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Abstract--The Szeged index Sz is a recently introduced graph invariant, having applications in 
chemistry. In this paper, a formula for the Szeged index of Cartesian product graphs is obtained 
and some other composite graphs are considered. We also prove that for all connected graphs, Sz 
is greater than or equal to the sum of distances between all vertices. A conjecture concerning the 
maximum value of Sz is put forward. 
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1. I N T R O D U C T I O N  

In recent research in mathematical  chemistry, particular at tention is paid to distance-based graph 
invariants. The oldest and most thoroughly examined such invariant is the Wiener index (or 
Wiener number) W; for details on its theory see the review [1]. Another, newly introduced 
invariant of the same kind is the Szeged index [2] Sz. A few basic mathematical  properties of Sz 
were established [2-5] and its certain chemical applications reported [6,7]. 

Graphs  considered in this paper  are finite, c o n n e c t e d  and undirected, without loops or mul- 
tiple edges. For a graph G, let V(G) and E(G) denote its vertex set and edge set, respectively. 
The number  of vertices of G will be denoted by IGI and de(v) will stand for the degree of a 
vertex v in G. 

Let da(u, v) be the number of edges in a shortest pa th  between vertices u and v in a graph G. 
Then the Wiener index of a graph G, W(G) is defined as W(G) -- 1/2 ~ , v ~ v ( c )  de(u, v). 

Let e -- uv be an edge of a graph G. Let Nl(e I G) be the vertices of G which are closer to u 
than  to v and let N2(e ] G) be those vertices which are closer to v than to u. More formally, 

Nl(e I G) = {w I w e V(G),dG(w,u) < dc(w,v)} and N2(e I G) = (w l w e Y(G),da(w,v)  < 
dc(w,u)}.  Let nl(e I G) = INl(e I G)I and n2(e I G) = IN2(e I G)I. Then the Szeged index of a 
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graph G, denoted by Sz(G), is defined as 

Sz(a)  = nl (e I G) (e I a ) .  
eeE(G) 

Notice that in the previous works, [2-5] the symbol W* was used instead of Sz, and no name for 
the respective graph invariant was put forward. 

The Cartesian product G x H of graphs G and H has the vertex set V(G x H) = V(G) x V(H) 
and (a, x)(b, y) is an edge of G x H if a = b and xy 6 E(H),  or ab 6 E(G) and x = y. Note that 
each edge of G x H is either contained in an (isomorphic) copy of G or in an (isomorphic) copy 
of H. Observe also that in G x H, there are IHI isomorphic copies of G and IGI isomorphic copies 
of H. The Cartesian product is associative and commutative. Furthermore, it is connected if 
and only if both factor graphs are connected. 

The Wiener index of Cartesian product graphs was studied in [8,9]. Here we consider the 
Szeged index of such graphs. In the next section, we establish a formula for Sz  of Cartesian 
product graphs in terms of their factors and extract some important special cases. This formula, 
compared with the respective expression for W, indicates that in the case of Cartesian product 
graphs, Sz  exceeds W. In Section 3, we show that a more general result holds, namely that for 
all (connected) graphs, Sz > W. We further propose a conjecture about the maximum value 
of Sz. Finally, in Section 4, we consider the Szeged index of some other composite graphs. 

2. T H E  F O R M U L A  F O R  C A R T E S I A N  P R O D U C T S  

THEOREM 2.1. For any graphs G and H, Sz(G x H) = [G[3Sz(H) + [H[3Sz(G). 

PROOF. Let P = G x H. Since there are only two types of edges in P---corresponding to copies 
of H and of G, respectively--the Szeged index of P can be written as the sum of 

~ n l ( ( a , x ) ( a , Y ) l P ) ' n 2 ( ( a , x ) ( a , Y ) t P ) ,  
aEV(G) zy6E(H) 

and 
~ nl((a,x)(b,x)  P ) . n 2 ( ( a , x ) ( b , x ) l P  ). 

xeV(H) ab6E(G) 

Observe now that nl((a,x)(a,y) l P ) = IGI.nl(xy l S )  and n2((a,x)(a,y) l P ) = ]GI.n2(xy l H ). 
Analogous statements hold for the edges in copies of G, i.e., edges (a, x)(b, x). Thus, Sz(P) is 
equal to 

IGI 3 ~ n , ( x y ] g ) . n 2 ( x y l g ) + l H I  3 ~ n l C a b l G ) . n 2 ( a b l G ) ,  
zyeE(H) ab6E(G) 

which completes the proof. 

Since the Cartesian product is associative, repeated application of Theorem 2.1 yields the 
following corollary. 

COROLLARY 2.2. Let n >_ 2. Then, for any graphs G1, . . . , Gn on aS least two vertices, 

Recall from [8,9] that the Wiener index of the Cartesian product of two graphs is given by the 
formula W(G x H) = IGI2W(H) + IHI2W(G), and therefore, 
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We give two examples for the above results. 

(i) Denote the Cartesian product of n copies of a graph G by G n. Then we have Sz(G n) = 
nlG[3(n-1)Sz(G) and W ( G  n) = nlG[2(n-1)W(G). The later formula also appears in [8]. 

(ii) Grid graphs are Cartesian products of paths, i.e., graphs of the form Pn × Pro. Recall 
from [8,9] that W(P,~) = 1/6n(n 2 - 1). Since in addition Sz(Pn) = W(P,~), we have 
S z( Pn × Pro) = 1/6( 2n3m3 - nm( n 2 -m2)) which should be compared with W ( P,~ × Pro) = 
1/6(n2m2(n + m) - nm(n  - rn)). 

3. R E L A T I O N  B E T W E E N  SZEGED A N D  W I E N E R  I N D I C E S  

Comparing the formulas for the Szeged and Wiener index of G × H, it is readily seen that 
Sz increases with the size of the graphs G and H faster than W. In particular, Sz(G × H) 
will exceed W ( G  x H) whenever Sz(G) and Sz(H)  exceed W(G) and W(H) ,  respectively. This 
observation is, however, just the tip of an iceberg. Namely, we now demonstrate the following 
result conjectured in [2]. 

THEOREM 3.1. Sz(G) > W(G) holds for all (connected) graphs. 

The class of graphs for which Sz  and W coincide was characterized by Dobrynin and one of 
the present authors [4]: these are the graphs with complete blocks. This, in particular, implies 
that Sz  = W for trees and for complete graphs. 

Theorem 3.1 could be obtained by combining certain results from [3,4] (but it was not stated 
in either of those articles. Here we offer a direct and more transparent proof. 

Consider a graph G and choose one of the shortest path between each pair of its vertices. 
The set of these paths is denoted by fl; its cardinality is IGI([G] - 1)/2. (The way in which the 
elements of fl are chosen is immaterial.) Let e = uv be an edge of G. Denote by fl(e) the subset 
of 12 containing paths that go through the edge e. 

LEMMA 3.2. W(G) -- ~"~eeE(G) I~(e)l • 

PROOF. The right-hand side of the equation counts the distances between all pairs of vertices 
of G by counting how many times an edge is contained in the (chosen) shortest paths, and then 
summing the result over all edges. Hence, the lemma. 

Denote by xl and x~ the endpoints of the path w in ~(e). If by starting from xl and going 
along w, the vertex u is passed before v, then Xl is said to be the u-endpoint, and x2 the v-endpoint 
of w. 

Let N~(e I i2) and N~(e I ~) be the sets of u.-endpoints and v-endpoints, respectively, of the 
paths from 9t(e). 

Because w is a shortest path, x~ E N~(e I G), i.e., N*(e I ~) C. Ni(e I G) for i = 1,2. 
Consequently, 

[ N ~ ( e l a ) l < n ~ ( e l G ) ;  i =  1,2. (1) 

LEMMA 3.3. ll2(e)] _< IN~(e112)11N~(e I ~)]. 

PROOF. Observe that [12(e)l -- ]N~(e [ ~)[ IN~(e [ ~)1 would hold only if for every pair of 
vertices xl and x2, xt E N~(e [ fl), x2 E N~(e 112), there would be a path in ~(e), connecting Xl 
and x2. Because not all such paths need to be present in ~(e), the inequality follows. 

PROOF OF THEOREM 3.1. Combine Lemmas 3.2. and 3.3. with (1). 

Among (connected) graphs on n vertices, the path Pn has maximum Wiener index and W(Pn) 
= n(n 2 - 1)/6 [1]. Thus, the Wiener index increases at most as a third-degree polynomial of the 
number of vertices. 

The Szeged index can increase as a fourth-degree polynomial of the number of vertices. An 
example for this is the graph Gn = Kt,~/2J,Ln+l/2J, for which Sz(Gn) = n4/16, if n is even and 
Sz(Gn) = (n + 1)2(n - 1)2/16 if n is odd. 
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CONJECTURE. KL.12],L.+I/2 j has maximum Szeged index among all (connected) graphs on n ver- 
tices. 

It is known [2] that the conjecture is true for bipartite graphs. 

4. N O T E  ON THE SZEGED INDICES OF 
O T H E R  C O M P O S I T E  G R A P H S  

Besides Cartesian product graphs, several other composite graphs were examined in [9]: the 
join of graphs, the composition of graphs, the corona of graphs and the cluster of graphs. For all 
of them, formulas are given for the Wiener index of a composite graph in terms of parameters 
of factors, more precisely in the numbers of edges and vertices of the factors. Although it is 
also possible to obtain such formulas for the Szeged index of all these compositions, the obtained 
expressions are not as nice as in the case of the Wiener index. Therefore, we will not write 
them all down, instead we will present two typical examples. But first, we have to define the 
corresponding compositions. 

The join G + H of graphs G and H is obtained from the disjoint union of the graphs G and H, 
where each vertex of G is adjacent to each vertex of H. The composition G[H] of graphs G 
and H has the vertex set V(G[H]) = V(G) x V(H) and (a,x)(b,y) is an edge of G[H] if a = b 
and xy 6 E(H), or ab 6 E(G). The composition is also known as the lexicographic product of 
graphs. 

For brevity, we introduce the following notion. For an edge uv of a graph G, let NG(uv) be 
the set of common neighbors of u and v. 

We first consider the join P = G + H of graphs G and H. Then Sz(P) is clearly equal to 

E nl(ab[P)'n2(ablP)+ E n , (xy[P) .n2(xy[P)+ E n l ( a x l f ) . n 2 ( a x I P ) .  
abe E( G) xy6E( H) aE V ( G) 

xev(n) 

Since the join of two graphs has diameter at most two, Sz(P) is equal to 

E (riG(a) -IgG(ab)l). (da(b) -ING(ab)[) 
abeE(G) 

+ Z (dlt(x) -INH(xy)I)" (dH(y) --INH(Xy)[) + 
xyEE(H) 

E (IHI - dH(X))" (IGI - dG(a)). 
a6V(G) 
zeV(H) 

Comparing this expression with the respective formula for the Wiener index 

W(G + H) = IGI 2 + IHI 2 + IG[ IHI - (]G I + [H I + IE(G)I + ]E(H)]), 

we indeed see that the situation is nicer for the Wiener than the Szeged index. However, the 
formula for the Szeged index becomes more readable in some special cases. For instance, suppose 
that the graphs G and H are k-regular, triangle-free graphs. Then, for any edge ab of G, we have 
[Nc(ab)l = 0 (and analogously for any edge of H). Thus, we have 

Sz(G + H) = k~IE(G)I + k21E(H)[ + IGI [H](IHI - k)(IG I - k). 

Similar arguing applies also to the composition of graphs G and H. Without going into details, 
we state that the Szeged index of G[H] is equal to 

IG] E (dH(x) - INH(xy)I) . (dH(y) --INH(Xy)]) 
zyEE(H) 

+ E E (IH] - dH(y) + ]H]nl (ab ] G)). (IHI - dH(X) + IH]n2(ab ] G)). 
abeE(G) zeV(H) 

~V(H) 
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