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Abstract

Average distance of a graph is expressed in terms of its canonical metric representation. The
equality can be modified to an inequality in such aywhat it characteres isometric subgraphs
of Hamming graphs. This approach simplifies recognition of these graphs and computation of their
avelge distance.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Let W(G) denote the sum of distances betwedhpairs of vertices of a connected
graphG. In chemcal graph theoryV(G) is known as théVierer indexof G. Manifestly,
W(G)/ (5) is the average distance i, wheren = |V(G)|. In this note we show
that W(G) can be expressed in terms of the quotient graphs of the canonical metric
represetation of G. When the metrics of the quotient graphs are omitted, we obtain an
inequality betweeW(G) and a natural, newly introduced graph invariant defined by the
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Fig. 1. ®*-equivalence classes 6.

canonical representation. The inequality turns into equality if and or®/igometrically
embeds into a Hamming graph. This enables us to simplify a recognition algorithm for
partial Hamming graphs and to simpli€alculation of their Wiener indices.

In the rest of this section we present necegsancepts, \Wwile in the next section the
main result is proved and its consequences discussed. For any terms and concepts not
defined here we refer to the bool&14].

The Cartesian product G[I---00Gk of graphs Gi,..., Gk has the vertex set
V(Gy) x --- x V(Gg), two vetices(uy, ..., Ux) and(vy, ..., vk) being adjacent if they
differ in exactly one position, say irth, andu; v; is an @lge ofG;. Letdg stands for the
usual geodesic distance @. It is well-known that forG = G- .-Gk and vertices
u,v € G we havedg(u, v) = Zikzl dg; (Ui, vi).

A Hamminggraphis the Cartesian product of complete graphs ambatial Hamming
graphis a graph that isometrically embeds into a Hamming graph. In the particular case
where all the factors ar&,’'s we speak of hypercubesand partial cubes resgectively.
Patial Hamming graphs have been studied and characteriz&bi §.

The canonical metric representation of a connected gf@apldue to Graham and
Winkler [11], is defined a$ollows. Edgescy anduv of G are in the Djokove—Winkler [10,

19 relation ® if d(x,u) + d(y,v) # d(X,v) + d(y,u). Let ®* be the tradtive
closure of® and letE;, ..., Ex be the®*-equivalence classe§)*-classes for short.
Fori = 1,....k let G; denote the grapkiV(G), E(G) \ E) andC!’,....C! the
connected components @ . As an exampleansider the grapt® from Fig. 1 It has two
P*-equivalence classds; andE;. ThegraphsG; andG; are also shown.

Define thegraphsG#,i = 1, ..., k, with V(G) = (C{",...,C} wherec}”c}',) is
an edge ofG;" if some vertex ofCJ-(') is adjacent to a vertex c(tj(',). Let the contractions

ai : V(G) — V(G}) be given by (v) = CJU) wherev € CJ-(i). Then he mapping
a:G— GiO---0OGy, (1)

wherea(v) = (a1(v), ..., ak(v)), is thecanonical metric representaticsf the graphG.
Graham and Winkler proek among others, thatis an irredundant isometric embedding.
Hereirredundantmeans that every factor graf@f has at least two vertices and that each
vertex ofG* appears as a coordinate of some veat@x). For more results on the canonical
represetation we refer to the papers,f,12] and the books§,14).
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2. Themain result and consequences

Let X3, ..., X, be graphs and lab be a mapping that to any paiX;, X;j) of graphs
assigns a real number. Then we introduce the following notation:

My (Xa, o, Xn) = D wXi, Xj) - [Xi] - 1X].

1<i<j=<n

In the casew = 1 we will write TI(X4q, ..., Xp) for IT,, (X1, ..., Xn). With this notation
we formulate our main result as follows.

Theorem 2.1. Let G = (V, E) be a connected graph. Let the notations of its canonical
metric representation be as () and let 4 be the distance function of{GThen

k .
WG) =Y Mg (cf), o c,ﬁi)) .

Proof. Leta : G — G* = GjOI- - - OGy be the canonical representation®fwherefor
ueV,a) = (x1(u), ..., ak(u)). Then wecan compute as follows:

W(G) = > Z > de(u.v) =2 Z > do(@(u), a(v))

ueV veV ueV veV

> Z > Z ch (i (U), i (v)

ueV veVi=

i( D0 diau), a(v)))

ueV veV

k

2. 2
i=11<j<j’<r
k

2

Mg (Cf) Cr(,l)>' O

Corollary 2.2. Let G = (V, E) be a connected graph and let the notations of its canonical
metric representation be as (). Then

W(G) > Zn( c.....cP).

Moreover, equality holds if and only if G is a partial Hamming graph.

Proof. Foru,v € V setp(aj(u), aj(v)) = 1if aj(u) # «aj(v) andp (i (U), @i (v)) =0
otherwise. (Note that rho graphically resembles the Kronecker’s delta symbol put upside
down.) Then, using the previous proof we have:
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k A A A A
we) =Y > d(c.cl)ic-icl

i=11<j<j’=ri

k ) )
z; Yooccy

k

2

1<j<j’=ri

The above inequality turns into equality if and only if for anyl <i < k, and anyCJ(i)

and CJ-(i,) we haved; (C}i), CJ-(i,)) = 1. In other words, equdity holds if and only if any
G, 1 < i < k, is a complée graph, which is equivalent to the fact thatis a partial
Hamminggraph. O

The expressiori:ik:1 H(C('), . Cr(i')) can be considered as a natural (metric) graph
invariant d the graphG and might be of some independent interest.

We fdlow with two applications of the above results. We first discuss the computation
of the Wiener index of partial Hamming graphs and continue with the recognition problem
for this class of graphs.

2.1. Wiener index of partial Hamming graphs

If G is a partial cube, then, since every factor of the canonical embeddirtpjs
Theorem 2.implies that

k . .
W(G) =Y Ic{|-Ic).

i=1

This fact has been observed ibg] and laer used and elaborated in a series of papers,
cf. the survey 15]. Chepoi, Deza, and Grishukhir6][ followed with a far reaching
generalizéion of the above result tdi-graphs. Before we d® their result, some
preparation is needed.

By defintion, £1-graphs are the graphs whose geodesic path metric can be isometrically
embedded into af-space. Lek € N and letG andH be two graphs. TheHl is scalex
embeddablinto G if there exsts a maping: : V(H) — V(G) such that for all vertices
u,v € V(H) we have

de(t(u), t(v)) = A -dny (U, v).

For . = 1 we thus get the usual isometric embedding. By a result of Assouad and Oeza [
a graphG is an¢1-graph if and only ifG is scaler embeddable into a hypercube for
somei > 1. In addition, this is equalentto the fact that there exists a collection®iG)

of convex cuts ofG such that every edge o6 is cut by precisely. cuts fromC(G) [9].
Chepoi, Deza, and Grishukhin i®] proved:
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Proposition 2.3. Let G be a scale. embeddable into a hypercube and (&G) be the
family of convex cuts defimg this embedding. Then

1
WG == > IA-BI

{A,B}eC(G)

Shpeaobrov [17] (see [7] for an alternative proof) characterizeéd-graphs as the graphs
isometrically embeddable into the Cartesian product of (complete graphs), half-cubes, and
cocktail-party graphs. Therefore, partial Hamming graphstargraphs. However, the
computation ofV/(G) usingCorollary 2.2is simpler than usingroposition 2.3ince using
Proposition 2.3ne first has to obtain the family of convex cuts (and the corresponding
embedding), while foCorollary 2.2the conputation of®* suffices.

Patial Hamming graphs are scale 2 embeddable into hypercubes. Indeed, complete
graphs are scale 2 embeddable, and so are then Hamming graphs and their isometric
subgraphs. Hence combinifRyoposition 2.3vith Corollary 2.2we get:

Corollary 2.4. Let G be gpartial Hamming graph scal2 embedded into a hypercube and
let C(G) be the family of convex cuts defining this embedding. Then with the notations of
Corollary 2.2,

K
) ) 1
) i\ _
| 1'1(C1 ,....cl )_E > |A-IB].
i=1 {A.B}eC(G)

2.2. Recognizing partial Hamming graphs

Corollay 2.2 in particular characterizes partialathming graphs and this characteri-
zation can be used to simplify the recognition of partial Hamming graphs. Namely, the
present simplest recognition algorithm, ciL.3 or the books §,14], uses the fact, that
any isometric irredundant embedding of a graph into a Hamming graph is the canonical
embedding. Therefore the algorithm computes the canonical representation and verifies
whether all factors of the representation are comptéteollary 2.2 further sinplifies this
approach since it suffices to compute thé-classesks, ..., Ex, graphsG \ E;j, and then
to check the condition of the theorem. Using this approach the number of vertices in the
connected components &\ E;j can be obtained along the way of determining the com-
ponents. Thus we need not to construct the quotient gr&prand to check whether they
are complete. The recognition complexity remains the sadiam), wheren = |V (G)|
andm = |[E(G)|.
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