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The Schultz molecular topological index (MTI) is compared with the Wiener index (W) of a molecular
graph. It is shown that 2VminW < MTI e 4VmaxW holds for any (connected) graphΓ, with Vmin andVmax
denoting the smallest and the largest valency, respectively, of the vertices ofΓ. For molecular graphs these
bounds can be further improved. For instance, for benzenoid systems we have the following: 4W< MTI
< 6.93W. This implies thatW and MTI are linearly correlated not only in the case of acyclic molecules
(which is a previously known result) but also in the case of molecules with arbitrarily many cycles.

1. INTRODUCTION

LetΓ be a molecular graph onN vertices. The “molecular
topological index” (MTI) of the graph Γ introduced by
Schultz1 in 1989 is defined in the following way:1,2

HereA is theN× N adjacency matrix3,4 of Γ, D is theN×
N distance matrix3,4 of Γ andv ) (V1, V2, ..., VN) is the 1×
N vector of the valencies (degrees) of the vertices of the
molecular graphΓ. Recall that the valencyVi of the vertex
i is the number of first neighbors of this vertex.

The (i,j)th entry of the distance matrixD, denoted byDij,
is just the distance3,4 between the verticesi and j, namely
the length of a shortest path connectingi andj. Recall that
molecular graphs are necessarily connected.3,4 Therefore,
if Γ is a molecular graph, then for all values ofi andj, 1e
i,j e N, the quantityDij is well-defined, finite, and integer-
valued.

The Wiener index(or Wiener number) of a connected
graphΓ is equal to the sum of distances between all pairs of
vertices ofΓ:

For details on the Wiener index, which is among the most
frequently employed molecular-structure-descriptors in chemi-
cal graph theory, see the books3,4 or the recent reviews.5,6

After the main mathematical properties and chemical
applications of the molecular topological index were
established,2,7-9 one gradually became aware that MTI and
Ware closely related. The most evident relation of this kind

is found in the case of regular graphs10 (molecular graphs
of annulenes, fullerenes, and similar), for whichV1 ) V2 )
... ) VN ) V; recall thatV ) 2 for annulenes andV ) 3 for
fullerenes. Then MTI turns out to be a linear function of
W:

A less obvious connection between MTI andW was
discovered by Klein et al.11 They, namely, showed that if
Γ is a tree (i.e., ifΓ is acyclic, i.e., ifΓ is the molecular
graph of an alkane) then the following relation holds:

Generalizations of this result were also obtained.12 The fact
that in the case of alkanes MTI andWare linearly correlated
was verified by extensive numerical testing.10

In this paper we show that for arbitrary (polycyclic)
molecular graphs MTI can be estimated as

where R and â are pertinently chosen constants. These
bounds imply that MTI andWmust have basically the same
dependence on molecular structure and that they must be
(at least roughly) linearly correlated within any class of
chemical graphs.10

2. GENERAL MOLECULAR GRAPHS

Recall12 that MTI can be written as MTI) M2 + S, where

and
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The quantityS can be further expressed as

where we have used the fact thatD is a symmetric matrix.
Setting Di ) ∑j)1

N Dij we can express MTI also in the
following manner:

AsW) 1/2∑i)1
N Di, eq 1 implies that it is no more difficult to

compute MTI thanW, provided the quantitiesDi are known.
In fact, the classical Dijkstra’s algorithm for finding the
shortest distances13 basically computes theDi’s.
Consider, for instance, the molecular graphG0 from Figure

1, representing the carbon-atom skeleton of hexamethylpen-
tane, the most branched undecane isomer,C11H24. Next to
each vertex ofG0 the correspondingDi value is given. Then
by (1) we have MTI(G0) ) (8 + 3 × 42) + 6 × 28+ 2 ×
25 + 2 × 4 × 19 + 4 × 16 ) 490. On the other hand,S
) 4W - N(N - 1) for acyclic graphs.11,12 Thus knowing
thatW(G0) ) 136, we can compute MTI(G0) also asM2 +
S) (8 + 3 × 42) + 4 × 136- 11× 10 ) 490.
In the following theorem we estimate the Schultz molec-

ular topological index in terms of the Wiener index for
arbitrary connected graphs.
Theorem 1. Let Γ be a connected graph. Then

whereVmin andVmaxdenote the smallest and largestValency,
respectiVely, of aVertex ofΓ. In addition, the equality on
the right-hand side holds if and only ifΓ is a complete graph.
Proof. By definition we haveVmin e Vi e Vmax for all i )

1, 2, ...,N. Therefore from (1) we straightforwardly conclude
that

with equality (on both sides) if and only ifΓ is a regular
graph (when, of course,Vmin ) Vmax). Rewriting the above
inequalities as

and using the well-known fact3,5 that for all connected graphs

with N vertices

we obtain

i.e.,

Neglecting the term 3Vmin/(N2 - 1) in the left-hand side
expression of (3) we arrive at the lower bound for MTI stated
in Theorem 1; it necessarily is strictly smaller than MTI.
The maximum possible value forVmax is N - 1 and

thereforeVmax/(N - 1) e 1. This yields the upper bound
for MTI, stated in Theorem 1. BecauseN(N - 1)/2 is just
the Wiener index of the complete graph (which is a regular
graph of degreeVmax) N - 1), equality between the upper
bound and MTI occurs if (and only if)Γ is the complete
graph.
For molecular graphsVmin is usually equal to 1 or 2,

whereasVmax is 3 or, exceptionally, 4. Bearing this in mind
and using (3) we easily obtain bounds for MTI, better than
those given in Theorem 1. IfVmin, Vmax, andN are known
(which is practically always the case), then we just have to
substitute them into formula (3). For instance, for the graph
G0, Vmin ) 1, Vmax ) 4, andN ) 11, resulting in

Needless to say that these bounds hold for all molecular
graphs with 11 vertices. Furthermore, 11.2W is an upper
bound for MTI also for molecular graphs possessing more
than 11 vertices.
For special classes of chemical graphs the bounds for MTI

can be made significantly narrower. We demonstrate this
in the subsequent section on the case of benzenoid systems.

3. BENZENOID SYSTEMS

Benzenoid systems(or benzenoid graphs) are graphs
pertaining to the network constructed by arranging congruent
regular hexagons in a plane, so that two hexagons are either
disjoint or have one edge in common. For more details on
this important and frequently encountered class of molecular
graphs see the book.14

Theorem 2. If Γ is a benzenoid system then

whereλ ) 6 + 6/25x15 ) 6.9295...
Proof. The valency of any vertex of a benzenoid system

is either 2 or 3. HenceVmin ) 2 and the lower bound follows
immediately from Theorem 1.
In order to obtain the upper bound we first observe that

the most compact benzenoid systems are those belonging to
the coronene/circumcoronene series (Hk), see Figure 2. For

Figure 1. The correspondingDi values ofG0.
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2.05 W< MTI < 11.2W

4W(Γ) < MTI(Γ) < λW(Γ)
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these molecular graphs it was recently demonstrated that15,16

If a benzenoid systemΓ hasN) 6k2 vertices, then clearly

i.e.,

with equality only ifΓ ) Hk. If the numberN of vertices
of Γ cannot be expressed in the form 6k2, the inequality (4)
nevertheless holds, but thenk is to be interpreted as a
noninteger parameter defined via

In this latter case equality in (4) is never achieved.
Now, the polynomialP(k) ) 29k5 - 30k3 + k is positive-

valued for allk > 1 and is zero fork ) 1. Therefore,

that is, for a benzenoid systemΓ with N vertices

Combining the above relation with the upper bound (2) for
MTI we get

For all benzenoid systems (except for benzene)Vmax) 3 and
Ng 10. ThereforeVmax) 3 andN) 10 may be substituted
into the expression on the right-hand side of (5), resulting
in the upper bound given in Theorem 2. By direct checking
we verify that the statement of Theorem 2 holds also for
benzene.
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Figure 2. The benzenoid systemsHk with minimum Wiener
indices; the first members of the seriesHk are benzene (k ) 1),
coronene (k) 2), circumcoronene (k) 3), ...;N(Hk) ) 6k2,W(Hk)
) 1/5(164k5 - 30k3 + k).
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