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Abstract

Isometric subgraphs of hypercubes are known as partial cubes. The subdivision graph of a
graph G is obtained from G by subdividing every edge of G. It is proved that for a connected
graph G its subdivision graph is a partial cube if and only if every block of G is either a
cycle or a complete graph. Regular partial cubes are also considered. In particular, it is shown
that among the generalized Petersen graphs P(10; 3) and P(2n; 1), n¿ 2, are the only (regular)
partial cubes.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Partial cube; Subdivision graph; Regular graph; Generalized Petersen graphs

1. Introduction

Partial cubes are isometric subgraphs of hypercubes. They were 7rst introduced in
computer science [12] and have later found several other applications, for instance in
mathematical chemistry and biology, cf. [5,9,15].
Clearly, partial cubes are bipartite. If G is an arbitrary graph, a simple way to modify

it to a bipartite graph is to subdivide every edge of G by a single vertex. Such a graph
is called a subdivision graph of G and denoted S(G). A natural question appears for
which graphs G their subdivision graphs are partial cubes.
Subdivision graphs were studied before in di>erent contexts, see, for instance,

[1,3,19]. A more general construction is to replace edges of G by paths, thus
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obtaining a subdivided graph of G. In the context of partial cubes, subdivided graphs
of wheels turned out to be useful in settling (in negative) a conjecture of Chepoi and
Tardif asserting that a bipartite graph is a partial cube if and only if all of its intervals
are convex [2]. Subdivided graphs of wheels were also studied in [6] where it was
proved that except in three particular cases they are the so-called l1-graphs—a class
of graphs that properly contains partial cubes.
The main result of this paper asserts that S(G) is a partial cube if and only if ev-

ery block of G is either a cycle or a complete graph. We also consider the problem
of classifying regular partial cubes and show in particular that P(10; 3) and P(2n; 1),
n¿2, are the only (regular) partial cubes among the generalized Petersen
graphs.
All graphs considered in this paper are connected and simple. The vertex set of

the n-cube Qn consists of all n-tuples b1b2 : : : bn with bi ∈{0; 1}, where two ver-
tices are adjacent if the corresponding tuples di>er in precisely one place. The ver-
tices of Qn can also be understood as characteristic functions of subsets of an n-set.
Then, two such subsets are adjacent if their symmetric di>erence consists of a single
element.
The Cartesian product G✷H of graphs G and H is the graph with vertex set
V (G)×V (H) in which the vertex (a; x) is adjacent to the vertex (b; y) whenever
ab∈E(G) and x=y, or a= b and xy∈E(H). Note that the Cartesian product of n
copies of K2 is the n-cube Qn.
For a graph G, the distance dG(u; v), or brieLy d(u; v), between vertices u and v is

de7ned as the number of edges on a shortest u; v-path. A subgraph H of G is called
isometric if dH (u; v)=dG(u; v) for all u; v∈V (H). A subgraph H of G is convex, if
for any u; v∈V (H), all shortest u; v-paths belong to H .
A maximal connected subgraph without a cutvertex is called a block. Thus, every

block of a connected graph is either a maximal 2-connected subgraph or a bridge (with
its ends), cf. [7].
For an edge uv of a graph G, let Wuv be the set of vertices of G that are closer

to u than to v. In a bipartite graph G the sets Wuv and Wvu form a partition of V (G).
DjokoviMc [8] proved that a graph G is a partial cube if and only if it is bipartite and
if for any edge ab of G the subgraph Wab is convex.

Two edges e= xy and f= uv of G are in the DjokoviMc–Winkler [8,20] relation �
if dG(x; u) + dG(y; v) �=dG(x; v) + dG(y; u). In the case of bipartite graphs relation �
reduces to:

Lemma 1.1. Let G be a bipartite graph and e= uv, f= xy be two edges of G
with e�f. Then the notation can be chosen such that d(u; x)=d(v; y)=d(u; y) −
1=d(v; x)− 1.

Clearly, � is reLexive and symmetric. We now list several basic and well-known
properties of � to be used in the sequel, cf. [13], for Lemma 1.5 see [11].

Lemma 1.2. Let P be a shortest path in a graph G. Then no two distinct edges of
P are in relation �.
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Lemma 1.3. Suppose that a walk P connects the endpoints of an edge e but does not
contain it. Then P contains an edge f with e�f.

Lemma 1.4. Let G be a partial cube, C an isometric cycle of G, and e an edge
of C. Then the � class of e intersects C in exactly two edges: e and its antipodal
(opposite) edge on C.

Lemma 1.5. Let e and f be edges from di4erent blocks of a graph G. Then e is not
in relation � with f.

Let �∗ be the transitive closure of �. Winkler [20] proved the following character-
ization of partial cubes:

Theorem 1.6. A bipartite graph is a partial cube if and only if �=�∗.

Let G be a connected graph. A proper cover of G consists of two isometric subgraphs
G1 and G2 with nonempty intersection and union G. The expansion of G with respect
to G1, G2 is the graph H obtained by the following procedures:

(i) Replacement of each vertex v∈G1 ∩G2 by vertices v1, v2 and insertion of the
edge v1v2.

(ii) Insertion of edges between v1 and the neighbors of v in G1\G2 as well as between
v2 and the neighbors of v in G2\G1.

(iii) Insertion of the edges v1u1 and v2u2 whenever v; u∈G1 ∩G2 are adjacent in G.

Chepoi [4] proved:

Theorem 1.7. A graph is a partial cube if and only if it can be obtained from the
one vertex graph by a sequence of expansions.

2. Partial cubes as subdivision graphs

If T is a tree, then S(T ) is also a tree and thus a partial cube. Similarly, subdivision
graphs of cycles are partial cubes since S(Cn)=C2n. Moreover, we have:

Proposition 2.1. For any n¿1, S(Kn) is a partial cube.

Proof. As S(K1)=K1 and S(K2)=P3, the assertion is true for n=1; 2. Let n¿2 and
consider the subset representation of Qn. Let G be the subgraph of Qn induced by the
subsets on at most two elements. Let G1 be the subgraph of G induced by the subsets
on at most one element and G2 the subgraph of G obtained from G be removing the
empty set. Clearly, G1 is isometric in G and it is also easy to check that G2 is isometric
in G. Thus G1 and G2 form a proper cover of G and since G is also a partial cube,
the expansion H of G with respect to G1 and G2 is a partial cube by Theorem 1.7.
Finally, observe that H is isomorphic to S(Kn+1).



160 S. Klav�zar, A. Lipovec /Discrete Mathematics 263 (2003) 157–165

Fig. 1. Expanding a subgraph of Q3 to S(K4).

The proof of Proposition 2.1 is illustrated in Fig. 1. The vertices of S(K4) that are
obtained by subdividing edges are shown as 7lled squares.
In the rest of this section we are going to prove that these are precisely the cases

when S(G) is a partial cube. More precisely, we will prove

Theorem 2.2. Let G be a connected graph. Then S(G) is a partial cube if and only
if every block of G is either a cycle or a complete graph.

Let u be a vertex and e an edge of a graph G. We will denote the vertex of S(G)
corresponding to u by Nu, and by Ne the vertex of S(G) that is obtained by a subdivision
of e.
The following straightforward lemma will be implicitly used in the rest of the section:

Lemma 2.3. Let e and f be edges of a graph G and let u and v be endpoints of e
and f, respectively, such that d(u; v) is minimal. Then

(i) dS(G)( Nu; Nv)= 2dG(u; v),
(ii) dS(G)( Ne; Nf)= 2dG(u; v) + 2,
(iii) dS(G)( Nu; Nf)= 2dG(u; v) + 1.

Lemma 2.4. Let G be a 2-connected graph that is not a cycle. Then G contains
two isometric cycles C1 = u1u2 : : : ukuk+1 : : : unu1 and C2 = u1u2 : : : ukvk+1 : : : vmu1, where
n¿m¿k¿2 and vi �= uj for i; j¿k + 1; see Fig. 2.

Proof. Let C1 be a shortest cycle of G. Clearly, C1 is isometric. As G is not a cycle,
there exists a vertex u∈C1 of degree at least 3. Let u′ �∈C1 be a neighbor of u. Note
that such a vertex exists because C1 is isometric and thus chordless. As u is not a
cut vertex, there is a path P between u′ and a vertex of C1. Let v be the endpoint of
P di>erent from u. We may select u and v such that d(u; v) is as small as possible
among such pairs. Fixing a pair u; v, let P be as short as possible. We claim that the
cycle C2 : u→ u′ → · · ·P · · · → v→ · · ·C1 · · · → u is an isometric cycle. Indeed, there
is no shortcut between a vertex of C2 ∩C1 and a vertex of P because of the way u; v
and P are selected. Likewise, there is no shortcut between two vertices of P.
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Fig. 2. Two isometric cycles with at
least one edge in common.

Fig. 3. Cycle C1 ∪C2 is not isometric.

Lemma 2.4 will be used in the proof of Lemma 2.6. We wish to point out that it is
essential that the numbers n; m; k satisfy the inequalities n¿m¿k¿2, hence the shortest
of the three paths between u1 and uk is the common part of C1 and C2, cf. Fig. 2.

Lemma 2.5. Let G be a partial cube, and let C1 and C2 be cycles of G as in
Lemma 2.4. Let e= uu′ be an edge of C1\C2, let f= vv′ be an edge of C2\C1, and let
h be an edge of C1 ∩C2 such that e�f�h. If d(u; u1)¡d(u′; u1) and d(v; u1)¡d(v′; u1),
then d(u; v)=d(u′; v′)=d(u; v′)− 1=d(u′; v)− 1.

Proof. Since d(u; u1)¡d(u′; u1), we have u1 ∈Wuu′ . Similarly, d(v; u1)¡d(v′; u1) im-
plies u1 ∈Wvv′ , see Fig. 2. It follows that Wuu′ =Wvv′ . Indeed, otherwise Wuu′ =Wv′v
would hold, which is not possible since u1 ∈Wuu′ but u1 �∈Wv′v. As G is a partial
cube, DjokoviMc’s characterization implies that the sets Wuu′ and Wvv′ are convex. Hence
d(u′; v)=d(u; v) + 1 and d(u; v′)=d(u′; v′) + 1. By using Lemma 1.1 the proof is
complete.

Lemma 2.6. Let G be 2-connected graph that is not a cycle. If S(G) is a partial
cube and C1 and C2 cycles of G as in Lemma 2.4, then C1 ∪C2 induces a K4.

Proof. Let S(G) be a partial cube and let NC1 and NC2 be the cycles of S(G) that
correspond to the cycles C1 and C2 of G. Consider the middle two edges of NC1 ∩ NC2.
More precisely, if k is even then these are the edges of the path Nuk=2 → Ne→ Nuk=2+1,
and if k is odd then these are the edges of the path Ne→ Nu(k+1)=2 → Nf. We denote the
corresponding vertices of S(G) with Nx, Ny, and Nz.
By Lemma 1.4 there are edges Ny1 Nz1 on NC1 and Ny2 Nz2 of NC2 such that Nx Ny� Ny1 Nz1 and

Nx Ny� Ny2 Nz2. Note that these are antipodal (opposite) edges in the corresponding cycles.
Similarly, Ny Nz is in relation � to Nx1 Ny1 on NC1 and to Nx2 Ny2 on NC2, cf. Fig. 3. As S(G) is
a partial cube we infer that Ny1 Nz1� Ny2 Nz2 and Nx1 Ny1�Nx2 Ny2. Let d(Nx1; Nx2)= n, where n¿2.
By Lemma 1.1 we have d(Nx1; Nx2)=d( Ny1; Ny2)=d(Nz1; Nz2). Hence Lemma 2.5 implies
d(Nx1; Ny2)=d( Ny1; Nx2)=d( Ny1; Nz2)=d(Nz1; Ny2)= n+ 1.
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Let P be a shortest Ny1; Ny2-path. By the above distances none of the vertices Nx1; Nx2,
Nz1, and Nz2 lies on P. It follows that the degrees of Ny1 and Ny2 are at least 3. Hence, by
the de7nition of S(G), the degrees of Nx1, Nx2, Nz1, and Nz2 are 2.
Let Nw1 be the neighbor of Ny1 and Nw2 the neighbor of Ny2 on P, let Na1 be the other

neighbor of Nx1 (on NC1), Nb1 the other neighbor of Nz1, Na2 the other neighbor of Nx2 (on
NC2), and Nb2 the other neighbor of Nz2, cf. Fig. 3.
Suppose that Nw2 Ny2�Nx1 Na1, Nw2 Ny2�Nz1 Nb1, Nw1 Ny1�Nx2 Na2, and Nw1 Ny1�Nz2 Nb2. Then, by the

transitivity of �, the 7rst two conditions imply Nz1 Nb1� Na1 Nx1. As C1 and C2 are isometric,
this is only possible if Na1 = Nx and Nb1 = Nz. Analogously, the second two conditions imply
that Nx= Na2 and Nz= Nb2 and Nw1 = Nw2. But then the vertices Nx1, Ny1, Nz1, Nx, Ny, Nz, Nx2, Ny2, Nz2,
and Nw1 induce an S(K4).
Assume now that one of the four conditions of the previous paragraph is not ful7lled.

We may without loss of generality assume that Nw2 Ny2 is not in relation � with Nz1 Nb1. Now
we have d(Nz1; Ny2)= n + 1, d(Nz1; Nw2)= n. If a shortest Nz1; Nz2-path would pass Ny1, then,
since d( Ny1; Nz2)= n+ 1, we would have d(Nz1; Nz2)= n+ 2, which is not the case. Since
z1 has degree 2 it follows that any shortest Nz1; Nz2-path passes Nb1, hence d(Nb1; Ny2)6n.
Moreover, d(Nb1; Ny2)= n for otherwise d(Nz1; Ny2)6n. Now, since Nw2 Ny2 is not in relation
� with Nz1 Nb1 we must have d(Nb1; Nw2)= n − 1. Let Q be a shortest Nb1; Nw2-path. Let
Nw3 be the last common vertex of P and Q traversing from Nw2 and set d( Nw3; Ny2)=p.
Let Nw4 be the neighbor of Nw3 on Q that is not on P. Then Nw3 Nw4 is in relation �
with Ny1 Nz1. Indeed, d( Ny1; Nw3)= n − p, d(Nz1; Nw4)= n − p, d( Nw3; Nz1)= n − p + 1, and
d( Nw4; Ny1)= n − p + 1. Transitivity of � thus implies that Nw3 Nw4� Ny2 Nz2. It follows that
d( Nw3; Ny2)=d( Nw4; Nz2). Note that Nw4 is of degree 2. Therefore, a geodesic between Nw4

and Nz2 must pass the neighbor of Nw4 di>erent from Nw3. However, this is not possible
as we would get that d(Nz1; Nz2)¡n, a contradiction.

Proof of Theorem 2.2. Suppose 7rst that each block of G is either a cycle or a com-
plete graph. Then the blocks of S(G) are partial cubes by Proposition 2.1. Now
Lemma 1.5 implies that � is transitive and as S(G) is bipartite, it is a partial cube by
Theorem 1.6.
Conversely, let S(G) be a partial cube. We may without loss of generality assume

that G is 2-connected. If G is a cycle, we are done. So we may assume that this is
not the case. Then G contains isometric cycles C1 and C2 as described in Lemma 2.4.
Hence by Lemma 2.6 we have an induced K4 in G. Let x1; x2; x3, and x4 be the vertices
of this K4. If G has 4 vertices, we are done. Otherwise, let y be another vertex of G
adjacent to x1. Then, as G is 2-connected, there is a path P between y and another
vertex of K4, say x2. We may select P is such a way that x1 →y→· · ·P→ · · · x2 → x1
is an isometric cycle. Therefore by Lemma 2.6 y is adjacent with x2 and x3. Similarly,
we infer that y is also adjacent with x4. Induction completes the proof.

3. On regular partial cubes

For the (probably) most important subclass of partial cubes, median graphs, Mulder
[16] proved that hypercubes are the only regular median graphs. Besides hypercubes,
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Fig. 4. Expanding the three middle levels of Q4 to P(10; 3).

even cycles are regular partial cubes. Moreover, the Cartesian product of two (regular)
partial cubes is a (regular) partial cube. In [14] it was asked if in this way one obtains
all regular partial cubes. However, this is not the case.
First, an additional example of such a graph is due to Gedeonova [10], see also

Fig. 2.4 of [13]. Also, J. Koolen (personal communication) pointed out that the middle-
level graphs are also regular partial cubes. (For a given (2n+1)-cube its middle-levels
graph is the subgraph induced by the middle two levels in its subset representation, cf.
[18]. For instance, the middle-levels graph of Q3 is C6.)

The middle-levels graphs can be constructed also in the following way. Consider
the 2n-cube in its subset representation. Let Gn be the subgraph of Q2n induced by the
subsets on n − 1, n, and n + 1 elements. Let G′ be the subgraph of Gn induced by
the subsets on n−1 and n elements, and let G′′ be the subgraph induced by the subsets
on n and n + 1 elements. Then it is straightforward to verify that G′ and G′′ form a
proper cover of Gn. Thus we may expand Gn with respect to G′ and G′′ to obtain a
partial cube Hn. Observe 7nally that Hn is the middle-levels graph of Q2n+1.
The above construction gives an alternative argument for the fact that the middle-

levels graphs are partial cubes. The construction for Q4 is shown in Fig. 4. The graph
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H2 is isomorphic to the generalized Petersen graph P(10; 3), cf. also [17] where regular
subgraphs of hypercubes are studied.
This observation raises the question whether there are more regular partial cubes

among generalized Petersen graphs.

Proposition 3.1. P(2m; 1), m¿2, and P(10; 3) are the only (regular) partial cubes
among the generalized Petersen graphs P(n; k).

Proof. We have seen above that P(10; 3) is a partial cube. Moreover, P(2m; 1) is
isomorphic to C2m✷K2, thus it is a (regular) partial cube.

It remains to show that in all the other cases P(n; k) is not a partial cube. First note
that a bipartite P(n; k) is of the form P(2k; 2‘ + 1), k; ‘∈N, k¿2‘ + 1. Denote the
vertices of the outer cycle of P(2k; 2‘+1) with 1; 2; : : : ; 2k and the corresponding inner
vertices by 1′; 2′; : : : ; (2k)′.

Assume ‘¿1. Considering the cycle 1→ 2→ · · · → 2‘+2→ (2‘+2)′ → 1′ → 1 we
note that the edge 11′ is in relation � with (‘ + 2)(‘ + 3). Similarly, from the cycle
1→ 2→ · · · → ‘+3→ (‘+3)′ → (2k−‘+2)′ → 2k−‘+2→ 2k−‘+3→ · · · → 1 we
infer that (‘+2)(‘+3) is in relation � with 1(2k). Hence � is clearly not transitive.
It remains to consider the case ‘=1. Note 7rst that 11′�34 and 34�66′. Continuing

in this way along the outer cycle we 7nd that 2k ≡ 0 (mod 5), that is, n=10t. However,
in this case 2′5′ must be in the same �-class as 11′. As this is only possible if t=1,
the proof is complete.

A classi7cation of regular partial cubes remains a challenging open problem.
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