Aequationes Mathematicae 45 (1993) 153162 0001-9054/93/030153—10 $1.50 +0.20/0
University of Waterloo © 1993 Birkhiuser Verlag, Basel

Strong products of y-critical graphs

SANDI KLAVZAR

Summary. Let G[H] be the lexicographic product and let G H be the strong product of the graphs
G and H. 1t is proved that, if G is a y-critical graph, then, for any graph H,

P ...
AGIHY) < ((H)Yx(G) =1 +[a(0)]-

This upper bound is used to calculate several chromatic numbers of strong products. It is shown in
particular that for k=2, 2(Cs Cs Cop o i) =10+[5/k7, and for k22 and nzl
W(Cor 41 K,) = kn +[n/27]. That the general upper bound cannot be improved for graphs which are
not y-critical is demonstrated by two infinite series of graphs. The paper is concluded with an application
to graph retracts: if for some graph H with at least one edge y(G[H]) = /(@)x(H), then no y-critical
subgraph G’ of G, G’ # K,,, is a retract of G.

1. Introduction and definitions

In the last few years graph products became again a very flourishing topic in
graph theory. The revival of interest seems to be mostly due to the algorithmic
point of view. In particular, algorithms for decomposing a graph with respect to a
given product and for isometrically embedding a graph into a (Cartesian) product
of graphs were proposed [1,3,4,7, 19, 20]. Furthermore, retracts of graph prod-
ucts, the reconstruction of products and some other properties of products were
investigated [2, 9—13].

It turned out that both the Cartesian product and the strong product admit a
polynomial algorithm for decomposing a given connected graph into its factors.
Here, we are interested in studying those parameters of strong products of graphs
whose determination is in general NP-complete, for example, the chromatic number
of a graph. On the other hand, it is not surprising that information about the
chromatic number of strong products helps to understand retracts of strong
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products [9, 11, 12]. Finally, the chromatic number of the strong product of graphs
seems to be more unpredictable than the chromatic number of the Cartesian, the
categorical, and the lexicographic product.

All graphs considered in this paper will be undirected, finite, and simple graphs,
i.e., graphs without loops or multiple edges.

An n-colouring of a graph G is a function f from V(G) onto a set X with |X| = n,
such that xy € E(G) implies f(x) # f(y). The smallest number » for which an
n-colouring exists is the chromatic number y(G) of G. G is called y-critical if
1(G —v) < x(G) for every v e V(G). Every nontrivial graph contains a y-critical
subgraph with the same chromatic number.

The size of a largest complete subgraph of a graph G will be denoted by w(G)
and the size of a largest independent set by o(G). Clearly w(G) < x(G) and
o(G) = a(G).

The strong product G ® H of graphs G and H is the graph with vertex set
V(G) x V(H) and (a, x)(b, y) € E(G X H) whenever ab € E(G) and x =y, ora=0b
and xy € E(H), or ab € E(G) and xy € E(H). The lexicographic product G[H] of
graphs G and H is the graph with vertex set V(G) x V(H) and (a, x)(b, y) € E(G[H])
whenever ab € E(G), or a = b and xy € E(H).

In the next section we recall some known results and prepare a few observations
for the rest of the paper. In Section 3 we prove an upper bound for lexicographic
(strong) products in which one factor is y-critical and construct an infinite sequence
of graphs which shows that the general upper bound cannot be improved for graphs
which are not y-critical. In Section 4 we use the upper bound for y-critical graphs
to calculate several chromatic numbers of strong products. We finally give an
application to graph retracts.

2. Preliminaries

The upper bound (G X H) < y(G)y(H) on the chromatic number of the strong
product is well-known and easy to prove. It is attained for any G and H with
12(G) = w(G) and y(H) = w(H). Indeed,

1(G(H) = o(G)o(H) = o(G W H) <3(G W H) < (G)y(H).

Perfect graphs form an especially important class for which the upper bound is
reached. This is in particular true for bipartite graphs ([16, Theorem 5]) and
complete n-partite graphs ([16, Theorem 4]).

Next we consider the case in which one of the factors has chromatic number
equal to its clique number, but not the other factor.
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PropoSITION 1. Let y(H) = w(H) =n. Then for any graph G
(G ® H) =G B K,).

A short proof (using retracts) of this proposition will be given in the last section.
In [10} Jha showed that (G B K,) = x(G) + A, generalizing a result of Ves-
ztergombi [17] for n = 2. Both authors asked for a better lower bound. However,
the answer was given already by Stahl [16], although in a different context. He
proved

THEOREM 2 [16, Corollary, p. 189]. If G has at least one edge then
WG ® K,) = 1(G) +2n —2.

A short proof of this theorem and some of its consequences are given in [12].

We conclude this section with a well-known inequality and a simple obser-
vation. Since we will need these two facts several times let us state them as a
lemma.

LEMMA 3. For any graph G, the following hold:

(i) (G ® K,) = a(G).

3. An upper bound for y-critical graphs

The strong product is a subgraph of the lexicographic product. Therefore, any
upper bounds for the chromatic number of the lexicographic product is also an
upper bound for the strong product and any lower bound for the strong product
is a lower bound for the lexicographic product. The following upper bound which

extends the Corollary of Theorem 5 from [6], will have several consequences and
applications.

THEOREM 4. If G is a y-critical graph then, for any graph H,

W GIHD) < x(H)((G) — 1) + [a(c)]'
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Proof. Let y(G)=n. Let y(H) =m and for a given m-colouring of H let
{Co,C\,...,C, 1} be the corresponding colour classes. Let o(G) =k and let
S ={ag,a,,...,a,_,} be an independent set of G.

As G is y-critical, the graph G —a can be coloured with n — 1 colours for any
a € V(G). In particular, let f;: V(G) —a;—{1,2,...,n— 1} be an (n — 1)-colouring
of the graph G —a;, i =0,1,...,k —1.

Forj=0,1,...,m— 1 write j = p;k + ¢q;, where 0 < ¢; <k and set

fla.x) = @+, xeC;, a#a,;
’ pn, xeC;, a=a,

We are going to show that f is a colouring of G[H]. Let f(a, x) =f(b, y),
(a, x) # (b, y), where x € C;and y € C;. Note first thatif a = a,andb # a, then f(a, x)
isdivisible by n and (b, y)is not, hence f(a, x) #f(b, y). We now distinguish two cases.

Casel. a=a,,b =a,. Thenpn = pnand hence p; = p;. It follows that, for some
4 J J

92

5, 0<s <[m/k7, both i and j belong to the set
{sk,sk+1,..., sk +k—1}.

If i #j then g; # ¢, and hence a, #a,. It follows that (a, x)(b, v) ¢ E(G[H]). Assume
next 7 = j. Then ¢, = g; and therefore @ = b, x # y but x and y are in the same colour
class of H. It follows again (a, x)(b, y) ¢ E(G[H]).

Case 2. a+#gq,, b# a,. Then f,(a) +in =f,,j(b) +jn. If we assume w.lo.g.
Jo(@) < f,,j(b) then we have (i — jn = qu(b) — fo,(@), where 0 < qu(b) —Jfo (@) <n—1.
Since n = 2 the equality 7 = j follows and hence f, (a) = £, (b). But then ab ¢ E(G) and
X, y are in the same colour class. We conclude (a, x)(b, y) ¢ E(G[H)).

We have seen that fis indeed a colouring of G[H]. It is easy to see that the set onto
which f'maps vertices of G[H] has (m(n — 1) + [m/k7) elements. This completes the
proof. ]

COROLLARY 5. If G is a y-critical graph, then for any graph H,

H
(G 8 H) < f(H)YUG) — 1) + [%]

We note here that in [14] M. Rosenfeld characterized those graphs G (called
universal) for which o(G X H) = a(G)a(H), for every graph H. With this terminol-

ogy, Corollary 5 states that no graph is universal for the chromatic version of this
problem,
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The natural question now is whether the upper bound can be improved also in
the case when o(G) < z(G), yet G is not y-critical. We need the following lemma
which is a generalization of Theorem 5 in [5].

LEMMA 6. Let k =1 and let

k\V(G)l

a(G) < ——7

1) <16y —1

hold for a graph G. Then G ® K,) = 2(G)k.
Proof. Using Lemma 3 (i) and (ii) we infer

k|V(G)]

26 W K>

Hence, (G ® K)>kx(G)— 1, which yields the desired result since

#(G B K) < 72(Gk. O

: THEOREM 7. For k =2,3 there is an infinite sequence of graphs G% such that
o(GF) < 3(G%) and

UGE B Ke) = 1(Gk.

Proof. Let T,,, n=1,2,3,... be any sequence of trees, where lT,,l = .

Let G2 be a graph which we get from the tree T, in which we replace every
vertex u e V(T,) with a copy G, of the graph Gg from Fig. 1. If uv € E(T,) then
we select a vertex of G, and a vertex of G, and join them with an edge (i.e., we
have a tree-like structure of graphs Gyg). Since a(Gy) =3, we get (G2 <3n. It is
also straightforward to verify that x(G2) = 3. Hence as \V(G,z,)] =8nand k =2 the
condition of Lemma 6 is fulfilled (151 < 16n). It follows (G2 ® K,) = x(G})2.

For k =3 consider the graph G, of Fig. 1. Let S be an independent set of
vertices of G,, and let w € V(Gy;) be the vertex of degree 2. If w ¢ S then the other
10 vertices lie on two disjoint 5 cycles. As (Cs) =2 it follows lS[ <4, The case
when 1 € S can be analysed similarly by a simple case distinction. It follows that
u(G,,) =4.

Let G2 be a graph which we get from the tree T, in the same way as we
constructed G2 but instead of Gy we use G- Then «(G3) <4n and x(G;) =3.
Again the condition of Lemma 6 is fulfilled and hence x(G, & K;) = $(G3)3.

Observe finally that o(G2) = o(G;) = 2. O
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Gs Gi1

Figure 1. The graphs G4 and G;.

4. Some chromatic numbers

In this section we are going to apply Corollary 5 to get several chromatic
numbers of strong products.

In [16] Stahl proved that y(C, ., ¥ K,) =2n+4[n/k’]. Besides odd cycles
the second prototype of nonperfect graphs are the complements of odd cycles. We
have

COROLLARY 8. For k=2 andnz1, (Cy ) B K,)=kn+[n/27

Proof. As y(Cy . 1) =k + 1 it follows from Corollary 5 that

2(Co oy B K)<(k+Dn—n+ [%} =kn + {%]

On the other hand, using Lemma 3 (i) and (ii) and the fact a(Cy, ;) =2, we
infer

> IC2k+l Kn] —(2k+1)n—kn+ﬁ. ]

o(Coesy M K,) CACyar) 2

X(C2k+l Kn)

It is known that y(C,, Corry)y=95for s 22, k=2, see [17]. Next we
consider products of three odd cycles.

THEOREM 9. For k 22, y(Cs W Cs X Cyp ) = 104+[5/k7.

Proof. Note first that a(Cy . () =k and a(Cs ¥ C5) =5. If we apply the
following result from [15, p. 142]

a(Cs Cs Coe 1) = Cs C)UCop 41)s
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we obtain from Lemma 3 (i)

5:5:k+1) 5
22T =04

WCs W Cs B Cope 1) 2 57 10 +
k

On the other hand, if we write y(Cs X Cs X Cyry) = 1(Co 4y B (C5 B C5)) and
use Corollary 5, we get

5
1(Cop oy B (Cs C5))<15_5+[%:|_ o

With the same technique as in Theorem 9 one can also show that for
2<tr <5<k,

|:2(2s T D2t +1)
k

5
ST+L1/2_] :|<X(C2/+l C2s+l C2k+l)<10+|:'j|'

However, the exact result for the chromatic number of three odd cycles remains
open.

The join G,+ G, of graphs G, and G, is the graph which we obtain from the
disjoint union of G, and G, in which we join every vertex of G, with every vertex
of G,.

PrOPOSITION 10. Let G =G, + G,. Then
WG X K,) =G, B K,)+ (G, ¥ K,).
Proof. Clearly,

WG B K,) <G, B K,)+x(G, X K,).

On the other hand, if a € ¥(G,) and b € V(G,) then (a, x)(b, y) is an edge of
G K K,. It follows that

X(G Kn) > X(Gl Kn) +X(G2 Kn)' ‘:\

For an application of Proposition 10 we consider an interesting class of graphs
proposed by Witzany (personal communication). Let G, be the join of the complete
graph K, _;, n >3 and the five cycle Cs;. Witzany showed that G, is the smallest
graph with (G) =n and o(G) =n — 1.
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COROLLARY 11. For n =23 and m =21, y(G, X K,,) =mm —m +[m/27].

Proof. As Cs= Cj, it follows from Corollary 8 that

WCs ® K,) =2m + H

Thus we have, using Proposition 10, that

X(G Kn) =X(I<11A3 I(m) +X(CS Km)

=m—3ym+2m+ [%1} =nm —m + [%1}

This completes the proof. o

Note that the upper bound of Corollary 5 coincides once more with the result
in Corollary 11.

5. An application to graph retracts

A subgraph R of a graph G is a retract of G if there is a homomorphism (an
edge-preserving map) r: V(G) - V(R) with r(x) = x, for all x € V(R). The map r is
called a retraction. It is not hard to see that if R is a retract of G then y(R) = x(G)
and R is an isometric subgraph.

Before stating an application of Theorem 4 to graph retracts, we owe a proof of
Proposition 1.

Proof of Proposition 1. As y(H) = o(H) = n, K, is a retract of H. It follows that
G XN K, is a retract of G & H. Hence the assertion follows. O

THEOREM 12, Let G be a graph. If for some graph H with at least one edge
Y(G[H)) = x(G)x(H), then no y-critical subgraph G’ of G, G’ # K,,, is a retract of G.

Proof. Let H be a graph with at least one edge and assume that
w(G[H]) = x(G)y(H). Let G’ be a retract of G and assume that G’ is y-critical. As
G’ is a retract of G, ¥(G’) = y(G). Furthermore, G'[H] is a retract of G[H]; hence
we obtain

x(G'[H]) = x(G[H]) = x(G)x(H).
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On the other hand, it follows from Theorem 4 that

x(H)
w(G’) |

WG [H]) < f(G(H) — x(H) + [
Since y(G) = x(G’) we have

x(H)
$(H) < {@]

Furthermore, y(H)>2 and therefore a(G’) =1. Thus, G’ is isomorphic to a
complete graph. O

As an example consider once more the graphs G* from Theorem 7. Since
Gy B Ky) = x(G¥)k, we also have y(GX[K,]) = x(G¥)k. Therefore, no 5-cycle is a
retract in any of the graphs G% although it is an isometric and isochromatic subgraph.
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