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Abstract

Let G be a graph and k ≤ ω(G). A set A ⊆ V (G) is a total k-clique
mutual-visibility set if for each two distinct k-cliques X and Y of G, there exists
a shortest X,Y -path P such that V (P ) ∩ A ⊆ V (X) ∪ V (Y ). The order of
a largest total k-clique mutual-visibility set of G is the total k-clique mutual-
visibility number µk

t (G). In this paper, we propose this concept as an extension
of the total mutual-visibility number of G. The total k-clique mutual-visibility
number is determined for several families of graphs including Cn, Kn, and Γ(Zn).
This invariant is studied under the generalized lexicographic product, the direct
product, the corona product, and the edge corona product. Using the results on
µk
t of direct products, the invariant is determined for unitary Cayley graph of

Zn. Furthermore, results on µk
t of corona products are applied to prove that the

decision problem for µk
t is NP-complete.
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1 Introduction

In this paper, all graphs considered are undirected and simple. If u, v ∈ V (G), then
d(u, v) denotes the number of edges on a shortest u, v-path in G. A clique X of G is
its complete subgraph, by abuse of language we may also consider a clique to be the
vertex set of it. The number of vertices in a largest clique of G is the clique number
ω(G) of G. If |V (X)| = k, then we say that X is a k-clique. By Q(G) we will denote
the set of all cliques of G and by Qk(G) the set of all k-cliques of G.

The distance d(X, Y ) between X, Y ∈ Q(G) is defined as d(X, Y ) = min{d(u, v) :
u ∈ V (X), v ∈ V (Y )}. A path between x ∈ X and y ∈ Y of length d(X, Y ) is a shortest
X, Y -path. Let A ⊆ V (G) and k ∈ [ω(G)] = {1, . . . , ω(G)}. Then X, Y ∈ Qk(G) are
k-clique A-visible if there exists a shortest X, Y -path P such that no inner vertex of P
belongs to A. The set A is a total k-clique mutual-visibility set if every X, Y ∈ Qk(G)
are k-clique A-visible. The order of a largest total k-clique mutual-visibility set of G is
the total k-clique mutual-visibility number of G and it is denoted by µk

t (G). Moreover,
A is a µk

t -set if it is a total k-clique mutual-visibility set of order µk
t (G). The above

definitions can also be extended to k > ω(G), in which case we have µk
t (G) = |V (G)|.

Hence unless stated otherwise, we will assume in the rest that k ≤ ω(G).
If k = 1, then µ1

t (G) = µt(G), where µt(G) is the total mutual-visibility number
of G introduced in [11] as a tool to better understand the mutual-visibility number of
strong products of graphs. The latter concept was coined by Di Stefano in [14]. Soon
after the concept was explored in several dozen articles, see, for example, [12, 20, 23–
25,30,31]. We would like to highlight the paper [8] which extends the mutual-visibility
in a different direction than we do in this paper. In [8] the k-distance mutual-visibility
problem was investigated, where for a given threshold k we require that only pair of
vertices of a given set are visible if they are at distance at most k. The total mutual-
visibility number has also been the subject of wide interest, see [3–7,9, 10,24,26,34].

Network robustness denotes the capacity of a network to preserve its operational in-
tegrity despite the removal or failure of certain nodes or edges. In the context of social
networks, this implies that individuals or groups can continue to interact and share
information, even in the event of a member’s departure or the loss of a connection.
Accordingly, identifying the largest subset of individuals whose absence or reduced en-
gagement causes minimal disruption to the overall structure equates to determining the
maximum total mutual-visibility set within the graph representing the social network.
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If, the emphasis is placed on interactions between groups rather than individuals, the
corresponding objective shifts to finding the maximum total clique mutual-visibility
set in the associated graph.

The article is organized as follows. At the end of this section, we provide additional
necessary definitions. In Section 2 we compute the total k-clique mutual-visibility
number µk

t for several families of graphs. In Section 3 we determine µk
t for generalized

lexicographic products where the inserted graphs are edgeless, and for the comaximal
graph of Zn. In the subsequent section we determine µk

t for the direct products of
complete multiparite graphs. Using these results, we investigate the total 1-clique
mutual-visibility number for the unitary Cayley graph of Zn. In Section 5, we obtain
the exact value of µk

t for the corona and the edge corona product of two graphs. Using
these results, we prove that the decision problem for µk

t is NP-complete.
As already indicated, for a positive integer t, the set {1, . . . , t} is denoted by [t].

The complement of a graph G is denoted by G. Kn1,...,nm is the complete multipartite
graph with m parts of respective cardinalities ni, i ∈ [m]. A dominating set of G is a set
of vertices S such that each vertex of V (G)\S is adjacent to at least one vertex from S.
The minimum cardinality among dominating sets of G is the dominating number of G
and denoted by γ(G). A vertex of G adjacent to all the other vertices is a dominating
vertex. We will also use the notation u ∼G v saying that u and v are adjacent vertices
in G, and G ∼= H saying that G and H are isomorphic. An edgeless graph G is a graph
with no edges; if its order is n, then G ∼= Kn.

2 Some basic graph classes

In this section, we determine µk
t for several families of graphs. Before we move on to

standard graph classes, we have the following result.

Proposition 2.1. For a connected graph G, the following statements hold.

(i) µk
t (G) = |V (G)| if and only if d(X, Y ) ⩽ 1 for each X, Y ∈ Qk(G).

(ii) If γ(G) = 1 and there exist X, Y ∈ Qk(G) with d(X, Y ) > 1, then µk
t (G) =

|V (G)| − 1.

(iii) If µk
t (G) = |V (G)| − 1, then d(X, Y ) ⩽ 2 for each X, Y ∈ Qk(G), and there exist

X ′, Y ′ ∈ Qk(G) with d(X ′, Y ′) = 2.

Proof. (i) Obvious.
(ii) Since γ(G) = 1, for each X, Y ∈ Qk(G) we have d(X, Y ) ⩽ 2. Let s be a

dominating vertex of G. Then A = G \ {s} is a total k-clique mutual-visibility set for
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G. By hypothesis, there exist X, Y ∈ Qk(G) with d(X, Y ) > 12, hence d(X, Y ) = 2.
Moreover, s is the inner vertex of some shortest X, Y -path. Therefore A is a µk

t -set,
and so µk

t (G) = |V (G)| − 1.
(iii) Let µk

t (G) = |V (G)| − 1 and let A = G \ {u} be a µk
t -set. Let X, Y ∈ Qk(G).

Then d(X, Y ) ≤ 2, for otherwise we would have µk
t (G) = |V (G)| − 2. In addition, (i)

implies that exist X ′, Y ′ ∈ Qk(G) with d(X ′, Y ′) = 2.

By Proposition 2.1(i) we have µk
t (Kn) = n. This is a special case of the following

result which can be deduced without difficulties from Proposition 2.1, hence we omit
its proof.

Proposition 2.2. Let 1 ≤ m1 ⩽ · · · ⩽ mn. If k > 1, then µk
t (Km1,...,mn) = m1 + · · ·+

mn, and if k = 1, then

µ1
t (Km1,...,mn) =


m1 + · · ·+mn; mn = 1,

m1 + · · ·+mn − 1; mn−1 = 1,mn > 1,

m1 + · · ·+mn − 2; otherwise.

By [11, Corollary 3.6] we know that if G is complete multipartite graph, then
µ(G) = µt(G). Hence Proposition 2.2 also reports the mutual-visibility number of
complete multipartite graphs.

The fan graph F1,n, n ≥ 3, is the graph obtained from the disjoint union of Pn and
K1 by adding all the edges between the vertex of K1 and every vertex of Pn. The wheel
graph W1,n is obtained in an analogous way from the disjoint union of Cn and K1. The
proof of the next result is tedious but straightforward and hence omitted.

Theorem 2.3. The following equalities hold.

µk
t (Pr) =


2; k = 1, r ⩾ 2,

r; k = 2, 2 ⩽ r ⩽ 3,

4; k = 2, r > 3,

r; k ⩾ 3.

µk
t (Cs) =



3; k = 1, s = 3,

2; k = 1, s = 4,

0; k = 1, s > 4,

s; k = 2, 3 ⩽ s ⩽ 5,

3; k = 2, s = 6,

0; k = 2, s > 6,

s; k ⩾ 3.

µk
t (F1,n) =


n; k = 1,

n; k = 2, n ⩾ 5,

n+ 1; k = 2, n < 5,

n+ 1; k ⩾ 3.

µk
t (W1,n) =


n; k = 1,

n; k = 2, n ⩾ 6,

n+ 1; k = 2, n < 6,

n+ 1; k ⩾ 3.
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The helm graph Hn, n ≥ 3, is the graph with 2n + 1 vertices obtained from W1,n

by attaching a pendant edge to each vertex of the n-cycle of W1,n.

Theorem 2.4. If n ≥ 3, then

µk
t (Hn) =



n+ 1; k = 1, 3 ⩽ n ⩽ 5,

n; k = 1, n ⩾ 6,

7; k = 2, n = 3,

2n; k = 2, n > 3,

2n+ 1; k ⩾ 3.

Proof. Let V (Hn) = {u0, u1, , . . . , un, v1, , . . . , vn}, where u1, . . . , un are the consecutive
vertices of the n-cycle of W1,n and v1, . . . , vn are the corresponding pendant vertices.

First assume that k = 1 and 3 ⩽ n ⩽ 5. Then A = {u0, v1, . . . , vn} is a total
mutual-visibility set. Since for any i, at most two vertices among u0, ui, vi lie in a total
mutual-visibility set, A is a µ1

t -set. Hence µ
1
t (Hn) = n+1 in this situation. If k = 1 and

n ⩾ 6, then we can similarly verify that A = {v1, . . . , vn} is a µ1
t -set. The cases k = 2

and n = 3, and k ⩾ 3 are covered by Proposition 2.1. The last case to consider is k = 2
and n > 3, in which case we can verify that {u1, . . . , un, v1, . . . , vn} is a µ2

t -set.

3 Generalized lexicographic products

Let G be a (connected) graph with the vertex set V (G) = {v1, . . . , vn}, n ≥ 2,
and let H1, . . . , Hn be pairwise disjoint graphs. The generalized lexicographic prod-
uct G[H1, . . . , Hn] is the graph formed by replacing each vertex vi of G by the graph
Hi, and then joining each vertex of Hi to each vertex of Hj whenever vi ∼G vj. Since
G[K1, . . . , K1] ∼= G, we may assume in the rest of this section that at least one Hi is
of order at least 2.

We now determine the total k-clique mutual visibility number for generalized lex-
icographic products G[H1, . . . , Hn], where each Hi is edgeless. We consider two cases,
first when µk

t (G) ̸= |V (G)|, and second when µk
t (G) = |V (G)|.

Theorem 3.1. Let k ≥ 1. If G is a connected graph of order n > 1 with µk
t (G) ̸= n,

and Hi, i ∈ [n] are pairwise disjoint edgeless graphs, then

µk
t (G[H1, . . . , Hn]) =

n∑
i=1

|V (Hi)| − n+ µk
t (G).
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Proof. Set Ĝ = G[H1, . . . , Hn] for the rest of the proof. For i ∈ [n], let hi be an

arbitrary fixed vertex of Hi. Then the subgraph G′ of Ĝ induced by the vertices
h1, . . . , hn is isomorphic to G. Let AG′ be a µk

t -set of G
′ and set

A =
n⋃

i=1

(V (Hi) \ {hi})
⋃

AG′ .

We claim that A is a total k-clique mutual-visibility set for Ĝ.
Let X, Y ∈ Qk(Ĝ). If V (X) ∪ V (Y ) ⊆ V (G′), then clearly X and Y are k-clique

A-visible. So without loss of generality, we assume that V (X) ⊈ V (G′). Note that
|V (X) ∩ V (Hi)| ⩽ 1 and also |V (Y ) ∩ V (Hi)| ⩽ 1, for each i ∈ [n]. Let V (X) =
{h′

i1
, . . . , h′

ik
} and V (Y ) = {h′

j1
, . . . , h′

jk
}, where h′

ir ∈ Hir and h′
jr ∈ Hjr , for 1 ⩽ r ⩽

k. Consider X ′, Y ′ ∈ Qk(Ĝ) with vertex-sets V (X ′) = {hi1 , . . . , hik} and V (Y ′) =
{hj1 , . . . , hjk}, where hil , hjl ∈ V (G′), l ∈ [k]. We distinguish the following two cases.

Case 1: V (X ′) ∩ V (Y ′) = ∅.
SinceX ′ and Y ′ are k-clique AG′-visible, there exists a shortestX ′, Y ′-path P in G′ such
that V (P ) ∩ AG′ ⊆ X ′ ∪ Y ′. Assume that P is of the form hil ∼ g1 ∼ · · · ∼ gr ∼ hjl′

,
where hil ∈ V (X ′), hjl′

∈ V (Y ′) and g1, . . . , gr ∈ G′. Since h′
il
∈ V (X) is adjacent to

g1 and h′
jl′

∈ V (Y ) is adjacent to gr, we see that h′
il
∼ g1 ∼ · · · ∼ gr ∼ h′

jl′
is a path

between X, Y ∈ Qk(Ĝ) of length, say r. We claim that this is a shortest path between
X and Y . Assume on the contrary that there exists a path h′

is ∼ a1 ∼ · · · ∼ am ∼ h′
js′

of length less than r between X and Y , where h′
is ∈ V (X), h′

js′
∈ V (Y ) and ai ∈ Ĝ,

for each i ∈ [m]. Now by replacing each ai ∈ V (Hi) \ V (G′) with hi, we find the path
his ∼ b1 ∼ · · · ∼ bm ∼ hjs′

of length less than r between X ′ and Y ′ in G′, such that
bi ∈ V (G′), i ∈ [m], and this is impossible. Therefore X and Y are k-clique A-visible.

Case 2: V (X ′) ∩ V (Y ′) ̸= ∅.
Let hi ∈ V (X ′) ∩ V (Y ′). Then there exist h′

i and h′′
i in V (Hi) such that h′

i ∈ V (X)
and h′′

i ∈ V (Y ). If hi = h′
i = h′′

i , then d(X, Y ) = 0, and so they are k-clique A-visible.
Otherwise, we may assume that h′

i ̸= hi. Since h′
i is adjacent to any vertex that h′′

i is
adjacent to, we have d(X, Y ) ⩽ 1, and so they are k-clique A-visible.

We have thus proved that µk
t (G[H1, . . . , Hn]) ≥

∑n
i=1 |V (Hi)|−n+µk

t (G). To prove
the reverse inequality, suppose on the contrary that there exists a k-clique mutual-
visibility set A of Ĝ of cardinality larger than

∑n
i=1 |V (Hi)| − n + µk

t (G). Then by
the pigeonhole principle we infer that A ∩ V (Hi) = V (Hi) holds for more than µk

t (G)
indices i. But then restricting to the subgraph G′ as described at the beginning of the
proof we would get a k-clique mutual-visibility set of G strictly larger than µk

t (G), a
contradiction.

6



Theorem 3.2. Let k ≥ 1. If G is a connected graph of order n > 1 with µk
t (G) = n,

and Hi, i ∈ [n], are pairwise disjoint edgeless graphs, then

µk
t (G[H1, . . . , Hn]) =


∑n

i=1 |V (Hi)|; k > 1,∑n
i=1 |V (Hi)| − 1; k = 1, f = 1,∑n
i=1 |V (Hi)| − 2; k = 1, f > 1,

where f is the number of subgraphs Hi with |V (Hi)| > 1.

Proof. Set Ĝ = G[H1, . . . , Hn]. Since µk
t (G) = |V (G)|, by Proposition 2.1 we have

d(X, Y ) ⩽ 1 for each X, Y ∈ Qk(G).

Assume first that k > 1 and let X, Y ∈ Qk(Ĝ). Let V (X) = {h′
i1
, . . . , h′

ik
} and

V (Y ) = {h′
j1
, . . . , h′

jk
}, where h′

ir ∈ Hir and h′
jr ∈ Hjr , for r ∈ [k]. Let hi, i ∈ [n], be an

arbitrary fixed vertex of Hi, and let G′ be the subgraph of Ĝ induced by the vertices
h1, . . . , hn. Consider the k-cliques X ′ and Y ′ with vertex sets V (X ′) = {hi1 , . . . , hik}
and V (Y ′) = {hj1 , . . . , hjk}, where hil , hjl ∈ V (G′), l ∈ [k]. If V (X ′)∩ V (Y ′) = ∅, then
since d(X ′, Y ′) ⩽ 1, there exist hil ∈ V (X ′) and hjs ∈ V (Y ′) such that d(hil , hjs) ⩽ 1.
Thus we have d(h′

il
, h′

js) ⩽ 1 which implies that d(X, Y ) ⩽ 1. If V (X ′) ∩ V (Y ′) ̸= ∅,
then again d(X, Y ) ⩽ 1. So for k > 1, by Proposition 2.1, we have µk

t (G[H1, . . . , Hn]) =∑n
i=1 |V (Hi)|.
Assume second that k = 1. In the first subcase let f = 1 and let |V (Hi)| > 1, for

some j ∈ [n]. Then ∪n
i=1Hi \ {hj}, where V (Hj) = {hj}, 1 ⩽ j ̸= i ⩽ n, is a µ1

t -set

for Ĝ. And if f > 1, then ∪n
i=1Hi \ {hr, hs}, where hr ∈ V (Hr), hs ∈ V (Hs) and

1 ⩽ r ̸= s ⩽ n, is a µ1
t -set for Ĝ.

3.1 Comaximal graphs of Zn

Let Zn be the ring of integers modulo n. As a consequence of the findings of the first
part of the section, we next compute the total k-clique mutual-visibility number for
the comaximal graph of Zn.

Let R be a commutative ring with nonzero identity. We denote the set of all unit
elements and zero divisors of R by U(R) and Z(R), respectively. Also by Z∗(R) we
denote the set Z(R) \ {0}. Sharma and Bhatwadekar [33] defined the comaximal graph
of a commutative ring R as a simple graph whose vertices are the elements of R, and two
distinct vertices a and b are adjacent if aR+ bR = R, where cR is the ideal generated
by c ∈ R. Let Γ(R) be an induced subgraph of the comaximal graph with nonunit
elements of R as vertices. The properties of the graph Γ(R) were studied in [27,28,35].

For two integers r and s, the notation (r, s) stands for the greatest common divisor
of r and s. Also we denote the elements of the ring Zn, where n > 1, by 0, 1, 2, . . . , n−1.
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For every nonzero element a in Zn, if (a, n) = 1, then a is a unit element; otherwise,
(a, n) ̸= 1, and so a is a zero divisor. Therefore, |U(Zn)| = ϕ(n) and |Z(Zn)| = n−ϕ(n),
where ϕ is the Euler’s totient function.

An integer d is said to be a proper divisor of n if 1 < d < n and d | n. Now let
d1, . . . , dr be the distinct proper divisors of n. For i ∈ [r], set

Adi := {x ∈ Zn : (x, n) = di}.

The sets Ad1 , . . . , Adr are pairwise disjoint. Further,

Z∗(Zn) = Ad1 ∪ · · · ∪ Adr

and
V (Γ(Zn)) = {0} ∪ Ad1 ∪ · · · ∪ Adr .

Lemma 3.3. [36, Proposition 2.1] If i ∈ [r], then |Adi | = ϕ( n
di
).

In the rest, the induced subgraph of Γ(Zn) on the set Adi , i ∈ [r], is denoted by
Γ(Adi).

Lemma 3.4. [1, Lemma 3.2] The following statements hold.

(i) Two distinct vertices x and y are adjacent in Γ(Zn) if and only if (x, y) ∈ U(Zn).

(ii) If i ∈ [r], then Γ(Adi) is isomorphic to Kϕ( n
di

).

(iii) For 1 ⩽ i ̸= j ⩽ r, a vertex of Adi is adjacent to a vertex of Adj if and only if
(di, dj) = 1.

Now, we introduce a graph Gn, which plays an important role in the structure of
Γ(Zn). The graph Gn has vertex set {d1, . . . , dr}, where di, i ∈ [r], is a proper divisor
of n, and two distinct vertices di and dj are adjacent if (di, dj) = 1.

Let n = pα1
1 · · · pαs

s be the prime factorization of n, where s, α1, . . . , αs are positive
integers and p1, . . . , ps are distinct prime numbers. Every divisor of n is of the form
pβ1

1 · · · pβs
s , for some integers β1, . . . , βs, where 0 ⩽ βi ⩽ αi for each i ∈ [s]. Hence the

number of proper divisors of n is equal to
∏s

i=1(ni + 1)− 2. Therefore we have

r = |V (Gn)| =
s∏

i=1

(ni + 1)− 2. (1)

Let Γ∗(Zn) = Γ(Zn) \ {0}. Consider the graph Gn and replace each vertex di of Gn by
Γ[Adi ]. In view of Lemma 3.3, we have

Γ∗(Zn) = Gn[Kϕ( n
d1

), . . . , Kϕ( n
dr

)].
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Theorem 3.5. If n > 1 and Gn is connected graph with µk
t (Gn) ̸= r, where r is as

in (1), then
µk
t (Γ

∗(Zn)) = n− r − 1− ϕ(n) + µk
t (Gn).

Proof. As established above, we have

Γ∗(Zn) = Gn[Kϕ( n
d1

), Kϕ( n
d2

), . . . , Kϕ( n
dr

)].

Since the vertex-set of Γ∗(Zn) consists of nonzero and nonunit elements of Zn, we have
|V (Γ∗(Zn))| = n− ϕ(n)− 1. Now the result follows from Theorem 3.1.

4 Direct product

The direct product of G and H, denoted by G × H, is the graph with vertex set
V (G) × V (H) in which (u1, v1) and (u2, v2) are adjacent if u1 and u2 are adjacent in
G and v1 and v2 are adjacent in H. Note that if at least one of the graphs G or H
has a cycle of odd length, then G × H is connected. See [17] for more information
on this product. This section initially focuses on analyzing the total k-clique mutual-
visibility number of direct products of complete mutipartite graphs. The findings are
then employed to evaluate this parameter in specific unitary Cayley graphs.

4.1 Total k-clique mutual-visibility number under direct prod-
ucts

In the below theorem, we determine the total 1-clique mutual-visibility number for the
direct product of a complete m-partite graph with m > 2 and a complete bipartite
graph.

Theorem 4.1. If G = Kn1,...,nm, m > 2, and H = Kr1,r2, r1, r2 ≥ 1, then

µ1
t (G×H) = |V (G)| · |V (H)| − 6.

Proof. Let Gi, i ∈ [m], be the mutipartition part of G of order ni, and let Hj, j ∈ [2]
be the bipartition part of H of order rj.

Let S be an arbitrary total 1-clique mutual-visibility set for G×H. We claim that
|S| ≤ |V (G)|·|V (H)|−6. Consider three vertices ui ∈ V (Gi)×V (H1), i ∈ [3]. Since S is
total mutual-visibility set and d(u1, u2) = 2, there exists a vertex w12 ∈ V (G)×V (H2)
such that w12 /∈ S. Similarly, there exist vertices w13, w23 ∈ V (G)× V (H2) which also
do not lie in S. Observe that w12, w13, and w23 are pairwise different. Analogously,
by considering three vertices u′

i ∈ V (Gi) × V (H2), i ∈ [3], we find three vertices from

9



V (G)×V (H1) which do not belong to S. We can conclude that |S| ≤ |V (G)|·|V (H)|−6
and hence µ1

t (G×H) ≤ |V (G)| · |V (H)| − 6.
Let V (Gi) = {gi1, . . . , gini

}, i ∈ [m], let V (Hj) = {hj
1, . . . , h

j
rj
}, j ∈ [2], and set

A = V (G×H) \ {(g11, h1
1), (g

2
1, h

1
1), (g

3
1, h

1
1), (g

1
1, h

2
1), (g

2
1, h

2
1), (g

3
1, h

2
1)}.

We claim that A is a total 1-clique mutual-visibility set for G×H. Let u, v be arbitrary
vertices of G×H. Since diam(G×H) = 3, there are three typical cases to be considered.
If d(u, v) = 1, there is nothing to be proved. If d(u, v) = 3, then there exists i ∈ [m]
such that, without loss of generality, u ∈ V (Gi) × V (H1) and v ∈ V (Gi) × V (H2).
Then there exists two vertices (gl1, h

1
1) and (gl

′
1 , h

2
1) in the set

{(g11, h1
1), (g

2
1, h

1
1), (g

3
1, h

1
1), (g

1
1, h

2
1), (g

2
1, h

2
1), (g

3
1, h

2
1)},

where 1 ⩽ l ̸= l′ ̸= i ⩽ 3. Now u ∼ (gl1, h
2
1) ∼ (gl

′
1 , h

1
1) ∼ v is a shortest u, v-path, hence

u and v are 1-clique A-visible. It remains to consider the situation when d(u, v) = 2,
for which we distinguish the following two cases.

Case 1: u ∈ V (Gi)× V (Hj), v ∈ V (Gi′)× V (Hj), i, i
′ ∈ [m], i ̸= i′, j ∈ [2].

Then there exists a vertex (gl1, h
l′
1 ) in the set

{(g11, h1
1), (g

2
1, h

1
1), (g

3
1, h

1
1), (g

1
1, h

2
1), (g

2
1, h

2
1), (g

3
1, h

2
1)},

where l ∈ {1, 2, 3} \ {i, i′} and 1 ⩽ l′ ̸= j ⩽ 2. Now u ∼ (gl1, h
l′
1 ) ∼ v is a shortest

u, v-path.

Case 2: u, v ∈ V (Gi)× V (Hj), i ∈ [m], j ∈ [2].
Then u ∼ (gl1, h

l′
1 ) ∼ v is a shortest u, v-path, where 1 ⩽ l ̸= i ⩽ 3 and 1 ⩽ l′ ̸= j ⩽ 2.

We can conclude that µ1
t (G×H) ≥ |V (G)| · |V (H)|−6 and henceforth µ1

t (G×H) =
|V (G)| · |V (H)| − 6.

The smallest case covered by Theorem 4.1 is K1,1,1 ×K1,1
∼= K3 ×K2

∼= C6. It is
know from earlier (cf. [34]) and also easy to verify that µ1

t (C6) = 0 just as claimed by
the theorem.

Theorem 4.2. If G = Kn1,...,nm, m > 2, and H = Kr1,r2,r3, then

µ1
t (G×H) = |V (G)||V (H)| − 6.

Proof. Let Gi, i ∈ [m], be the mutipartition part of G of order ni, and let Hj, j ∈ [3],
be the bipartition part of H of order rj.

Let S be an arbitrary total 1-clique mutual-visibility set for G × H. We claim
that |S| ≤ |V (G)| · |V (H)| − 6. Consider three vertices uj ∈ V (Gi) × V (Hj), i ∈
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[m], j ∈ [3]. Since S is total mutual-visibility set and d(u1, u2) = 2, there exists
a vertex w12 ∈ V (Gk) × V (H3) such that w12 /∈ S. Similarly, there exist vertices
w13 ∈ V (Gk)× V (H2), w23 ∈ V (Gk)× V (H1), which also do not lie in S. Analogously,
by considering three vertices u′

j ∈ V (Gk)× V (Hj), k ∈ [m],k ̸= i, j ∈ [3] we find three
vertices from V (G)× V (Hj), j ∈ [3] which do not belong to S. We can conclude that
|S| ≤ |V (G)| · |V (H)| − 6 and hence µ1

t (G×H) ≤ |V (G)| · |V (H)| − 6.
Let V (Gi) = {gi1, . . . , gini

}, i ∈ [m], let V (Hj) = {hj
1, . . . , h

j
rj
}, j ∈ [3], and set

A = V (G×H) \ {(g11, h2
1), (g

1
1, h

3
1), (g

2
1, h

1
1), (g

2
1, h

3
1), (g

3
1, h

1
1), (g

3
1, h

2
1)}.

We claim that A is a total 1-clique mutual-visibility set for G×H. Let u, v be arbitrary
vertices of G×H. Since diam(G×H) = 2, there are three typical cases to be considered.
If d(u, v) = 1, there is nothing to be proved. If d(u, v) = 2, then we have the following
three cases.

Case 1: u ∈ V (Gi)× V (Hj), v ∈ V (Gi′)× V (Hj), where i ∈ [m], i ̸= i′, j ∈ [3].
In this case there exists a vertex (gl1, h

l′
1 ) in the set

{(g11, h2
1), (g

1
1, h

3
1), (g

2
1, h

1
1), (g

2
1, h

3
1), (g

3
1, h

1
1), (g

3
1, h

2
1)},

where l ∈ [3] \ {i, i′} and 1 ⩽ l′ ̸= j ⩽ 3. Now u ∼ (gl1, h
l′
1 ) ∼ v is a shortest u, v-path.

Case 2: u ∈ V (Gi)× V (Hj), v ∈ V (Gi)× V (Hj′), where i ∈ [m], j, j′ ∈ [3], j ̸= j′.
Now there exists a vertex (gl1, h

l′
1 ) in the set

{(g11, h2
1), (g

1
1, h

3
1), (g

2
1, h

1
1), (g

2
1, h

3
1), (g

3
1, h

1
1), (g

3
1, h

2
1)},

where 1 ⩽ l ̸= i ⩽ 3 and l′ ∈ [3] \ {j, j′}. Now u ∼ (gl1, h
l′
1 ) ∼ v is a shortest u, v-path.

Case 3: u, v ∈ V (Gi)× V (Hj), where i ∈ [m], j ∈ [3].
Then u ∼ (gl1, h

l′
1 ) ∼ v is a shortest u, v-path, where 1 ⩽ l ̸= i ⩽ 3 and 1 ⩽ l′ ̸= j ⩽ 3.

We can conclude that µ1
t (G×H) ≥ |V (G)| · |V (H)|−6 and henceforth µ1

t (G×H) =
|V (G)| · |V (H)| − 6.

Theorem 4.3. If G = Kn1,...,nm, m > 3, and H = Kr1,...,rm′ , m
′ > 3, then

µ1
t (G×H) = |V (G)| · |V (H)| − 4.

Proof. Let Gi, i ∈ [m], be be the mutipartition part of G of order ni, and let Hj,
j ∈ [m′], be the bipartition part of H of order rj.

Let S be an arbitrary total 1-clique mutual-visibility set for G × H. We claim
that |S| ≤ |V (G)| · |V (H)| − 4. Consider two vertices u ∈ V (Gi) × V (Hj) and v ∈
V (Gi′) × V (Hj). Since S is total mutual-visibility set and d(u, v) = 2, there exists
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a vertex w1 ∈ V (Gi′′) × V (Hj′), such that w1 /∈ S. Now consider two vertices u ∈
V (Gi)×V (Hj′) and v ∈ V (Gi′′)×V (Hj′), So there exists a vertex w2 ∈ V (Gi′)×V (Hj),
such that w2 /∈ S. By considering two vertices in V (Gi′)×V (Hj) and V (Gi′)×V (Hj′),
we find w3 ∈ V (Gi) × V (Hj′′) which is not in S. Also, by considering two vertices in
V (Gi′)×V (Hj′′) and V (Gi′′)×V (Hj′′), we find a vertex w4 ∈ V (Gi)×V (Hj) that is not
in S. We conclude that |S| ≤ |V (G)|·|V (H)|−4 and so µ1

t (G×H) ≤ |V (G)|·|V (H)|−4.
Let V (Gi) = {gi1, . . . , gini

}, i ∈ [m], and V (Hj) = {hj
1, . . . , h

j
rj
}, j ∈ [m′], and set

A = V (G×H) \ {(g11, h1
1), (g

2
1, h

2
1), (g

3
1, h

3
1), (g

4
1, h

4
1)}.

We claim that A is a total 1-clique mutual-visibility set of G×H. Let u, v be arbitrary
vertices of V (G×H). If d(u, v) = 1, there is nothing to be proved. If d(u, v) = 2, then
we have the following three cases.

Case 1: u ∈ V (Gi)× V (Hj), v ∈ V (Gi′)× V (Hj), where 1 ⩽ i ̸= i′ ⩽ m, j ∈ [m′].
In this case there exists a vertex (gl1, h

l
1) in the set

{(g11, h1
1), (g

2
1, h

2
1), (g

3
1, h

3
1), (g

4
1, h

4
1)},

where l ∈ [4] \ {i, i′, j}. Now u ∼ (gl1, h
l
1) ∼ v is a shortest u, v-path.

Case 2: u ∈ V (Gi)× V (Hj), v ∈ V (Gi)× V (Hj′), where i ∈ [m], 1 ⩽ j ̸= j′ ⩽ m′.
Then there exists a vertex (gl1, h

l
1) in the set

{(g11, h1
1), (g

2
1, h

2
1), (g

3
1, h

3
1), (g

4
1, h

4
1)},

where l ∈ [4] \ {i, j, j′}. Now u ∼ (gl1, h
l
1) ∼ v is a shortest path.

Case 3: u, v ∈ V (Gi)× V (Hj), where i ∈ [m], j ∈ [m′].
Now u ∼ (gl1, h

l
1) ∼ v is a shortest path, where l ∈ [4] \ {i, j}.

Therefore, we conclude that µ1
t (G×H) ≥ |V (G)| · |V (H)| − 4 and so µ1

t (G×H) =
|V (G)| · |V (H)| − 4.

4.2 Total k-clique mutual-visibility in unitary Cayley graphs

By using the above results for the total 1-clique mutual-visibility of direct products of
complete multipartite graphs we now determine the 1-clique mutual-visibility number
of unitary Cayley graphs of Zn for some values of n.

Let R be a finite commutative ring with nonzero identity and R× denote the set
of all unit elements of R. The unitary Cayley graph of R, which is denoted by GR =
Cay(R,R×), is a (simple) graph whose vertex set is R and two distinct vertices x and
y are adjacent if and only if x− y ∈ R×. We refer to [2,18,19,22,29] for studies about
the unitary Cayley graph of a commutative ring.
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Notation 4.4. Let R be a finite commutative ring. Then, by [15, p. 752], we can write
R ∼= R1×· · ·×Rt, where Ri is a finite local ring with maximal ideal mi for i ∈ [t]. This
decomposition is unique up to permutation of factors. We denote the (finite) residue

field Ri

mi
by Ki and fi = |Ki| = |Ri|

|mi| . We also assume (after appropriate permutation of

factors) that f1 ⩽ · · · ⩽ ft.

The following proposition is a basic consequence of the definition of the unitary
Cayley graphs and it was illustrated in [2, Proposition 2.2].

Proposition 4.5. Let R be a finite commutative ring. We have the following state-
ments.

(a) The graph GR is a |R×|-regular graph.

(b) If R is a local ring with maximal ideal m, then GR is a complete multipartite
graph whose partite sets are the cosets of m in R. In particular, GR is a complete
graph if and only if R is a field.

(c) Let R ∼= R1 × · · · × Rt be a product of local rings, then GR
∼= ×t

i=1GRi
. Hence,

GR is a direct product of complete multipartite graphs.

We use the below natation in the rest of this section.

Notation 4.6. Let Zn be the ring of integers modulo n. By the prime factorization
theorem, we have n = pr11 . . . prtt , where pi’s are prime numbers with p1 < · · · < pt
and this factorization is unique up to the order of the factors. It is easy to see that
Zn

∼= Zp
r1
1
× · · · × Zp

rt
t
, which is the direct product of the rings Zp

ri
i
, 1 ⩽ i ⩽ t. Also

Zp
ri
i

is a local ring with the maximal ideal mi = {rpi | r ∈ Zp
ri
i
} with |mi| = pri−1

i and

the number of cosets of mi in Zp
ri
i
is equal to pi, for each i ∈ [t].

Theorem 4.7. Let n = pr11 . . . prtt , where pi’s are prime numbers with p1 < · · · < pt.
Then GZn

∼= ×t
i=1K p

ri−1
i ,...,p

ri−1
i︸ ︷︷ ︸

pi

.

Proof. By Proposition 4.5 and Notation 4.6, GZ
p
ri
i

∼= K
p
ri−1
i ,...,p

ri−1
i

, for each i ∈ [t].

Now since Zn
∼= Zp

r1
1

× · · · × Zp
rt
t
, by the third part of Proposition 4.5, the result

holds.

Using Proposition 2.2 and Theorems 4.1, 4.2 and 4.3, we can compute µ1
t (GZn)

when n = pr11 pr22 .
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Theorem 4.8. If n = pr11 pr22 , where p1 < p2 and r1, r2 ⩾ 0, then

µ1
t (GZn) =


p1; r1 = 1, r2 = 0,

pr11 − 2; r1 > 1, r2 = 0,

pr11 pr22 − 6; p1 ∈ {2, 3}, r1, r2 ⩾ 1,

pr11 pr22 − 4; p1 ⩾ 4, r1, r2 ⩾ 1.

5 Corona product and computational complexity

This section first addresses the computation of the total k-clique mutual-visibility num-
ber in corona product graphs. These results are then used to explore the complexity
of the associated computational problem involving µk

t .
Let G be a graph with V (G) = {v1, . . . , vn} and let H be a graph. The corona

product G ◦H was defined in [16] as the graph obtained from G and H by taking one
copy of G and n copies of H and the edge set of G ◦H is the union of the edge set of
G, the edges of Hi (the i-th copy of H) and the edges which joining each vertex Hi to
vi, for all i ∈ [n], cf. [21].

Theorem 5.1. If G is a connected graph of order at least two, and ω(H) ≥ k ≥ 1,
then

µk
t (G ◦H) = |V (G)| · |V (H)|.

Proof. Let V (G) = {v1, . . . , vn} and let Hi, i ∈ [n], be the i-th copy of H in G ◦ H.
Let A = V (G ◦H) \V (G). We claim that A is a total k-clique mutual-visibility set for
G ◦H. To prove it, consider arbitrary distinct k-cliques X and Y in G ◦H.

Case 1: V (X) ∪ V (Y ) ⊆ V (Hi) for some i ∈ [n].
In this case we have d(X, Y ) ⩽ 2. There is nothing to prove if d(X, Y ) ≤ 1. If
d(X, Y ) = 2, then there exists a shortest X, Y -path of the form x ∼ vi ∼ y, where
x ∈ V (X) and y ∈ V (Y ). Since vi /∈ A, the cliques X and Y are A-visible.

Case 2: V (X) ⊆ V (Hi) and V (Y ) ⊆ V (Hj), where i ̸= j.
Since any shortest X, Y -path is of the form x ∼ vi ∼ g1 ∼ · · · ∼ gr ∼ vj ∼ y, where
x ∈ V (X), y ∈ V (Y ), and gi ∈ V (G), i ∈ [r], the cliques X and X are A-visible.

Case 3: V (X) ⊆ V (Hi) for some i ∈ [n], and V (Y ) ⊆ V (G).
In this case the inner vertices of any any shortest X, Y -path lie in V (G), hence the
reuqired conclusion.

Case 4: V (X) ∪ V (Y ) ⊆ V (G).
The argument is the same as in Case 3.
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Case 5: V (X) ⊆ V (Hi) ∪ {vi}, V (Y ) ⊆ V (Hj) ∪ {vj}, vi ∈ V (X), vj ∈ V (Y ).
If i = j, then d(X, Y ) = 0 and we are done. If i ̸= j, then any shortest X, Y -path is of
the form vi ∼ g1 ∼ · · · ∼ gr ∼ vj, where gi ∈ G. Hence the conclusion.

Case 6: V (X) ⊆ V (G), V (Y ) ⊆ V (Hj) ∪ {vj} and vj ∈ V (Y ).
The argument is is parallel to the one of Case 5.

By the above, µk
t (G ◦ H) ≥ |V (G)| · |V (H)|. To prove the reverse inequality it

suffices to prove that no total k-clique mutual-visibility set of G ◦H contains a vertex
of G. To do this, let A′ be an arbitrary total k-clique mutual-visibility set of G◦H and
suppose that vi ∈ A′ for some i ∈ [n]. Now consider a k-clique X with V (X) ⊆ V (Hi)
and a k-clique Y with V (Y ) ⊆ V (Hj), where i ̸= j, to reach a contradiction.

Theorem 5.2. If k ≥ 3, G is a connected graph of order at least two, and H is a
graph, then the following hold.

(1) If ω(H) = k − 1, then µk
t (G ◦H) = |V (G)| · |V (H)|+ µ1

t (G).

(2) If ω(H) ≤ k − 2, then µk
t (G ◦H) = |V (G)| · |V (H)|+ µk

t (G).

Proof. (1) Let V (G) = {v1, . . . , vn}, and let Hi, i ∈ [n], be the i-th copy of H in G◦H.
Let AG be a µ1

t -set for G and set A =
⋃n

i=1 V (Hi) ∪ AG. We claim that A is a total
k-clique mutual-visibility set for G ◦H. Consider arbitrary distinct k-cliques X and Y
in G ◦H and distinguish the following cases.

Case 1: V (X) ⊆ V (Hi) ∪ {vi} and V (Y ) ⊆ V (Hj) ∪ {vj}, where i, j ∈ [n].
If i = j, then d(X, Y ) = 0 and there is nothing to show. So let i ̸= j. Since ω(H) =
k − 1, we have vi ∈ X and vj ∈ Y . Since vi and vj are AG-visible in G, it follows that
X and Y are A-visible in G ◦H.

Case 2: V (X) ⊆ V (Hi) ∪ {vi} for some i ∈ [n], and V (Y ) ⊆ V (G).
Let y be a vertex of Y closest to vi. Then, since vi and y are AG-visible in G, the
cliques X and Y are A-visible in G ◦H.

Case 3: V (X) ∪ V (Y ) ⊆ V (G).
Let d(X, Y ) = d(vi, vj), where vi ∈ X and vj ∈ Y . Since vi and vj are AG-visible, we
again can conclude that X and Y are A-visible.

We have thus proved that µk
t (G◦H) ≥ |V (G)|·|V (H)|+µ1

t (G). To prove the reverse
inequality, suppose for a contradiction that there exists a k-clique mutual-visibility set
S of G ◦ H with |S| > |V (G)| · |V (H)| + µ1

t (G). It follows that |SG| > µ1
t (G), where

SG = S ∩ V (G). Hence SG cannot be a k-clique mutual-visibility set of G. Let vi and
vj be two vertices of G which are not SG-visible. But then a k-clique from V (Hi)∪{vi}
which contains vi and a k-clique from V (Hj)∪{vj} which contains vj, are not S-visible,
a contradiction.
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(2) By assumption, every k-clique of G ◦H lies completely in G. Hence if AG is a
µk
t -set for G, then we infer that

⋃n
i=1 V (Hi) ∪ AG is a µk

t -set for G ◦H.

In the rest of the section we apply the results obtained for the corona product to
study the complexity of the µk

t problem.
The problem of enumerating all k-cliques in a general graph is known to be NP-

hard [13], but it can be solved in polynomial time for many well-structured graphs such
as complete and bipartite graphs. Anyhow, for our purposes we will assume that the
set of all k-cliques of a given graph is part of the input.

NP-hardness of problem of computing µ1
t was proven in [10]. Hence it remains to

address the cases when k > 1, for which we have the following decision µk
t problem.

- Instance: A positive integer k ≥ 2, a connected graph G, the set of all k-cliques
of G, and a positive integer r ≤ |V (G)|.

- Question: Is it satisfied that µk
t (G) ≥ r?

Theorem 5.3. For a given k ≥ 2, the µk
t problem is NP-complete.

Proof. First we observe the µk
t problem is in NP. To show NP-hardness of this problem,

consider an arbitrary connected graph G and set G′ = G◦Kk−1. Then by Theorem 5.2,
µk
t (G

′) = (k−1)|V (G)|+µ1
t (G). Clearly, constructing G′ from G can be done in polyno-

mial time. Therefore, if there would exist a polynomial-time algorithm for computing
µk
t (G

′), then there would exist a polynomial-time algorithm for finding µ1
t (G), but the

latter problem was proved to be NP-complete in [10].
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[8] M. Cera López, P. Garćıa-Vázquez, J.C. Valenzuela-Tripodoro, I.G. Yero, The
k-distance mutual-visibility problem in graphs, Bull. Malays. Math. Sci. Soc. 48
(2025) Paper 25.

[9] S. Cicerone, A. Di Fonso, G. Di Stefano, A. Navarra, F. Piselli, Mutual and total
mutual visibility in hypercube-like graphs, Appl. Math. Comput. 491 (2025) Paper
129216.

[10] S. Cicerone, G. Di Stefano, L. Droždek, J. Hedžet, S. Klavžar, I.G. Yero, Variety
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