Note

Isometric embeddings of subdivided wheels in hypercubes

Sylvain Gravier ${ }^{\text {a }}$, Sandi Klavžar ${ }^{\text {b }}$, Michel Mollard ${ }^{\text {a }}$
${ }^{\text {a }}$ CNRS, GeoD Research Group, Laboratoire Leibniz, 46 Avenue Félix Viallet, 38031 Grenoble Cédex, France
${ }^{\mathrm{b}}$ Department of Mathematics PEF, University of Maribor, Koroška 160, 2000 Maribor, Slovenia

Received 29 November 2001; received in revised form 26 November 2002; accepted 2 January 2003

Abstract

The k-wheel W_{k} is the graph obtained as a join of a vertex and the cycle of length k. It is proved that a subdivided wheel G embeds isometrically into a hypercube if and only if G is the subdivision graph $S\left(K_{4}\right)$ of K_{4} or G is obtained from the wheel $W_{k}(k \geqslant 3)$ by subdividing any of its outer-edges with an odd number of vertices. (c) 2003 Elsevier B.V. All rights reserved.

Keywords: Isometric embedding; Hypercube; Wheel

1. Introduction

For a graph G, the distance $d_{G}(u, v)$ (or briefly $d(u, v)$) between vertices u and v is defined as the number of edges on a shortest u, v-path. A subgraph H of G is called isometric if $d_{G}(u, v)=d_{H}(u, v)$ for all $u, v \in V(H)$. Isometric subgraphs of hypercubes are called partial cubes. Partial cubes have first been investigated in the 1970s by Graham and Pollak [9] and Djoković [7]. Avis [1], Winkler [17] and Chepoi [3] followed with different characterizations of these graphs, cf. also [16]. Besides early applications (like in [9]), partial cubes have found several other applications, for instance in chemical graph theory, see $[11,13]$ and references therein. For more information on partial cubes see the books $[5,10]$.

In [12], it is proved that if every edge of a graph G is subdivided by one vertex, then the obtained (bipartite) graph is a partial cube if and only if every block of G

[^0]is complete or a cycle. In addition, subdivisions of wheels are considered in [2] in order to construct bipartite graphs with convex intervals that are not partial cubes, thus answering in negative a question of Chepoi and Tardif whether partial cubes are precisely bipartite graphs with convex intervals. The subdivisions studied in [2] are "uniform", that is, all the edges of the outer cycle of a wheel are subdivided with the same number of vertices, and all the spokes are also subdivided with the same number of vertices. Hence, it is natural to ask when an arbitrary subdivided wheel allows an isometric embedding into a hypercube. A related problem was studied by Deza and Tuma [6]. They have characterized the so-called ℓ_{1}-graphs among the subdivided wheels in which the spokes are not subdivided. In [15,7], the authors note that ℓ_{1}-graphs and partial cubes coincide in the case of bipartite graphs. For more information on ℓ_{1}-graphs we refer to $[4,5]$.

Let W_{k} be the k-wheel, that is, the graph obtained as a join of the one vertex graph K_{1} and the k-cycle C_{k}. In the rest of the paper, we will denote the central vertex of W_{k} by u and the remaining vertices by w_{1}, \ldots, w_{k}, where adjacencies are defined naturally, cf. Fig. 2. The cycle of W_{k} induced by the vertices w_{1}, \ldots, w_{k} will be called the outer-cycle of W_{k}. These notions will also be used for subdivided wheels. In the following the subscript must be read modulo k.

Let $W_{k}\left(m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{k}\right)$ be the graph obtained by subdividing edges of W_{k}, where m_{i} is the number of vertices added on the edge $w_{i} w_{i+1}$, and n_{i} the number of vertices added on the inner edge $u w_{i}$. In this note we prove the following result:

Theorem 1. Let $k \geqslant 3$. Then a subdivided wheel W is a partial cube if and only if W is isomorphic to $W_{k}\left(m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{k}\right)$, where m_{i} is odd for $i=1, \ldots, k$ and $n_{1}=\cdots=n_{k}=0$, or $W=W_{3}(1,1,1 ; 1,1,1)$.

Observe that Theorem 1 implies that $W_{k}\left(m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{k}\right)$ is a median graph if and only if $n_{1}=\cdots=n_{k}=0$ and the $m_{1}=\cdots=m_{k}=1$ (up to isomorphism).

A particular instance of the graphs from Theorem 1 is $W_{3}(1,1,1 ; 0,0,0)$ that is known as the bipartite wheel with three spokes BW_{3}. Note that it is isomorphic to any of the $W_{3}(1,0,0 ; 1,1,0), W_{3}(0,1,0 ; 0,1,1)$ and $W_{3}(0,0,1 ; 1,0,1)$. The graph $W_{3}(1,1,1 ; 1,1,1)$ is the subdivision graph $S\left(K_{4}\right)$ of K_{4}. See Fig. 1 for isometric embeddings of these two graphs.

Fig. 1. Isometric embeddings of BW_{3} and $S\left(K_{4}\right)$.

2. Preliminaries

The set $I(u, v)$ of all vertices of G which lie on a shortest paths between vertices $u, v \in V(G)$ is called interval. A graph G is a median graph if for any triple of vertices u, v, w we have $|I(u, v) \cap I(u, w) \cap I(v, w)|=1$.

Two edges $e=x y$ and $f=u v$ of a connected graph G are in the Djoković-Winkler $[7,17]$ relation Θ if

$$
d_{G}(x, u)+d_{G}(y, v) \neq d_{G}(x, v)+d_{G}(y, u)
$$

If G is bipartite, then the edges $e=x y$ and $f=u v$ are in relation Θ precisely when $d(x, u)=d(y, v)$ and $d(x, v)=d(y, u)$. Winkler [17] proved that a bipartite graph is a partial cube if and only if Θ is transitive. It is easy to see that if e is an edge of an isometric cycle C of a partial cube then the Θ-class of e intersects C in exactly two edges.

Let G^{\prime} be a connected graph. A proper cover $G_{1}^{\prime}, G_{2}^{\prime}$ consists of two isometric subgraphs $G_{1}^{\prime}, G_{2}^{\prime}$ of G^{\prime} such that $G^{\prime}=G_{1}^{\prime} \cup G_{2}^{\prime}$ and $G_{0}^{\prime}=G_{1}^{\prime} \cap G_{2}^{\prime}$ is a nonempty subgraph, called the intersection of the cover. The expansion of G^{\prime} with respect to $G_{1}^{\prime}, G_{2}^{\prime}$ is the graph G constructed as follows. Let G_{i} be an isomorphic copy of G_{i}^{\prime}, for $i=1,2$, and, for any vertex u^{\prime} in G_{0}^{\prime}, let u_{i} be the corresponding vertex in G_{i}, for $i=1,2$. Then G is obtained from the disjoint union $G_{1} \cup G_{2}$, where for each u^{\prime} in G_{0}^{\prime} the vertices u_{1} and u_{2} are joined by an edge.

Chepoi [3] proved that a graph is a partial cube if and only if it can be obtained from K_{1} by a sequence of expansions. This result is analogous to Mulder's convex expansion theorem for median graphs [14] and was later independently obtained by Fukuda and Handa [8].

For $m_{i}>0$ we denote by $w_{i, 1}, \ldots, w_{i, m_{i}}$ the vertices added on the edge $w_{i} w_{i+1}$ and for $n_{i}>0$ let $u_{i, 1}, \ldots, u_{i, n_{i}}$ be the vertices added on the edge $u w_{i}$. Let $C_{i, i+1}$ be the cycle of $W_{k}\left(m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{k}\right)$ induced by vertices $u, u_{i, 1}, \ldots, u_{i, n_{i}}, w_{i}, w_{i, 1}, \ldots, w_{i, m_{i}}$, $w_{i+1}, u_{i+1, n_{i+1}}, \ldots, u_{i+1,1}, u$ (see Fig. 2).

3. Proof of Theorem 1

Lemma 1. Let $k \geqslant 3$. Then $W_{k}\left(m_{1}, \ldots, m_{k} ; 0, \ldots, 0\right)$ is a partial cube if and only if m_{i} is odd for $i=1, \ldots, k$.

Proof. Let $W_{k}\left(m_{1}, \ldots, m_{k} ; 0, \ldots, 0\right)$ be a partial cube. Then it is bipartite and hence the m_{i} 's are odd.

Suppose now that the m_{i} 's are odd. We show that $W=W_{k}\left(m_{1}, \ldots, m_{k} ; 0, \ldots, 0\right)$ is a partial cube by induction on $\sum_{i=1}^{k} m_{i}$. If $m_{1}=\cdots=m_{k}=1$ it is well known that W is a partial cube. (In fact, it is even a median graph.) Without loss of generality we may thus assume $m_{1} \geqslant 3$. By the induction hypothesis, $W^{\prime}=W_{k}\left(m_{1}-2, \ldots, m_{k} ; 0, \ldots, 0\right)$ is a partial cube. Then W can be obtained from W^{\prime} by an expansion over the proper cover $G_{1}^{\prime}=\left\{w_{1}, w_{1,1}, w_{1,2}, \ldots, w_{1,\left(m_{1}+1\right) / 2}\right\}$ and $G_{2}^{\prime}=V\left(W^{\prime}\right) \backslash G_{1}^{\prime} \cup\left\{w_{1}, w_{1,\left(m_{1}+1\right) / 2}\right\}$. (If $m_{1}=3$ we set $w_{1,2}=w_{2}$.)

Fig. 2. $W_{5}(1,2,1,1,0 ; 0,0,1,3,1)$.

To make this paper self-contained, we have included the above proof, although Lemma 1 follows from a result of Deza and Tuma [6]. They proved that $W_{k}\left(m_{1}, \ldots, m_{k}\right.$; $0, \ldots, 0)$ is an ℓ_{1}-graph if and only if it is not one of the graphs $W_{3}(0,2 m+1,2 k+$ $1 ; 0,0,0), m, k \geqslant 0, W_{3}(0,2 m+1,2 k ; 0,0,0), m, k \geqslant 0$, and $W_{4}(0,2 m+1,0,2 k+1 ; 0,0$, $0,0), m, k \geqslant 0$. Since in the bipartite case ℓ_{1}-graphs and partial cubes coincide, see [15], it follows that $W_{k}\left(m_{1}, \ldots, m_{k} ; 0, \ldots, 0\right)$ is a partial cube if and only if it is bipartite.

Lemma 2. Let G be a graph and let K be an isometric subgraph of G which is isomorphic to a subdivision of $K_{2,3}$. Then G is not a partial cube.

Proof. It is enough to show that K is not a partial cube since isometric subgraphs of partial cubes are partial cubes. K can be described with two vertices a and b plus three vertex-disjoint paths P_{1}, P_{2}, and P_{3} from a to b each of length at least 2 . For $i=1,2,3$ let $a=x_{i, 0}, x_{i, 1}, \ldots, x_{i, n_{i}}=b$ be the vertices of the path P_{i}. We may assume that P_{1} is the shortest among these three paths. Note that $n_{1}+n_{i}$ is even for $i=2,3$. Consider the edge e between a and $x_{1,1}$, the edge f between $x_{2,\left(n_{1}+n_{2}\right) / 2-1}$ and $x_{2,\left(n_{1}+n_{2}\right) / 2}$, and the edge g between $x_{3,\left(n_{1}+n_{3}\right) / 2-1}$ and $x_{3,\left(n_{1}+n_{3}\right) / 2}$. It is straightforward to see that $f \Theta e$, $e \Theta g$ but f is not in relation Θ to g, hence Θ is not transitive.

For $k \geqslant 3$, the k-fan F_{k} is the graph obtained as the join of a vertex u and a path on k vertices w_{1}, \ldots, w_{k}.

Lemma 3. Let G be a graph and let K be an isometric subgraph of G which is isomorphic to a subdivision of $F_{k}(k \geqslant 3)$ such that at least one of the edges $u w_{2}, \ldots, u w_{k-1}$ is subdivided. Then G is not a partial cube.

Proof. We proceed by induction on k. If $k=3$ then we are done by Lemma 2. Let $k \geqslant 4$ and let $u w_{i}$ with $2 \leqslant i \leqslant k-1$ be a subdivided edge. Suppose that there is an $j \neq i$ such that the path in K corresponding to the edge $u w_{j}$ in F_{k} is not a geodesic.

If $j=1$ (or $j=k$) then we remove the inner vertices of the path from u to w_{2} that goes through w_{1}. Else we remove the inner vertices of the u, w_{j}-path. In both cases, we obtain an isometric subdivision of F_{k-1}. By induction hypothesis it is not a partial cube. In the other case, all the corresponding subdivided u, w_{j}-paths are geodesics. Then the subgraph of K induced by the vertices of the corresponding subdivided u, w_{i-1}-path, u, w_{i}-path and u, w_{i+1}-path in F_{k} are isometric and we can apply Lemma 2 again.

We are now ready for the proof of Theorem 1. Let $W=W_{k}\left(m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{k}\right)$ be a bipartite wheel. Lemma 1 takes care for the case when all the n_{i} 's are zero. Hence we may, without loss of generality, assume that $n_{1} \geqslant 1$.

Case 1: $k \geqslant 4$. Assume, first that $n_{2}=\cdots=n_{k}=0$. Then $C_{12} \cup C_{k 1}$ induces an isometric subdivided $K_{2,3}$, and by Lemma 2 W is not a partial cube.

Assume, next that there exists an $i \neq 1$ such that $n_{i} \geqslant 1, i \neq 2$ and $i \neq k$. Let H be the subgraph of W induced by u, w_{1}, w_{2} and w_{k} and the corresponding paths between them. Let, in addition, H^{\prime} be the subgraph induced by $u, w_{2}, w_{3}, \ldots, w_{k}$ and the corresponding paths. We claim that H or H^{\prime} is an isometric subgraph of W. Indeed, if the path $w_{k}, u_{k, n_{k}}, \ldots, u, u_{2,1}, \ldots, w_{2}$ is a geodesic then H and H^{\prime} are isometric subgraphs. Otherwise w_{1} or w_{i} is on geodesic between w_{2} and w_{k}. In the first case H is isometric, and in the second case H^{\prime} is such. In any case W is not a partial cube by Lemma 3 .

In the final subcase, we may assume that $i=2$ and $n_{k}=n_{3}=0$. Note that w_{k}, u, w_{3} is a geodesic (if $k=4$, observe that the edge $w_{k} w_{3}$ must be subdivided because W is bipartite). Now, the subgraph induced by $w_{3}, u, w_{k}, w_{1}, w_{2}$ and the corresponding paths between them is an isometric subdivided F_{4}. Hence, again using Lemma 3, W is not a partial cube.

Case 2: $k=3$. If $n_{1}>0$ and $n_{2}=n_{3}=0$ then, since W is bipartite, there is at least one vertex on the outer-cycle between w_{2} and w_{3}. Hence, $C_{12} \cup C_{31}$ is isometric and by Lemma 2 we get that W is not a partial cube.

Assume now that $n_{1}>0$ and $n_{2}>0$. If $n_{3}=0$ then consider the 3 -wheel centered in w_{3}. The case when none of the edges $w_{3} u, w_{3} w_{1}$ and $w_{3} w_{2}$ is subdivided was treated in Lemma 1; moreover, the case when exactly one of these edges is subdivided has been considered above. Hence $m_{3}>0$ and $m_{2}>0$. Without loss of generality, assume that $m_{3} \leqslant m_{2}$. If $m_{3} \geqslant n_{1}+1$ then $C_{12} \cup C_{23}$ is isometric and no partial cube is possible. So $m_{3} \leqslant n_{1}$. Clearly, $m_{3}<n_{1}$, for otherwise we have an odd cycle. Removing from W the inner vertices of the u, w_{1}-path we get an isometric subdivided $K_{2,3}$. Conclude as above.

Now we have that $n_{i}>0$ for all $i=1,2,3$. Then considering a vertex w_{i} (for any i) as the central vertex of the wheel, we also obtain that $m_{i}>0$ for all $i=1,2,3$. We claim that the u, w_{i}-path is the unique geodesic between u and w_{i}. Indeed, in the opposite case, remove from W the inner vertices of the u, w_{i}-path to get an isometric subdivided $K_{2,3}$. By the same argument we also infer that the corresponding w_{i}, w_{i+1}-paths are isometric. In particular, this implies that the cycles C_{12}, C_{23}, C_{31} and the outer-cycle are all isometric. Let $v=u_{1,1}$ and $e=u v$. Then e is in relation Θ with exactly one edge $f=v^{\prime} u^{\prime}$ of C_{12} and one edge $g=v^{\prime \prime} u^{\prime \prime}$ of C_{13}. Note that $v, u, u_{2,1}, \ldots, w_{2}$ is a geodesic because W is bipartite. Hence f lies on the w_{1}, w_{2}-geodesic. Analogously, we have that g is an edge of the w_{1}, w_{3}-geodesic (see Fig. 3).

Fig. 3. Situation from the proof.

Set $a_{1}=d\left(w_{1}, v^{\prime}\right)$ and $a_{2}=d\left(w_{1}, v^{\prime \prime}\right)$. By the definition of Θ and since the corresponding cycles are isometric, we get the following equalities:

$$
\begin{aligned}
& a_{1}+n_{1}=m_{1}-a_{1}+n_{2}+1, \\
& a_{2}+n_{1}=m_{3}-a_{2}+n_{3}+1, \\
& a_{1}+a_{2}=m_{1}-a_{1}+m_{2}+1+m_{3}-a_{2} .
\end{aligned}
$$

From these equalities we obtain

$$
m_{2}+2 n_{1}=n_{2}+n_{3}+1
$$

Considering the edges $u u_{2,1}$ and $u u_{3,1}$ we also obtain

$$
\begin{aligned}
m_{3}+2 n_{2} & =n_{3}+n_{1}+1, \\
m_{1}+2 n_{3} & =n_{1}+n_{2}+1 .
\end{aligned}
$$

Hence $m_{1}+m_{2}+m_{3}=3$, and so $m_{1}=m_{2}=m_{3}=1$. Replacing the role of vertex u with vertex $w_{1}\left(w_{2}, w_{3}\right)$, we conclude that $n_{1}=n_{2}=n_{3}=1$ holds if W is a partial cube.

Acknowledgements

Research supported by the project Proteus number 00874RL.

References

[1] D. Avis, Hypermetric spaces and the Hamming cone, Canad. J. Math. 33 (1981) 795-802.
[2] B. Brešar, S. Klavžar, On partial cubes and graphs with convex intervals, Comment. Math. Univ. Carolin. 43 (2002) 537-545.
[3] V. Chepoi, d-Convexity and isometric subgraphs of Hamming graphs, Cybernetics 1 (1988) 6-9.
[4] V. Chepoi, M. Deza, V. Grishukhin, Clin d'oeil on L_{1}-embeddable planar graphs, Discrete Appl. Math. 80 (1997) 3-19.
[5] M. Deza, M. Laurent, Geometry of Cuts and Metrics, Springer, Berlin, 1997.
[6] M. Deza, J. Tuma, A note on ℓ_{1}-rigid planar graphs, European J. Combin. 17 (1996) 157-160.
[7] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973) 263267.
[8] K. Fukuda, K. Handa, Antipodal graphs and oriented matroids, Discrete Math. 111 (1993) 245-256.
[9] R.L. Graham, H. Pollak, On the addressing problem for loop switching, Bell System Technol. J. 50 (1971) 2495-2519.
[10] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, Wiley, New York, 2000.
[11] S. Klavžar, I. Gutman, Wiener number of vertex-weighted graphs and a chemical application, Discrete Appl. Math. 80 (1997) 73-81.
[12] S. Klavžar, A. Lipovec, Partial cubes as subdivision graphs and as generalized Petersen graphs, Discrete Math. 263 (2003) 157-165.
[13] S. Klavžar, A. Vesel, P. Žigert, I. Gutman, Binary coding of Kekulé structures of catacondensed benzenoid hydrocarbons, Comput. Chem. 25 (2001) 569-575.
[14] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197-204.
[15] R.L. Roth, P.M. Winkler, Collapse of the metric hierarchy for bipartite graphs, European J. Combin. 7 (1986) 371-375.
[16] E. Wilkeit, Isometric embeddings in Hamming graphs, J. Combin. Theory Ser. B 50 (1990) 179-197.
[17] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984) 221-225.

[^0]: E-mail addresses: sylvain.gravier@imag.fr (S. Gravier), sandi.klavzar@uni-lj.si (S. Klavžar), michel.mollard@imag.fr (M. Mollard).

