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Abstract

The strong geodetic problem is a recent variation of the geodetic problem. For

a graph G, its strong geodetic number sg(G) is the cardinality of a smallest vertex

subset S, such that each vertex of G lies on a fixed shortest path between a pair

of vertices from S. In this paper, the strong geodetic problem is studied on the

Cartesian product of graphs. A general upper bound for sg(G�H) is determined,

as well as exact values for Km�Kn, K1,k �Pl, and prisms over Kn−e. Connections

between the strong geodetic number of a graph and its subgraphs are also discussed.
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1 Introduction

Covering vertices of a graph with shortest paths is a natural (optimization) problem

arising from different applied problems that respectively led to several different graph

theory models. The seminal of them, the geodetic problem [10], aims to find a small-

est subset of vertices of a given graph such that the geodesics between them cover all

its vertices, see the review [2]. Recent studies on this problem have focused on char-

acterizations of graphs with large geodetic number [1], on geodesic graphs [19], and

connections between the geodetic problem and a block decomposition [5]. Applications
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of the geodetic problem can be found in convexity theory [3, 12, 14, 18] and in game

theory [8].

Another variation of the problem of covering vertices with shortest paths is the

isometric path problem [6] where the aim is to determine the minimum number of

shortest paths required to cover all the vertices of a graph. Following [6] this problem

has been investigated on Cartesian products of graphs [7], in particular on Hamming

graphs as well as on complete r-partite graphs in [17].

Motivated by applications in social networks, the strong geodetic problem was in-

troduced in [15] as follows. Let G = (V,E) be a graph. Given a set S ⊆ V , for each

pair of vertices {x, y} ⊆ S, x 6= y, let g̃(x, y) be a selected fixed shortest path between

x and y. We set

Ĩ(S) = {g̃(x, y) : x, y ∈ S} ,

and V (Ĩ(S)) =
⋃

P̃∈Ĩ(S) V (P̃ ). If V (Ĩ(S)) = V for some Ĩ(S), then the set S is called

a strong geodetic set. For a graph G with just one vertex, we consider the vertex as its

unique strong geodetic set. The strong geodetic problem is to find a minimum strong

geodetic set of G. The cardinality of a minimum strong geodetic set is the strong

geodetic number of G and is denoted by sg(G).

In the first paper [15] on the strong geodetic number, this invariant has been de-

termined for complete Apollonian networks and it was proved that the problem is NP-

complete. Then, in [13], the problem was studied on grids and cylinders. Among other

results it was proved that if r is large enough compared to n, then sg(Pr �Pn) = d2
√
n e.

Some general properties of the strong geodesic problem, in particular with respect to

the diameter, and a solution for balanced complete bipartite graphs has been very

recently reported in [11]. We also refer to [16] for an edge version of the problem.

In this paper, the strong geodesic problem is studied on Cartesian product graphs.

In the next section we give several upper bounds on sg(G�H) and study their sharp-

ness. In Section 3 we determine the strong geodetic number for several families of

Cartesian products, including products of complete graphs. We also discuss a possi-

ble lower bound for sg(G�H). Motivated by this discussion, in the final section we

focus on possible connections between the strong geodetic number of a graph and its

subgraphs. But first we list necessary definitions.

All graphs considered in this paper are simple and connected. The distance dG(u, v)

between vertices u and v of a graph G is the number of edges on a shortest u, v-path

(u, v-geodesic). The diameter diam(G) of G is the maximum distance between vertices
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of G. We denote the order of a graph G by n(G). A vertex v of a graph G is simplicial

if its neighborhood induces a clique. We will use the notation [n] = {1, . . . , n} and the

convention that V (Pn) = V (Kn) = V (Cn) = [n] for any n ≥ 1, where the edges of the

path Pn, the complete graph Kn, and the cycle Cn are defined in the natural way.

The Cartesian product G�H of graphs G and H is the graph with vertex set

V (G) × V (H), where the vertices (g, h) and (g′, h′) are adjacent if either g = g′ and

hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G). If h ∈ V (H), then a subgraph of G�H

induced by the set of vertices {(x, h); x ∈ V (G)} is isomorphic to G; it is denoted by

Gh and called a G-layer, a horizontal layer or a row. Analogously H-layers are defined;

if g ∈ V (G), then the corresponding H-layer, called a vertical layer or a column, is

denoted gH. Moreover, if X is a subgraph of G, then its isomorphic copy from the layer

Gh will be denoted with Xh. Similarly, if Y is a subgraph of H, then its isomorphic

copy in the layer gH will be denoted with gY .

2 Upper bounds on sg(G�H)

The investigations from [13] indicate that it is not easy to determine the strong geodetic

number of an arbitrary integer grid, that is, sg(Pr �Pn). As these grids are among the

simplest Cartesian product graphs, it would be too ambitious to expect a formula

for sg(G�H). In this section we therefore consider upper bounds for sg(G�H) and

discuss their sharpness.

Note first that lifting a strong geodetic set of G (resp. H) into each of the G-layers

(resp. H-layers) yields sg(G�H) ≤ min{sg(G) n(H), sg(H) n(G)}. This observation

can be improved as follows.

Theorem 2.1 If G and H are graphs, then

sg(G�H) ≤ min{sg(H) n(G)− sg(G) + 1, sg(G) n(H)− sg(H) + 1}.

Proof. Since the Cartesian product operation is commutative, it suffices to prove that

sg(G�H) ≤ sg(H) n(G)− sg(G) + 1.

Let SG be a strong geodetic set of G, Ĩ(SG) fixed geodesics in G, SH a strong

geodetic set of H, and Ĩ(SH) fixed geodesics in H, where |SG| = sg(G) = k and

|SH | = sg(H) = l. Set SG = {g0, g1, . . . , gk−1} and SH = {h0, h1, . . . , hl−1}. Denote

with Pi the g0, gi-geodesic from Ĩ(SG) for all i ∈ [k−1] and with Qj the h0, hj-geodesic

from Ĩ(SH) for all j ∈ [l − 1].
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Define T = (V (G)×SH)−{(gi, h0); i ∈ [k−1]}. Clearly, |T | = sg(H) n(G)−sg(G)+

1. We claim that T is a strong geodetic set of G�H. To show it, we first fix geodesics

in H-layers between vertices from T in the same way as they are fixed in Ĩ(SH). The

only (possibly) uncovered vertices are the ones lying in H-layers giH for i ∈ [k − 1]

that lie on paths giQj for j ∈ [l− 1]. To cover them we fix (gi, hj), (g0, h0)-geodesics as

paths giQj joined with P h0
i for all i ∈ [k − 1], j ∈ [l − 1]. In this way all the vertices of

G�H are covered, hence sg(G�H) ≤ |T |. �

If n ≥ 2, then sg(Pn�K2) = 3 = sg(Pn) n(K2) − sg(K2) + 1. This example

shows that the inequality of Theorem 2.1 is best possible. To construct more sharpness

examples we need the following general property.

Lemma 2.2 If G and H are graphs, v is a simplicial vertex of G, and S is a strong

geodetic set of G�H, then S ∩ vH 6= ∅.

Proof. Suppose on the contrary that S ∩ vH = ∅. Let P ∈ Ĩ(S) be an arbitrary

geodesic that contains some vertices of vH. By the assumption, P starts and ends

outside vH. Let (g, h) be the first vertex of P with a neighbor in vH and let (g′, h′)

be the first subsequent vertex of P that does not lie in vH. Suppose g 6= g′. Then a

((g, h), (g, h′))-geodesic together with the edge (g, h′)(g′, h′) (which exists since v is a

simplicial vertex of G) yields a shorter ((g, h), (g′, h′))-path than the ((g, h), (g′, h′))-

subpath of P , a contradiction with the fact that P is a geodesic. If g = g′ we get the

same contradiction, except that there is no need to add the edge (g, h′)(g′, h′). �

If n ≥ 3, then let Gn be the graph obtained from C3n by adding vertices u, v, w and

edges u ∼ 1, v ∼ n + 1, and w ∼ 2n + 1; cf. Fig. 1 for G3.

Recall from [15] that a simplicial vertex lies in every strong geodetic set. Hence

sg(Gn) ≥ 3. On the other hand, {u, v, w} is a strong geodetic set which implies that

sg(Gn) = 3. (We note that for the geodetic problem the graphs G with the property

that the set of simplicial vertices of G is geodetic, were studied under the name extreme

geodesic graphs [4].) Consider now the product Gn�K2. By Lemma 2.2 we have

sg(Gn�K2) ≥ 3. Suppose sg(Gn�K2) = 4 and let S be a strong geodetic set with

|S| = 4. Then S must have two vertices in each of the Gn-layers. Thus, applying

Lemma 2.2 again, we can assume without loss of generality that {(u, 1), (v, 2), (w, 2)} ⊆
S. If s is the fourth vertex of S, then s lies in G1

n and equals one of (n+2, 1), . . . , (2n, 1),

for otherwise these vertices could not lie on any geodesic from Ĩ(S). Without loss of

generality assume that the s, (u, 1)-geodesic contains the vertex (n + 1, 1). But then it
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Figure 1: A graph G3 and its strong geodetic set.

is not possible to cover all vertices (2n+ 2, 1), (2n+ 2, 2), . . . , (2n− 1, 1), (2n− 1, 2), as

n ≥ 3. In conclusion,

sg(Gn�K2) = 5 = sg(Gn) n(K2)− sg(K2) + 1 ,

hence we have constructed another infinite family attaining equality in Theorem 2.1.

If G = (V,E) is a graph and S ⊆ V , then S is called a 2-packing if d(x, y) ≥ 3 holds

for any x, y ∈ S, x 6= y. Equivalently, S is not a 2-packing if and only if S contains

vertices u 6= v such that d(u, v) ≤ 2. Now we can improve Theorem 2.1 in the following

case.

Proposition 2.3 If G is a graph with sg(G) ≥ 3 that admits a strong geodetic set

which is not a 2-packing, then

sg(G�Kn) ≤ n sg(G)− n.

Proof. Let S be a strong geodetic set of a graph G with the desired properties: |S| =
sg(G) = k and S = {u, v, u1, . . . , uk−2}, where d(u, v) ≤ 2. Let Ĩ(S) be a set of fixed

geodesics. Let Puv ∈ Ĩ(S) be the path between u and v and note that the length of Puv

is either 1 or 2. For i ∈ [k− 2] denote by Pi ∈ Ĩ(S) the u, ui-geodesic and by Qi ∈ Ĩ(S)

the v, ui-geodesic.

Set T = ((S−{u})×{1})∪ ((S−{v})×{2, . . . , n}). Clearly, |T | = n sg(G)−n. Fix

the same geodesics as in Ĩ(S) between vertices in (S−{u})×{1} and between vertices

in (S−{v})×{j} for all j ∈ {2, . . . , n}. Some possibly uncovered vertices are the ones

lying on paths P 1
i in G1 and on paths Qj

i in Gj for j ∈ {2, . . . , n}. Thus we also fix
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geodesics P 1
i joined with the edge (u, 1) ∼ (u, 2) for all i ∈ [k − 2] and geodesics Qj

i

joined with the edge (v, j) ∼ (v, 1) for all i ∈ [k − 2] and j ∈ {3, . . . , n}.
If d(u, v) = 1, all vertices are already covered. If d(u, v) = 2 and w is the middle

vertex of the path Puv, the only possible uncovered vertices are (w, j) for all j ∈ [n].

These can be covered by fixing geodesics P j
uv in Gj joined with the edge (v, j) ∼ (v, 1) for

all j ∈ {3, . . . , n} and a geodesic (v, 1) ∼ (w, 1) ∼ (w, 2) ∼ (u, 2). Hence, sg(G�K2) ≤
n sg(G)− n. �

We point out that Proposition 2.3 does not hold in the case when sg(G) = 2, that

is, when G is isomorphic to a path [11]. Indeed, if m ≥ 2, then sg(Pm�K2) = 3 and

2 sg(Pm)− 2 = 2.

A special case of this proposition is the following result for prisms.

Corollary 2.4 If G is a graph with sg(G) ≥ 3 that admits a strong geodetic set S

which is not a 2-packing, then

sg(G�K2) ≤ 2 sg(G)− 2.

Based on the above ideas, we can state our second main result of this section that

generalizes Proposition 2.3 and in a special case decreases by 1 the upper bound of

Theorem 2.1.

Theorem 2.5 If G is a graph, and H is a graph with sg(H) ≥ 3 that admits a strong

geodetic set which is not a 2-packing, then

sg(G�H) ≤ sg(H) n(G)− sg(G).

Proof. Let SH be a strong geodetic set of a graph H with the desired properties:

|SH | = sg(H) = l ≥ 3 and SH = {u, v, h1, . . . , hl−2}, where d(u, v) ≤ 2. Let Ĩ(SH) be a

set of fixed geodesic that cover V (H). Let Puv ∈ Ĩ(SH) be the path between u and v.

Denote by Pi ∈ Ĩ(SH) a fixed u, hi-geodesics and by Qi ∈ Ĩ(SH) a fixed v, hi-geodesics

for all i ∈ [l − 2].

Let SG be a strong geodetic set of G, Ĩ(SG) fixed geodesics and |SG| = sg(G) = k.

Set SG = {w, g1, . . . , gk−1}. Denote with Ri a fixed w, gi-geodesic from Ĩ(SG) for all

i ∈ [k − 1].

Set T = (V (G)×SH)−({(gi, u); i ∈ [k − 1]} ∪ {(w, v)}). Clearly, |T | = sg(H) n(G)−
sg(G). Geodesics in H-layers between vertices from T are fixed in the same way as in

Ĩ(SH). The only (possibly) uncovered vertices are the ones lying in H-layers giH for
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i ∈ [k− 1] that lie on paths giPj for j ∈ [l− 2] and those on paths wQj in the layer wH

for j ∈ [l − 2]. Thus we also fix (gi, hj), (w, u)-geodesics as paths giPj joined with Ru
i

for all i ∈ [k − 1], j ∈ [l − 2] and (w, hj), (gi, v)-geodesics as paths wQj joined with Rv
i

for all i ∈ [k − 1], j ∈ [l − 2].

If d(u, v) = 1, all vertices of G�H are already covered. If d(u, v) = 2 and t is the

middle vertex on Puv, then we also fix geodesic (gi, v) ∼ (gi, t) ∼ (w, t) ∼ (w, u) for all

i ∈ [k − 1]. Now all vertices of G�H are covered, hence sg(G�H) ≤ |T |. �

Corollary 2.6 If G and H are graphs with diam(G) = diam(H) = 2 and sg(G), sg(H) ≥
3, then

sg(G�H) ≤ min{sg(H) n(G)− sg(G), sg(G) n(H)− sg(H)}.

3 Exact values for some Cartesian products

In this section we determine the strong geodetic number of prisms over Kn − e (The-

orem 3.1), of K1,k�Pl (Proposition 3.2), and of Hamming graphs Km�Kn (Theo-

rem 3.3). At the end of the section we pose a conjecture asserting a general lower

bound on sg(G�H). The conjecture has been verified for small prisms by computer

and is, provided it holds true, best possible by the results of this section.

Theorem 3.1 If n ≥ 5 is an integer, then sg(Kn − e) = sg((Kn − e)�K2) = n− 1.

Proof. Let G = Kn − e and e = {u, v}, u � v. Denote V (G) = {u, v, x1, . . . , xn−2}.
As G is not a complete graph, it follows from [11] that sg(G) ≤ n − 1. Let S be

a minimum strong geodetic set of G. As vertices u and v are simplicial, u, v ∈ S.

Any u, v-geodesic covers exactly one other vertex, say xn−2. Thus S − {u, v} is a

strong geodetic set of G − {u, v, xn−2}, a complete graph on n − 3 vertices. Hence,

sg(G) ≥ 2 + sg(Kn−3) = n− 1.

We now prove that sg(G�K2) ≤ n − 1. Consider S = {(u, 1), (u, 2), (v, 1), (v, 2)}
and T = {(xi, 1); i ∈ {4, . . . , n− 2}}. Geodesics between vertices from S can be fixed

in such a way that {(xi, j); i ∈ [3], j ∈ [2]} are all covered. The remaining uncovered

vertices can be covered with geodesics (xi, 1) ∼ (xi, 2) ∼ (u, 2). Hence, S∪T is a strong

geodetic set of the graph G�K2 and sg(G�K2) ≤ |S ∪ T | = 4 + (n− 5) = n− 1.

It remains to prove that sg(G�K2) ≥ n− 1. Notice that the longest geodesics and

the only ones of length 3 in graph G�K2 are (u, 1), (v, 2)- and (u, 2), (v, 1)-geodesics.

All other geodesics are of length 1 or 2 and can therefore cover at most one K2-layer.
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Furthermore, any K2-layer that is not covered with one of the longest geodesics must

contain at least one vertex from the strong geodetic set. Let S be the minimum strong

geodetic set of G�K2 and Ĩ(S) the fixed geodesics. Consider the following cases.

(a) If Ĩ(S) contains two longest geodesics, then geodesics between vertices {(u, 1),

(u, 2), (v, 1), (v, 2)} can cover five different K2-layers. To cover the remaining

n− 5 K2-layers, S must contain at least n− 5 more vertices. Hence, |S| ≥ n− 1.

(b) If Ĩ(S) contains only one of the longest geodesics, this geodesic lies in three K2-

layers. To cover the remaining n − 3 K2-layers, we need at least n − 3 more

vertices. Hence, |S| ≥ 2 + (n− 3) = n− 1.

(c) If Ĩ(S) contains none of the longest geodesics, then at most one vertex among

{(u, 1), (u, 2), (v, 1), (v, 2)} lies in S. Thus at least n− 1 K2-layers are still com-

pletely uncovered, hence |S| ≥ n− 1.

It follows from the above, that sg(G�K2) ≥ n− 1. �

Notice that Theorem 3.1 does not hold for n ≤ 4, as sg(K4 − e) = 3 < 4 =

sg((K4 − e)�K2).

We now derive two exact results for Cartesian products which are not prisms.

Proposition 3.2 If k, l are integers, k ≥ 5 and l ≥ 1, then sg(K1,k�Pl) = sg(K1,k).

Proof. The graph K1,k is a tree with k leaves, hence sg(K1,k) = k and sg(K1,k�Pl) ≥
k.

Let V (K1,k) = {v, l1, . . . , lk−2, r1, r2} where v is the vertex of degree k. Define

S = {(l1, l), . . . , (lk−2, l), (r1, 1), (r2, 1)}. As shortest paths in K1,k and Pl are unique,

x, y-geodesic can be denoted by x  y. Fix geodesics between vertices from S in the

following way:

(li, l) ∼ (v, l) ∼ (ri, l) (ri, 1)

for i ∈ [2],

(li, l) ∼ (v, l) (v, 1) ∼ (r2, 1)

for i ∈ {3, . . . , k − 2}, and

(li, l) (li, 1) ∼ (v, 1) ∼ (rf(i), 1),
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where

f(i) =

2; i = 1,

1; i 6= 1.

Clearly, these geodesics cover all vertices of the graph (as k − 2 ≥ 3), hence

sg(K1,k�Pl) = k. �

Proposition 3.2 does not hold for k ≤ 4 if l ≥ 3 (the cases l ∈ {1, 2} are simple).

Consider the following example. Let V (K1,4) = {v, l1, l2, r1, r2} as above. Suppose

sg(K1,4�Pl) = 4. If K l
1,4 (or equivalently K1

1,4) contains only one vertex from a

minimum strong geodetic set, say l1, then geodesics from (l1, l) to the other three

vertices must contain vertices (l2, l), (r1, l), (r2, l), (l1, l−1) which is not possible. Hence,

any strong geodetic set of size 4 contains two vertices in the layer K1
1,4 and two vertices

in K l
1,4. Without loss of generality let S = {(l1, l), (l2, l), (r1, 1), (r2, 1)} be a minimum

strong geodetic set. Geodesics (l1, l) ∼ (v, l) ∼ (l2, l) and (r1, 1) ∼ (v, 1) ∼ (r2, 1) are

clearly fixed. Each of the remaining four geodesics can cover at most l − 1 uncovered

vertices. But the graph has 4(l− 1) + (l− 2) vertices to cover, hence sg(K1,4�Pl) ≥ 5.

Since the set S ∪ {(v, 1)} is a strong geodetic set, we have sg(K1,4�Pl) = 5.

Our last exact result is the following.

Theorem 3.3 If m,n are positive integers and m ≥ n, then

sg(Km�Kn) =


2n− 1; m = n,

2n; n < m < 2n,

m; m ≥ 2n.

Proof. Since every vertex of a complete graph is simplicial, Lemma 2.2 implies that

any strong geodetic set of Km�Kn contains at least one vertex from each row and at

least one vertex from each column, hence sg(Km�Kn) ≥ max{m,n} = m. We now

distinguish three cases.

1. Suppose first m = n. By the above, sg(Kn�Kn) ≥ n. Take n vertices, one in

each row and one in each column. Since diam(Kn�Kn) = 2, these n vertices can

cover at most
(
n
2

)
other vertices of Kn�Kn. Moreover, at most one row and at

most one column can be covered completely with geodesics between them. Hence,

at least
(
n
2

)
vertices of Kn�Kn remain uncovered. As at least n − 1 rows and

columns are still uncovered, it follows that at least n−1 more vertices are needed

to cover them. Therefore, sg(Kn�Kn) ≥ n + (n− 1) = 2n− 1.
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Consider the set S = S1 ∪S2 where S1 = {(i, i); i ∈ [n]} and S2 = {(i, i+ 1); i ∈
[n− 1]} (cf. Fig. 2).

Figure 2: A strong geodetic set of K5�K5.

Fix geodesics for Ĩ(S) in such a way that geodesics between vertices from S1 cover

all the vertices {(i, j); i ≥ j} and geodesics between vertices from S2 cover the

vertices {(i, j); i < j}. Thus S is a strong geodetic set of size 2n − 1. Hence,

sg(Kn�Kn) = 2n− 1.

2. Suppose next n < m < 2n. Consider an arbitrary strong geodetic set S′ of

Km�Kn. Since S′ contains at least one vertex from each row and at least

one vertex from each column, we may without loss of generality assume that

S1 ∪ S2 ⊆ S′, where S1 = {(i, i); i ∈ [n]} and S2 = {(n + i, i); i ∈ [m − n]}.
Consider the disjoint sets

A = [m− n]× {m− n + 1, . . . , n},

B = {n + 1, . . . ,m} × {m− n + 1, . . . , n},

C = {m− n + 1, . . . , n} × [m− n],

D = {(i, j); i < j, i, j ∈ {m− n + 1, . . . , n}}, and

E = {(i, j); i > j, i, j ∈ {m− n + 1, . . . , n}},

which are shown in Fig. 3 for the case K10�K7.

Vertices in A can only be covered with geodesics between vertices from S1, thus

these geodesics cannot cover C. The set B can only be covered with geodesics

between vertices from S1 and S2 and thus these geodesics cannot cover C. Hence,

C is left uncovered. Similarly we observe that either D or E is left uncovered. It

follows that vertices lying in 2n −m different columns and vertices from n − 1

different rows are left uncovered. To cover them, at least min{2n − m,n − 1}
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Figure 3: Sets A,B,C,D and E of K10�K7.

additional vertices must be added to S1 ∪ S2. As m > n, we have min{2n −
m,n− 1} = 2n−m. Hence, sg(Km�Kn) ≥ m + (2n−m) = 2n.

Consider the set S = S1 ∪ S2 ∪ S3, where S1 and S2 are as above and S3 =

{(i, 1); i ∈ {m − n + 1, . . . , n}} (cf. Fig. 4). Denote S1 = Sd
1 ∪ Su

1 , where Sd
1 =

{(i, i); i ∈ [m− n]} and Su
1 = {(i, i); i ∈ {m− n + 1, . . . , n}}.

Figure 4: A strong geodetic set of K10�K7.

Fix geodesics between vertices in S1 to cover {(i, j); i < j, i, j ∈ [n]}, geodesics

between vertices in S2 to cover {(i, j); i < j, i ∈ {n + 1, . . . ,m}, j ∈ [m − n]},
geodesics between Sd

1 and S2 to cover {(i, j); i > j, i ∈ [m−n]∪{n+1, . . . ,m}, j ∈
[m − n]} and geodesics between Su

1 and S2 to cover {n + 1, . . . ,m} × {m − n +

1, . . . , n}. Additionaly, fix geodesics (v, 1) ∼ (v, i) ∼ (i, i) for each v ∈ S3 and

i ∈ [n]. Now it is clear that S is a strong geodetic set of size 2n. Hence,

sg(Km�Kn) = 2n.
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3. Suppose finally m ≥ 2n. We already know that sg(Km�Kn) ≥ m. Define

S = Sl ∪ Sm ∪ Sr, where

Sl = {(i, i); i ∈ [n]},

Sm = {(i, 1); i ∈ {n + 1, . . . ,m− n}}, and

Sr = {(m− n + i, i); i ∈ [n]},

cf. Fig. 5, where S is shown for the case K12�K4.

Figure 5: A strong geodetic set of K12�K4.

Fix geodesics between vertices from Sl to cover vertices {(i, j); i ≥ j, i, j ∈ [n]},
geodesics between vertices from Sr to cover {(m − n + i, j); i ≥ j, i, j ∈ [n]},
geodesics between sets Sl and Sr to cover {(i, j); i ≤ j, i, j ∈ [n]} ∪ {(m − n +

i, j); i ≤ j, i, j ∈ [n]} and geodesics between a vertex v ∈ Sm and vertices from

Sl to cover {(v, i); i ∈ [n]}. Hence S is a strong geodetic set of Km�Kn and

|S| = m. We conclude that sg(Km�Kn) = m. �

From Theorem 3.3 we infer that among Cartesian products of complete graphs the

upper bound of Theorem 2.1 is sharp only for K1�K1, K2�K2, and K3�K2.

Until now we have considered general upper bounds on sg(G�H) and obtained

several exact values. Hence it would also be of interest to have some general lower

bound(s). For this sake we pose:

Conjecture 3.4 If G is a graph with n(G) ≥ 2, then sg(G�K2) ≥ sg(G).

If Conjecture 3.4 is true, then it is best possible as demonstrated by Theorem 3.1.

We have also verified the conjecture by computer for all graphs G with n(G) ≤ 7. The

equality is never attained for n(G) ≤ 3. For n(G) = 4 the only equality case is G = K4,

while for n(G) = 5 and 6 there are more equality cases. For n(G) = 5 all of them are

shown in Fig. 6.
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Figure 6: Graphs G on five vertices with sg(G) = sg(G�K2).

Figure 7: Graphs G on six vertices with sg(G) = sg(G�K2) and no simplicial vertex.

For n(G) = 6 the variety of equality graphs is too large to be drawn here. Instead

we present in Fig. 7 those of them that do not contain simplicial vertices.

More generally as Conjecture 3.4, we pose the following

Problem 3.5 Is it true that if G and H are graphs, then sg(G�H) ≥ max{sg(G), sg(H)}?

Again, if the answer to Problem 3.5 is positive, then the result is best possible as

demonstrated by Proposition 3.2 and by Theorem 3.3 for m ≥ 2n.

4 The strong geodetic number of subgraphs

Since layers of Cartesian products are subgraphs that possess several distinguishing

properties, a way to attack Conjecture 3.4 would be to understand the relation between

the strong geodetic number of a graph and its subgraphs. This is a fundamental
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question for any graph invariant and has not yet been studied for the strong geodetic

number. The main message of this section is that in general there is no such relation,

even for subgraphs with a very special structure such as layers in products.

Induced subgraphs

First we observe that there is no connection between a strong geodetic number of the

graph and a strong geodetic number of its (induced) subgraph.

Let Gn = P2n�K2 and Hn its subgraph induced on vertices V (Gn)− {(2i, 1); i ∈
[n]} (cf. Fig. 8). Clearly, sg(Gn) = 3, as {(1, 1), (2n, 1), (2n, 2)} is a strong geodetic

set. The subgraph Hn is a tree with n + 1 leaves, thus sg(Hn) = n + 1. Hence,

the strong geodetic number of an induced subgraph can be arbitrarily larger than the

strong geodetic number of a graph. The converse is also true. Consider H = Pn as

a(n) (induced) subgraph of some tree T . It holds sg(H) = 2, but the strong geodetic

number of T can be arbitrarily large (and equals the number of its leaves).

Figure 8: The strong geodetic sets of graphs G4 and its subgraph H4.

Convex subgraphs

A subgraph H of graph G is convex if every shortest path in G between vertices from

H lies entirely in H. This is a stronger concept than induced subgraphs. Layers of

Cartesian products are convex.

As paths are convex subgraphs of trees, it is clear that the strong geodetic number

of a graph can be arbitrarily larger than the strong geodetic number of its convex

subgraphs. The following example shows that the converse also holds.

Let k, l ∈ N. Define Gc
k,l to be the graph with V (Gc

k,l) = {u1, . . . , uk} ∪ {w} ∪
{x1, y1, . . . , xkl, ykl} ∪ {v1, . . . , vl} and edges w ∼ ui for i ∈ [k], w ∼ xi for i ∈ [kl],

xi ∼ yi for i ∈ [kl] and yi ∼ vj for all i ∈ [kl] and j ∈ [l] (cf. Fig. 9). Let H be

its subgraph induced by {w} ∪ {x1, . . . , xkl}. Note that H is a convex subgraph with

sg(H) = kl (as it is a tree).
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u1 u2 u3

w

x1 x2 x3 x4 x5 x6 x7 x8 x9

y1 y2 y3 y4 y5 y6 y7 y8 y9

v1 v2 v3

Figure 9: The graph Gc
3,3.

As vertices {u1, . . . , uk} are simplicial, they lie in any strong geodetic set of Gc
k,l.

But due to the structure of the graph, each vertex vi must also lie in any strong geodetic

set. Hence, sg(Gc
k,l) ≥ k+ l. Consider the set S = {u1, . . . , uk}∪{v1, . . . , vl} and fix the

geodesics ui ∼ w ∼ x(i−1)l+j ∼ y(i−1)l+j ∼ vj for all i ∈ [k] and j ∈ [l]. These geodesics

cover all vertices of the graph, hence sg(Gc
k,l) = k + l, which is arbitrarily smaller than

kl, the strong geodetic number of the convex subgraph H.

Gated subgraphs

A subgraph H of graph G is gated if for every v ∈ V (G) there exists an x ∈ V (H) that

lies on a shortest u, v-path for every u ∈ V (H). Every gated subgraph is convex [9].

Layers of Cartesian product are not only convex but also gated.

Unfortunately, there is also no connection between the strong geodetic number of

a graph and its gated subgraphs. Again, as paths are gated subgraphs of trees, the

strong geodetic number of a graph can be arbitrarily larger than the strong geodetic

number of its gated subgraphs. The following example shows that the converse is also

true.

Let k, l ∈ N such that kl ≥ 5. Define the graph Gg
k,l with vertices {x, y} ∪ {vi,j ; i ∈

[k], j ∈ [l]} ∪ {x1, . . . , xk} ∪ {y1, . . . , yl} and edges x ∼ xi for i ∈ [k], y ∼ yj for j ∈ [l],

x ∼ vi,j ∼ y for i ∈ [k], j ∈ [l] (cf. Fig. 10).
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x1

x2

x

v1,1

v1,2

v1,3

v2,1

v2,2

v2,3

y

y1

y2

y3

Figure 10: The graph Gg
2,3.

Let S = {x1, . . . , xk, y1, . . . , yl}. Vertices in S are all simplicial, thus sg(Gg
k,l) ≥

|S| = k + l. If we fix geodesics xi ∼ x ∼ vi,j ∼ y ∼ yj for all i ∈ [k], j ∈ [l], then it is

clear that S is a strong geodetic set. Hence, sg(Gg
k,l) = k + l.

Let H be a subgraph of G induced on the vertex set {x, y} ∪ {vi,j ; i ∈ [k], j ∈ [l]}.
Clearly, H ∼= K2,kl. The subgraph H is gated in G. It follows from kl ≥ 5, that(
kl−1
2

)
≥ kl and thus by [11] it holds that sg(H) = kl. Hence, the strong geodetic

number of a gated subgraph can be arbitrarily larger than the strong geodetic number

of a graph.
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