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Abstract: In the quest to better understand the connection between
median graphs, triangle-free graphs and partial cubes, a hierarchy of sub-
classes of partial cubes has been introduced. In this article, we study the
role of tiled partial cubes in this scheme. For instance, we prove that
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almost-median graphs are tiled and that tiled partial cubes are semi-median.
We also describe median graphs as tiled partial cubes without convex
Q3� and extend an inequality for median graphs to a larger subclass of
partial cubes. � 2002 Wiley Periodicals, Inc. J Graph Theory 40: 91–103, 2002
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1. INTRODUCTION

Median graphs are a class of graphs that capture an essential property of trees:
given any three vertices, there exists a unique vertex that lies on shortest paths
between any two of the given vertices; a property that is also shared by hyper-
cubes. It turns out that every median graph can be isometrically embedded into
hypercubes. Such graphs are called partial cubes, and have been thoroughly
investigated; see [16] for a recent survey on median graphs and [1,11,12,20] for
partial cubes.

Although median graphs are bipartite, a surprising connection with (bipartite
or non-bipartite) triangle-free graphs was recently discovered [15]. It is closely
related to the fact that median graphs contain no convex subgraph isomorphic to
Q�

3 , that is, to the vertex-deleted cube of dimension three. This fact is the major
obstacle for a linear (or almost linear) recognition algorithm for median graphs.
Hence, it is natural to investigate classes of graphs that allow convex subgraphs
isomorphic to Q�

3 and that lie strictly between median graphs and partial cubes.
Two such classes—semi-median graphs and almost-median graphs—were intro-
duced in [13] because of their metric and expansion properties.

Just as median graphs, semi-median graphs can be isometrically embedded
into hypercubes in almost linear time [14], once they have been recognized. It
would be interesting to find out whether they can also be recognized faster than
partial cubes. The solution of this problem may also shed light on the problem of
improving the recognition complexity of partial cubes or for finding a nontrivial
lower bound for this task, cf. [1].

In Section 2, we introduce basic concepts and a hierarchy of graph classes
between median graphs and partial cubes. The results are collected in Section 3.
In characterizing median graphs as semi-median graphs that contain no convex
Q�

3 , we strengthen a result from [13]. Then, we investigate tiled partial cubes, that
is, partial cubes in which cycles can be represented as direct sums of 4-cycles. We
prove that graphs that can be obtained by an isometric expansion procedure are
tiled and that tiled partial cubes are semi-median. In particular, this implies that
the class of median graphs is the class of tiled partial cubes without convex Q�

3 .
In the final section, we extend an inequality from [17] for median graphs to
graphs that can be obtained by a connected expansion procedure. More precisely,
for every such graph on n vertices, m edges, and k equivalence classes with
respect to the Djoković-Winkler relation �, we show that 2n� m� k � 2. We
conclude the article with three open problems.
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2. PRELIMINARIES

The interval Iðu; vÞ between two vertices u; v of a connected graph G is the set of
vertices of all shortest paths between u and v in G. A graph G is a median graph if

jIðu; vÞ \ Iðv;wÞ \ Iðw; uÞj ¼ 1

for all triples of vertices u; v;w of G. A graph that admits an isometric embedding
into a hypercube is called a partial cube. It is well known that median graphs are
partial cubes, cf. [19].

Two edges e ¼ xy and f ¼ uv of G are in the Djoković-Winkler [11,21]
relation � if

dGðx; uÞ þ dGðy; vÞ 6¼ dGðx; vÞ þ dGðy; uÞ;

where, dGðu; vÞ denotes the length of a shortest path in G from u to v. Clearly, �
is reflexive and symmetric. If G is bipartite, then the edges e ¼ xy and f ¼ uv are
in relation � precisely, when dðx; uÞ ¼ dðy; vÞ and dðx; vÞ ¼ dðy; uÞ. Winkler [21]
proved that a bipartite graph is a partial cube if and only if � is transitive.

Partial cubes are a rich class of graphs that encompasses subclasses with
widely differing properties. We will pursue two main approaches for the defini-
tion of subclasses.

We begin with the definition of three types of subsets of the vertex set of a
graph and the concept of convexity, cf. [19]. Let G ¼ ðV ;EÞ be a connected,
bipartite graph and let ab an edge of G. We set

Wab ¼ fw 2 V j dGða;wÞ< dGðb;wÞg;
Uab ¼ fw 2 Wab j w has a neighbor in Wbag;
Fab ¼ fe 2 E j e is an edge between Wab and Wbag:

Clearly, Wab and Wba are disjoint, and V ¼ Wab [Wba, since G is bipartite and
connected. Moreover, the subgraph hWabi induced by the set Wab is connected,
since G is connected. If G is a partial cube, then the sets Fab are precisely the
equivalence classes of the relation �. This is an immediate consequence of the
characterizations of partial cubes by Djoković [11] and Winkler [21].

A subgraph H of a graph G is convex if for any two vertices u; v of H all
shortest paths between u and v in G are already in H, that is, if IGðu; vÞ � VðHÞ.

In the first approach for the definition of these subclasses, properties of the
subgraphs hUabi induced by the sets Uab are used. The starting point is the char-
acterization of median graphs as the class of bipartite graphs with convex hUabi’s,
see [4]. In this sense, almost-median graphs are defined as partial cubes with
isometric hUabi’s, and semi-median graphs as partial cubes with connected
hUabi’s, see [13].

The second approach characterizes partial cubes by expansion procedures as
defined below.
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Let G0 be a connected graph. A proper cover G0
1;G

0
2 consists of two isometric

subgraphs G0
1;G

0
2 of G0 such that G0 ¼ G0

1 [ G0
2 and G0

0 ¼ G0
1 \ G0

2 is a nonempty
subgraph, called the intersection of the cover. The expansion of G0 with respect
to G0

1, G0
2 is the graph G constructed as follows. Let Gi be an isomorphic copy

of G0
i, for i ¼ 1; 2, and, for any vertex u0 in G0

0, let ui be the corresponding vertex
in Gi, for i ¼ 1; 2. Then, G is obtained from the disjoint union G1 [ G2, where
for each u0 in G0

0 the vertices u1 and u2 are joined by an edge. We denote the
copy of G0

0 in Gi by G0i, for i ¼ 1; 2. If G0
0 is convex, isometric, or connected in

G, we speak of a convex, isometric, or connected expansion, respectively. If G
can be obtained from the one-vertex graph K1 by a sequence of expansions of a
given type, then we say that G is obtainable by an expansion procedure of that
type.

Let G be the expansion of G0 with respect to the proper cover G0
1; G

0
2. Note that

the set of edges between G01 and G02 is a �-class. Moreover, for any edge v1v2

with v1 in G01 and v2 in G02, we have G01 ¼ hUv1v2
i and G02 ¼ hUv2v1

i.
These concepts lead to the following hierarchy of classes of partial cubes:

(1) Partial cubes in which the hUabi’s are convex (median graphs);
(2) Graphs obtainable by a convex expansion procedure;
(3) Partial cubes in which the hUabi’s are isometric (almost-median graphs);
(4) Graphs obtainable by an isometric expansion procedure;
(5) Partial cubes in which the hUabi’s are connected (semi-median graphs);
(6) Graphs obtainable by a connected expansion procedure;
(7) Partial cubes in which the hUabi’s are arbitrary;
(8) Graphs obtainable by an arbitrary expansion procedure.

The following implications hold:

ð1Þ , ð2Þ )
6( ð3Þ )

6( ð4Þ )
6( ð5Þ )

6( ð6Þ )
6( ð7Þ , ð8Þ:

The equivalence between (1) and (2) is due to Mulder [18], while the one
between (7) and (8) is due to Chepoi [7]. Clearly (2) implies (3), and the graph
G1 ¼ Q�

3 of Figure 1 shows that the converse is not true.
That (3) implies (4) was shown in [13]; the graph G2 of Figure 1 demonstrates

that the converse is false. The implications ð4Þ ) ð5Þ ) ð6Þ were proved by
Bres̆ar [6] in a more general setting (for the non-bipartite case). The latter
implication is also stated in [13], but it is wrongly asserted that the converse holds
as well. This fact was pointed out by Chepoi [9] using the graph G3 of Figure 1.
Indeed, G3 can be obtained from the semi-median graph Q�

3 by an expansion with
respect to its isometric 6-cycle and the subgraph obtained by deletion of a vertex
of degree 2. This specific expansion is connected but G3 is not semi-median: take
as ab one of the edges incident with the vertex of degree 2 in G3, then hUabi is not
connected. The graph of Figure 2 is semi-median, but cannot be obtained by a
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sequence of isometric expansions. In particular, this answers the question from
[6] whether (4) and (5) are equivalent. Finally, (6) clearly implies (7); C6 shows
that the converse fails in general.

3. TILED PARTIAL CUBES IN THE HIERARCHY

Let G1;G2; . . . ;Gk be subgraphs of a graph G. Then the symmetric sum G1 �
G2 � � � � � Gk is the subgraph of G induced by those edges of G that appear in

FIGURE 1. Partial cubes.

FIGURE 2. A semi-median graph.
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an odd number of the graphs G1;G2; . . . ;Gk. Let C be a cycle of a graph G. Then
a set of 4-cycles C ¼ fC1;C2; . . . ;Cpg in G is a tiling of C if

C ¼ C1 � C2 � � � � � Cp:

A graph G is tiled if every cycle of G has a tiling.
We now extend the hierarchy of partial cubes by the following subclass:

(9) Partial cubes in which every cycle can be tiled.

We call these graphs tiled partial cubes and will eventually show that

ð4Þ ) ð9Þ )
6( ð5Þ:

This result enables us to characterize median graphs as the class of tiled partial
cubes without convex Q�

3 . In addition, a partial converse of the implication
ð9Þ ) ð5Þ is also proved. Note that tiled partial cubes are precisely the partial
cubes in which the 4-cycles constitute a basis of the cycle space.

We show first that ð9Þ ) ð5Þ.
Theorem 3.1. Tiled partial cubes are semi-median graphs.

Proof. Assume the contrary, and let G be a tiled partial cube that is not a
semi-median graph. Since G is not a semi-median graph, there exists an edge
ab in EðGÞ such that hUabi (and hUbai) is not connected. Let hU1

abi and hU2
abi

be two different connected components of hUabi, and let hU1
bai and hU2

bai be
the corresponding connected components of hUbai. Let u1v1 and u2v2 be two
edges from Fab with ui 2 hUi

abi and vi 2 hUi
bai for i ¼ 1; 2. Then, there is an

induced cycle C ¼ u1Pu2v2Qv1u1 of G such that the path P lies in Wab and Q

lies in Wba. Since G is tiled, there exists a nonempty set of 4-cycles C ¼
fC1; . . . ;Cpg of G such that C ¼ C1 � � � � � Cp. Note that, if the 4-cycle Ci has
an edge in Fab, then it has exactly two edges in Fab. So, denote by Cr ¼
fCi1 ; . . . ;Cirg the subset of 4-cycles of C that have two edges in common
with Fab.

By the choice of the paths P and Q, it follows that u1v1 and u2v2 are the only
two edges of C which are in Fab. Hence, u1v1 and u2v2 are the only edges of Fab

that are contained in an odd number of cycles from Cr.
Now, consider the graph H ¼ Ci1� � � � � Cir . Clearly u1v1 and u2v2 are edges

in H, and any other edge of H is contained in hUabi or hUbai. Furthermore, H is an
even graph, that is, a graph every vertex of which has even degree, or, equiva-
lently, a graph in that all components are Eulerian. Because of the parity
condition on the number of occurrences of the edges of Fab in Cr, we infer that
u1v1 and u2v2 are in the same component of H. In particular, u1 and u2 are
connected by a path in hUabi. This contradicts the assumption that the vertices
u1; u2 are in different components of hUabi. &
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To see that the converse of Theorem 3.1 is not true, i.e., that ð5Þ does not imply
ð9Þ, we may again use the graph from Figure 2. It is semi-median, but certain
6-cycles of this graph have no tiling: take for instance the 6-cycle involving the
two leftmost vertices and the horizontal edges incident with these. In the fol-
lowing example, we show how a tiling can be destroyed by an expansion.
Consider the tiling of the indicated 6-cycle in Figure 3, consisting of the two
indicated 4-cycles and the outer 4-cycle. This tiling is destroyed by the expan-
sion. Of course, in this example there exists another tiling that is retained in the
expansion. But, we have no procedure to find such tilings in all cases or to dis-
tinguish between the two types of tilings in the smaller graph.

We can avoid the above problems by considering a slightly smaller class of
graphs. In the expansion procedure for a median graph (a partial cube), it turns
out that the graphs in proper covers induce median graphs (partial cubes). Thus, it
makes sense to call a semi-median graph a proper semi-median graph, if it can be
obtained by a connected expansion procedure in which the proper cover consists
of proper semi-median graphs in each step:

(10) Proper semi-median graphs.

Theorem 3.2 fits this class into the hierarchy, as displayed by the following
diagram:

ð2Þ ) ð3Þ ) ð4Þ )
) ð10Þ ) ð9Þ ) ð5Þ:

Recall that 4 denotes the symmetric difference of sets.

Theorem 3.2. A proper semi-median graph is tiled.

Proof. The proof is by induction on the number of �-classes of G. If this
number is zero, then G is the one vertex graph, which is trivially tiled. Now, let G
be a proper semi-median graph with at least one �-class. Then G can be obtained
by a connected expansion from a semi-median graph G0 with respect to the proper
cover consisting of proper semi-median subgraphs, which are tiled by the

FIGURE 3. A connected expansion.
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induction hypothesis. Let Fab be the �-class obtained in the last expansion step. It
is well-known and also easy to see that the isometric cycles of a graph constitute a
basis of the cycle space of that graph. So, it suffices to prove that an arbitrary
isometric cycle C of G has a tiling.

Since G is a partial cube it follows that hWabi and hWbai are convex subgraphs.
In particular, this implies that every isometric cycle of G has at most 2 edges in
Fab. Thus, jEðCÞ \ Fabj ¼ 0 or 2.

Suppose first that jEðCÞ \ Fabj ¼ 0. Then, we may assume that C is a cycle of
hWabi. Clearly, hWabi is a proper semi-median graph with fewer �-classes than G.
Hence, by induction, C is tiled in hWabi and so it is in G.

Assume next that EðCÞ \ Fab ¼ fu1v1; u2v2g, where u1; u2 2 Uab and v1; v2 2
Uba. Let Pu be a path in hUabi between u1 and u2. Denote the isomorphic copy of
Pu in hUbai by Pv . Note that Pu and Pv always exist, since hUabi and hUbai are
connected and isomorphic.

Let H ¼ Pu [ Pv [ fu1v1; u2v2g. Then, H is a cycle, and H has the obvious
tiling CH such that each 4-cycle of CH has two edges in Fab, one on Pu, and the
corresponding one on Pv. Clearly, we can consider the even graph C � H as a set
(possibly empty) of pairwise edge-disjoint cycles C1;C2; . . . ;Ck such that each
one is either in hWabi or in hWbai. Thus, by the previous case, for each such cycle
Ci in C � H there exists a tiling Ci. Let

C ¼ C1 4 C2 4 � � � 4 Ck:

Now, it is easy to see that C is a tiling of C � H. Finally, C 4 CH is a tiling
of C. &

We do not know how to fit proper semi-median graphs into the hierarchy of
Section 2. This is easier for the tiled partial cubes. The following theorem
generalizes the corresponding result for median graphs from [5], it shows that
ð4Þ ) ð9Þ.

Theorem 3.3. Graphs obtainable by an isometric expansion procedure are
tiled.

Proof. Assume the contrary and let G be the smallest non-tiled graph
obtainable by an isometric expansion from a tiled graph G0, which in itself is
obtainable by an isometric expansion procedure. Let Fab be the �-class obtained
in the last expansion step. Note that hUabi and hUbai are both isometric subgraphs
of G.

Claim. Every cycle C of G with jEðCÞ \ Fabj ¼ 0 is tiled.

We may assume that C is a cycle of hWabi. Let C0, U0, W 0
ab, and W 0

ba in G0

correspond to C, Uab, Wab, and Wba, respectively. Note that U0 also corresponds to
Uba, and that U0 ¼ W 0

ab \W 0
ba. Then C0 is a cycle contained in hW 0

abi, but it may
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have vertices in U0 � W 0
ba as well. By the induction hypothesis, there is a tiling

C0 ¼ fC0
1; . . . ;C

0
pg of C0 in G0. Since G0 is a partial cube it does not contain K2;3 as

a subgraph. Now, since hU0i is an isometric subgraph of G0, we conclude that
every 4-cycle of C0 is contained either in hW 0

abi or in hW 0
bai (or in both). Denote

the set of 4-cycles of C0 that have a vertex in W 0
banW 0

ab by C0b and write C0a ¼ C0nC0b.
Finally, let Cb be the set of 4-cycles in hWbai that naturally correspond to the
4-cycles of C0b and let Ca be the set of 4-cycles in hWabi that correspond to the
4-cycles of C0a, say Ca ¼ fC1; . . . ;Cqg and Cb ¼ fCqþ1; . . . ;Cpg.

Consider the two subgraphs

Ha ¼ C � C1 � � � � � Cq and Hb ¼ Cqþ1 � � � � � Cp:

Note that Ha and Hb are even graphs. Since C is contained in hWabi, the cycle C0

is contained in hW 0
abi. Therefore, each edge in a 4-cycle of C0b with an end in

W 0
banW 0

ab occurs in an even number of 4-cycles in C0b. Hence, each edge in a
4-cycle of Cb with an end in WbanUba occurs in an even number of 4-cycles of Cb.
This implies that Hb is contained in hUbai. Note that C is involved in the de-
finition of Ha. Now, by a similar argument, we deduce that Ha is contained in
hUabi. Moreover, since C0 ¼ C0

1 � � � � � C0
p, the graph Ha must be an isomorphic

copy of Hb in Uab.
Now, let Cab be the set of 4-cycles D ¼ cdefc such that cd 2 Ha, ef 2 Hb, and

de; cf 2 Fab. Finally, since Ha and Hb are even graphs, we infer that Ca [ Cb [ Cab
is a tiling of C in G. This proves the claim.

Let C be a cycle in G that is not tiled. As in the proof of Theorem 3.2, we may
assume that C is isometric, and therefore jEðCÞ \ Fabj � 2. By the claim, we
infer that jEðCÞ \ Fabj ¼ 2. Let uv and xy be the two edges of C in Fab with u; x
in Wab. Let P be the path on C between u and x in hWabi and, similarly, let Q be
the path on C between v and y in hWbai. Then, C ¼ uvQyxPu.

Let Ru be a shortest path from u to x in hUabi. Denote the corresponding path
between v and y in hUbai by Rv. Note that Ru � P is a (possible empty) set of
cycles in hWabi. Thus, by the claim, it follows that there exists a set of 4-cycles Cu
in G such that Ru � P ¼ �D2CuD. Similarly, let Cv be a set of 4-cycles such that
Rv � Q ¼ �D2CvD. Now, denote by Cuv the set of 4-cycles, of which two edges
are in Fab and one edge in each of Ru and Rv. Note that Ru [ Rv [ fuv; xyg ¼
�D2CuvD. Now, clearly, Cu 4 Cv 4 Cuv is a tiling of C. This contradiction
completes the proof. &

In [13], it was proved that a graph is a median graph if and only if it is an
almost-median graph that contains no convex Q�

3 as a subgraph. The following
theorem strengthens this result. For its proof we recall the following lemma
from [13].

Convexity Lemma. Let H be an induced subgraph of a bipartite graph G and
let @H be the set of all edges of G with precisely one end-vertex in H. Then, H is a

convex subgraph of G if and only if no edge of @H is in relation� to an edge in H.
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The equivalence between ðiÞ and ðiiÞ of the following theorem is due to
Chepoi [10]. More precisely, it is an implicit consequence of [10, Theorem 6.1].
An induced connected subgraph H of a graph G is 2-convex if for any two vertices
u and v of H with dGðu; vÞ ¼ 2, every common neighbor of u and v belongs to H.
In [8] (see also [3]), it is proved that a subgraph in a median graph is convex if
and only it is 2-convex.

Theorem 3.4. For a graph G; the following conditions are equivalent:

(i) G is a median graph;

(ii) G is a tiled partial cube that contains no convex Q�
3 ;

(iii) G is a semi-median graph that contains no convex Q�
3 ;

(iv) G is obtainable by connected expansions from K1 and contains no convex
Q�

3 .

Proof. Median graphs are partial cubes that contain no convex Q�
3 and are

tiled by Theorem 3.3. Thus, ðiÞ implies ðiiÞ. By Theorem 3.1 ðiiÞ implies ðiiiÞ,
while ðivÞ follows from ðiiiÞ by the hierarchy of the classes of graphs introduced
in Section 2. Thus it remains to prove that ðivÞ implies ðiÞ.

Suppose that G can be constructed from the one-vertex graph by a series of
connected expansions. If G is not median, then there must be a first expansion
step which leads to a non-median graph. Let uv be an edge of the �-class
produced by this expansion and let us assume for the time being that this is the
last expansion step in constructing G. Let this expansion be with respect to the
cover G0

1;G
0
2, where G0

0 ¼ G0
1 \ G0

2 is not convex. Therefore, G0
0 is not 2-convex

and hence, there is a 4-cycle consisting of the edges ab; bc; cd; da, where a; b; c
are in G0

0, and d is in G0
1nG0

2. Let aa0, bb0, and cc0 be edges of the new �-class.
Then a; b; c; d; a0; b0; c0 form a convex Q�

3 in G, which readily follows from the
Convexity Lemma.

If this is not the last expansion step, then all further connected expansions add
edges, which belong to �-classes different from all previous ones, so this Q�

3

remains convex by the Convexity Lemma. &

4. AN EULER-TYPE FORMULA

Let G be a median graph with n vertices, m edges, and k equivalence classes of G
with respect to relation �. It was proved in [17] that 2n� m� k � 2, and that
equality holds if and only if G is a cube-free median graph.

As observed above, in the case of bipartite graphs, the relation � may be
defined by the property uv�xy if and only if dðx; uÞ ¼ dðy; vÞ and dðx; vÞ ¼
dðy; uÞ. Because of this property, one may consider an equivalence class with
respect to � as a class of parallel edges. This approach is prominent in [5]. In the
network case, where one assigns weights (lengths) to the edges, such an idea of
parallelism is an essential aspect of the results, see [2]. Metaphorically, we might
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consider vertices as 0-dimensional objects, edges as 1-dimensional objects, and
classes of parallel edges as 2-dimensional objects. Thus, in the formula 2n� m�
k � 2, the successive numbers n, m, k count the ‘‘0-dimensional objects,’’ the
‘‘1-dimensional objects,’’ and the ‘‘2-dimensional objects.’’ In this way, the
formula reflects an essential property of the classical Euler formula for planar
graphs. Moreover, replacing each 4-cycle of a plane semi-median graph G with a
solid square and taking all the cells sharing edges from the same �-class, their
union can be viewed as a kind of a strip that is in fact the Cartesian product of
a (solid) edge from this class with a graph H of smaller dimension than the strip.
In the case of cube-free semi-median graphs H is a tree, hence the strip can be
considered as a 2-dimensional object. On the other hand, our formula is not an
alternating sum. So it is not an Euler formula in the proper sense.

In what follows, we show that this inequality holds for graphs obtainable by
connected expansion procedures as well. Thus, we ‘push’ the inequality ‘down’
along the hierarchy. We do not know yet whether this is as far as possible, see
Problem 1 below.

Theorem 4.1. Let G be a graph with n vertices, m edges, and k equivalence

classes of G with respect to �, that is obtainable by a connected expansion
procedure. Then 2n� m� k � 2: Moreover 2n� m� k ¼ 2 if and only if G is

obtainable by an expansion procedure with proper covers having trees as
intersections in every step.

Proof. We prove the inequality by induction on the number of vertices. The
inequality reduces to 2 � 2 if G ¼ K1. So assume that G is the connected ex-
pansion of G0 with respect to isometric subgraphs G0

1; G
0
2 with G0

0 ¼ G0
1 \ G0

2.
By induction, we have 2n0 � m0 � k0 � 2 for G0, where k0; n0; m0 are the cor-
responding parameters of G0. Let t be the number of vertices in G0

0, so that G0
0,

being connected, has at least t � 1 edges. Then, we have n ¼ n0 þ t and m � m0þ
2t � 1. Moreover, the expansion step yields one more �-equivalence class, and so
we have k ¼ k0 þ 1. Thus,

2n� m� k � 2ðn0 þ tÞ � ðm0 þ 2t � 1Þ � ðk0 þ 1Þ
¼ 2n0 � m0 � k0

� 2:

Note that the first inequality is an equality if and only if G0
0 has precisely t � 1

edges, i.e., if G0
0 is a tree. Hence, 2n� m� k ¼ 2 if and only if the intersection of

the cover induces a tree in every expansion step. &

Combining Euler’s classical formula n� mþ f ¼ 2 for planar graphs with
Theorem 4.1, we obtain the following corollary.

Corollary 4.2. Let G be a planar semi-median graph with n vertices, k
equivalence classes with respect to the relation �, and f faces in its planar
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embedding. Then f � n� k. Moreover f ¼ n� k if and only if G is obtainable by
an expansion procedure with proper covers having trees as intersections in each

step.

We conclude the paper with three open problems.

1. Is there an Euler-type relation for partial cubes? In particular, is it true that
2n� m� 2k � 0 for partial cubes with more than 2 vertices?

2. Can one obtain every tiled partial cube by a sequence of isometric
expansions? In other words, does (9) imply (4)?

3. Where exactly are the proper semi-median graphs located in the hierarchy?
In other words, where is (10) located with respect to (3) and (4)?
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