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A Comparison of the Schultz Molecular Topological Index with the Wiener Index
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The Schultz molecular topological index (MTI) is compared with the Wiener infléxdaf a molecular
graph. It is shown that,\W < MTI < 4um,W holds for any (connected) gragh with vmin and vmax
denoting the smallest and the largest valency, respectively, of the verti€eskadr molecular graphs these
bounds can be further improved. For instance, for benzenoid systems we have the folloWingMa|

< 6.93V. This implies thatW and MTI are linearly correlated not only in the case of acyclic molecules
(which is a previously known result) but also in the case of molecules with arbitrarily many cycles.

1. INTRODUCTION is found in the case of regular graphgmolecular graphs
of annulenes, fullerenes, and similar), for whigh= v, =
LetI" be a molecular graph dd vertices. The tholecular ... = vy = v; recall thaty = 2 for annulenes and = 3 for
topological indeX (MTI) of the graph I' introduced by fullerenes. Then MTI turns out to be a linear function of
SchultZ in 1989 is defined in the following wa¥? W
N MTI = 20W + »°N

MTI = MTI(I') = ) [V(A + D)]; . .
= A less obvious connection between MTI aWd was
discovered by Klein et dft They, namely, showed that if
HereA is theN x N adjacency matri¢ of T, D is theN x I' is a tree (i.e., ifl" is acyclic, i.e., if" is the molecular
N distance matri%* of I' andv = (v1, vy, ..., vn) is the 1x graph of an alkane) then the following relation holds:
N vector of the valencies (degrees) of the vertices of the
molecular grapi". Recall that the valency; of the vertex
i is the number of first neighbors of this vertex.
The (,j)th entry of the distance matri®, denoted byDj;,

is just the distance between the verticesandj, namely Generalizations of this result were also obtaited he fact
the length of a shortest path connectirandj. Recall that that in the case of alkanes MTI alfdare linearly correlated
molecular graphs are necessarily conneétedlherefore, ~ was verified by extensive numerical testig.
if T is a molecular graph, then for all valuesiaindj, 1 < In this paper we show that for arbitrary (polycyclic)
i,j < N, the quantityD; is well-defined, finite, and integer- ~ molecular graphs MTI can be estimated as

valued.
oW = MTI = W
The Wiener index(or Wiener numbér of a connected p

graphlI’ is equal to the sum of distances between all pairs of where a. and 8 are pertinently chosen constants. These

vertices ofT: bounds imply that MTI andV must have basically the same
dependence on molecular structure and that they must be
(at least roughly) linearly correlated within any class of

1 N N
W=WT) =~ D; chemical graph&°
2;; i grap

N
MTI =4 W+ Z(Ui)2 — N(N— 1)

. ) . L 2. GENERAL MOLECULAR GRAPHS
For details on the Wiener index, which is among the most

frequently employed molecular-structure-descriptors in chemi-  Recall? that MTI can be written as MT# M, + S where
cal graph theory, see the boéKksr the recent reviews®

After the main mathematical properties and chemical M, = ()
applications of the molecular topological index were 2 &'
established,”® one gradually became aware that MTI and
W are closely related. The most evident relation of this kind and

z
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TS 25 Tzs with N vertices
DL R LA L S N(N — 1)/2 < W < N(N? — 1)/6

Ls 25 128 we obtain

Figure 1. The correspondin; values ofGo. v N
, — M|y W< MTI <
The quantityS can be further expressed as N(N2 —1)/6 min
v,
2+ m_a)N

W
N(N — 1)72|“ma

1 N N 1 N N
1=1]= 1=1]=

NN NN ie.,

:‘Z”iZDu +_Z”iZDiJ’ 3v. v
241 5 25 2ymm[1 + v i'"l]Ws MTI < 2ym{1 +3 ”fxl W (3)
N N

= ZUiZDij Neglecting the term @,/(N> — 1) in the left-hand side
=1 |=

expression of (3) we arrive at the lower bound for MTI stated
in Theorem 1; it necessarily is strictly smaller than MTI.
The maximum possible value farmax is N — 1 and
thereforevma/(N — 1) < 1. This yields the upper bound
for MTI, stated in Theorem 1. BecauBiN — 1)/2 is just

where we have used the fact tHatis a symmetric matrix.
Setting D; = szleij we can express MTI also in the
following manner:

N N the Wiener index of the complete graph (which is a regular
MTI = Z(Ui)z + S oD, @ graph of degreemax= N — 1), equality between the upper
= i= bound and MTI occurs if (and only ify is the complete

i o . graph.
AsW=",5)L,D;, eq L implies that it is no more difficult to For molecular graph®mi, is usually equal to 1 or 2,
compute MTI tharW, provided the quantitieB; are known.  \whereagmais 3 or, exceptionally, 4. Bearing this in mind
In fact, the classical Dijkstra’s algorithm for finding the  and using (3) we easily obtain bounds for MTI, better than
shortest distancésbasically computes thBy's. . those given in Theorem 1. Hin, omax andN are known
Consider, for instance, the molecular gr&pjfrom Figure  (which is practically always the case), then we just have to
1, representing the carbon-atom skeleton of hexamethylpen-sypstitute them into formula (3). For instance, for the graph

tane, the most branched undecane isor@eil,s. Next to Go, Umin = 1, vmax= 4, andN = 11, resulting in
each vertex o065y the correspondin®; value is given. Then
by (1) we have MTIGo) = (8 + 3 x 4%) + 6 x 28+ 2 x 2.05W< MTI <11.2W

25+ 2 x 4 x 19+ 4 x 16 = 490. On the other han&

= 4W — N(N — 1) for acyclic graph$®'? Thus knowing Needless to say that these bounds hold for all molecular

thatW(Go) = 136, we can compute MT®Bp) also asM, + graphs with 11 vertices. Furthermore, M/.2s an upper

S=(8+3 x 49 + 4 x 136— 11 x 10 = 490. bound for MTI also for molecular graphs possessing more
In the following theorem we estimate the Schultz molec- than 11 vertices.

ular topological index in terms of the Wiener index for For special classes of chemical graphs the bounds for MTI

arbitrary connected graphs. can be made significantly narrower. We demonstrate this
Theorem 1. LetI be a connected graph. Then in the subsequent section on the case of benzenoid systems.
20 WM(T) < MTI(T) = 4v,, W(T) 3. BENZENOID SYSTEMS

wherevmin and vmaxdenote the smallest and largestiency, Benzenoid systemr benzenoid graphsare graphs
respectiely, of avertex of[. In addition, the equality on  Pertaining to the ngtwork constructed by arranging congruent
the right-hand side holds if and onlylifis a complete graph. regular hexagons in a plane, so that two hexagons are either

Proof. By definition we havesmn < i < vmaxfor all i = disjoint or have one edge in common. For more details on
1,2, ...N. Therefore from (1) we straightforwardly conclude this important and frequently encountered class of molecular
that graphs see the bodk.

Theorem 2. If T' is a benzenoid system then
2 2
v N+ 20 . W< MTI <o + 20, . W
min min ma)N max 4W(r) < MTI(F) < /IW(F)

with equality (on both sides) if and only If is a regular

graph (when, of COUrS@min = vma). Rewriting the above ~ Wherei =6 + %,6v/15 = 6.9295... _
inequalities as Proof. The valency of any vertex of a benzenoid system

is either 2 or 3. Hencemin = 2 and the lower bound follows
Urnin VmalN immediately from Theorem 1.
2+ W ]UminWS MTI = [2 + T] UmalV  (2) In order to obtain the upper bound we first observe that
the most compact benzenoid systems are those belonging to
and using the well-known fattthat for all connected graphs the coronene/circumcoronene serilg)( see Figure 2. For
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@

H,; k=4

Figure 2. The benzenoid systemidy with minimum Wiener
indices; the first members of the seridlg are benzenek(= 1),
coronenek = 2), circumcoronenek(= 3), ...;N(Hy) = 6k2, W(Hy)
= 15(164k° — 30k3 + k).

these molecular graphs it was recently demonstratetPffiat
W(H,) = %(164k5 — 30K + K)

If a benzenoid system hasN = 6k? vertices, then clearly

W) = W(H,)

W(T) = %(164k5 —30¢ +K) 4)
with equality only if ' = Hi. If the numberN of vertices
of I cannot be expressed in the forrk?6the inequality (4)
nevertheless holds, but thénis to be interpreted as a
noninteger parameter defined via

k= +vN/6
In this latter case equality in (4) is never achieved.

Now, the polynomiaP(k) = 29%® — 30k® + k is positive-
valued for allk > 1 and is zero fok = 1. Therefore,

%(164k5 — 306+ K) = %(13&5 +P(K) = %1355’

=27 = 27(\N/6)*? = %6N5’2

that is, for a benzenoid systethwith N vertices
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W) = %—GNS/Z

Combining the above relation with the upper bound (2) for
MTI we get

1% %
[2+ R)J\I]umaXW§ 24 Lmall VW (5)
RASNCE:
8

For all benzenoid systems (except for benzeng)= 3 and

N = 10. Thereforemax = 3 andN = 10 may be substituted
into the expression on the right-hand side of (5), resulting
in the upper bound given in Theorem 2. By direct checking
we verify that the statement of Theorem 2 holds also for
benzene.
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