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A method for the calculation of the hyper–Wiener index (WW ) of a benzenoid sys-
tem B is described, based on its elementary cuts. A pair of elementary cuts partitions
the vertices of B into four fragments, possessing nrs , r, s = 1, 2 vertices. WW is equal
to the sum of terms of the form n11 n22 + n12 n21 . The applicability of the method is
illustrated by deducing a general expression for WW of the coronene/circumcoronene
series.

Introduction

The hyper–Wiener index WW is one of the newly conceived topological indices.

It was proposed by by Randić [1] in 1993 and is currently in the focus of interest of

scholars involved in QSPR and QSAR studies [2]–[17].

The nowadays accepted definition of the hyper–Wiener index, applicable to both

acyclic and cycle–containing (molecular) graphs, was proposed by Klein et al. [6]:

WW (G) =
1

2

∑

x<y

d(x, y; G)2 +
1

2

∑

x<y

d(x, y; G) (1)

with d(x, y; G) denoting the distance between the vertices x and y in the graph G .

The calculation of WW directly from Eq. (1) is not easy, especially in the case of

large polycyclic molecules, such as benzenoid hydrocarbons. Some time ago, however,
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a formula was designed [17] by which these difficulties are overcome. This formula is

based on the concept of elementary cuts, a graph–theoretical technique described in

due detail in our earlier papers [18]–[20].

Denote by B a benzenoid system and by n the number of its vertices. An elemen-

tary cut of B is a straight line segment, passing through the centers of some edges of

B , being orthogonal to these edges, and intersecting the perimeter of B exactly two

times, so that at least one hexagon lies between these two intersection points.

An elementary cut C divides B into two fragments, say B1(C) and B2(C) . Let

n1 = n1(C) and n2 = n2(C) be the number of vertices of B1(C) and B2(C) , respec-

tively, where, of course, n1 + n2 = n . Then the Wiener index of B can be calculated

by means of the formula20

W (B) =
∑

i

n1(Ci) n2(Ci)

in which the summation goes over all elementary cuts of B .

For more details on elementary cuts of benzenoid systems the readers are referred

to [18]–[20], were also examples and a more extensive bibliography can be found.

An elementary–cut–based formula for the calculation of the

hyper–Wiener index

Consider two distinct elementary cuts Ci and Cj of B . In the general case they

divide the vertices of B into four fragments, say B11(Ci, Cj) , B12(Ci, Cj) , B21(Ci, Cj)

and B22(Ci, Cj) . The numbers of vertices in these fragments are denoted by nrs =

nrs(Ci, Cj) , r, s = 1, 2 . Clearly, n11 + n12 + n21 + n22 = n . In the general case some

of the vertex counts nrs may be equal to zero.

The above specified fragments will be labeled such that

B11(Ci, Cj) ∪ B12(Ci, Cj) = B1(Ci)

B21(Ci, Cj) ∪ B22(Ci, Cj) = B2(Ci)

B11(Ci, Cj) ∪ B21(Ci, Cj) = B1(Cj)

B12(Ci, Cj) ∪ B22(Ci, Cj) = B2(Cj)
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in which case the hyper–Wiener index of the benzenoid system B obeys the formula

[17]:

WW (B) =
∑

i

n1(Ci) n2(Ci) + WW ⋆(B)

or

WW (B) = W (B) + WW ⋆(B) (2)

with WW ⋆(B) being the abbreviation for

∑

i<j

[n11(Ci, Cj) n22(Ci, Cj) + n12(Ci, Cj) n21(Ci, Cj) ] (3)

in which the summation goes over all pairs of (mutually distinct) elementary cuts of

B .

An advanced example: hyper–Wiener index of

circumcoronenes

In order to illustrate the way in which Eqs. (2) and (3 work, as well as their

power, we solve a difficult problem: we determine the general expression for the

hyper–Wiener index of the k-th member Hk of the coronene/circumcoronene homol-

ogous series (H1 = benzene, H2 = coronene, H3 = circumcoronene, H4 = circumcir-

cumcoronene, etc), see Fig. 1. These highly symmetric benzenoid systems attract

for a long time the attention of both theoretical and experimental chemists. For a

recent survey on their theoretical–chemical properties see [21]. Needless to say that

a formula for WW (Hk) was not known so far.

In what follows we refer to any of the benzenoid systems Hk just as coronene.

For a pair of elementary cuts of Hh we distinguish two different arrangements as

schematically depicted in Fig. 2.

Type A consists of parallel elementary cuts and type B contains pairs of intersected

elementary cuts. Because of symmetry, both types of appear three times and so we

can write

WW ⋆(Hh) = 3(WW ⋆(A) + WW ⋆(B))
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H1 H2 H3

Figure 1: The first three members of the coronene/circumcoronene series:
H1=benzene, H2=coronene, H3=circumcoronene
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(a) type A (b) type B

Figure 2: Two types of pairs of elementary cuts

where WW ⋆(A) and WW ⋆(B) denote the contributions to WW ⋆(Hh) of parallel

and intersected elementary cuts, respectively. In what follows we consider these two

quantities separately. In the below calculations, for technical reasons we use indices

h = k − 1 for h = 0, 1, . . . .

Computing WW ⋆(A)

In this case for any two parallel elementary cuts either n12 or n21 is equal to zero. We

divide parallel elementary cuts of type A into two groups, named type A1 and type

A2 (see Figs. 3 and 4). The elementary cut numbered h + 1 in Fig. 3 divides the

coronene Hh into two congruent fragments. We call them the upper and the lower

fragment.

a) WW ⋆(A1)

In this case we calculate n11(Ci, Cj) and n22(Ci, Cj) , where Ci is the elementary cut

from the upper fragment or the middle elementary cut and Cj is parallel to Ci . We
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Figure 3: Pairs of elementary cuts of type A1

notice, that i = 1, 2, . . . , h + 1 and the elementary cut Cj must lie below Ci .

Let Ci denote any of these elementary cuts, i = 1, 2, . . . , h + 1 . Then for any

elementary cut Cj parallel to Ci we have:

n11(Ci, Cj) = (2h + 3) + (2h + 5) + . . . + (2h + (2i + 1))

=
i∑

n=1

(2h + 2n + 1)

= 2hi +
i∑

n=1

(2n + 1)

There are 2h + 2i + 1 vertices above the elementary cut Ci , and we have to consider

vertices above i elementary cuts, hence we sum from 1 to i .

In order to obtain n22(Ci, Cj) , we have to consider h elementary cuts from the

lower fragment, the middle elementary cut and h− i elementary cuts from the upper

fragment. We denote the elementary cuts from the upper fragment by Cj′ , where

j′ = 1, 2, . . . , h − i and the rest Cj′′ , where j′′ = 1, 2, . . . , h + 1 . For the elementary

cut Cj′ (see Fig. 3), n22(Ci, Cj′) is the sum of all vertices from the lower fragment,

that is 3(h+1)2 vertices, and vertices between the elementary cut C ′

j and the middle

elementary cut Ch+1 .

By means of Fig. 3 we determine the number of vertices below the elementary cuts

Ci and C ′

j (we count only the vertices which are directly below the elementary cut).
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Since j′ goes from 1 to h − i , the number of vertices below Cj′ is 2h + 2(i + j′) + 3 .

The number of vertices below the next elementary cut is 2h + 2(i + j′) + 5, . . . . So,

we can write

n22(Ci, Cj′) = 3(h + 1)2 + (2(h + i + j′) + 3) + (2(h + i + j′) + 5) + . . . +

(2(h + i + j′) + 2(h + 1 − i − j′) + 1)

= 3(h + 1)2 + 2(h + i + j′)(h + 1 − i − j′) +
h+1−j′−i∑

n=1

(2n + 1)

where j′ = 1, . . . , h − i .

Next we have to calculate n22(Ci, Cj′′) . We number the elementary cuts from the

bottom to the middle, as in Fig. 4. It is not difficult to see, that

n22(Ci, Cj′′) = (2h + 3) + (2h + 5) + . . . + (2h + 2j′′ + 1)

= 2hj′′ +
j′′∑

n=1

(2n + 1)

where j′′ = 1, . . . , h + 1 . Now we can write WW ⋆(A1) as:

∑

Ci

∑

Cj′

n11(Ci, Cj′) · n22(Ci, Cj′) +
∑

Ci

∑

Cj′′

n11(Ci, Cj′′) · n22(Ci, Cj′′)

=
h+1∑

i=1

h−i∑

j′=1

n11(Ci, Cj′) · n22(Ci, Cj′) +
k+1∑

i=1

h+1∑

j′′=1

n11(Ci, Cj′′) · n22(Ci, Cj′′)

=
h+1∑

i=1

[[2hi +
i∑

n=1

(2n + 1)] ·

[
h−i∑

j′=1

[3(h + 1)2 + 2(h + i + j′)(h + 1 − i − j′) +
h+1−j′−i∑

n=1

(2n + 1)] +

h+1∑

j′′=1

[2hj′′ +
j′′∑

n=1

(2n + 1)]]]

=
61

18
h6 +

98

5
h5 +

3151

72
h4 +

571

12
h3 +

1825

72
h2 +

319

60
h

b) WW ⋆(A2)

In this case we calculate n11(Ci, Cj) and n22(Ci, Cj) , where Ci and Cj are parallel

elementary cuts from the lower fragment of Hh . As we see in Fig. 4, elementary cuts

Ci are numbered from the bottom to the middle of coronene and i = 1, . . . , h .
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Figure 4: Pairs of elementary cuts of type A2

We have exactly the same situation as in the case of type A1 , when we considered

elementary cuts denoted by Cj′ . Bearing in mind the previous result, we obtain

WW ⋆(A2) =
∑

Ci

∑

Cj

n11(Ci, Cj) · n22(Ci, Cj)

=
h∑

i=1

h−i∑

j=1

n11(Ci, Cj) · n22(Ci, Cj)

=
h∑

i=1

[[2hi +
i∑

n=1

(2n + 1)] ·

[
h−i∑

j=1

[3(h + 1)2 + 2(h + i + j)(h + 1 − i − j)]]

=
29

18
h6 +

74

15
h5 +

245

72
h4

−
13

4
h3

−
361

72
h2

−
101

61
h

In order to compute WW ⋆(A) we have to add up both previous results:

WW ⋆(A) = WW ⋆(A1) + WW ⋆(A2)

= 5h6 +
368

15
h5 +

283

6
h4 +

133

3
h3 +

61

3
h2 +

109

30
h

b) WW ⋆(B)

Our aim is to deduce an expression for WW ⋆(B) , where type B consists of intersected

pairs of elementary cuts, depicted in Fig. 2(b). We can divide the pairs of elementary
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cuts of type B into two groups, denoted as type B1 and type B2 (see Figs. 5 and 6).

Then WW ⋆(B) is equal to the sum WW ⋆(B1) + WW ⋆(B2) .

a) WW ⋆(B1)
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Figure 5: Pairs of elementary cuts of type B1

We have to have a look at all pairs of elementary cuts (Ci, Cj) , i = 1, . . . , h + 1 ,

and to divide elementary cuts Cj into two classes. The elementary cuts of the first

and second class are denoted by Cj′ and Cj′′ , respectively. We consider these two

classes separately.

In the first subcase we are interested in all pairs (Ci, Cj′) , where i = 1, . . . , h + 1

and j′ = 1, . . . , h + 1 . We see this type of intersections in Fig. 5. The following

abbreviation will be employed: n11(Ci, Cj′) = n′

11 , n12(Ci, Cj′) = n′

12 , n21(Ci, Cj′) =

n′

21 and n22(Ci, Cj′) = n′

22 . Assume that we fixed some Ci , for i = 1, 2, . . . , h + 1 .

We investigate the quantities n′

rs , r, s = 1, 2 , where j′ goes from 1 to h + 1 . The

following table gives us the arrangement of quantities nrs :

j′ n11 n12

n21 n22

We can determine nrs from Fig. 5, but we do not need to calculate n22 , because

we already have the relation 6(h + 1)2 = n′

11 + n′

12 + n′

21 + n′

22 .
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j′ = 1 2i (2h + 1) + (2h + 3) + . . . + (2h + 2i − 1) =
i · 2h +

∑i
n=1(2n − 1)

2h + 3 − 2i n′

22

j′ = 2 2 · 2i (2h − 1) + (2h + 1) + . . . + (2h + 2i − 3) =
i · 2h +

∑i
n=1(2n − 3)

2h + 3 + 2h + 5 − 2 · 2i n′

22

j′ = 3 3 · 2i (2h − 3) + (2h − 1) + . . . + (2h + 2i − 5) =
i · 2h +

∑i
n=1(2n − 5)

2h + 3 + 2h + 5 + 2h + 7 − 3 · 2i n′

22

...
...

...

j′ 2ij′ 2ih +
∑i

n=1(2n − 2j′ + 1)

2j′(h − i) +
∑j′

n=1(2n + 1) n′

22

As already mentioned, n′

22 can be calculated from the other three quantities, therefore

n′

22 = 6(h + 1)2
− (n′

11 + n′

12 + n22)
′

= 6(h + 1)2
− (2h(i + j′) +

i∑

n=1

(2n − 2j′ + 1) +
j′∑

n=1

(2n))

The expressions for n′′

rs , r, s = 1, 2 , are simplified as

n′

11 = 2ij′

n′

12 = 2hi + i2 + 2i(1 − j′)

n′

21 = 2hj′ − j′(2i − j′ − 2)

n′

22 = 6h2
− 2h((i + j′ − 6) − i2 + 2i(j′ − 1) − j′2 − 2j′ + 6

where j′ = 1, . . . , h + 1 .

We still have to determine the quantities nrs(Ci, Cj′′) , r, s = 1, 2 , for i = 1, 2, . . . , h

and j′′ = 1, . . . , h , as shown in Fig. 5. Similarly as before, we use the abbreviation

nrs(Ci, Cj′′) := n′′

rs , r, s = 1, 2 .

We first notice that if j′′ ≥ i then n′′

12 = 0 . This means, that we have to treat

elementary cuts Cj′′ when j′′ = 1, 2, . . . , i − 1 , separately from those, when j′′ =

i, i + 1, . . . , h .
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Let Ci be the elementary cut as in the previous case and Cj′′ as in Fig. 6(a) and

j′′ = 1, . . . , i − 1 . Then we can make the table:

j′′ = 1 (2h + 3) + (i − 1)(2h + 4) 1 + 3 + . . . + (2(i − 1) − 1)
3(h + 1)2 + 4h + 3−

(2h + 3 + (i − 1)(2h + 4)) n′′

22

j′′ = 2 (2h + 3) + (2h + 5) + (i − 2)(2h + 6) 1 + 3 + . . . + (2(i − 2) + 1)
3(h + 1)2 + 4h + 3 + 4h + 1−

(2h + 3 + 2h + 5 + (i − 2)(2h + 6)) n′′

22

j′′ = 3 (2h + 3) + (2h + 5) + (2h + 7) + (i − 3)(2h + 8) 1 + 3 + . . . + (2(i − 3) + 1)
3(h + 1)2 + 4h + 3 + 4h + 1 + 4h − 1−

(2h + 3 + 2h + 5 + 2h + 7 − (i − 3)(2h + 8)) n′′

22

...
...

...

j′′ j′′ · 2h +
∑j′′

n=1(2n + 1) + (i − j′′)(2h + 2j′′ + 2)
∑i−j′′

n=1 (2n − 1)

3(h + 1)2 + j′′ · 4h +
∑j′′

n=1(5 − 2n)−

(j′′ · 2h +
∑j′′

n=1(2n + 1) + (i − j′′)(2h + 2j′′ + 2) n′′

22

As in the previous case, n′′

22 can be calculated from the other three quantities:

n′′

22 = 6(h + 1)2
− (n′′

11 + n′′

12 + n′′

22)

= 6(h + 1)2
− (

i−j′′∑

n=1

(2m + 1) + 3(h + 1)2 + j′′ · 4h +
j′′∑

n=1

(5 − 2n))

We can simplify the expressions for n′′

rs , r, s = 1, 2 as

n′′

11 = 2hi + 2i(j′′ + 1) − j′′2

n′′

12 = (i − j′′)2

n′′

21 = 3h2
− 2h(i − 2j′′ − 3) − 2i(j′′ + 1) + 4j′′ + 3

n′′

22 = 3h2 + 2h(3 − 2j′′) − i2 + 2ij′ − 4j′′ + 3

where j′′ = 1, . . . , i − 1 .

The same procedure has to be repeated for pairs of elementary cuts (Ci, C
′′

j ) ,

where j′′ = i, . . . , h and Ci is an arbitrary cut, i = 1, 2, . . . , h+1 . Since for such pairs
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of elementary cuts either n′′

12 or n′′

21 is zero, we only have to calculate n′′

11 and n′′

22 .

We collect the respective results in the following table:

j′′ = i , i ≤ j′′ ≤ h

n′′

11 = (2h + 3) + (2h + 5) + . . . + (2h + (2i + 1)) = i · 2h +
∑i

n=1(2n + 1)

n′′

22 = 3(h + 1)2 − (4h + 3 + . . . + 4h + (5 − 2j′′)) = 3(h + 1)2 − j′′ · 4h −
∑j′′

n=1(5 − 2n)

Calculating the respective sums we get:

n′′

11 = 2hi + i2 + 2i

n′′

22 = 3h2 + 2h(3 − 2j′′) + j′′2 − 4j′′ + 3

where j′′ = i, . . . , h .

Now everything has been prepared to compute WW ⋆(B1) as follows:

∑

Ci

∑

Cj′

[n′

11 · n
′

22 + n′

12 · n
′

21] +
∑

Ci

∑

Cj′′

[n′′

11 · n
′′

22 + n′′

12 · n
′′

21]

=
h+1∑

i=1

h+1∑

j′=1

[2j′i · (6h2
− 2h((i + j′ − 6) − i2 + 2i(j′ − 1) − j′2 − 2j′ + 6) +

(2hi + i2 + 2i(1 − j′) · (2hj − j′(2i − j′ − 2))] +
h+1∑

i=1

[
i−1∑

j′′=1

[(2hi + 2i(j′′ + 1) − j′′2) ·

(3h2 + 2h(3 − 2j′′) − i2 + 2ij′ − 4j′′ + 3) + (i − j′′)2
·

(3h2
− 2h(i − 2j′′ − 3) − 2i(j′′ + 1) + 4j′′ + 3)] +

h∑

j′′=i

[(2hi + i2 + 2i) · (3h2 + 2h(3 − 2j′′) + j′′2 − 4j′′ + 3)]]

=
323

90
h6 +

368

15
h5 +

608

9
h4 +

577

6
h3 +

6737

90
h2 +

303

10
h + 5

b) WW ⋆(B2)

In Fig. 6 are shown the intersected pairs of elementary cuts of the type B2 . We

observe that WW ⋆(B2) can be calculated in a way similar as WW ⋆(B1) . The only

difference is that if (Ci, Cj) is a pair of intersected elementary cuts of type B1 , then

i only goes from 1 to h and j remains the same. This means, we have to eliminate

the middle cut, numbered Ch+1 .
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Figure 6: Pairs of elementary cuts of type B2

So, we obtain the following expression for WW ⋆(B2) :

∑

Ci

∑

Cj′

[n′

11 · n
′

22 + n′

12 · 21′] +
∑

Ci

∑

Cj′′

[n′′

11 · n
′′

22 + n′′

12 · n
′′

21]

=
h∑

i=1

h+1∑

j′=1

[2j′i · (6h2
− 2h((i + j′ − 6) − i2 + 2i(j′ − 1) − j′2 − 2j′ + 6) +

(2hi + i2 + 2i(1 − j′) · (2hj − j′(2i − j′ − 2))] +
h∑

i=1

[
i−1∑

j′′=1

[(2hi + 2i(j′′ + 1) − j′′2) ·

(3h2 + 2h(3 − 2j′′) − i2 + 2ij′ − 4j′′ + 3) + (i − j′′)2
·

(3h2
− 2h(i − 2j′′ − 3) − 2i(j′′ + 1) + 4j′′ + 3)] +

h∑

j′′=i

[(2hi + i2 + 2i) · (3h2 + 2h(3 − 2j′′) + j′′2 − 4j′′ + 3)]]

=
323

90
h6 +

278

15
h5 +

338

9
h4 +

223

6
h3 +

1607

90
h2 +

33

10
h

We thus arrive at the expression for WW ⋆(B) :

WW ⋆(B) = WW ⋆(B1) + WW ⋆(B2)

=
323

45
h6 +

646

15
h5 +

946

9
h4 +

400

3
h3 +

4172

45
h2 +

168

5
h + 5

For coronene Hh , type A and type B embrace all possible pairs of elementary

cuts. Because of symmetry, both of them appear three times. Taking this fact into

12



account and using the results obtained above we get:

WW ⋆(Hh) = 3(WW ⋆(A) + WW ⋆(B))

=
548

15
h6 +

1014

5
h5 +

2741

6
h4 + 533h3 +

5087

15
h2 +

1117

10
h + 15

Recall that we have introduced h := k−1 because of technical reasons. Returning

back to k we find:

WW ⋆(Hk) =
548

15
(k − 1)6 +

1014

5
(k − 1)5 +

2741

6
(k − 1)4 +

533(k − 1)3 +
5087

15
(k − 1)2 +

1117

10
(k − 1) + 15

and therefore

WW ⋆(Hk) =
548

15
k6

−
82

5
k5

−
55

6
k4 + 3k3 +

17

15
k2 +

1

10
k

In order to get the final result, we need also the expression for W (Hk) , cf. Eqs. (2).

This expression has been determined earlier [18] and reads:

W (Hk) =
164

5
k5

− 6k3 +
1

5
k

Bearing this in mind we arrive at the required formula for the hyper–Wiener index of

the k-th member of the coronene/circumcoronene family:

WW (Hk) = W (Hk) + WW ⋆(Hk)

=
548

15
k6 +

82

5
k5

−
55

6
k4

− 3k3 +
17

15
k2 +

1

10
k
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[2] Randić, M., Guo, X., Oxley, T., Krishnapriyan, H.: J. Chem. Inf.

Comput. Sci., 33, 709 (1993)

13
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