–250 (2016)
4. M. Arockiaraj, D. Paul, S. Klavžar, J. Clement, S. Tigga, K. Balasubramanian, Relativistic topological

and spectral characteristics of zeolite SAS structures. J. Mol. Struct. 1270, 133854 (2022)
5. S. Ashraf, M. Imran, S.A.U.H. Bokhary, S. Akhter, The Wiener index, degree distance index and

Gutman index of composite hypergraphs and sunflower hypergraphs. Heliyon 8, e12382 (2022)

123

http://creativecommons.org/licenses/by/4.0/


1602 Journal of Mathematical Chemistry (2023) 61:1592–1603

6. S. Brezovnik, N. Tratnik, General cut method for computing Szeged-like topological indices with
applications to molecular graphs. Int. J. Quantum Chem. 121, e26530 (2021)

7. G. Burosch, P.V. Ceccherini, Isometric embeddings into cube-hypergraphs. Discrete Math. 137, 77–85
(1995)

8. Z. Che, k-Wiener index of a k-plex. J. Comb. Optim. 43, 65–78 (2022)
9. H. Chen, Q. Guo, Tutte polynomials of alternating polycyclic chains. J. Math. Chem. 57, 2248–2260

(2019)
10. C.J. Colbourn, C. Huybrechts, Fully gated graphs: recognition and convex operations. Discrete Math.

308, 5184–5195 (2008)
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