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Koroška cesta 160, 2000 Maribor, Slovenia
e-mail: sandi.klavzar@uni-mb.si

Ljiljana Pavlović
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Abstract

The distance d(u, v|G) between the vertices u and v of a (con-
nected) graph G is the length (= number of edges) of a shortest
path connecting u and v . The Wiener number W (G) of G is the
sum of distances between all pairs of vertices of G . We consider a
class of Wiener–type invariants Wλ(G) , defined as the sum of the
terms d(u, v|G)λ over all pairs of vertices of G . Several special cases
of Wλ(G) , namely the invariants for λ = +1 (the original Wiener
number) as well as for λ = −2,−1, +1/2, +2 and +3 , were previ-
ously studied in the chemical literature, and found applications as
molecular structure descriptors. We modify the definition of Wλ(G)
so that it extends also to non-connected graphs and then deduce the
identity Wλ+1(T ) = (n − 1) Wλ(T ) − ∑

Wλ(T − e) , valid for any
n-vertex tree T , with the summation embracing all edges e of T .
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1 Introduction

In this paper we are concerned with finite undirected graphs. The metric
on these graphs is defined in the usual manner [1]: Let u and v be two
vertices belonging to the same component of the graph G . The distance
d(u, v|G) between the vertices u and v is the length (= number of edges)
of a shortest path connecting u and v . If u = v , then d(u, v|G) = 0 . If
u and v belong to different components of G , then the distance between
them is not determined.

Let G be a graph with vertex set V (G) and edge set E(G) , and let
|V (G)| = n and |E(G)| = m .

The Wiener number (or Wiener index ) of a connected graph G is de-
fined as [15]

W = W (G) =
∑

{u,v}⊆V (G)×V (G)

d(u, v|G) . (1)

In words: the Wiener number is the sum of distances between all pairs of
vertices of the respective graph. Therefore,

(
n
2

)−1
W (G) is just the average

distance between the vertices of the graph G .
The graph invariant W was introduced in 1947 by Wiener [15], who used

it for modeling the shape of organic molecules and for calculating several
of their physico–chemical properties. Mathematical research on W started
in 1976 [6] and since then this distance–based quantity was much studied;
for details of the theory of the Wiener number and for an exhaustive list
of references see the recent reviews [4, 5].

The definition (1) of the Wiener number requires that the graph G be
connected. As a consequence, practically the entire research on W , done
so far [4, 5], was restricted to connected graphs. Yet, this restriction can
easily be overcome.

Denote by d(G, k) the number of pairs of vertices of the graph G
that are at distance k , and note that this quantity is well defined for
both connected and disconnected graphs. In particular, d(G, 0) = n and
d(G, 1) = m . Now, evidently, the right–hand side of Eq. (1) can be
rewritten as

∑
k≥1

k d(G, k) , which hints towards the possibility to define the

Wiener number of a graph G as

W = W (G) =
∑

k≥1

k d(G, k) . (2)

If G is a connected graph, then Eq. (2) reduces to Eq. (1). If G is
disconnected, then the right–hand side of (1) is ill-determined, which is not
the case with the right–hand side of Eq. (2).
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From (2) follows that if G is a graph consisting of components G1, G2,
. . ., Gp , then

W (G) = W (G1) + W (G2) + · · ·+ W (Gp) . (3)

An immediate generalization of the Wiener number is

Wλ = Wλ(G) =
∑

k≥1

d(G, k) kλ (4)

where λ is some real (or complex) number. For connected graphs formula
(4) is tantamount to

Wλ = Wλ(G) =
∑

{u,v}⊆V (G)×V (G)

d(u, v|G)λ .

In an explicit form the Wiener–type graph invariant Wλ was first put
forward in the works [7] and [8]. However, various of its special cases
have independently been considered in the chemical literature, where they
found considerable applications. Thus W−2 and W−1 , named Harary in-
dex and reciprocal Wiener index, were introduced in the papers [11] and
[3], respectively, and eventually studied in numerous subsequent publica-
tions. The case λ = 1

2 was analyzed in the article [16]. The so-called
“hyper–Wiener index” [12] was shown [10] to be equal to 1

2 W2 + 1
2 W1 .

The so-called “Tratch–Stankevich–Zefirov index” [13] was shown [9] to be
equal to 1

6 W3 + 1
2 W2 + 1

3 W1 . (Recall that the hyper–Wiener and Tratch–
Stankevich–Zefirov indices were originally defined in terms completely dif-
ferent from the presently considered Wiener–type invariants; for details see
[12, 13].) More details on the chemical applications and interconnections
of various distance–based graph invariants are found in the review [2] and
the book [14].

2 Two identities for distances in trees

A tree is a connected acyclic graph. Any two vertices of a tree are connected
by a unique path; the number of edges of this unique path is the distance
between the respective two vertices.

Let T be a tree on n vertices and let e be one of its edges. The subgraph
T − e is obtained by deleting from T the edge e . Thus, V (T − e) = V (T ) .

The subgraph T−e is disconnected, possessing two components. Denote
them by T1(e) and T2(e) , and let the number of their vertices be n1(e) and
n2(e) , respectively, n1(e) + n2(e) = |V (T − e)| = n .
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Lemma 1. Let T be a tree on n vertices. Then

(n− 1− k) d(T, k) =
∑

e∈E(T )

d(T − e, k) (5)

holds for all k = 0, 1, 2, . . . .

Proof. Consider the difference d(T, k)−d(T −e, k) . In view of the unique-
ness of the path connecting any given pair of vertices of a tree, any two
vertices of T , connected by a path that contains the edge e , belong to dif-
ferent components of T−e . Consequently, the difference d(T, k)−d(T−e, k)
counts the pairs of vertices of T that are at distance k and whose connect-
ing path contains the edge e . By summing this difference over all edges
of T we will count any pair of vertices of T at distance k . Furthermore,
every such pair will be counted exactly k times, because there are exactly
k edges in the path connecting them. Hence,

∑

e∈E(T )

[d(T, k)− d(T − e, k)] = k d(T, k) .

Formula (5) follows now by taking into account that T has n−1 edges. 2

Lemma 2 is deduced in a fully analogous manner. Here u stands for
a vertex of the tree T and T − u is the subgraph obtained by deleting u
(together with its incident edges) from T .

Lemma 2. Let T be a tree on n vertices. Then

(n− 1− k) d(T, k) =
∑

u∈V (T )

d(T − u, k)

holds for all k = 0, 1, 2, . . . .

Theorem 3. Let T be a tree on n vertices. Let λ be a real (or complex)
number. Then

Wλ+1(T ) = (n− 1)Wλ(T )−
∑

e∈E(T )

Wλ(T − e) . (6)

Proof. By multiplying Eq. (5) by kλ one obtains

d(T, k) kλ+1 = (n− 1) d(T, k) kλ −
∑

e∈E(T )

d(T − e, k) kλ

which summed over all k ≥ 1 and in view of Eq. (4) yields (6). 2
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In an analogous manner, from Lemma 2 follows:

Theorem 4. Let T be a tree on n vertices. Let λ be a real (or complex)
number. Then

Wλ+1(T ) = (n− 1) Wλ(T )−
∑

u∈V (T )

Wλ(T − u) .

Remark. The identity (5) can be rewritten as

(m− k) d(F, k) =
∑

e∈E(F )

d(F − e, k) ,

in which case it holds for any forest F (= acyclic graph, not necessarily
connected), with m ≤ n− 1 edges. Analogously, relation (6) then becomes
Wλ+1(F ) = mWλ(F )− ∑

e∈E(F )

Wλ(F − e) .

3 Applications of relation (6)

First of all, using Eq. (3) and the notation defined above, Eq. (6) can be
rewritten as

Wλ+1(T ) = (n− 1)Wλ(T )−
∑

e∈E(T )

[Wλ(T1(e)) + Wλ(T2(e))] . (7)

Note that all graphs occurring in formula (7) are connected.
For any connected n-vertex graph G , W0(G) =

(
n
2

)
.

Formulas (6) holds for any value of λ . By setting λ = 0 and by taking
into account that n1(e) + n2(e) = n , we obtain:

W1(T ) = (n− 1)W0(T )−
∑

e

[W0(T1(e)) + W0(T2(e))]

= (n− 1)
(

n

2

)
−

∑
e

[(
n1(e)

2

)
+

(
n2(e)

2

)]

=
1
2

n (n− 1)2 − 1
2

∑
e

[
n1(e)2 + n2(e)2 − (n1(e) + n2(e))

]

=
1
2

n (n− 1)2 − 1
2

∑
e

[
n2 − n− 2 n1(e) n2(e)

]
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=
1
2

n (n− 1)2 − 1
2

(n− 1)(n2 − n) +
∑

e

n1(e)n2(e)

which finally yields
W (T ) =

∑
e

n1(e)n2(e) (8)

a result first reported by Wiener himself [15]. Thus, the relation (6) may
be viewed as a generalization of the Wiener formula (8).

The n-vertex tree possessing a maximum number (= n− 1) vertices of
degree 1 is called the star (Sn). The n-vertex tree possessing a minimum
number (= 2) vertices of degree 1 is the path graph (Pn). In the set of all
n-vertex trees, Sn and Pn usually have extremal properties. It has been
shown elsewhere [7] that for Tn being any n-vertex tree different from Sn

and Pn , and for any λ > 0 ,

Wλ(Sn) < Wλ(Tn) < Wλ(Pn) .

If λ < 0 , then in the above inequalities “less than” has to be exchanged
into “greater than”.

Because d(Sn, k) = 0 for k ≥ 3 , one directly gets

Wλ(Sn) = n− 1 +
(

n− 1
2

)
2λ .

The calculation of the Wiener–type invariants of Pn is less easy.
By means of formulas (6) or (7) the Wiener–type invariants of a tree

can be computed recursively. This is especially efficient if the respective
tree possesses some structural regularity. For instance, for Pn , formula (7)
reduces to

Wλ+1(Pn) = (n− 1)Wλ(Pn)− 2
n−1∑

i=1

Wλ(Pi) . (9)

We start with λ = 0 and the obvious relation W0(Pn) =
(
n
2

)
. Then, by

applying (9),

W1(Pn) =
(

n

2

)
− 2

n−1∑

i=1

(
i

2

)
=

(
n + 1

3

)
. (10)

For λ = 1, 2, . . . , 5 analogous calculations yield

W2(Pn) =
n

2

(
n + 1

3

)
W3(Pn) =

3n2 − 2
10

(
n + 1

3

)
(11)
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W4(Pn) =
n(2n2 − 3)

10

(
n + 1

3

)
W5(Pn) =

(n2 − 2)(2n2 − 1)
14

(
n + 1

3

)

W6(Pn) =
n(n2 − 2)(3n2 − 5)

28

(
n + 1

3

)
.

By induction it can be shown that for λ being a positive integer, Wλ(Pn)
has the following properties:
— Wλ(Pn) is a polynomial in the variable λ , of degree n + 2 ;
— if n is even/odd, the coeficcients at odd/even terms are 0;
— the nonzero coefficients alternate in sign.

Using expressions (10) and (11) one can immediately check that

1
2

W2(Pn) +
1
2

W1(Pn) =
(

n + 2
4

)

and
1
6

W3(Pn) +
1
2

W2(Pn) +
1
3

W1(Pn) =
(

n + 3
5

)

Thus we arrive at the remarkable result that the Wiener number [15], the
hyper–Wiener index [12] and the Tratch–Stankevich–Zefirov index [13] of
the n-vertex path graph are given by

(
n + 1

3

)
,

(
n + 2

4

)
,

(
n + 3

5

)

respectively.
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