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Abstract

The k-wheel Wk is the graph obtained as a join of a vertex and the cycle of length k. It is
proved that a subdivided wheel G embeds isometrically into a hypercube if and only if G is the
subdivision graph S(K4) of K4 or G is obtained from the wheel Wk (k¿ 3) by subdividing any
of its outer-edges with an odd number of vertices.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Isometric embedding; Hypercube; Wheel

1. Introduction

For a graph G, the distance dG(u; v) (or brie<y d(u; v)) between vertices u and
v is de=ned as the number of edges on a shortest u; v-path. A subgraph H of G
is called isometric if dG(u; v) = dH (u; v) for all u; v∈V (H). Isometric subgraphs of
hypercubes are called partial cubes. Partial cubes have =rst been investigated in the
1970s by Graham and Pollak [9] and DjokoviCc [7]. Avis [1], Winkler [17] and Chepoi
[3] followed with diEerent characterizations of these graphs, cf. also [16]. Besides
early applications (like in [9]), partial cubes have found several other applications,
for instance in chemical graph theory, see [11,13] and references therein. For more
information on partial cubes see the books [5,10].
In [12], it is proved that if every edge of a graph G is subdivided by one vertex,

then the obtained (bipartite) graph is a partial cube if and only if every block of G
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is complete or a cycle. In addition, subdivisions of wheels are considered in [2] in
order to construct bipartite graphs with convex intervals that are not partial cubes,
thus answering in negative a question of Chepoi and Tardif whether partial cubes
are precisely bipartite graphs with convex intervals. The subdivisions studied in [2]
are “uniform”, that is, all the edges of the outer cycle of a wheel are subdivided
with the same number of vertices, and all the spokes are also subdivided with the
same number of vertices. Hence, it is natural to ask when an arbitrary subdivided
wheel allows an isometric embedding into a hypercube. A related problem was studied
by Deza and Tuma [6]. They have characterized the so-called ‘1-graphs among the
subdivided wheels in which the spokes are not subdivided. In [15,7], the authors note
that ‘1-graphs and partial cubes coincide in the case of bipartite graphs. For more
information on ‘1-graphs we refer to [4,5].
Let Wk be the k-wheel, that is, the graph obtained as a join of the one vertex graph

K1 and the k-cycle Ck . In the rest of the paper, we will denote the central vertex
of Wk by u and the remaining vertices by w1; : : : ; wk , where adjacencies are de=ned
naturally, cf. Fig. 2. The cycle of Wk induced by the vertices w1; : : : ; wk will be called
the outer-cycle of Wk . These notions will also be used for subdivided wheels. In the
following the subscript must be read modulo k.
Let Wk(m1; : : : ; mk ; n1; : : : ; nk) be the graph obtained by subdividing edges of Wk ,

where mi is the number of vertices added on the edge wiwi+1, and ni the number of
vertices added on the inner edge uwi. In this note we prove the following result:

Theorem 1. Let k¿ 3. Then a subdivided wheel W is a partial cube if and only if
W is isomorphic to Wk(m1; : : : ; mk ; n1; : : : ; nk), where mi is odd for i = 1; : : : ; k and
n1 = · · ·= nk = 0, or W = W3(1; 1; 1; 1; 1; 1).

Observe that Theorem 1 implies that Wk(m1; : : : ; mk ; n1; : : : ; nk) is a median graph if
and only if n1 = · · ·= nk = 0 and the m1 = · · ·= mk = 1 (up to isomorphism).
A particular instance of the graphs from Theorem 1 is W3(1; 1; 1; 0; 0; 0) that is known

as the bipartite wheel with three spokes BW3. Note that it is isomorphic to any of the
W3(1; 0; 0; 1; 1; 0), W3(0; 1; 0; 0; 1; 1) and W3(0; 0; 1; 1; 0; 1). The graph W3(1; 1; 1; 1; 1; 1)
is the subdivision graph S(K4) of K4. See Fig. 1 for isometric embeddings of these
two graphs.

Q3
-

S(K4)

Fig. 1. Isometric embeddings of BW3 and S(K4).
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2. Preliminaries

The set I(u; v) of all vertices of G which lie on a shortest paths between vertices
u; v∈V (G) is called interval. A graph G is a median graph if for any triple of vertices
u; v; w we have |I(u; v) ∩ I(u; w) ∩ I(v; w)|= 1.
Two edges e= xy and f= uv of a connected graph G are in the DjokoviCc–Winkler

[7,17] relation � if

dG(x; u) + dG(y; v) �= dG(x; v) + dG(y; u):

If G is bipartite, then the edges e = xy and f = uv are in relation � precisely when
d(x; u) = d(y; v) and d(x; v) = d(y; u). Winkler [17] proved that a bipartite graph is a
partial cube if and only if � is transitive. It is easy to see that if e is an edge of an
isometric cycle C of a partial cube then the �-class of e intersects C in exactly two
edges.
Let G′ be a connected graph. A proper cover G′

1; G′
2 consists of two isometric

subgraphs G′
1; G′

2 of G′ such that G′ = G′
1 ∪ G′

2 and G′
0 = G′

1 ∩ G′
2 is a nonempty

subgraph, called the intersection of the cover. The expansion of G′ with respect to
G′

1, G′
2 is the graph G constructed as follows. Let Gi be an isomorphic copy of G′

i ,
for i = 1; 2, and, for any vertex u′ in G′

0, let ui be the corresponding vertex in Gi, for
i = 1; 2. Then G is obtained from the disjoint union G1 ∪G2, where for each u′ in G′

0
the vertices u1 and u2 are joined by an edge.
Chepoi [3] proved that a graph is a partial cube if and only if it can be obtained

from K1 by a sequence of expansions. This result is analogous to Mulder’s convex
expansion theorem for median graphs [14] and was later independently obtained by
Fukuda and Handa [8].
For mi ¿ 0 we denote by wi;1; : : : ; wi;mi the vertices added on the edge wiwi+1 and

for ni ¿ 0 let ui;1; : : : ; ui;ni be the vertices added on the edge uwi. Let Ci; i+1 be the
cycle of Wk(m1; : : : ; mk ; n1; : : : ; nk) induced by vertices u; ui;1; : : : ; ui;ni , wi; wi;1; : : : ; wi;mi ,
wi+1; ui+1; ni+1 ; : : : ; ui+1;1; u (see Fig. 2).

3. Proof of Theorem 1

Lemma 1. Let k¿ 3. Then Wk(m1; : : : ; mk ; 0; : : : ; 0) is a partial cube if and only if mi

is odd for i = 1; : : : ; k.

Proof. Let Wk(m1; : : : ; mk ; 0; : : : ; 0) be a partial cube. Then it is bipartite and hence the
mi’s are odd.
Suppose now that the mi’s are odd. We show that W =Wk(m1; : : : ; mk ; 0; : : : ; 0) is a

partial cube by induction on
∑k

i=1 mi. If m1 = · · ·=mk =1 it is well known that W is
a partial cube. (In fact, it is even a median graph.) Without loss of generality we may
thus assume m1¿ 3. By the induction hypothesis, W ′ =Wk(m1 − 2; : : : ; mk ; 0; : : : ; 0) is
a partial cube. Then W can be obtained from W ′ by an expansion over the proper
cover G′

1 = {w1; w1;1; w1;2; : : : ; w1; (m1+1)=2} and G′
2 = V (W ′) \ G′

1 ∪ {w1; w1; (m1+1)=2}. (If
m1 = 3 we set w1;2 = w2.)
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Fig. 2. W5(1; 2; 1; 1; 0; 0; 0; 1; 3; 1).

To make this paper self-contained, we have included the above proof, although
Lemma 1 follows from a result of Deza and Tuma [6]. They proved that Wk(m1; : : : ; mk ;
0; : : : ; 0) is an ‘1-graph if and only if it is not one of the graphs W3(0; 2m + 1; 2k +
1; 0; 0; 0), m; k¿ 0, W3(0; 2m+1; 2k; 0; 0; 0), m; k¿ 0, and W4(0; 2m+1; 0; 2k +1; 0; 0;
0; 0), m; k¿ 0. Since in the bipartite case ‘1-graphs and partial cubes coincide, see [15],
it follows that Wk(m1; : : : ; mk ; 0; : : : ; 0) is a partial cube if and only if it is bipartite.

Lemma 2. Let G be a graph and let K be an isometric subgraph of G which is
isomorphic to a subdivision of K2;3. Then G is not a partial cube.

Proof. It is enough to show that K is not a partial cube since isometric subgraphs of
partial cubes are partial cubes. K can be described with two vertices a and b plus three
vertex-disjoint paths P1, P2, and P3 from a to b each of length at least 2. For i=1; 2; 3
let a = xi;0; xi;1; : : : ; xi;ni = b be the vertices of the path Pi. We may assume that P1 is
the shortest among these three paths. Note that n1 + ni is even for i = 2; 3. Consider
the edge e between a and x1;1, the edge f between x2; (n1+n2)=2−1 and x2; (n1+n2)=2, and
the edge g between x3; (n1+n3)=2−1 and x3; (n1+n3)=2. It is straightforward to see that f�e,
e�g but f is not in relation � to g, hence � is not transitive.

For k¿ 3, the k-fan Fk is the graph obtained as the join of a vertex u and a path
on k vertices w1; : : : ; wk .

Lemma 3. Let G be a graph and let K be an isometric subgraph of G which is isomor-
phic to a subdivision of Fk (k¿ 3) such that at least one of the edges uw2; : : : ; uwk−1

is subdivided. Then G is not a partial cube.

Proof. We proceed by induction on k. If k = 3 then we are done by Lemma 2. Let
k¿ 4 and let uwi with 26 i6 k − 1 be a subdivided edge. Suppose that there is an
j �= i such that the path in K corresponding to the edge uwj in Fk is not a geodesic.
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If j = 1 (or j = k) then we remove the inner vertices of the path from u to w2 that
goes through w1. Else we remove the inner vertices of the u; wj-path. In both cases, we
obtain an isometric subdivision of Fk−1. By induction hypothesis it is not a partial cube.
In the other case, all the corresponding subdivided u; wj-paths are geodesics. Then the
subgraph of K induced by the vertices of the corresponding subdivided u; wi−1-path,
u; wi-path and u; wi+1-path in Fk are isometric and we can apply Lemma 2 again.

We are now ready for the proof of Theorem 1. Let W =Wk(m1; : : : ; mk ; n1; : : : ; nk) be
a bipartite wheel. Lemma 1 takes care for the case when all the ni’s are zero. Hence
we may, without loss of generality, assume that n1¿ 1.
Case 1: k¿ 4. Assume, =rst that n2 = · · · = nk = 0. Then C12 ∪ Ck1 induces an

isometric subdivided K2;3, and by Lemma 2 W is not a partial cube.
Assume, next that there exists an i �= 1 such that ni¿ 1, i �= 2 and i �= k. Let

H be the subgraph of W induced by u; w1; w2 and wk and the corresponding paths
between them. Let, in addition, H ′ be the subgraph induced by u; w2; w3; : : : ; wk and the
corresponding paths. We claim that H or H ′ is an isometric subgraph of W . Indeed, if
the path wk; uk;nk ; : : : ; u; u2;1; : : : ; w2 is a geodesic then H and H ′ are isometric subgraphs.
Otherwise w1 or wi is on geodesic between w2 and wk . In the =rst case H is isometric,
and in the second case H ′ is such. In any case W is not a partial cube by Lemma 3.
In the =nal subcase, we may assume that i = 2 and nk = n3 = 0. Note that wk; u; w3

is a geodesic (if k = 4, observe that the edge wkw3 must be subdivided because W is
bipartite). Now, the subgraph induced by w3; u; wk ; w1; w2 and the corresponding paths
between them is an isometric subdivided F4. Hence, again using Lemma 3, W is not
a partial cube.
Case 2: k = 3. If n1 ¿ 0 and n2 = n3 = 0 then, since W is bipartite, there is at least

one vertex on the outer-cycle between w2 and w3. Hence, C12 ∪ C31 is isometric and
by Lemma 2 we get that W is not a partial cube.
Assume now that n1 ¿ 0 and n2 ¿ 0. If n3 =0 then consider the 3-wheel centered in

w3. The case when none of the edges w3u; w3w1 and w3w2 is subdivided was treated
in Lemma 1; moreover, the case when exactly one of these edges is subdivided has
been considered above. Hence m3 ¿ 0 and m2 ¿ 0. Without loss of generality, assume
that m36m2. If m3¿ n1+1 then C12∪C23 is isometric and no partial cube is possible.
So m36 n1. Clearly, m3 ¡n1, for otherwise we have an odd cycle. Removing from
W the inner vertices of the u; w1-path we get an isometric subdivided K2;3. Conclude
as above.
Now we have that ni ¿ 0 for all i=1; 2; 3. Then considering a vertex wi (for any i)

as the central vertex of the wheel, we also obtain that mi ¿ 0 for all i=1; 2; 3. We claim
that the u; wi-path is the unique geodesic between u and wi. Indeed, in the opposite
case, remove from W the inner vertices of the u; wi-path to get an isometric subdivided
K2;3. By the same argument we also infer that the corresponding wi; wi+1-paths are
isometric. In particular, this implies that the cycles C12; C23; C31 and the outer-cycle
are all isometric. Let v=u1;1 and e=uv. Then e is in relation � with exactly one edge
f= v′u′ of C12 and one edge g= v′′u′′ of C13. Note that v; u; u2;1; : : : ; w2 is a geodesic
because W is bipartite. Hence f lies on the w1; w2-geodesic. Analogously, we have
that g is an edge of the w1; w3-geodesic (see Fig. 3).
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Fig. 3. Situation from the proof.

Set a1 = d(w1; v′) and a2 = d(w1; v′′). By the de=nition of � and since the corre-
sponding cycles are isometric, we get the following equalities:

a1 + n1 = m1 − a1 + n2 + 1;

a2 + n1 = m3 − a2 + n3 + 1;

a1 + a2 = m1 − a1 + m2 + 1 + m3 − a2:

From these equalities we obtain

m2 + 2n1 = n2 + n3 + 1:

Considering the edges uu2;1 and uu3;1 we also obtain
m3 + 2n2 = n3 + n1 + 1;

m1 + 2n3 = n1 + n2 + 1:

Hence m1 +m2 +m3 =3, and so m1 =m2 =m3 =1. Replacing the role of vertex u with
vertex w1 (w2, w3), we conclude that n1 =n2 =n3 =1 holds if W is a partial cube.
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