Calculating the hyper–Wiener index of benzenoid hydrocarbons

PETRA ŽIGERT¹, SANDI KLAVŽAR¹ and IVAN GUTMAN²

¹Department of Mathematics, PEF, University of Maribor, Koroška 160, 2000 Maribor, Slovenia

²Faculty of Science, University of Kragujevac, P. O. Box 60, YU-34000 Kragujevac, Yugoslavia

Received November , 1999

A method for the calculation of the hyper–Wiener index (WW) of a benzenoid system B is described, based on its elementary cuts. A pair of elementary cuts partitions the vertices of B into four fragments, possessing n_{rs} , r, s = 1, 2 vertices. WW is equal to the sum of terms of the form $n_{11} n_{22} + n_{12} n_{21}$. The applicability of the method is illustrated by deducing a general expression for WW of the coronene/circumcoronene series.

Introduction

The hyper–Wiener index WW is one of the newly conceived topological indices. It was proposed by by Randić [1] in 1993 and is currently in the focus of interest of scholars involved in QSPR and QSAR studies [2]–[17].

The nowadays accepted definition of the hyper–Wiener index, applicable to both acyclic and cycle–containing (molecular) graphs, was proposed by Klein et al. [6]:

$$WW(G) = \frac{1}{2} \sum_{x < y} d(x, y; G)^2 + \frac{1}{2} \sum_{x < y} d(x, y; G)$$
(1)

with d(x, y; G) denoting the distance between the vertices x and y in the graph G.

The calculation of WW directly from Eq. (1) is not easy, especially in the case of large polycyclic molecules, such as benzenoid hydrocarbons. Some time ago, however,

a formula was designed [17] by which these difficulties are overcome. This formula is based on the concept of elementary cuts, a graph-theoretical technique described in due detail in our earlier papers [18]–[20].

Denote by B a benzenoid system and by n the number of its vertices. An *elementary cut* of B is a straight line segment, passing through the centers of some edges of B, being orthogonal to these edges, and intersecting the perimeter of B exactly two times, so that at least one hexagon lies between these two intersection points.

An elementary cut C divides B into two fragments, say $B_1(C)$ and $B_2(C)$. Let $n_1 = n_1(C)$ and $n_2 = n_2(C)$ be the number of vertices of $B_1(C)$ and $B_2(C)$, respectively, where, of course, $n_1 + n_2 = n$. Then the Wiener index of B can be calculated by means of the formula²⁰

$$W(B) = \sum_{i} n_1(C_i) n_2(C_i)$$

in which the summation goes over all elementary cuts of B.

For more details on elementary cuts of benzenoid systems the readers are referred to [18]–[20], were also examples and a more extensive bibliography can be found.

An elementary–cut–based formula for the calculation of the hyper–Wiener index

Consider two distinct elementary cuts C_i and C_j of B. In the general case they divide the vertices of B into four fragments, say $B_{11}(C_i, C_j)$, $B_{12}(C_i, C_j)$, $B_{21}(C_i, C_j)$ and $B_{22}(C_i, C_j)$. The numbers of vertices in these fragments are denoted by $n_{rs} =$ $n_{rs}(C_i, C_j)$, r, s = 1, 2. Clearly, $n_{11} + n_{12} + n_{21} + n_{22} = n$. In the general case some of the vertex counts n_{rs} may be equal to zero.

The above specified fragments will be labeled such that

$$B_{11}(C_i, C_j) \cup B_{12}(C_i, C_j) = B_1(C_i)$$

$$B_{21}(C_i, C_j) \cup B_{22}(C_i, C_j) = B_2(C_i)$$

$$B_{11}(C_i, C_j) \cup B_{21}(C_i, C_j) = B_1(C_j)$$

$$B_{12}(C_i, C_j) \cup B_{22}(C_i, C_j) = B_2(C_j)$$

in which case the hyper–Wiener index of the benzenoid system B obeys the formula [17]:

$$WW(B) = \sum_{i} n_1(C_i) n_2(C_i) + WW^*(B)$$

or

$$WW(B) = W(B) + WW^{\star}(B) \tag{2}$$

with $WW^{\star}(B)$ being the abbreviation for

$$\sum_{i < j} \left[n_{11}(C_i, C_j) \, n_{22}(C_i, C_j) + n_{12}(C_i, C_j) \, n_{21}(C_i, C_j) \, \right] \tag{3}$$

in which the summation goes over all pairs of (mutually distinct) elementary cuts of ${\cal B}\,.$

An advanced example: hyper–Wiener index of circumcoronenes

In order to illustrate the way in which Eqs. (2) and (3 work, as well as their power, we solve a difficult problem: we determine the general expression for the hyper–Wiener index of the k-th member H_k of the coronene/circumcoronene homologous series (H_1 = benzene, H_2 = coronene, H_3 = circumcoronene, H_4 = circumcircumcoronene, etc), see Fig. 1. These highly symmetric benzenoid systems attract for a long time the attention of both theoretical and experimental chemists. For a recent survey on their theoretical–chemical properties see [21]. Needless to say that a formula for $WW(H_k)$ was not known so far.

In what follows we refer to any of the benzenoid systems H_k just as coronene.

For a pair of elementary cuts of H_h we distinguish two different arrangements as schematically depicted in Fig. 2.

Type A consists of parallel elementary cuts and type B contains pairs of intersected elementary cuts. Because of symmetry, both types of appear three times and so we can write

$$WW^{\star}(H_h) = 3(WW^{\star}(A) + WW^{\star}(B))$$

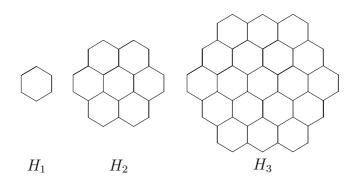


Figure 1: The first three members of the coronene/circumcoronene series: H_1 =benzene, H_2 =coronene, H_3 =circumcoronene

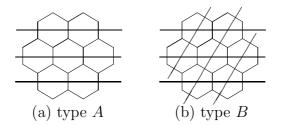


Figure 2: Two types of pairs of elementary cuts

where $WW^*(A)$ and $WW^*(B)$ denote the contributions to $WW^*(H_h)$ of parallel and intersected elementary cuts, respectively. In what follows we consider these two quantities separately. In the below calculations, for technical reasons we use indices h = k - 1 for h = 0, 1, ...

Computing $WW^{\star}(A)$

In this case for any two parallel elementary cuts either n_{12} or n_{21} is equal to zero. We divide parallel elementary cuts of type A into two groups, named type A_1 and type A_2 (see Figs. 3 and 4). The elementary cut numbered h + 1 in Fig. 3 divides the coronene H_h into two congruent fragments. We call them the *upper* and the *lower* fragment.

a) $WW^{\star}(A_1)$

In this case we calculate $n_{11}(C_i, C_j)$ and $n_{22}(C_i, C_j)$, where C_i is the elementary cut from the upper fragment or the middle elementary cut and C_j is parallel to C_i . We

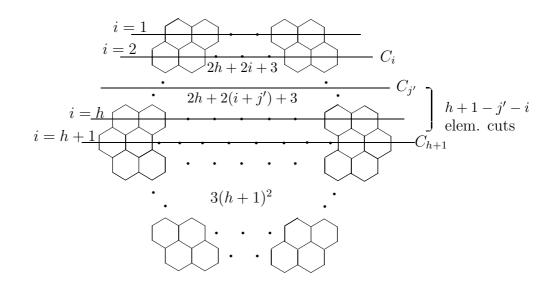


Figure 3: Pairs of elementary cuts of type A_1

notice, that i = 1, 2, ..., h + 1 and the elementary cut C_j must lie below C_i .

Let C_i denote any of these elementary cuts, i = 1, 2, ..., h + 1. Then for any elementary cut C_j parallel to C_i we have:

$$n_{11}(C_i, C_j) = (2h+3) + (2h+5) + \ldots + (2h+(2i+1))$$
$$= \sum_{n=1}^{i} (2h+2n+1)$$
$$= 2hi + \sum_{n=1}^{i} (2n+1)$$

There are 2h + 2i + 1 vertices above the elementary cut C_i , and we have to consider vertices above *i* elementary cuts, hence we sum from 1 to *i*.

In order to obtain $n_{22}(C_i, C_j)$, we have to consider h elementary cuts from the lower fragment, the middle elementary cut and h - i elementary cuts from the upper fragment. We denote the elementary cuts from the upper fragment by $C_{j'}$, where $j' = 1, 2, \ldots, h - i$ and the rest $C_{j''}$, where $j'' = 1, 2, \ldots, h + 1$. For the elementary cut $C_{j'}$ (see Fig. 3), $n_{22}(C_i, C_{j'})$ is the sum of all vertices from the lower fragment, that is $3(h+1)^2$ vertices, and vertices between the elementary cut C'_j and the middle elementary cut C_{h+1} .

By means of Fig. 3 we determine the number of vertices below the elementary cuts C_i and C'_j (we count only the vertices which are directly below the elementary cut).

Since j' goes from 1 to h - i, the number of vertices below $C_{j'}$ is 2h + 2(i + j') + 3. The number of vertices below the next elementary cut is 2h + 2(i + j') + 5, So, we can write

$$n_{22}(C_i, C_{j'}) = 3(h+1)^2 + (2(h+i+j')+3) + (2(h+i+j')+5) + \dots + (2(h+i+j')+2(h+1-i-j')+1))$$

= $3(h+1)^2 + 2(h+i+j')(h+1-i-j') + \sum_{n=1}^{h+1-j'-i} (2n+1)$

where j' = 1, ..., h - i.

Next we have to calculate $n_{22}(C_i, C_{j''})$. We number the elementary cuts from the bottom to the middle, as in Fig. 4. It is not difficult to see, that

$$n_{22}(C_i, C_{j''}) = (2h+3) + (2h+5) + \ldots + (2h+2j''+1)$$
$$= 2hj'' + \sum_{n=1}^{j''} (2n+1)$$

where $j'' = 1, \ldots, h + 1$. Now we can write $WW^*(A_1)$ as:

In this case we calculate $n_{11}(C_i, C_j)$ and $n_{22}(C_i, C_j)$, where C_i and C_j are parallel elementary cuts from the lower fragment of H_h . As we see in Fig. 4, elementary cuts C_i are numbered from the bottom to the middle of coronene and $i = 1, \ldots, h$.

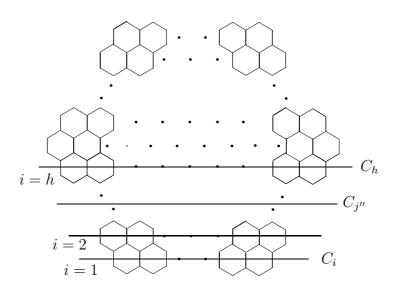


Figure 4: Pairs of elementary cuts of type A_2

We have exactly the same situation as in the case of type A_1 , when we considered elementary cuts denoted by $C_{j'}$. Bearing in mind the previous result, we obtain

$$WW^{\star}(A_{2}) = \sum_{C_{i}} \sum_{C_{j}} n_{11}(C_{i}, C_{j}) \cdot n_{22}(C_{i}, C_{j})$$

$$= \sum_{i=1}^{h} \sum_{j=1}^{h-i} n_{11}(C_{i}, C_{j}) \cdot n_{22}(C_{i}, C_{j})$$

$$= \sum_{i=1}^{h} [[2hi + \sum_{n=1}^{i} (2n+1)] \cdot [\sum_{j=1}^{h-i} [3(h+1)^{2} + 2(h+i+j)(h+1-i-j)]]$$

$$= \frac{29}{18}h^{6} + \frac{74}{15}h^{5} + \frac{245}{72}h^{4} - \frac{13}{4}h^{3} - \frac{361}{72}h^{2} - \frac{101}{61}h^{6}$$

In order to compute $WW^{\star}(A)$ we have to add up both previous results:

$$WW^{\star}(A) = WW^{\star}(A_{1}) + WW^{\star}(A_{2})$$

= $5h^{6} + \frac{368}{15}h^{5} + \frac{283}{6}h^{4} + \frac{133}{3}h^{3} + \frac{61}{3}h^{2} + \frac{109}{30}h^{3}$

b) $WW^{\star}(B)$

Our aim is to deduce an expression for $WW^*(B)$, where type B consists of intersected pairs of elementary cuts, depicted in Fig. 2(b). We can divide the pairs of elementary cuts of type B into two groups, denoted as type B_1 and type B_2 (see Figs. 5 and 6). Then $WW^*(B)$ is equal to the sum $WW^*(B_1) + WW^*(B_2)$.

a) $WW^{\star}(B_1)$

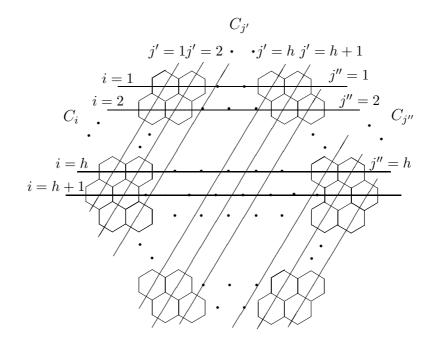


Figure 5: Pairs of elementary cuts of type B_1

We have to have a look at all pairs of elementary cuts (C_i, C_j) , i = 1, ..., h + 1, and to divide elementary cuts C_j into two classes. The elementary cuts of the first and second class are denoted by $C_{j'}$ and $C_{j''}$, respectively. We consider these two classes separately.

In the first subcase we are interested in all pairs $(C_i, C_{j'})$, where $i = 1, \ldots, h + 1$ and $j' = 1, \ldots, h + 1$. We see this type of intersections in Fig. 5. The following abbreviation will be employed: $n_{11}(C_i, C_{j'}) = n'_{11}$, $n_{12}(C_i, C_{j'}) = n'_{12}$, $n_{21}(C_i, C_{j'}) =$ n'_{21} and $n_{22}(C_i, C_{j'}) = n'_{22}$. Assume that we fixed some C_i , for $i = 1, 2, \ldots, h + 1$. We investigate the quantities n'_{rs} , r, s = 1, 2, where j' goes from 1 to h + 1. The following table gives us the arrangement of quantities n_{rs} :

j'	n_{11}	n_{12}
	n_{21}	n_{22}

We can determine n_{rs} from Fig. 5, but we do not need to calculate n_{22} , because we already have the relation $6(h+1)^2 = n'_{11} + n'_{12} + n'_{21} + n'_{22}$.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	j' = 1	2i	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$i \cdot 2n + \sum_{n=1}^{n} (2n-1)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2h + 3 - 2i	n'_{22}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	j'=2	$2 \cdot 2i$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$i \cdot 2h + \sum_{n=1}^{i} (2n-3)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$2h+3+2h+5-2\cdot 2i$	n'_{22}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>il</i> 2	2 0.	(2h - 2) + (2h - 1) + (2h + 2i - 5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	f = 5	$5 \cdot 2i$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$i \cdot 2h + \sum_{n=1}^{i} (2n-5)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$2h + 3 + 2h + 5 + 2h + 7 - 3 \cdot 2i$	
			1822
	:	:	:
	i'	Di i'	$2ih \pm \sum^i (2n - 2i' \pm 1)$
$2j'(h-i) + \sum_{n=1}^{j'} (2n+1) \qquad n'_{22}$	J	2 <i>tJ</i>	$2nn + \sum_{n=1}(2n - 2j + 1)$
$2j'(h-i) + \sum_{n=1}^{j'} (2n+1) \qquad n'_{22}$			
$2J(n-i) + \sum_{n=1}^{n-1}(2n+1) $		$2i'(h-i) + \sum^{j'} (2n+1)$	n'
		$2J(n-i) + \sum_{n=1}(2n+1)$	122

As already mentioned, n^\prime_{22} can be calculated from the other three quantities, therefore

$$n'_{22} = 6(h+1)^2 - (n'_{11} + n'_{12} + n_{22})'$$

= $6(h+1)^2 - (2h(i+j') + \sum_{n=1}^{i} (2n-2j'+1) + \sum_{n=1}^{j'} (2n))$

The expressions for $n_{rs}^{\prime\prime}\,,\,r,s=1,2\,,$ are simplified as

$$n'_{11} = 2ij'$$

$$n'_{12} = 2hi + i^2 + 2i(1 - j')$$

$$n'_{21} = 2hj' - j'(2i - j' - 2)$$

$$n'_{22} = 6h^2 - 2h((i + j' - 6) - i^2 + 2i(j' - 1) - j'^2 - 2j' + 6)$$

where j' = 1, ..., h + 1.

We still have to determine the quantities $n_{rs}(C_i, C_{j''})$, r, s = 1, 2, for i = 1, 2, ..., hand j'' = 1, ..., h, as shown in Fig. 5. Similarly as before, we use the abbreviation $n_{rs}(C_i, C_{j''}) := n''_{rs}$, r, s = 1, 2.

We first notice that if $j'' \ge i$ then $n''_{12} = 0$. This means, that we have to treat elementary cuts $C_{j''}$ when j'' = 1, 2, ..., i - 1, separately from those, when j'' = i, i + 1, ..., h.

Let C_i be the elementary cut as in the previous case and $C_{j''}$ as in Fig. 6(a) and $j'' = 1, \ldots, i - 1$. Then we can make the table:

j'' = 1	(2h+3) + (i-1)(2h+4)	$1 + 3 + \ldots + (2(i-1) - 1)$
	$\frac{3(h+1)^2 + 4h + 3 - (2h+3 + (i-1)(2h+4))}{(2h+3)}$	n_{22}''
	(2n+3+(l-1)(2n+4))	1122
j''=2	(2h+3) + (2h+5) + (i-2)(2h+6)	$1 + 3 + \ldots + (2(i-2) + 1)$
	$3(h+1)^2 + 4h + 3 + 4h + 1 -$	
	(2h+3+2h+5+(i-2)(2h+6))	$n_{22}^{\prime\prime}$
j'' = 3	(2h+3) + (2h+5) + (2h+7) + (i-3)(2h+8)	$1 + 3 + \ldots + (2(i - 3) + 1)$
	$3(h+1)^2 + 4h + 3 + 4h + 1 + 4h - 1 - (2h+3+2h+5+2h+7 - (i-3)(2h+8))$	n_{22}''
:		
j''	$j'' \cdot 2h + \sum_{n=1}^{j''} (2n+1) + (i - j'')(2h + 2j'' + 2)$	$\sum_{n=1}^{i-j''} (2n-1)$
	$3(h+1)^2 + j'' \cdot 4h + \sum_{n=1}^{j''} (5-2n) - (j'' \cdot 2h + \sum_{n=1}^{j''} (2n+1) + (i-j'')(2h+2j''+2)$	n_{22}''

As in the previous case, $n_{22}^{\prime\prime}$ can be calculated from the other three quantities:

$$n_{22}'' = 6(h+1)^2 - (n_{11}'' + n_{12}'' + n_{22}'')$$

= 6(h+1)^2 - ($\sum_{n=1}^{i-j''} (2m+1) + 3(h+1)^2 + j'' \cdot 4h + \sum_{n=1}^{j''} (5-2n)$)

We can simplify the expressions for $n_{rs}^{\prime\prime}\,,\,r,s=1,2$ as

$$n_{11}'' = 2hi + 2i(j'' + 1) - j''^{2}$$

$$n_{12}'' = (i - j'')^{2}$$

$$n_{21}'' = 3h^{2} - 2h(i - 2j'' - 3) - 2i(j'' + 1) + 4j'' + 3$$

$$n_{22}'' = 3h^{2} + 2h(3 - 2j'') - i^{2} + 2ij' - 4j'' + 3$$

where j'' = 1, ..., i - 1.

The same procedure has to be repeated for pairs of elementary cuts (C_i, C''_j) , where $j'' = i, \ldots, h$ and C_i is an arbitrary cut, $i = 1, 2, \ldots, h+1$. Since for such pairs of elementary cuts either n''_{12} or n''_{21} is zero, we only have to calculate n''_{11} and n''_{22} . We collect the respective results in the following table:

$$j'' = i, \quad i \le j'' \le h$$

$$n''_{11} = (2h+3) + (2h+5) + \dots + (2h+(2i+1)) = i \cdot 2h + \sum_{n=1}^{i} (2n+1)$$

$$n''_{22} = 3(h+1)^2 - (4h+3 + \dots + 4h + (5-2j'')) = 3(h+1)^2 - j'' \cdot 4h - \sum_{n=1}^{j''} (5-2n)$$

Calculating the respective sums we get:

$$n''_{11} = 2hi + i^2 + 2i$$

$$n''_{22} = 3h^2 + 2h(3 - 2j'') + j''^2 - 4j'' + 3i''^2$$

where $j'' = i, \ldots, h$.

Now everything has been prepared to compute $WW^{\star}(B_1)$ as follows:

$$\begin{split} &\sum_{C_i} \sum_{C_{j'}} [n'_{11} \cdot n'_{22} + n'_{12} \cdot n'_{21}] + \sum_{C_i} \sum_{C_{j''}} [n''_{11} \cdot n''_{22} + n''_{12} \cdot n''_{21}] \\ &= \sum_{i=1}^{h+1} \sum_{j'=1}^{h+1} [2j'i \cdot (6h^2 - 2h((i+j'-6) - i^2 + 2i(j'-1) - j'^2 - 2j' + 6) + (2hi + i^2 + 2i(1-j') \cdot (2hj - j'(2i-j'-2))] + \sum_{i=1}^{h+1} [\sum_{j''=1}^{i-1} [(2hi + 2i(j''+1) - j''^2) \cdot (3h^2 + 2h(3 - 2j'') - i^2 + 2ij' - 4j'' + 3) + (i-j'')^2 \cdot (3h^2 - 2h(i - 2j'' - 3) - 2i(j''+1) + 4j'' + 3)] + \sum_{j''=i}^{h} [(2hi + i^2 + 2i) \cdot (3h^2 + 2h(3 - 2j'') + j''^2 - 4j'' + 3)]] \\ &= \frac{323}{90}h^6 + \frac{368}{15}h^5 + \frac{608}{9}h^4 + \frac{577}{6}h^3 + \frac{6737}{90}h^2 + \frac{303}{10}h + 5 \end{split}$$

b) $WW^{\star}(B_2)$

In Fig. 6 are shown the intersected pairs of elementary cuts of the type B_2 . We observe that $WW^*(B_2)$ can be calculated in a way similar as $WW^*(B_1)$. The only difference is that if (C_i, C_j) is a pair of intersected elementary cuts of type B_1 , then i only goes from 1 to h and j remains the same. This means, we have to eliminate the middle cut, numbered C_{h+1} .

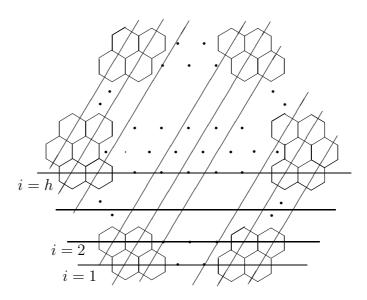


Figure 6: Pairs of elementary cuts of type B_2

So, we obtain the following expression for $WW^{\star}(B_2)$:

$$\begin{split} &\sum_{C_i} \sum_{C_{j'}} [n'_{11} \cdot n'_{22} + n'_{12} \cdot 21'] + \sum_{C_i} \sum_{C_{j''}} [n''_{11} \cdot n''_{22} + n''_{12} \cdot n''_{21}] \\ = &\sum_{i=1}^{h} \sum_{j'=1}^{h+1} [2j'i \cdot (6h^2 - 2h((i+j'-6) - i^2 + 2i(j'-1) - j'^2 - 2j' + 6) + (2hi + i^2 + 2i(1-j') \cdot (2hj - j'(2i-j'-2))] + (2hi + i^2 + 2i(1-j') \cdot (2hj - j'(2i-j'-2))] + (3h^2 + 2h(3 - 2j'') - i^2 + 2ij' - 4j'' + 3) + (i-j'')^2 \cdot (3h^2 - 2h(i-2j''-3) - 2i(j''+1) + 4j'' + 3)] + (3h^2 - 2h(i-2j''-3) - 2i(j''+1) + 4j'' + 3)] + (2hi + i^2 + 2i) \cdot (3h^2 + 2h(3 - 2j'') + j''^2 - 4j'' + 3)]] \\ &= &\frac{323}{90}h^6 + \frac{278}{15}h^5 + \frac{338}{9}h^4 + \frac{223}{6}h^3 + \frac{1607}{90}h^2 + \frac{33}{10}h \end{split}$$

We thus arrive at the expression for $WW^{\star}(B)$:

$$WW^{\star}(B) = WW^{\star}(B_1) + WW^{\star}(B_2)$$

= $\frac{323}{45}h^6 + \frac{646}{15}h^5 + \frac{946}{9}h^4 + \frac{400}{3}h^3 + \frac{4172}{45}h^2 + \frac{168}{5}h + 5$

For coronene H_h , type A and type B embrace all possible pairs of elementary cuts. Because of symmetry, both of them appear three times. Taking this fact into account and using the results obtained above we get:

$$WW^{\star}(H_h) = 3(WW^{\star}(A) + WW^{\star}(B))$$

= $\frac{548}{15}h^6 + \frac{1014}{5}h^5 + \frac{2741}{6}h^4 + 533h^3 + \frac{5087}{15}h^2 + \frac{1117}{10}h + 15$

Recall that we have introduced h := k - 1 because of technical reasons. Returning back to k we find:

$$WW^{\star}(H_k) = \frac{548}{15}(k-1)^6 + \frac{1014}{5}(k-1)^5 + \frac{2741}{6}(k-1)^4 + \frac{533(k-1)^3}{15} + \frac{5087}{15}(k-1)^2 + \frac{1117}{10}(k-1) + 15$$

and therefore

$$WW^{\star}(H_k) = \frac{548}{15}k^6 - \frac{82}{5}k^5 - \frac{55}{6}k^4 + 3k^3 + \frac{17}{15}k^2 + \frac{1}{10}k$$

In order to get the final result, we need also the expression for $W(H_k)$, cf. Eqs. (2). This expression has been determined earlier [18] and reads:

$$W(H_k) = \frac{164}{5}k^5 - 6k^3 + \frac{1}{5}k$$

Bearing this in mind we arrive at the required formula for the hyper–Wiener index of the k-th member of the coronene/circumcoronene family:

$$WW(H_k) = W(H_k) + WW^*(H_k)$$

= $\frac{548}{15}k^6 + \frac{82}{5}k^5 - \frac{55}{6}k^4 - 3k^3 + \frac{17}{15}k^2 + \frac{1}{10}k$

Acknowledgement. The work of one author (S.K.) was supported in part by the Ministry of Science and Technology of Slovenia under the grant J1-0498-0101.

References

- [1] RANDIĆ, M.: Chem. Phys. Lett., **211**, 478 (1993)
- [2] RANDIĆ, M., GUO, X., OXLEY, T., KRISHNAPRIYAN, H.: J. Chem. Inf. Comput. Sci., 33, 709 (1993)

- [3] RANDIĆ, M., GUO, X., OXLEY, T., KRISHNAPRIYAN, H., NAYLOR, L.: J. Chem. Inf. Comput. Sci., 34, 361 (1994)
- [4] LUKOVITS, I., LINERT, W.: J. Chem. Inf. Comput. Sci., 34, 899 (1994)
- [5] LUKOVITS, I.: J. Chem. Inf. Comput. Sci., 34, 1079 (1994)
- [6] KLEIN, D. J., LUKOVITS, I., GUTMAN, I.: J. Chem. Inf. Comput. Sci., 35, 50 (1995)
- [7] LINERT, W., KLEESTORFER, K., RENZ, F., LUKOVITS, I.: J. Mol. Struct. (Theochem), 337, 121 (1995)
- [8] LINERT, W., RENZ, F., KLEESTORFER, K., LUKOVITS, I.: Comput. Chem., 19, 395 (1995)
- [9] LUKOVITS, I.: Comput. Chem., **19**, 27 (1995)
- [10] ZHU, H. Y., KLEIN, D. J., LUKOVITS, I.: J. Chem. Inf. Comput. Sci., 36, 420 (1996)
- [11] DIUDEA, M. V.: J. Chem. Inf. Comput. Sci., 36, 833 (1996)
- [12] LUKOVITS, I.: Kem. Közlem., 82, 107, (1996)
- [13] LINERT, W., LUKOVITS, I.: Commun. Math. Chem. (MATCH), 35, 65 (1997)
- [14] GUTMAN, I., LINERT, W., LUKOVITS, I., DOBRYNIN A. A.: J. Chem. Inf. Comput. Sci., 37, 420 (1997)
- [15] GUTMAN, I.: Indian J. Chem., 36A, 128 (1997)
- [16] DIUDEA, M. V., GUTMAN, I.: Croat. Chem. Acta, 71, 21 (1998)
- [17] KLAVŽAR, S.: DIMACS Ser. Discr. Math. Theor. Comput. Sci. in press.
- [18] GUTMAN, I., KLAVŽAR, S.: ACH Models in Chem., 133, 389 (1996)
- [19] GUTMAN, I.: ACH Models in Chem., **134**, 477 (1997)
- [20] GUTMAN, I., KLAVŽAR, S.: ACH Models in Chem., 135, 45 (1998)
- [21] I.GUTMAN, I., CYVIN, S. J., IVANOV–PETROVIĆ, V.: Z. Naturforsch., 58a, 699 (1998)