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Abstract

Average distance of a graph is expressed in terms of its canonical metric representation. The
equality can be modified to an inequality in such a way that it characterizes isometric subgraphs
of Hamming graphs. This approach simplifies recognition of these graphs and computation of their
average distance.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Let W(G) denote the sum of distances betweenall pairs of vertices of a connected
graphG. In chemical graph theoryW(G) is known as theWiener indexof G. Manifestly,
W(G)/

( n
2

)
is the average distance inG, wheren = |V(G)|. In this note we show

that W(G) can be expressed in terms of the quotient graphs of the canonical metric
representation of G. When the metrics of the quotient graphs are omitted, we obtain an
inequality betweenW(G) and a natural, newly introduced graph invariant defined by the
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Fig. 1.�∗-equivalence classes ofG.

canonical representation. The inequality turns into equality if and only ifG isometrically
embeds into a Hamming graph. This enables us to simplify a recognition algorithm for
partial Hamming graphs and to simplify calculation of their Wiener indices.

In the rest of this section we present necessary concepts, while in the next section the
main result is proved and its consequences discussed. For any terms and concepts not
defined here we refer to the books [8,14].

The Cartesian product G1� · · ·�Gk of graphs G1, . . . , Gk has the vertex set
V(G1) × · · · × V(Gk), two vertices(u1, . . . , uk) and(v1, . . . , vk) being adjacent if they
differ in exactly one position, say ini th, andui vi is an edge ofGi . Let dG stands for the
usual geodesic distance inG. It is well-known that forG = G1� · · · �Gk and vertices
u, v ∈ G we havedG(u, v) = ∑k

i=1 dGi (ui , vi ).
A Hamminggraph is the Cartesian product of complete graphs and apartial Hamming

graph is a graph that isometrically embeds into a Hamming graph. In the particular case
where all the factors areK2’s we speak of hypercubesand partial cubes, respectively.
Partial Hamming graphs have been studied and characterized in [2,5,18].

The canonical metric representation of a connected graphG, due to Graham and
Winkler [11], is defined asfollows. Edgesxyanduv of G are in the Djokovíc–Winkler [10,
19] relation � if d(x, u) + d(y, v) �= d(x, v) + d(y, u). Let �∗ be the transitive
closure of� and let E1, . . . , Ek be the�∗-equivalence classes,�∗-classes for short.
For i = 1, . . . , k let Gi denote the graph(V(G), E(G) \ Ei ) and C(i )

1 , . . . , C(i )
ri the

connected components ofGi . As an example consider the graphG from Fig. 1. It has two
�∗-equivalence classesE1 andE2. ThegraphsG1 andG2 are also shown.

Define thegraphsG∗
i , i = 1, . . . , k, with V(G∗

i ) = {C(i )
1 , . . . , C(i )

ri } whereC(i )
j C(i )

j ′ is

an edge ofG∗
i if some vertex ofC(i )

j is adjacent to a vertex ofC(i )
j ′ . Let the contractions

αi : V(G) → V(G∗
i ) be given byαi (v) = C(i )

j wherev ∈ C(i )
j . Then the mapping

α : G → G∗
1� · · ·�G∗

k, (1)

whereα(v) = (α1(v), . . . , αk(v)), is thecanonical metric representationof the graphG.
Graham and Winkler proved, among others, thatα is an irredundant isometric embedding.
Hereir redundantmeans that every factor graphG∗

i has at least two vertices and that each
vertex ofG∗

i appears as a coordinate of some vertexα(u). For more results on the canonical
representation we refer to the papers [3,4,12] and the books [8,14].
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2. The main result and consequences

Let X1, . . . , Xn be graphs and letw be a mapping that to any pair(Xi , X j ) of graphs
assigns a real number. Then we introduce the following notation:

�w(X1, . . . , Xn) =
∑

1≤i< j ≤n

w(Xi , X j ) · |Xi | · |X j |.

In the casew ≡ 1 we will write �(X1, . . . , Xn) for �w(X1, . . . , Xn). With this notation
we formulate our main result as follows.

Theorem 2.1. Let G = (V, E) be a connected graph. Let the notations of its canonical
metric representation be as in(1) and let di be the distance function of G∗i . Then

W(G) =
k∑

i=1

�di

(
C(i )

1 , . . . , C(i )
ri

)
.

Proof. Let α : G → G∗ = G∗
1� · · ·�G∗

K be the canonical representation ofG, wherefor
u ∈ V, α(u) = (α1(u), . . . , αk(u)). Then wecan compute as follows:

W(G) = 1

2

∑
u∈V

∑
v∈V

dG(u, v) = 1

2

∑
u∈V

∑
v∈V

dG∗(α(u), α(v))

= 1

2

∑
u∈V

∑
v∈V

k∑
i=1

di (αi (u), αi (v))

=
k∑

i=1

(
1

2

∑
u∈V

∑
v∈V

di (α(u), α(v))

)

=
k∑

i=1

∑
1≤ j < j ′≤ri

di

(
C(i )

j , C(i )
j ′
)

· |C(i )
j | · |C(i )

j ′ |

=
k∑

i=1

�di

(
C(i )

1 , . . . , C(i )
ri

)
. �

Corollary 2.2. Let G = (V, E) be a connected graph and let the notations of its canonical
metric representation be as in(1). Then

W(G) ≥
k∑

i=1

�
(
C(i )

1 , . . . , C(i )
ri

)
.

Moreover, equality holds if and only if G is a partial Hamming graph.

Proof. For u, v ∈ V setρ(αi (u), αi (v)) = 1 if αi (u) �= αi (v) andρ(αi (u), αi (v)) = 0
otherwise. (Note that rho graphically resembles the Kronecker’s delta symbol put upside
down.) Then, using the previous proof we have:
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W(G) =
k∑

i=1

∑
1≤ j < j ′≤ri

di

(
C(i )

j , C(i )
j ′
)

· |C(i )
j | · |C(i )

j ′ |

≥
k∑

i=1

∑
1≤ j < j ′≤ri

|C(i )
j | · |C(i )

j ′ |

=
k∑

i=1

�
(
C(i )

1 , . . . , C(i )
ri

)
.

The above inequality turns into equality if and only if for anyi , 1 ≤ i ≤ k, and anyC(i )
j

and C(i )
j ′ we havedi (C

(i )
j , C(i )

j ′ ) = 1. In other words, equality holds if and only if any
G∗

i , 1 ≤ i ≤ k, is a complete graph, which is equivalent to the fact thatG is a partial
Hamminggraph. �

The expression
∑k

i=1 �(C(i )
1 , . . . , C(i )

ri ) can be considered as a natural (metric) graph
invariant of the graphG and might be of some independent interest.

We follow with two applications of the above results. We first discuss the computation
of the Wiener index of partial Hamming graphs and continue with the recognition problem
for this class of graphs.

2.1. Wiener index of partial Hamming graphs

If G is a partial cube, then, since every factor of the canonical embedding isK2,
Theorem 2.1implies that

W(G) =
k∑

i=1

|C(i )
1 | · |C(i )

2 |.

This fact has been observed in [16] and later used and elaborated in a series of papers,
cf. the survey [15]. Chepoi, Deza, and Grishukhin [6] followed with a far reaching
generalization of the above result to�1-graphs. Before we state their result, some
preparation is needed.

By definition, �1-graphs are the graphs whose geodesic path metric can be isometrically
embedded into an�1-space. Letλ ∈ N and letG andH be two graphs. ThenH is scaleλ

embeddableinto G if there exists a mapping ι : V(H ) → V(G) such that for all vertices
u, v ∈ V(H ) we have

dG(ι(u), ι(v)) = λ · dH (u, v).

Forλ = 1 we thus get the usual isometric embedding. By a result of Assouad and Deza [1]
a graphG is an �1-graph if and only ifG is scaleλ embeddable into a hypercube for
someλ ≥ 1. In addition, this is equivalentto the fact that there exists a collection ofC(G)

of convex cuts ofG such that every edge ofG is cut by preciselyλ cuts fromC(G) [9].
Chepoi, Deza, and Grishukhin in [6] proved:
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Proposition 2.3. Let G be a scaleλ embeddable into a hypercube and letC(G) be the
family of convex cuts defining this embedding. Then

W(G) = 1

λ

∑
{A,B}∈C(G)

|A| · |B|.

Shpectorov [17] (see [7] for an alternative proof) characterized�1-graphs as the graphs
isometrically embeddable into the Cartesian product of (complete graphs), half-cubes, and
cocktail-party graphs. Therefore, partial Hamming graphs are�1-graphs. However, the
computation ofW(G) usingCorollary 2.2is simpler than usingProposition 2.3since using
Proposition 2.3one first has to obtain the family of convex cuts (and the corresponding
embedding), while forCorollary 2.2the computation of�∗ suffices.

Partial Hamming graphs are scale 2 embeddable into hypercubes. Indeed, complete
graphs are scale 2 embeddable, and so are then Hamming graphs and their isometric
subgraphs. Hence combiningProposition 2.3with Corollary 2.2we get:

Corollary 2.4. Let G be apartial Hamming graph scale2 embedded into a hypercube and
let C(G) be the family of convex cuts defining this embedding. Then with the notations of
Corollary 2.2,

k∑
i=1

�
(
C(i )

1 , . . . , C(i )
ri

)
= 1

2

∑
{A,B}∈C(G)

|A| · |B|.

2.2. Recognizing partial Hamming graphs

Corollary 2.2 in particular characterizes partial Hamming graphs and this characteri-
zation can be used to simplify the recognition of partial Hamming graphs. Namely, the
present simplest recognition algorithm, cf. [13] or the books [8,14], uses the fact, that
any isometric irredundant embedding of a graph into a Hamming graph is the canonical
embedding. Therefore the algorithm computes the canonical representation and verifies
whether all factors of the representation are complete.Corollary 2.2further simplifies this
approach since it suffices to compute the�∗-classesE1, . . . , Ek, graphsG \ Ei , and then
to check the condition of the theorem. Using this approach the number of vertices in the
connected components ofG \ Ei can be obtained along the way of determining the com-
ponents. Thus we need not to construct the quotient graphsG∗

i and to check whether they
are complete. The recognition complexity remains the same:O(nm), wheren = |V(G)|
andm = |E(G)|.
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