
Czechoslovak Mathematical Journal, 47 (122) 1997, Praha
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Summary. For any n > 1 and any k > 1, a graph S(n, k) is introduced. Vertices of S(n, k)
are n-tuples over {1, 2 , . . . , k} and two n-tuples are adjacent if they are in a certain relation.
These graphs are graphs of a particular variant of the Tower of Hanoi problem. Namely,
the graphs S(n, 3) are isomorphic to the graphs of the Tower of Hanoi problem. It is proved
that there are at most two shortest paths between any two vertices of S(n, k). Together
with a formula for the distance, this result is used to compute the distance between two
vertices in O(n) time. It is also shown that for k > 3, the graphs S(n, k) are Hamiltonian.

1. INTRODUCTION

In Lipscomb [10,11] a relation ~ is introduced on the set of infinite sequences with
values from an arbitrary set. This relation is defined in order to obtain some universal
topological spaces. A natural question arises whether the relation ~ restricted to the
finite case yields any interesting structure. This is indeed used in Milutinovic [13, 14]
to obtain some more topological results on universal spaces. Direct connections with
the Sierpinski gasket (triangular Sierpiiiski curve) are established in [12, 13, 14].

We use a slightly modified relation ~ to define a class of graphs S(n,k). The
set of vertices of S(n, k) is the Cartesian product of n sets {1,2,..., k}, while the
edges are defined according to the relation ~. There are several classes of graphs
defined on the Cartesian product of sets and/or using certain relations to define
edges. Vertices of the most important graph products are Cartesian products of
vertices of the factor graphs, see Feigenbaum and Schaffer [4], or Imrich and Izbicki
[9] for the definitions. Among Cartesian products of graphs, Hamming graphs play
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a very special role, cf. Bandelt, Mulder and Wilkeit [1], or Wilkeit [15]. Note that
hypercubes are binary Hamming graphs. The edges of Hamming graphs are defined
with a particular relation, Hamming distance, among the corresponding tuples. We
may henceforth consider the graphs S(n,k) as being of "Hamming type".

In our investigation of these graphs we came across the well-known Tower of Hanoi
problem. Although the problem is more than 100 years old [2], only recently a
correct treatment of regular states was given by Hinz [5]. In fact there were several
approaches before based on the wrong assumption that the largest disk moves at
most once. We will not going into details here. We only refer to the papers [5]
and [6] of Hinz for the large bibliography on the topic, historical overview, correct
treatment and an algorithmic aspect of the problem.

The present paper is organized as follows. In the next section we define graphs
S(n,k). It is shown that the graphs S(n,k) are graphs of a variant of the Tower
of Hanoi problem and that the graphs S(n, 3) are isomorphic to the graphs of the
Tower of Hanoi problem. We also demonstrate that graphs S(n, k) are Hamiltonian
for k > 3. In Section 3 the shortest path problem is studied. We first prove a
formula for the distance between any pair of vertices. It is also proved that there are
at most two shortest paths between any pair of vertices. These two results enable us
to compute the distance between any two vertices of S(n, k) in O(n) time. Finally
we explicitly construct all the shortest paths.

2. GRAPHS S(n,k) AND THE TOWER OF HANOI

All graphs considered in this paper are finite undirected graphs without loops and
multiple edges. For a graph G let V(G) and E(G) denote its vertex set and edge
set, respectively. As usual, the distance between vertices u and v of a graph G is the
shortest path distance and will be denoted by d(u,v).

For any k > 1 and any n > 1 we define a graph S(n, k) as follows. Its vertex set is

and two different vertices I = (i1 , i2 , • • • ,in) and J = ( j 1 , J 2 , • • • ,jn) are adjacent if
I ~ J, where

such that
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We point out that h may equal n, in which case the condition iii) is formally true
being empty. In the rest of the paper we will write i1i2 . . . in instead of ( i1 , i2, • . . , in)
for brevity.

We use the notation S(n, k) because our original motivation is related to Sierpinski.

For any n > 1, S(n, 1) is isomorphic to the one vertex graph K1 and for any
n > 1, S(n,2) is isomorphic to the path on 2n vertices PV>. Hence these paths
play an analogous role among graphs S(n, k) as hypercubes among the Hamming
graphs. Furthermore, for any k > 1, S(1, k) is the complete graph on k vertices.
More interesting graphs appear when k > 3 and n > 2. For instance, the graph
S(3,4) is shown on Fig. 1.

Figure 1. The graph S(3,4)

The problem of the Tower of Hanoi (the problem of TH for short) is well-known,
thus we will not repeat the definition here, see for instance Hinz [5, 7]. The problem
with three pegs is well understood. However, if we have more that three pegs it is
still an open problem to determine the minimum number of moves needed to transfer
n disks from one peg to another, cf. Hinz [7].

Consider the following variant of the TH with n disks and k pegs. Regular and
perfect states are the same as in the classical problem: a state is regular if no larger
disk lies on a smaller one, and a regular state with all disks on a single peg is called
perfect. Legal moves are defined as follows. Suppose we have a regular state in which
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the t topmost disks on a peg i are the t smallest disks. Then if the (t + l)-st smallest
disk is on a peg j ^ i we are allowed to switch the t disks from the peg i with the
disk on the peg j (see Fig. 2). Besides such switches the only other legal moves are
arbitrary moves of the smallest disk. Let us henceforth call this variant of the TH
the switching Tower of Hanoi or STH for short.

Note that a switch preserves regular states and that the switching operation is
reversible. Therefore we can define the (undirected) graph of STH as usual: its
vertices are regular states and two vertices are adjacent if we can move from one
state to the other by a legal move. Then we have

Theorem 1. Let n > 1 and k > 1. Then the graph of STH with n disks and k
pegs is isomorphic to the graph S(n, k).

P r o o f . It is obvious that regular states of STH bijectively correspond to the
sequences

according to the interpretation that ij = h means that the j-th largest disk is on the
peg h. Recalling the definition of ~ we then easily see that two vertices of the graph
of STH are adjacent if and only if the corresponding sequences are in the relation ~.

D

Figure 2. A legal move

Theorem 1 in particular implies that STH is also defined for two pegs, which is
not the case with the classical problem. In addition, as S(n, 2) is a path, there is
exactly one (shortest) path between any two regular states of STH with two pegs.

The interpretation of vertices as sequences used in the proof of Theorem 1 is just
opposite to the one used in [3, 5, 7] for the interpretation of the TH (see the proof of
Theorem 2). Since legal moves are quite different, the corresponding graphs of TH
and STH would be expected to differ (even with the reinterpretation of the vertices
of the TH graph by switching the order among the disks). This is in general indeed
the case. However, to our surprise we get the same graphs in the case k = 3.

Theorem 2. For any n > 1, the graph S(n,3) is isomorphic to the graph of the
TH with n disks.
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P r o o f . Let THn be the graph of the TH with n disks and three pegs. Its
vertices are sequences i1i2...in € {l,2,3}n, according to the interpretation that
ij = h means that the j-th smallest disk is on the peg h, cf. [5, 7].

By induction on n we construct isomorphisms fn: S(n,3) —> THn. For n = 1
both graphs are complete graphs on three vertices.

Let n > 2 and consider a partition of V(S(n,3)) into sets Vl V2 and V3, where Vi
consists of all vertices beginning with i, i = 1,2,3. Then for any i and j, i ^ j there
is exactly one edge between Vi and Vj, i.e. the edge between the vertices ijj ...j and
jii... i. We will call such an edge a bridging edge.

In a similar way consider a partition of V(THn) into sets W1, W2 and W3, where
Wi consists of all vertices ending with i, i = 1,2,3. Then for any i and j,i ^ j there
is exactly one bridging edge between Wi and Wj, i.e. the edge between the vertices
k... kkj and k... kki, k ̂  i, k ̂  j.

Then we may isomorphically map Vi onto Wi, using fn-1 and an appropriate au-
tomorphism (induced by a permutation of the set {1,2,3}) of THn-1 for adjustment,
in such a way that the ends of the bridging edges are mapped onto the corresponding
ends of the bridging edges. Considering the three maps as one map from V(S(n, k))
onto V(THn) yields the map fn. 

It is interesting to observe that, given any regular state of STH, we can return to
it in such a way that we visit every regular state exactly once. In other words:

Proposition 3. For any n > 1 and any k > 3 the graph S(n, k) is Hamiltonian.

P r o o f . For n = 1 the proposition is trivial since S(1,k) is a complete graph.
Let n > 2 and consider the sequence of paths P1 , P2 , . . . , Pk, where P1 is a path
between the vertices 1 k k . . . k and 122...2, Pk between the vertices k(k — 1)
(k - 1) . . . (k — 1) and k11 . . . 1, and for i = 2,3, . . . , k - 1, Pi is a path between the
vertices i(i - l ) ( i -1)... (i -1) and i(i + 1)( i +1)... (i +1). We claim that the paths
Pi can be constructed in such a way that they include all the vertices beginning with
i,i = l ,2 , . . . ,k .

To prove the claim it is enough to see that for any i, j and g, j / g, there is a
path between ijj ... j and igg... g which goes through all vertices beginning with
i. Obviously that reduces the induction argument to the statement that jj ... j and
99 • • • g, j g, may be connected in S(n, k) by a path going through all vertices
(for all n). Without loss of generality assume j = 1 and g — k. By the induction
hypothesis we may find a path from I l . . . l to l 2 . . . 2 through all vertices beginning
with 1. Add the edge between 12... 2 and 21... 1 to the path. By the same argument
we may find a path from 21. . . 1 to 23.. .3 through all vertices beginning with 2.
Continue this procedure until (k - 1 ) k . . . k is joined to k(k - 1) . . . (k - 1) and a path
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from k(k - 1)... (k — 1) to kk... k through all vertices beginning with k is added at
the end.

It follows that the paths P1 , P2,..., Pk form a Hamiltonian cycle. D

3. SHORTEST PATHS IN S(n,k)-GRAPHS

Define

(The symbol has been chosen in this way, since rho graphically resembles the Kro-
necker's delta symbol put upside down.) In addition, let

where the right-hand side term is a binary number, rhos representing its digits. Also,
let Vi be the set of vertices of S(n, k) consisting of all vertices beginning with i.

Lemma 4. Let I = ii...i and J = j 1 j 2 . . . j n be vertices of S(n,k). Then
d(I, J) = {Pfa jn and there is exactly one shortest path between I and J. In
particular, for i ^ j, d ( i i . . . i , jj ... j) = 2n- 1.

P r o o f . By induction on n. The statement is trivial for n — 1.
Let n > 2.
If i = j1 then by the induction hypothesis, the shortest path inside Vi has the

length Pfa,—,]*. = fP/i,...,^- Consider now a path Q between I and J which is not
completely in Vi. Let g, g ^ i, be such that the vertex gi... i is the last vertex of Q
not belonging to Vi. Then Q contains a subpath from ig... g to I in VJ which has
by induction length at least 2n-1 - 1 > P , . . . , jn- Therefore \Q\ > P> j2 t . . . t j n-

Let i ^ ji. Then by the induction hypothesis, among all paths between I and
J containing the edge between i j 1 . . .j1 and j1i . . . i, there is a unique shortest one.
Its length is ( 2 n - l - 1) + 1 + &j2,...,jn = ̂ L-J,, < 2n - 1. Consider a path Q
between I and J containing an edge between the vertices ig... g and gi... i, where
g is chosen as above. Then |Q| > (2n-1 -1) + 1 + (2n-1 - 1) + 1 = 2n. Thus Q is
not a shortest path.

Note finally that there is only one shortest path in both cases. D

Theorem 5. Let I = i1i2 .. .in and J = j 1 j 2 . . . jn be vertices of S(n,k) such
that i1 = j1, ,.., ii-i = je-i and ie ̂  jt, i > 1. Then d(I, J) = 1 for i = n, and
otherwise, d(I, J) is equal to
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P r o o f . By induction on n. If n = 1 then t = 1 and d(I, J) = 1 as claimed.
By a similar argument as in Lemma 4 we first note that it suffices to consider paths

in the subgraph of S(n, k) induced by the vertices beginning with ii ... it-\. Omitting
ii... it-i from the vertices gives a natural isomorphism between the subgraph and
S(n — t + 1, k). If t > 1 then the theorem holds by the induction hypothesis. Hence
it remains to prove the statement for (. — 1.

Let n > 2. For brevity let l\ = i and j\ = j. Consider a shortest path Q
among those paths between I and J which have vertices only from V{ U Vj. Then, by

Lemma 4, |Q| = ^2>/2)...,in + 1 + ^j2,...,jn> because Q must contain the edge between
the vertices ij .. .j and j i . . . i . Also by the lemma, Q is unique. We will call such a
path the direct path between I and J.

Consider now a shortest path Q' among the paths between I and J with vertices
only from Vi U Vj U Vh,, h ^ i,j where Q fl Vh, ̂  0. Since Q' must contain the edges
between ih...h and hi...i, and between hj...j and jh...h, Lemma 4 implies
|Q'| = ̂  in + 1 + (2"-1 -!) + ! + ̂  jn. Furthermore, Lemma 4 also implies
uniqueness of Q' (for a fixed h). We call such a path the Vh-path between I and J.

Clearly, for the direct path Q we have |Q| < 2n and thus the distance between I and
J is strictly less than 2n. But since any path containing also vertices from Vg and Vh,
where i,j, h and g are pairwise different, has length at least 2n-1 + 2n-1 + 1 = 2n +1,
the theorem follows. D

From the computational point of view, Theorem 5 can be used to compute d(I, J)
in O(nk) time. The next theorem will enable us to improve this complexity.

Theorem 6. There are at most two shortest paths between any two vertices of
S(n,k).

P r o o f . Let I = i1i2... in and J = j 1 j 2 . . . jn be vertices of S(n, k) and assume
without loss of generality that i1 ^ j\. For brevity let ij = i and j\ = j. Note that
the proof of Theorem 5 implies that the length of the direct path between I and J
is PI2 in +1 + Pi2 jn, while the length of the Vh-path is PA in + 1 + 2n-1 +

^J2,...,jn for anyhi^i . j .
We distinguish several cases.

Case 1: i2= i,j2 = j.
Any Vk-path is of length at least 2n - 2 +1 + 2n-1 + 2 n - 2 , because Qh,i2 = Qh,j2 = 1 •

Since the direct path is of length at most 2n - 1, it is the unique shortest path in
this case.

Case 2: i2 = j. Any Vh-path is of length at least 2 n - 2 +2 n - 1 +l , because Qh,j2 = 1.
Since gjtia = 0, the direct path is of length at most (2n - 2 -1) +1 + (2n-1 -1). Hence
it is again the unique shortest path between I and J.
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The case j2 = i is treated analogously.

Case 3: i2 = i, j2 = h, h ^ i,j. Let g ̂  i,j,h. Then 03i;2 = gg^2 = 1. As in Case 1
it follows that the length of the Vg-path is at least 2n + 1. Thus a shortest path can
only be the direct path or the 14-path. (Consider for example vertices 113 and 233
of S(3,4) on Figure 1 to see that both paths may be shortest.)

The case ja = j and i2 — h is treated analogously.

Case 4: i2 = j2 — h, h ^ i,j. This case can be treated exactly as the previous
one. (Consider for example vertices 133 and 231 of S(3,4) in Figure 1 to see that
the direct path and the Vh-path may have equal length. Also consider vertices 122
and 322 to see that the Vh,-path may be shorter than the direct one.)

Case 5: i2 — 3, j2 = h, i, j, g and h are pairwise different. Let f = i,j,g,h. Then
as in the previous two cases we get that the Vf-path cannot be a shortest path.

The length of the direct path is equal to

which is in turn equal to 2n-1 plus the length of the direct path between ii3 .., in

and j j 3 - . - j n in S(n-l ,k) .
The length of the Vh-path is equal to

which is equal to 2n-1 plus the length of the Vh-path between i i 3 . . . in and jj3 ...jn

in S(n — 1, k). An analogous statement holds for the Vg-path.
This proves that shortest paths between igi3 ... in and j h j 3 .,. jn in S(n, k) cor-

respond to shortest paths between ii3 ... in and jj3 ... jn in the graph S(n — 1, k).
These paths can only be the direct path, the Vi3-path, or the Vj3-path. Hence
if { i 3 , j 3 } = {g,h}, at most two paths among the direct path, the Vg-path and
the Vh-path, may be the required shortest paths in S(n,k). If {i3 ,J3} = {g,h}
we may use the initial argument once again. Finally, if {it,jt} — {g,h1} holds for
t = 3 , 4 , . . . , n — 1, shortest paths between igi3 ... in and j h j 3 ... jn in S(n, k) corre-
spond to shortest paths between iin and jjn in S(2, k). In S(2,k) the direct path
between iin and jjn is of length Qi^n + Qj^n + 1 < 3 . The length of the V.-path is
6hjn + Qh,in + 21 + 1 > 3. Clearly, if the Vh-path is a shortest path then its length
must be equal to 3, which is possible only if in = jn = h. Analogously we see that
the Vg-path may be a shortest path only if in = jn = g. We conclude that at most
two of these three paths may be shortest paths. D
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The proof of Theorem 6 in particular shows that d(I, J), where again without loss
of generality i1 ^ j1, from Theorem 5 is obtained as minimum of

and

This yields

Corollary 7. The distance between any two vertices of S(n,k) can be computed
in O(n) time.

When we know the distance between two vertices we can also easily find all shortest
paths, i.e. one or two of them. To see this it is enough to construct a shortest path
between I = i1i2.. .in and J = i 1 j 1 . . .j1 of length ^i,1,-.,*,.1 Indeed, using such
paths together with the corresponding bridging edges gives shortest paths between
the original vertices.

Consider a sequence a of vertices starting with I and ending with J where the
next term is obtained from the previous one analogously to the way one represents
addition of 1 in binary notation. The beginning of a thus is

In the case when two consecutive terms of the above list are equal we of course omit
the redundant one. That means that if il = jl then there are 2n~l such redundant
terms. Thus a is indeed the shortest path between I and J of the desired length.

Note that the shortest path between ii... i and j j ... j, i ^ j, is obtained exactly
by adding 1 in binary notation if we replace i by 0 and j by 1. Moreover, this
describes the path S(n,2).

To conclude the paper we remark that in view of Theorem 2, Theorems 5 and 6
(in the case k = 3) offer an alternative approach to the classical TH problem.
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