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Abstract

The aim of this paper is to apply the Djoković-Winkler relation to subdivisions of partial

cubes and then to derive closed formulae for computing the topological indices of the subdivi-

sion graphs, provided the indices of its associated partial cubes are known. We have applied

the obtained formulae to the subdivisions of circumcoronenes to compute the exact analytical

expressions of its distance and degree-distance based indices. We have also obtained distance-

based and degree-distance based indices of silicate graphs such as pruned quartz. Such silicate

molecular structures have potential applications in nanomedicine for drug delivery systems, as

these materials could serve as molecular belts for efficient drug delivery.

Keywords: Subdivision graph; topological indices; circumcoronene; cut method; quotient graph.

1 Introduction

Graph theory has become an important and integral part in drug discovery and predictive toxicology,

as it plays a key role in the analysis of structure-property and structure-activity relationships.

That is, various properties of molecules depend on their structures and consequently, quantitative

structure-activity-property-toxicity relationships (QSAR/QSPR/QSTR) research has emerged as a

prolific area of research in in-silico characterization of physico-chemical properties, pharmocologic
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and biological activities of chemical compounds and materials. These studies have been extensively

applied to chemometrics, pharmacodynamics, pharma-cokinetics, toxicology and so on [24].

Topological indices are molecular structural descriptors which theoretically and computation-

ally characterize the underlying connectivity of chemical compounds and nanomaterials and hence

facilitate faster techniques to analyze their properties and activities. The molecular graphs are to

a great extent related to the topological approach of graph theory which replaces the traditional

additive scheme. Such applications of combinatorics and graph theory to chemical and drug re-

search have been the topic of several studies over the years [4, 6, 7]. Topological indices are usually

based on underlying connectivity as characterized by degrees, distances or degree-distances. In our

present investigation, we focus on deriving results for the distance-based and degree-distance-based

descriptors using the cut method that serves as an efficient method in the computation of these

indices for SiO2 molecular belts.

Silicon dioxide, also widely known as quartz, is a naturally occurring compound of silicon and

oxygen. Silica has three main crystalline varieties: tridymite, cristobalite and quartz. Quartz is

the most common polymorph of crystalline silica and is the single most abundant mineral in the

earth’s crust, while cristobalite and tridymite are formed at a high temperature from quartz. The

structure of quartz and its related structure are shown in Figures 1(a) and 1(b), respectively. Since

the topological indices of tridymite and cristobalite have been studied [3, 11, 14, 16, 25], we focus

on deriving exact analytical expressions of topological indices of pruned quartz and its related

structure. It is noted that the pruned quartz with the removal of pendant bonds constitute an

interesting bridge for studies on silicon clusters [5, 31] through laser vaporization techniques.

The hypercube structure is one of the most powerful graph-theoretical structured which is used in

different fields of research. Isometric subgraphs of hypercubes are known as partial cubes. Djoković

characterized these graphs in terms of the convexity of subgraphs called half spaces [8]. This

characterization contains the seed of the relation Θ for bipartite graphs. It took a decade, however,

before Winkler explicitly defined the relation in [29]. Moreover, his definition does apply to all

graphs which turned out to be the milestone for numerous developments since then. In this paper,

we have developed closed formulae for the efficient computation of the subdivision of families of

partial cubes by applying the key concept of cut method [18, 20] to the edges and joining the

decomposed graphs to form strength-weighted graphs [2, 3].
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(a) (b)

Figure 1: SiO2 structures (a) Quartz, (b) Quartz without pendant vertices

2 Graph theoretical terminologies

Let G be a simple, finite, connected graph with |V (G)| and |E(G)| to represent the number of

vertices and edges, respectively. The degree of a vertex v ∈ V (G) is the number of edges incident

to v, denoted by dG(v), and the minimum number of edges in a shortest u, v-path between the

vertices u, v ∈ V (G) is denoted by dG(u, v). The distance between an edge e = ab ∈ E(G) and

a vertex v is defined as dG(e, v) = min{dG(a, v), dG(b, v)} and for any two edges e = ab, f = xy,

the distance between them is defined by DG(e, f) = min{dG(e, x), dG(e, y)}. This definition is

from [30]. The function DG is not a distance function in the sense of the theory of metric spaces

because for adjacent edges e and f , e ̸= f , we have DG(e, f) = 0. Independently from [30], the

way how a distance between two edges can be defined was carefully examined in [13]. As pointed

out, if the distance between two edges of G is defined as the distance between the corresponding

vertices in the line graph of G one gets a metric space. So one can define the edge-Wiener index

of a graph using one of these two definitions. Luckily, this is only a technical matter because, as

shown in [13, Corollary 8], the two indices differ exactly by the factor
(
m
2

)
, where m is the number

of edges of the graph in question.

Recently, a strength-weighted graph [2] has been introduced as the generalization of weighted-

graph. A strength-weighted graph is a triple Gsw = (G,SWV , SWE) where G is a simple graph and

SWV , SWE are the strength-weighted functions defined on vertices and edges of G respectively as

follows:

• SWV = {(wv, sv) : wv, sv : V (Gsw) → R+
0 },

• SWE = {(we, se) : we, se : E(Gsw) → R+
0 }.

For our purpose of study, we assume that we = 1 for every edge e ∈ Gsw, and henceforth Gsw =
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(G, (wv, sv), se). A few basic terminologies related to G and Gsw are presented in Table 1. Collecting

these terms, the definitions of the distance-based and degree-distance-based topological indices for

a simple graph and strength-weighted graph are presented in Tables 2 and 3, respectively. If wv =

se = 1 and sv = 0, then the topological indices of strength-weighted graphs yield TI(Gsw) = TI(G).

Table 1: Basic terminologies of G and Gsw

Terms Simple Graph G Strength-weighted graph Gsw

Distance dG(u, v) = dGsw(u, v)

Neighborhood NG(u) = {v ∈ V (G) : dG(u, v) = 1} = NGsw(u)

Degree dG(u) = |NG(u)| dGsw(u) = 2sv(u) +
∑

x∈NGsw (u)

se(ux)

Counting sets Nu(e|G) = {x ∈ V (G) : dG(u, x) < dG(v, x)} = Nu(e|Gsw)

for e = uv Mu(e|G) = {f ∈ E(G) : dG(u, f) < dG(v, f)} = Mu(e|Gsw)

nu(e) nu(e|G) = |Nu(e|G)| nu(e|Gsw) =
∑

x∈Nu(e|Gsw)

wv(x)

mu(e) mu(e|G) = |Mu(e|G)| mu(e|Gsw) =
∑

x∈Nu(e|Gsw)

sv(x) +
∑

f∈Mu(e|Gsw)

se(f)

The n-dimensional cube or a hypercube Qn, n ≥ 1, is a recursive Cartesian product of n factors

of K2, in other words, V (Qn) = {0, 1}n and two vertices are adjacent if they differ exactly in one

position. If dH(u, v) = dG(u, v) for all u, v ∈ V (H) where H ⊆ G, then the subgraph H of G is said

to be isometric. A mapping f : V (H) → V (G) is an isometric embedding if f(H) is an isometric

subgraph of G. As already said, partial cubes are graphs that admit isometric embeddings into

hypercubes. Since V (Qn) = {0, 1}n, this can be rephrased by saying that a graph G is a partial

cube if and only if its vertices u can be labeled with binary strings ℓ(u) of fixed length, such

that dG(u, v) = H(ℓ(u), ℓ(v)) for any vertices u, v ∈ V (G), where H is the Hamming distance of the

strings, cf. [22]. (The Hamming distance between two strings is the number of positions in which the

strings differ.) Hypercubes, even cycles, trees, median graphs, benzenoid graphs, phenylenes, and

Cartesian products of partial cubes are all partial cubes and partial cubes are bipartite graphs [19].

A subgraph H of a graph G is said to be convex in G if every shortest path in H is a shortest path

in G.

Computing topological indices based on distance for larger families of partial cubes become a

tedious process, whereas the cut method serves as one of the most useful methods for calculating

the distance-based topological indices of families of partial cubes without actually calculating their

4



Table 2: Topological indices of a simple graph G

Topological indices Mathematical expressions

Wiener W (G) =
∑

{u,v}⊆V (G)

dG(u, v)

Edge-Wiener We(G) =
∑

{e,f}⊆E(G)

DG(e, f)

Vertex-edge-Wiener Wve(G) = 1
2

∑
u∈V (G)

∑
f∈E(G)

dG(u, f)

Vertex-Szeged Szv(G) =
∑

e=uv∈E(G)

nu(e|G) nv(e|G)

Edge-Szeged Sze(G) =
∑

e=uv∈E(G)

mu(e|G) mv(e|G)

Edge-vertex-Szeged Szev(G) = 1
2

∑
e=uv∈E(G)

[
nu(e|G) mv(e|G) + nv(e|G) mu(e|G)

]
Total-Szeged Szt(G) = Szv(G) + Sze(G) + 2 Szev(G)

Padmakar-Ivan PI(G) =
∑

e=uv∈E(G)

[
mu(e|G) +mv(e|G)

]

Schultz S(G) =
∑

{u,v}⊆V (G)

[
dG(u) + dG(v)

]
dG(u, v)

Gutman Gut(G) =
∑

{u,v}⊆V (G)

dG(u) dG(v) dG(u, v)

distance and by means of Djoković-Winkler relation. The Djoković-Winkler relation Θ [8, 29] is

defined on E(G) as follows: if e = ab ∈ E(G) and f = cd ∈ E(G), then eΘf if dG(a, c) + dG(b, d)

̸= dG(a, d) + dG(b, c). The relation Θ is reflexive and symmetric, but not transitive in general.

If G is bipartite, then Θ is transitive if and only if G is a partial cube. Consequently, if G is a

partial cube, then Θ yields a Θ-partition F(G) = {F1, . . . , Fk} of E(G). Moreover, for any Θ-

class Fi, the graph G − Fi consists of exactly two components, cf. [20]. On the other hand, the

transitive closure Θ∗ forms an equivalence relation on any graph G and partitions E(G) into Θ∗-

classes F′(G) = {F ′
1, . . . , F

′
k}. If F ′

i ∈ F′(G), then the quotient graph G/F ′
i has the components

of G − Fi as vertices, two components being adjacent if there exists an edge from F ′
i with one

end-vertex in one component and the other end-vertex in the other component.

A partition E(G) = {E1, . . . , Ep} of E(G) is said to be coarser than the partition F(G), if each
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Table 3: Topological indices for strength-weighted graph Gsw

Topological index Mathematical expressions

Wiener W (Gsw) =
∑

{u,v}⊆V (Gsw)

wv(u) wv(v) dGsw(u, v)

Vertex-Szeged Szv(Gsw) =
∑

e=uv∈E(Gsw)

se(e) nu(e|Gsw) nv(e|Gsw)

Edge-Szeged Sze(Gsw) =
∑

e=uv∈E(Gsw)

se(e) mu(e|Gsw) mv(e|Gsw)

Edge-vertex-Szeged Szev(Gsw) =
1
2

∑
e=uv∈E(Gsw)

se(e)
[
nu(e|Gsw) mv(e|Gsw)+

nv(e|Gsw) mu(e|Gsw)
]

Total-Szeged Szt(Gsw) = Szv(Gsw) + Sze(Gsw) + 2 Szev(Gsw)

Padmakar-Ivan PI(Gsw) =
∑

e=uv∈E(Gsw)

se(e)
[
mu(e|Gsw) +mv(e|Gsw)

]

Schultz S(Gsw) =
∑

{u,v}⊆V (Gsw)

[
wv(v)dGsw(u) + wv(u)dGsw(v)

]
dGsw(u, v)

Gutman Gut(Gsw) =
∑

{u,v}⊆V (Gsw)

dGsw(u) dGsw(v) dGsw(u, v)

set Ei is the union of one or more Θ∗-classes of G. We now conclude this section by stating two

key-theorems on the cut method for our further study.

Theorem 1. Let F(G) = {F1, . . . , Fk} be the Θ-partition of a partial cube G. Let n1(Fi), n2(Fi)

be the orders and m1(Fi), m2(Fi) the sizes of the two components of G− Fi, respectively. Then

(i) [20] W (G) =
k∑

i=1
n1(Fi) n2(Fi),

(ii) [30] We(G) =
k∑

i=1
m1(Fi) m2(Fi),

(iii) [1] Wve(G) = 1
2

k∑
i=1

[n1(Fi) m2(Fi) + n2(Fi) m1(Fi)],

(iv) [10] Szv(G) =
k∑

i=1
|Fi| n1(Fi) n2(Fi),

(v) [30] Sze(G) =
k∑

i=1
|Fi| m1(Fi) m2(Fi),

6



(vi) [26] Szev(G) = 1
2

k∑
i=1

|Fi| {n1(Fi) m2(Fi) + n2(Fi) m1(Fi)},

(vii) [15] PI(G) = |E(G)|2 −
k∑

i=1
|Fi|2,

(viii) [17] S(G) = |E(G)||V (G)|+ 2
k∑

i=1
[n1(Fi) m2(Fi) + n2(Fi) m1(Fi)],

(ix ) [17] Gut(G) = 2|E(G)|2 +
k∑

i=1
[4m1(Fi) m2(Fi)− |Fi|2].

It is interesting to observe from the above theorem that if G is a partial cube, then

• S(G) = |E(G)||V (G)|+Wve(G), and

• Gut(G) = |E(G)|2 + PI(G) + 4We(G).

Theorem 2. [2] Let Gsw =
(
G, (wv, sv), se

)
be a strength-weighted graph, let E(G) = {E1, . . . , Ep}

be a partition of E(G) coarser than F(G), and let TI ∈ {W,Szv, Sze, Szev, P I, S,Gut}. Then,

TI(Gsw) =

p∑
i=1

TI(G/Ei, (w
i
v, s

i
v), s

i
e) ,

where

• wi
v : V (G/Ei) → R+ is defined by wi

v(C) =
∑
x∈C

wv(x), ∀ C ∈ G/Ei,

• siv : V (G/Ei) → R+ is defined by siv(C) =
∑

xy∈C
se(xy) +

∑
x∈C

sv(x), ∀ C ∈ G/Ei,

• sie : E(G/Ei) → R+ is defined by sie(CD) =
∑

xy∈Ei
x∈C,y∈D

se(xy), for any two connected components

C and D of G/Ei.

3 Subdivisions of partial cubes

If G is a graph, then the subdivision graph Sub(G) of G is the graph obtained from G by replacing

every edge uv of G with a new vertex xuv and connecting xuv with u and v. The cardinalities of

the vertices and the edges of Sub(G) become |V (G)| + |E(G)| and 2|E(G)|, respectively. As we

have already mentioned that every Θ-class of a partial cube G decomposes the graph into exactly

two components resulting in quotient graph K2 with edge-strength value |Fi| and vertex-strength-

weighted values (n1(Fi),m1(Fi)) and (n2(Fi),m2(Fi)) as shown in Figure 2. It has been proved
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in [3] that any Θ-class Fi = {ujvj : 1 ≤ j ≤ s} of a partial cube G with |Fi| ≥ 3 yields a

Θ∗-class F ′
i = {ujxj , xjvj : 1 ≤ j ≤ s} in Sub(G). Clearly, F ′

i decomposes Sub(G) into |Fi| + 2

components resulting in the quotient graph K2,|Fi| with the edge-strength 1 for all the edges and

the vertex-strength-weighted values for one partite vertices as (ai(F
′
i ), bi(F

′
i )) and (ci(F

′
i ), di(F

′
i ))

and the other partite vertices (1, 0), see Figure 2. In the case of |Fi| ≤ 2, i.e. s = 1 or 2, we assume

that F ′
i = {ujxj , xjvj : 1 ≤ j ≤ s} which is a union of two Θ∗-classes in Sub(G) [3] and the above

arguments hold.

G Sub(G)

Subdivision

Construction of quotient graphs

bi
( )Fi

a
i

( )Fi, )( di
( )Fi

c
i

( )Fi, )(

1 0, )(
m1( )Fin1 ( )Fi,( )

m2( )Fin2 ( )Fi,( )

1

1

1

1

1

1

1

1

1

1

Fi Fi

K2, | |Fi
K2

| |Fi

1 0, )(

1 0, )(

1 0, )(

1 0, )(

Figure 2: Construction of quotient graphs G/Fi and Sub(G)/F ′
i

Theorem 3. Let F(G) = {F1, . . . , Fk} be the Θ-partition of a partial cube G and F′(Sub(G)
)
=

{F ′
1, . . . , F

′
k} the Θ∗-partition of Sub(G). If TI ∈ {W,Szv, Sze, Szev, P I, S,Gut}, then

TI
(
Sub(G)

)
=

k∑
i=1

TI
(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
.
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Furthermore,

(i) W
(
Sub(G)

)
= 2W (G) + 4Wve(G) + 2We(G) + |E(G)|(|V (G)|+ |E(G)| − 1),

(ii) Szv
(
Sub(G)

)
= 2Szv(G) + 4Szev(G) + 2Sze(G) + (|E(G)|2 − PI(G))(|V (G)|+ |E(G)|+ 2)−

2|E(G)| −
k∑

i=1
|Fi|3,

(iii) Sze
(
Sub(G)

)
= 8Sze(G)− 2|E(G)|+ 2(|E(G)|2 − PI(G))(|E(G)|+ 1)− 2

k∑
i=1

|Fi|3,

(iv) Szev
(
Sub(G)

)
= 1

2

[
8Szev(G)+8Sze(G)+(|V (G)|+3|E(G)|+4)(|E(G)|2−PI(G))−4|E(G)|−

3
k∑

i=1
|Fi|3

]
,

(v) Szt
(
Sub(G)

)
= 2

[
9Sze(G)+6Szev(G)+Szv(G)+ (|V (G)|+3|E(G)|+4)(|E(G)|2−PI(G))−

4|E(G)| − 3
k∑

i=1
|Fi|3

]
,

(vi) PI
(
Sub(G)

)
= 2

(
|E(G)|2 + PI(G)

)
,

(vii) S
(
Sub(G)

)
= 16Wve(G) + 16We(G) + 4|E(G)|(|V (G)| − 1) + 6|E(G)|2 + 2PI(G),

(viii) G
(
Sub(G)

)
= 32We(G) + 10|E(G)|2 − 4|E(G)|+ 6PI(G).

Proof. As noted above, the Θ∗-classes of Sub(G) yield the quotient graphs K2,|Fi| with strengths

and weights as given in Figure 2. Hence the first formula of the theorem follows from Theorem 2.

Applying the same theorem, we can compute as follows.

(i) W (Sub(G)) =

k∑
i=1

W
(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
=

k∑
i=1

[
2ai(F

′
i )ci(F

′
i ) + |Fi|

[
ai(F

′
i ) + ci(F

′
i )
]
+ |Fi|(|Fi| − 1)

]

=

k∑
i=1

[
2n1(Fi)n2(Fi) + 2

[
n1(Fi)m2(Fi) +m1(Fi)n2(Fi)

]
+

2m1(Fi)m2(Fi) + |Fi|
[
n1(Fi) + n2(Fi) +m1(Fi) +m2(Fi) + |Fi| − 1

]]
= 2W (G) + 4Wve(G) + 2We(G) + |E(G)|(|V (G)|+ |E(G)| − 1).
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(ii) Szv(Sub(G)) =

k∑
i=1

Szv
(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
=

k∑
i=1

|Fi|
[
(ai(F

′
i ) + |Fi| − 1)(ci(F

′
i ) + 1) + (ci(F

′
i ) + |Fi| − 1)

(ai(F
′
i ) + 1)

]
=

k∑
i=1

|Fi|
[
2ai(F

′
i )ci(F

′
i ) + |Fi|

[
ci(F

′
i ) + ai(F

′
i ) + 2

]
− 2

]

=

k∑
i=1

|Fi|
[
2n1(Fi)n2(Fi) + 2

[
n1(Fi)m2(Fi) +m1(Fi)n2(Fi)

]
+

2m1(Fi)m2(Fi) + |Fi|
[
n1(Fi) + n2(Fi) +m1(Fi) +m2(Fi) + |Fi|+ 2

]
−

|Fi|2 − 2

]
= 2Szv(G) + 4Szev(G) + 2Sze(G) + (|E(G)|2 − PI(G))(|V (G)|+

|E(G)|+ 2)− 2|E(G)| −
k∑

i=1

|Fi|3.

(iii) Sze(Sub(G)) =
k∑

i=1

Sze
(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
=

k∑
i=1

|Fi|
[
(bi(F

′
i ) + |Fi| − 1)(di(F

′
i ) + 1) + (di(F

′
i ) + |Fi| − 1)

(bi(F
′
i ) + 1)

]
=

k∑
i=1

|Fi|
[
2bi(F

′
i )di(F

′
i ) + |Fi|

[
bi(F

′
i ) + di(F

′
i ) + 2

]
− 2

]

=

k∑
i=1

|Fi|
[
8m1(Fi)m2(Fi) + 2|Fi|

[
m1(Fi) +m2(Fi) + |Fi|+ 1

]
−

2|Fi|2 − 2

]
= 8Sze(G)− 2|E(G)|+ 2(|E(G)|2 − PI(G))(|E(G)|+ 1)− 2

k∑
i=1

|Fi|3.
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(iv) Szev(Sub(G)) =

k∑
i=1

Szev
(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
=

1

2

k∑
i=1

|Fi|
[
(ai(F

′
i ) + |Fi| − 1)(di(F

′
i ) + 1) + (di(F

′
i ) + |Fi| − 1)

(ai(F
′
i ) + 1) + (bi(F

′
i ) + |Fi| − 1)(ci(F

′
i ) + 1) + (ci(F

′
i ) + |Fi| − 1)

(bi(F
′
i ) + 1)

]
=

1

2

k∑
i=1

|Fi|
[
2
[
ai(F

′
i )di(F

′
i ) + bi(F

′
i )ci(F

′
i )
]
+ |Fi|

[
ai(F

′
i ) + di(F

′
i )

+ bi(F
′
i ) + di(F

′
i ) + 4

]
− 4

]
=

1

2

k∑
i=1

|Fi|
[
4[n1(Fi)m2(Fi) +m1(Fi)n2(Fi)] + 8m1(Fi)m2(Fi)+

|Fi|[n1(Fi) + n2(Fi) + 3m1(Fi) + 3m2(Fi) + 3|Fi|+ 4]− 3|Fi|2 − 4

]
=

1

2

[
8Szev(G) + 8Sze(G) + (|V (G)|+ 3|E(G)|+ 4)(|E(G)|2 − PI(G))−

4|E(G)| − 3

k∑
i=1

|Fi|3
]
.

(v) Szt(Sub(G)) =

k∑
i=1

Szt
(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
= Szv(Sub(G)) + Sze(Sub(G)) + 2Szev(Sub(G)).

(vi) PI(Sub(G)) =

k∑
i=1

PI
(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
=

k∑
i=1

|Fi|
[
bi(F

′
i ) + |Fi| − 1 + di(F

′
i ) + 1 + di(F

′
i ) + |Fi| − 1

+ bi(F
′
i ) + 1

]
= 2

k∑
i=1

|Fi|
[
bi(F

′
i ) + di(F

′
i ) + |Fi|

]

= 2

k∑
i=1

|Fi|
[
2m1(Fi) + 2m2(Fi) + 2|Fi| − |Fi|

]
= 2

(
|E(G)|2 + PI(G)

)
.
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(vii) S(Sub(G)) =

k∑
i=1

S
(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
=

k∑
i=1

[
2
[
ai(F

′
i )(2di(F

′
i ) + |Fi|) + ci(F

′
i )(2bi(F

′
i ) + |Fi|)

]
+ |Fi|

[
2bi(F

′
i )+

2di(F
′
i ) + 2ai(F

′
i ) + 2ci(F

′
i ) + 2|Fi|

]
+ 4|Fi|(|Fi| − 1)

]
=

k∑
i=1

[
4
[
ai(F

′
i )di(F

′
i ) + ci(F

′
i )bi(F

′
i )
]
+ 2|Fi|

[
2ai(F

′
i ) + 2ci(F

′
i )+

bi(F
′
i ) + di(F

′
i ) + 3|Fi| − 2

]]
=

k∑
i=1

[
8
[
n1(Fi)m2(Fi) + n2(Fi)m1(Fi)

]
+ 16m1(Fi)m2(Fi)+

2|Fi|
[
2n1(Fi) + 2n2(Fi) + 4m1(Fi) + 4m2(Fi) + 3|Fi| − 2

]]
= 16Wve(G) + 16We(G) + 4|E(G)|(|V (G)| − 1) + 6|E(G)|2 + 2PI(G).

(viii) G(Sub(G)) =

k∑
i=1

G
(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
=

k∑
i=1

[
2
[
(2bi(F

′
i ) + |Fi|)(2di(F ′

i ) + |Fi|)
]
+ |Fi|

[
2(2bi(F

′
i ) + |Fi|)+

2(2di(F
′
i ) + |Fi|)

]
+ 4|Fi|2 − 4|Fi|

]
=

k∑
i=1

[
8bi(F

′
i )di(F

′
i ) + |Fi|

[
8bi(F

′
i ) + 8di(F

′
i ) + 10|Fi| − 4

]]

=

k∑
i=1

[
32m1(Fi)m2(Fi) + 16|Fi|

[
m1(Fi) +m2(Fi)

]
+ 10|Fi|2 − 4|Fi|

]
= 32We(G) + 10|E(G)|2 − 4|E(G)|+ 6PI(G).

We now show an application of Theorem 3 to the subdivisions of circumcoronenes. For the

circumcoronene series depicted in Figure 3, the cuts are shown in Table 4. Due to the symmetry

of the circumcoronene Hn, the cuts are symmetric to each other and clearly |H±i| = |A±i| = |O±i|.
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The cardinality of |Hi| has been computed in [10]:

|Hi| =


n+ i : 1 ≤ i ≤ n− 1

2n : i = n

Table 4: Elementary cuts of the circumcoronene Hn

Elementary cuts Notation Direction towards centre

Horizontal {Hi : 1 ≤ i ≤ n} North

{H−i : 1 ≤ i ≤ n− 1} South

Acute {Ai : 1 ≤ i ≤ n} North-West

{A−i : 1 ≤ i ≤ n− 1} South-East

Obtuse {Oi : 1 ≤ i ≤ n} North-East

{O−i : 1 ≤ i ≤ n− 1} South-West

1 2 n2n

2

n

2

n

2 2

n n

Figure 3: The structure of circumcoronene Hn

Let F be the set of cuts of Hn. Then
∑
F∈F

|F |3 = 6
n−1∑
i=1

(n + i)3 + 3(2n)3 = 3n2(15n2−2n+3)
2 . In

addition to this computation, we now recall the results related to Hn in order to compute the

topological indices of the subdivision of Hn.

Theorem 4. If n ≥ 1, then the following hold.

1. [21] W (Hn) =
1
5(164n

5 − 30n3 + n),

2. [30] We(Hn) =
3
10(246n

5 − 340n4 + 140n3 − 5n2 − n),
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3. [1] Wve(Hn) =
1
10(492n

5 − 340n4 + 25n2 + 3n),

4. [10] Szv(Hn) =
3
2(36n

6 − n4 + n2),

5. [9] Sze(Hn) =
1
10(1215n

6 − 1599n5 + 680n4 − 105n3 + 55n2 − 6n),

6. [1] Szev(Hn) =
1
20(1620n

6 − 1066n5 + 135n4 − 10n3 + 45n2 − 4n),

7. [1] Szt(Hn) =
1
2(675n

6 − 533n5 + 160n4 − 23n3 + 23n2 − 2n),

8. [1] PI(Hn) = 81n4 − 68n3 + 12n2 − n,

9. [12] S(Hn) =
2
5(492n

5 − 205n4 − 45n3 + 25n2 + 3n),

10. [1] Gut(Hn) =
1
5(1476n

5 − 1230n4 + 230n3 + 75n2 − 11n).

Table 5: Asymptotic behaviors of Hn and Sub(Hn)

Topological index N
Asymptotic Behavior

Hn Sub(Hn)

Wiener 164
5 n5 N 12.5N

Vertex-Szeged 54n6 N 12.5N

Edge-Szeged 243
2 n6 N 8N

Edge-vertex-Szeged 81n6 N 10N

Total-Szeged 675
2 n6 N 9.68N

Padmakar-Ivan 81n4 N 4N

Schultz 984
5 n5 N 10N

Gutman 1476
5 n5 N 8N

Theorem 5. If n ≥ 1, then the following hold.

1. W (Sub(Hn)) = 410n5 − 205n4 + 7n2 + 4n,

2. SZv(Sub(Hn)) =
1
2(1350n

6 − 646n5 + 101n4 + 64n3 − 17n2 + 12n),

3. SZe(Sub(Hn)) =
1
5(4860n

6 − 5136n5 + 1805n4 − 70n3 + 25n2 + 16n),

4. SZev(Sub(Hn)) =
1
20(16200n

6 − 12436n5 + 3055n4 + 370n3 − 85n2 + 96n),

5. SZt(Sub(Hn)) =
1
5(16335n

6 − 12969n5 + 3585n4 + 275n3 − 60n2 + 94n),
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6. PI(Sub(Hn)) = 324n4 − 244n3 + 42n2 − 2n,

7. S(Sub(Hn)) = 1968n5 − 1312n4 + 140n3 + 58n2 + 10n,

8. Gut(Sub(Hn)) =
6
5(1968n

5 − 1640n4 + 330n3 + 65n2 − 3n).

The exact analytical expressions of the indices presented in Theorems 4 and 5 are univariate

polynomials with degree 6 for the four variants of the Szeged indices, degree 4 for the PI index and

degree 5 for the Wiener, Schultz and Gutman indices. As n increases indefinitely, the asymptotic

behaviors of the Szeged indices being the highest degree polynomial dominates the other indices in

Hn and Sub(Hn).

4 Topological indices of SiO2 quartz

The structure of SiO2 quartz of dimension n is shown in Figure 4. The only difference between the

subdivision of circumcoronene and SiO2 quartz is that the additional 6n pendant vertices. In this

section, we compute various distance and degree-distance based topological indices of SiO2 quartz.

P
i

Hn

Figure 4: Elementary cuts on the structure of SiO2 quartz

Theorem 6. If G is the n-dimensional (n ≥ 2) SiO2 quartz structure, then the following holds.

1. W (G) = 1
6(4460n

5 + 4745n4 + 2748n3 − 677n2 + 64n),

2. Szv(G) = 1
2(2170n

6 + 1306n5 − 773n4 + 808n3 + 7n2 + 22n),

3. Sze(G) = 1
5(6910n

6 + 181n5 − 1100n4 + 2515n3 − 230n2 + 64n),
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4. Szev(G) = 1
10(13020n

6 + 3398n5 − 3925n4 + 4760n3 − 305n2 + 122n),

5. Szt(G) = 1
10(50710n

6 + 13688n5 − 13915n4 + 18590n3 − 1035n2 + 482n),

6. PI(G) = 540n4 − 172n3 + 18n2 + 4n,

7. S(G) = 1
3(5352n

5 + 11057n4 + 166n3 + 265n2 + 80n),

8. Gut(G) = 2
5(2676n

4 + 6455n3 + 5875n2 − 680n+ 29).

Proof. We have |V (G)| = |V (Sub(Hn))| + 6n and |E(G)| = |E(Sub(Hn))| + 6n. To proceed the

computation of indices, we first identify the Θ∗-classes on the edges of G. The horizontal, acute

and obtuse cuts are similar to that of the subdivision of circumcoronene, along with 6n pendant

cuts Pi on the boundary of SiO2 quartz structure as shown in Figure 4.

Case 1: {Hi : 1 ≤ i ≤ n}

On applying the cut Hi, the quotient graph obtained is K2,|Fi| which is similar to that of the quo-

tient graph of the subdivision of a partial cube shown in the Figure 2. The edge-strength value is

1 each and the vertex-strength-weighted values (ai(F
′
i ), bi(F

′
i )) and (ci(F

′
i ), di(F

′
i )) are as follows:

For 1 ≤ i ≤ n− 1,

ai(F
′
i ) =

1
2{5i

2 + 10in+ i}, bi(F
′
i ) = 3i2 + 6in− i− n,

ci(F
′
i ) =

1
2{30n

2 − 10in− 5i2 + 4n− 3i}, di(F
′
i ) = 18n2 − 3i2 − 6in− n− i.

We denote,

TI(G1) = TI(G/Hi, (w
i
v, s

i
v), s

i
e) . (1)

For i = n,

ai(F
′
i ) = ci(F

′
i ) =

1
2{15n

2 + n}, bi(F
′
i ) = di(F

′
i ) = 9n2 − 2n.

TI(G2) = TI(G/Hi, (w
i
v, s

i
v), s

i
e) . (2)

Case 2: {Pi : 1 ≤ i ≤ 6n}

Since there are 6n pendant vertices along the boundary of SiO2 quartz, we observe that each pendant

edge-cut forms its own Θ∗-class. The quotient graph obtained is a K2 graph with edge-strength 1

and vertex-strength-weighted values as follows:
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a(F ′
i ) = 1, b(F ′

i ) = 0,

c(F ′
i ) = |V (G)| − 1, d(F ′

i ) = |E(G)| − 1.

Set

TI(G3) = TI(G/Pi, (w
i
v, s

i
v), s

i
e) . (3)

From Eqs. (1)-(3), we obtain

TI(G) = 6

n−1∑
i=1

TI(G1) + 3TI(G2) + 6nTI(G3) .

Using a straightforward computation by a MATLAB interface, we get the required expressions.

5 Conclusion

In this paper, we have shown the connection between partial cubes and its subdivision graph with

respect to distance and degree-distance based topological indices. The results obtained in this

paper can be used in the efficient computation of the subdivision of any member of the family

of partial cubes. We have applied these formulae to compute the indices of the subdivision of a

circumcoronene. The analysis of asymptotic behaviors indicated that the variants of the Szeged

indices of the circumcoronene and its subdivision dominates the other indices.

In Theorems 3, 5, and 6 the edge-Wiener index and the vertex-edge-Wiener index are not

included because they lead to certain technical problems. The method of computing these indices

for a strength-weighted graph and application of it to the subdivision graphs of partial cubes are

under investigation though. In addition, it is interesting to note that the results in Theorem 3

can be extended to more than one subdivision of an edge and applied on variants of graphyne and

graphydyine such as α-, β-, and γ-graphyne, and α-, β-, and γ-graphdyine that are respectively

obtained [23,27,28] by inserting one acetylenic linkage -C ≡ C- and two acetylenic linkage between

two bonded carbon atoms in graphene.
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