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Abstract

In this paper, (d + 1)-pencil lattices on simplicial partitions in R
d are studied. The

barycentric approach naturally extends the lattice from a simplex to a simplicial
partition, providing a continuous piecewise polynomial interpolant over the extended
lattice. The number of degrees of freedom is equal to the number of vertices of the
simplicial partition. The constructive proof of this fact leads to an efficient computer
algorithm for the design of a lattice.
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1 Introduction

It is well-known that the multivariate Lagrange polynomial interpolation prob-
lem is much harder than the univariate one. While the existence and the
uniqueness of the interpolant in the univariate case are guaranteed by the
fact that the interpolation parameters are pairwise distinct, this is far away
to be true in the multivariate case. Recall that the Lagrange interpolation
problem at

(
n+d

d

)

interpolation points is correct in the space of polynomials

in d variables of total degree ≤ n, Πd
n, iff the points do not lie on an algebraic

hypersurface of degree ≤ n. In practice, this condition is hard to verify, thus
alternatively, prescribed configurations of interpolation points, that guarantee
correctness of the interpolation problem, are needed.
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The most often used such configurations are lattices, introduced in [2], where
the interpolation points are generated as intersections of particular hyper-
planes. Principal lattices (see [2,3], e.g.) are generated as intersections of d+1
pencils of parallel hyperplanes. In [7], these lattices have been generalized to
the case of not necessarily parallel hyperplanes intersecting in so called cen-
ters. These lattices are known as (d+1)-pencil lattices of order n. Some further
generalizations can be found also in [1]. It is well-known that lattices admit
correct interpolation in Πd

n since they satisfy the GC condition (cf. [2]).

In [5], the barycentric approach has been used for (d + 1)-pencil lattices in
order to obtain the explicit positions of lattice points on a given simplex in
R

d and to construct the interpolant in the Lagrange form. This representa-
tion of (d + 1)-pencil lattices is useful in many practical applications, such
as an explicit interpolation of multivariate functions, numerical methods for
multidimensional integrals, finite element methods in solving partial differ-
ential equations... In this paper those results are extended to (d + 1)-pencil
lattices on simplicial partitions. It is shown, that it is possible to construct
a (d + 1)-pencil lattice on a given simplicial partition with V vertices, such
that the lattice points on common faces of the partition agree, and that there
are V degrees of freedom, that can be used as shape parameters. This pro-
vides a continuous piecewise polynomial Lagrange interpolant over the given
simplicial partition.

The paper is organized as follows. In Section 2 a definition of a (d + 1)-pencil
lattice, based on control points, is recalled, and the notation is introduced.
Section 3 provides the tools, necessary for extending the lattice from a simplex
to a simplicial partition. In Section 4 the main result is presented. The paper
is concluded by an example in Section 5.

2 Preliminaries

A definition of a lattice, based upon control points, introduced in [5], will be
used. First, let us recall some basic facts about the lattices and introduce the
notation.

A simplex in R
d is a convex hull of d + 1 vertices T i, i = 0, 1, . . . , d. Since for

our purpose the ordering of the vertices of the simplex will be important, the
notation

△ := 〈T 0, T 1, . . . , T d 〉,
which defines a simplex with a prescribed order of the vertices T i, will be
used.

A (d + 1)-pencil lattice of order n on △ is a set of
(

n+d
d

)

points, generated by

2



particular d + 1 pencils of n + 1 hyperplanes, such that each lattice point is
an intersection of d + 1 hyperplanes, one from each pencil. Furthermore, each
pencil intersects at a center

Ci ⊂ R
d, i = 0, 1, . . . , d,

a plane of codimension two. The lattice is based upon affinely independent

T0 T1

T2

T3

P0

P1P2

P3

C2
C0

C1

C3

Fig. 1. A 4-pencil lattice with its control points P i and centers Ci on a tetrahedron
〈T 0,T 1,T 2,T 3 〉.

control points

P 0, P 1, . . . , P d, P i ∈ R
d,

where P i lies on the line through T i and T i+1 outside of the segment T iT i+1

(see Fig. 1). The center Ci is then uniquely determined by a sequence of
control points

P i, P i+1, . . . , P i+d−2,

where

{P i+1, P i+2, . . . , P i+d−2} ⊆ Ci ∩ Ci+1.

Here and throughout the paper, indices of points, centers, lattice parameters,
etc., are assumed to be taken modulo d +1. Wherever necessary, an emphasis
on this assumption will be given explicitly by a function

m(i) := i mod (d + 1).

With d prescribed, indices considered belong to Zd+1 := {0, 1, . . . , d} = m (Z).

3



A natural bijective imbedding u : Z
r+1
d+1 → N

r+1
0 , defined as

u
(

(ij)
r
j=0

)

:=



ij + (d + 1)
j−1
∑

k=0

H (ik − ik+1)





r

j=0

,

H(s) :=







1, s > 0,

0, otherwise,

will significantly simplify further discussion. A graphical interpretation of this
map (Fig. 2) explains also a term winding number of an index vector (ij)

r
j=0,

defined as

w
(

(ij)
r
j=0

)

:=
r−1∑

k=0

H (ik − ik+1) + H (ir − i0) .

3

6

912

Fig. 2. Let d = 4, i = (3, 1, 4, 2) and r = 3. Then u(i) = (3, 6, 9, 12) and w(i) = 2.

The standard multiindex notation will be used. Let γ = (γ0, . . . , γd), γi ∈ N0,
denote an index vector and let

|γ| :=
d∑

i=0

γi.

Further, let us shorten the notation with

[j]α :=
j−1
∑

i=0

αi =







j, α = 1,

1 − αj

1 − α
, otherwise,

j ∈ N0.

In [5] the barycentric coordinates of a (d + 1)-pencil lattice on a simplex
△ = 〈T 0, T 1, . . . , T d 〉 w.r.t. △ were determined by d + 1 free parameters
ξ = (ξ0, . . . , ξd) as

Bγ (ξ) =
1

Dγ,ξ

(
αn−γ0 [γ0]α , ξ0α

n−γ0−γ1 [γ1]α , ξ0ξ1α
n−γ0−γ1−γ2 [γ2]α , . . . ,

ξ0ξ1 · · · ξd−1 [γd]α

)

, (1)
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Dγ,ξ := αn−γ0 [γ0]α + ξ0α
n−γ0−γ1 [γ1]α + · · · + ξ0ξ1 · · · ξd−1 [γd]α ,

where γ ∈ N
d+1
0 , |γ| = n, and αn =

∏d
i=0 ξi.

3 Operations on (d + 1)-pencil lattices

In this section, necessary tools for extending a (d + 1)-pencil lattice from
a simplex to a simplicial partition will be provided. Note that they pave a
way to an important part of numerical analysis, computer algorithms. Several
theorems which are all closely related to each other will be presented. Probably
the most important for the extension of the lattice in the next section is
Theorem 5 together with its corollaries. But the basis for all results in this
section is the following assertion, which reveals a restriction of a lattice to a
face of the simplex.

Theorem 1 Let a (d + 1)-pencil lattice of order n on a d-simplex △ =
〈T 0, T 1, . . . , T d 〉, given in the barycentric form, be determined by the param-
eters ξ = (ξ0, ξ1, . . . , ξd) as in (1). Let the indices

i = (i0, i1, . . . , ir) , 0 ≤ ij ≤ d, where ik 6= ij if k 6= j, r ≤ d, w(i) = 1,

select an r-face △′ = 〈T i0 , T i1, . . . , T ir 〉 ⊂ △. A restriction of the lattice to
△′ is an (r+1)-pencil lattice on △′, with the barycentric coordinates w.r.t. △′

determined by ξ′ = (ξ′0, ξ
′
1, . . . , ξ

′
r) , where

ξ′j =
ℓj+1 − 1
∏

k= ℓj

ξm(k), j = 0, 1, . . . , r, (2)

and ℓ = (ℓj)
r+1
j=0 = u ( (i0, i1, . . . , ir, i0) ) (see Fig. 3).

T0

T1

Tij

Tij+1

Ξ0

ΞijΞij+1ºΞij+1-1

Fig. 3. Parameters that determine a lattice on an r-face △′ ⊂ △.
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PROOF. The notation (v)k will throughout the proof denote the k-th com-
ponent of vector v. Let γ ∈ N

r+1
0 , |γ| = n, be an index vector of a lattice point

generated by ξ′ over △′. The map φ : N
r+1
0 → N

d+1
0 ,

( φ(γ) )k+1 =







γj, ij = k, 0 ≤ j ≤ r

0, otherwise
, k = 0, 1, . . . , d,

gives a relation between the index vectors of a particular point expressed in
both lattices. Thus

(

Bφ(γ) (ξ)
)

k+1
= 0, k 6= ij , 0 ≤ j ≤ r,

and one has to verify

(

Bφ(γ) (ξ)
)

ij+1
= (Bγ (ξ′))j+1 , j = 0, 1, . . . , r, (3)

only. Let αn =
∏d

k=0 ξk, and α′n =
∏r

k=0 ξ′k. Note that

[

(φ(γ))ij+1

]

α
= [γj]α ,

so by (1) Dφ(γ),ξ ·
(

Bφ(γ) (ξ)
)

ij+1
simplifies to





ij−1
∏

k=0

ξk



 αn−
∑ij

t=0(φ(γ))t+1 [γj]α . (4)

Suppose the relations (2) hold. Then

α′ n
=

r∏

j=0

ξ′j =
r∏

j=0

ℓj+1 − 1
∏

k= ℓj

ξm(k).

But the assertion w(i) = 1 implies the existence of a precisely one s, 0 ≤ s ≤ r,
such that

0 ≤ is+1 < is+2 < · · · < ir <
︸ ︷︷ ︸

r−s

i0 < i1 < · · · < is
︸ ︷︷ ︸

s+1

≤ d,

and
r∏

j=0

j 6=s

ℓj+1 − 1
∏

k= ℓj

ξm(k) =





ℓs − 1∏

k= ℓ0

ξm(k)









ℓr+1 − 1
∏

k= ℓs+1

ξm(k)



 =
is − 1∏

k= is+1

ξk,

with
ℓs+1 − 1
∏

k= ℓs

ξm(k) =





d∏

k= is

ξk









is+1 − 1
∏

k=0

ξk



 .
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Therefore α′ = α. Similarly,

j−1
∏

k=0

ξ′k =
ℓj − 1
∏

k= ℓ0

ξm(k),

and so

Dγ,ξ′ · (Bγ (ξ′))j+1 =





ℓj − 1
∏

k= ℓ0

ξm(k)



 αn−
∑j

t=0
γt [γj]α . (5)

Note that (3) follows from (1) if the quotient of the expressions (4) and (5)
does not depend on j. A brief look on (4) at j = 0 reveals this quotient as

c =

(
i0−1∏

k=0

ξk

)

α−
∑i0−1

t=0
(φ(γ))t+1 .

Indeed, the constant c is a quotient of (4) and (5) if

1

c
·




ij−1
∏

k=0

ξk



 αn−
∑ij

t=0(φ(γ))t+1 =





ℓj − 1
∏

k= ℓ0

ξm(k)



 αn−
∑j

t=0
γt (6)

for 0 ≤ j ≤ r. To begin with, suppose that 0 ≤ j ≤ s. Then ik = ℓk, 0 ≤ k ≤ j,
i0 < i1 < · · · < ij , and the left hand side of the equation (6) simplifies to





ij−1
∏

k=i0

ξk



 α
n−
∑ij

t=i0
(φ(γ))t+1 =





ℓj − 1
∏

k= ℓ0

ξm(k)



 αn−
∑j

t=0
γt ,

as required. Now let j > s. Thus ij < i0 and the left hand side of (6) simplifies
to





i0−1∏

k=ij

ξ−1
k



 α
n+
∑i0−1

t=ij+1
(φ(γ))t+1

.

Since




i0−1∏

k=ij

ξ−1
k



 αn =





ij−1
∏

k=0

ξk









d∏

k=i0

ξk



 =
ℓj−1
∏

k=ℓ0

ξm(k)

and

i0−1∑

t=ij+1

(φ(γ))t+1 = n −
d∑

t=i0

(φ(γ))t+1 −
ij∑

t=0

(φ(γ))t+1 = n −
j
∑

t=0

γt,

the proof is completed. 2
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Let us apply Theorem 1 in a particularly simple example: a restriction of a
lattice to a line segment △′ = 〈T i0 , T i1 〉. Quite clearly, w((i0, i1)) = 1. Thus

ξ′ = (ξ′0, ξ
′
1) =

(

ξ′0,
αn

ξ′0

)

=





ℓ1−1∏

k=ℓ0

ξm(k),
ℓ2−1∏

k=ℓ1

ξm(k)



 (7)

and

ξ′0 =







i1−1∏

k=i0

ξk, i0 < i1,

αn
i0−1∏

k=i1

ξ−1
k , i0 > i1.

(8)

By (1), the barycentric coordinates of the lattice points on △′ are

(

[n]α − [n − γ0]α
[n]α − [n − γ0]α + [n − γ0]α ξ′0

,
[n − γ0]α ξ′0

[n]α − [n − γ0]α + [n − γ0]α ξ′0

)

,

γ0 = n, n − 1, . . . , 0, (9)

as already obtained in [4]. However, if the lattice points (9) are prescribed,

the corresponding ξ′0, ξ′1, and α = n

√

ξ′0ξ
′
1 are not unique, even for n ≥ 3 ([4,

Theorem 2]). In the latter case, there are precisely two pairs of parameters,

(ξ′0, ξ
′
1) ,

(

1

ξ′1
,

1

ξ′0

)

, (10)

that generate the same lattice points (9). This is straightforward to deduce
from identities

1

α2n−1−γ0
([n]α − [n − γ0]α) = [n] 1

α
− [n − γ0] 1

α
,

1

α2n−1−γ0
[n − γ0]α =

1

αn
[n − γ0] 1

α
.

Now let us extend the example to line segments of an edge cycle

〈T ik , T ik+1
〉, k = 0, 1, . . . , r, ir+1 = i0,

with i = (ik)
r
k=0, and ℓk = (u (i0, i1, . . . , ir, i0))k. Let

(

ξ′0,k, ξ
′
1,k

)

denote param-

eters of the restriction of the lattice to 〈T ik , T ik+1
〉. From (7) and (8) one

obtains
r∏

k=0

ξ′0,k =
r∏

k=0

ℓk+1−1
∏

t=ℓk

ξm(t) =
ℓr+1−1
∏

t=ℓ0

ξm(t) = αn·w(i), (11)

that gives the value α in terms of parameters ξ′0,k only. Consider the lattice
points at a particular edge 〈T ik , T ik+1

〉. By (10) they could be generated as
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a restriction of at most two different lattices, the assumed one with

α = n

√

ξ′0,kξ
′
1,k,

or an additional one, having

α =
1

n

√

ξ′0,kξ
′
1,k

.

In order to explore the second possibility further, let τk, 0 < τk < 1, be the
first barycentric coordinate of a lattice point given by (9) on 〈T ik , T ik+1

〉 at
γ0 = n − 1. Such a lattice point exists for any n ≥ 2. Then

ξ′0,k = ξ′0,k(α) :=
1 − τk

τk
([n]α − 1) ,

and (11) simplifies to

r∏

k=0

ξ′0,k(α) =

(
r∏

k=0

1 − τk

τk

)

([n]α − 1)r+1 = αn·w(i).

The equation

f(ρ) := [n]ρ − 1 − c ρ
n·w(i)

r+1 = 0, c :=

(
r∏

k=0

1 − τk

τk

)− 1
r+1

> 0,

has at least one positive solution, ρ = α, by the assumption. But f is a
polynomial in r+1

√
ρ, and the Descartes’s rule of signs shows that there are at

most two zeros of f in (0,∞). If there are two, then by the observation for
a particular edge the zeros are necessarily ρ and 1/ρ, and an elimination of c
from

f(ρ) = 0, f

(

1

ρ

)

= 0,

yields
[n]ρ − 1

ρ
n·w(i)

r+1

=
[n]1/ρ − 1

ρ−
n·w(i)

r+1

. (12)

However,

[n]ρ − 1 = ρ [n − 1]ρ , [n]1/ρ − 1 = ρ−(n−1) [n − 1]ρ ,

and (12) reduces to

ρ
n
(

2·w(i)
r+1

−1
)

− 1 = 0,

that can only be satisfied for a positive ρ, ρ 6= 1, iff w(i) =
r + 1

2
. Thus we

obtain the following theorem.
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Theorem 2 Let the barycentric representation of a (d + 1)-pencil lattice of
order n on a d-simplex △ = 〈T 0, T 1, . . . , T d 〉 be given by the parameters
ξ = (ξ0, ξ1, . . . , ξd). A restriction of the lattice to a cycle

〈T ik , T ik+1
〉, k = 0, 1, . . . , r, ir+1 := i0, i = (ik)

r
k=0 ,

is a restriction of at most two different lattices. Moreover, the initial lattice
and the corresponding

α = n

√
√
√
√

d∏

k=0

ξk

are determined uniquely iff w(i) 6= r + 1

2
or α = 1.

Note that if α = 1 this can be recognized from a restriction to any particular
edge.

It is obvious that a (d + 1)-pencil lattice on △ is determined if restrictions to
all its edges are known. But only particular d + 1 edges are actually needed
(see Fig. 4), as proves the following theorem. For simplicity, let G(△) denote
a graph induced by vertices and edges of a simplicial complex determined
by △. Here △ is a union of some arbitrarily dimensional faces of a simplex.
Moreover, the subgraph G(△1) spans the graph G(△2) if the sets of vertices
of both graphs coincide.

Theorem 3 A (d+1)-pencil lattice on △ = 〈T 0, T 1, . . . , T d 〉 with parameters
ξ = (ξ0, ξ1, . . . , ξd) is uniquely determined by restrictions to distinct edges

ek = 〈T ik , T jk
〉, k = 0, 1, . . . , d,

iff the graph g := G
(

∪d
k=0 ek

)

spans the graph G (△) and

(a)
∏d

k=0 ξk = 1 or
(b) g contains a cycle

etq = 〈T itq , T jtq
〉, q = 0, 1, . . . , r,

with itq+1 = jtq , q = 0, 1, . . . , r − 1, jtr = it0, such that

w
( (

itq
)r

q=0

)

6= r + 1

2
. (13)

PROOF. If g does not span G (△), one can find a vertex T t ∈ G (△) such
that {ek}d

k=0 ⊂ △′ = 〈T 0, . . . , T t−1, T t+1, . . . , T d 〉. Let the lattice on △ be

given by ξ = (ξk)
d
k=0. By Theorem 1, its restriction to △′ is determined by

parameters (ξ0, . . . , ξt−2, ξt−1ξt, . . . , ξd). That makes impossible to recover both
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ξt−1 and ξt, since only the product ξt−1ξt is pinned down. Suppose now that g
spans G (△). Let e′ ∈ G (△) be any edge such that e′ /∈ g. Then there exists a

cycle in G
(

∪d
k=0 ek ∪ e′

)

that contains e′. The restriction of the lattice to e′ is

determined by (11) iff αn =
∏d

k=0 ξk is known. But the latter is assured by the
assumptions (a) or (b) and Theorem 2. Thus a restriction of the lattice to any
edge is determined, and restrictions to the edges 〈T k, T k+1 〉, k = 0, 1, . . . , d,
yield parameters ξ. The proof is completed. 2

Note that this result covers also the smallest cycle, namely, 〈T i, T j 〉, 〈T j , T i 〉.

T0

T3

T1

T2

Fig. 4. A restriction to d + 1 edges that uniquely determines the lattice on the
simplex.

The assumption (13) in Theorem 3 is clearly used to determine the product αn

uniquely. But if this product is known, Theorem 3 simplifies to the following
corollary that needs no additional proof.

Corollary 4 Suppose that the product

αn =
d∏

k=0

ξk,

that corresponds to the barycentric representation of a (d+1)-pencil lattice with
parameters ξ on △ = 〈T 0, T 1, . . . , T d 〉, is known. The lattice is determined
by restrictions to distinct edges

ek = 〈T ik , T jk
〉, k = 1, 2, . . . , d,

iff the graph g := G
(

∪d
k=1 ek

)

spans the graph G (△).

Now we turn our attention to a relation between two (d + 1)-pencil lattices
of order n that share a common face. Since this face is a simplex too, the
first step is to determine when two lattices defined over the same simplex are
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equivalent, i.e., they have the same lattice points. As expected, the choice of
centers is inherent to equivalent lattices.

Theorem 5 Let △ be a given simplex, with vertices ordered as

△ = 〈T 0, T 1, . . . , T d 〉, (14)

and reordered according to an index vector i = (i0, i1, . . . , id) as

△′ = 〈T ′
0, T

′
1, . . . , T

′
d 〉 = 〈T i0 , T i1, . . . , T id 〉. (15)

Suppose that on the simplices △ and △′ there are given two (d + 1)-pencil
lattices of order n, with barycentric coordinates determined by parameters
ξ = (ξ0, ξ1, . . . , ξd), and ξ′ = (ξ′0, ξ

′
1, . . . , ξ

′
d) w.r.t. the vertex sequences (14)

and (15), respectively. Both lattices share the same lattice points iff one of the
following possibilities hold:

(a) w (i) = 1, and ξ′j = ξij , j = 0, 1, . . . , d ;

(b) w (i) = d, and ξ′j =
1

ξij+1

, j = 0, 1, . . . , d ;

(c) 1 < w (i) < d, and
d∏

j=0
ξj = 1,

ξ′j =







ij+1 − 1
∏

k= ij

ξk, ij < ij+1,

ij − 1
∏

k= ij+1

1

ξk

, ij > ij+1,

j = 0, 1, . . . , d.

PROOF. It is straightforward to verify the assertion if d = 1. Suppose now
that d > 1. Then there is a 3-cycle along the edges of the simplices △ and

△′. So, by Theorem 2, the products αn =
d∏

j=0
ξj and α′ n =

d∏

j=0
ξ′j are deter-

mined uniquely. Let us consider a restriction of the lattice determined by ξ to
〈T ij , T ij+1

〉, and let us denote ℓ = (ℓj)
d+1
j=0 = u ( (i0, i1, . . . , id, i0) ). The lattice

points of both lattices should coincide. Theorem 1 and the relation (10) reveal
two possible choices,

ξ′j =
ℓj+1 − 1
∏

k= ℓj

ξm(k) (16)

if α′ = α, and

ξ′j =
1

αn

ℓj+1 − 1
∏

k= ℓj

ξm(k) (17)

if α′ =
1

α
. Of course, ξ′j can always be determined from (16) or (17). However,

the relation between α and α′ should not be violated. Let us multiply these

12



equations for all possible j together. From (16) we obtain

d∏

j=0

ξ′j = α′ n
= αn =

d∏

j=0

ℓj+1 − 1
∏

k= ℓj

ξm(k) = αn·w(i).

This relation could only be satisfied if w(i) = 1 (the assertion (a)), or α =
α′ = 1. Similarly,

d∏

j=0

ξ′j = α′ n
=

1

αn
=

d∏

j=0

1

αn

ℓj+1 − 1
∏

k= ℓj

ξm(k) = αn·(w(i)−(d+1))

confirms (b). If 1 < w(i) < d, only the possibility α = α′ = 1 is left, and a
brief look on (8) completes the necessary part of the proof. But if either one
of the possibilities (a), (b) or (c) holds, the lattices agree on all edges of △,
i.e., 〈T ′

j , T
′
k 〉 = 〈T ij , T ik 〉, j < k, and therefore on the whole simplex. 2

If α = α′ = 1, both lattices can coincide for any winding number of the in-
dex vector i. But consecutively a restriction on lattice parameters is obtained.
Theorem 5 clearly suggests how a lattice known at some face should be ex-
tended to a whole simplex if one is not prepared to loose a degree of freedom
with the assumption α = 1.

Corollary 6 Let △ = 〈T 0, T 1, . . . , T r 〉 be a given face, with the lattice de-
termined by ξ = (ξ0, ξ1, . . . , ξr). The lattice can be extended to

△′ = 〈T 0, T 1, . . . , T i, T
′, T i+1, . . . , T r 〉 ⊂ R

r+1

by parameters

ξ′ =

(

ξ0, ξ1, . . . , ξi−1, η,
ξi

η
, ξi+1, . . . , ξr

)

,

where η > 0 is an additional free parameter.

Now consider two (d + 1)-pencil lattices of order n that share a lattice on a
common face of simplices (Fig. 5). By combining Theorem 1 and Theorem 5
one obtains the following corollary.

Corollary 7 Let

△ = 〈T 0, T 1, . . . , T d 〉, △′ = 〈T ′
0, T

′
1, . . . , T

′
d 〉

be given simplices, and let the lattices be determined by parameters

ξ = (ξ0, ξ1, . . . , ξd) , ξ′ = (ξ′0, ξ
′
1, . . . , ξ

′
d) ,

13



T0

T2

T1

T3

T0’

T1’
T2’

T3’

Fig. 5. Matching of two lattices for d = 3 on the common facet of simplices.

respectively. Suppose that

〈T i0, T i1 , . . . , T ir 〉 = 〈T ′
i′0
, T ′

i′1
, . . . , T ′

i′r
〉, 1 ≤ r ≤ d,

0 ≤ i0 < i1 < · · · < ir ≤ d, is a common r-face of △ and △′, with correspond-
ing vertices

T ik = T ′
i′
k
, k = 0, 1, . . . , r.

Let (ℓ0, . . . , ℓr+1) = u ( (i0, . . . , ir, i0) ) and
(

ℓ′0, . . . , ℓ
′
r+1

)

= u ( (i′0, . . . , i
′
r, i

′
0) ).

If αn =
∏d

i=0 ξi 6= 1, the lattices agree at the common r-face iff one of the
following possibilities hold:

(a) w (i′) = 1 and

ℓk+1−1
∏

t=ℓk

ξm(t) =

ℓ′
k+1−1
∏

t=ℓ′
k

ξ′m(t), k = 0, 1, . . . , r ;

(b) w (i′) = r and

ℓk+1−1
∏

t=ℓk

ξm(t) = αn

ℓ′
k+1−1
∏

t=ℓ′
k

ξ′m(t), k = 0, 1, . . . , r.

4 Lattice on a simplicial partition

We are now able to extend a (d+1)-pencil lattice from a simplex to a simplicial
partition. Of course, this extension should be such that any pair of simplices
that share a common face should share the lattice restriction to that face
too. The following theorem and the corresponding proof provide an explicit

14



approach for the construction of the extended (d+1)-pencil lattice over a sim-
plicial partition. This leads to an efficient computer algorithm for the design
of a lattice. The simplest planar case, d = 2, has already been discussed in [4].

Theorem 8 Let T = {△i}i≥0 be a regular simplicial partition in R
d with

V ≥ d + 1 vertices

T 0, T 1, . . . , T V −1. (18)

Then there exists a (d + 1)-pencil lattice on T with precisely V degrees of
freedom.

Recall that a simplicial partition in R
d is regular if every pair of adjacent

simplices have an r-face in common, r ∈ {0, 1, . . . , d − 1}.

PROOF. For any simplex △ ∈ T , let us order the points similarly as in (18),
i.e.,

△ = 〈T i0, T i1 , . . . , T id 〉, 0 ≤ i0 < i1 < · · · < id ≤ V − 1,

and let us choose the local barycentric representation of the lattice on each of
the simplices accordingly. Note that this choice of local lattice control points
assures that any pair of simplices △,△′ ∈ T ,

△ = 〈T i0 , T i1 , . . . , T id 〉, △′ = 〈T i′0
, T i′1

, . . . , T i′
d
〉,

with a common r-face, denoted in △ as

〈T ij0
, T ij1

, . . . , T ijr
〉, ij0 < ij1 < · · · < ijr

,

and corresponding vertices in △′ given by

T i′
j′
k

= T ijk
, k = 0, 1, . . . , r,

satisfies

w ((ij0, ij1, . . . , ijr
)) = w

((

i′j′0, i
′
j′1

, . . . , i′j′r

))

= 1. (19)

The proof proceeds by the induction on the number of simplices in a sim-
plicial partition T ′ ⊂ T , with an additional assertion that a product of local
barycentric lattice parameters for each simplex considered is equal to the same
constant αn. Since T is regular, we may, without loss of generality, assume that
T ′ grows from a single simplex to T in such a way that each simplex added
has f , 1 ≤ f ≤ d, (d−1)-faces in common with simplices in the instantaneous
partition T ′. If T ′ = {△}, then by (1) the lattice has d + 1 free parameters
ξ = (ξi)

d
i=0, defining αn =

∏d
i=0 ξi. The number of degrees of freedom clearly

equals the number of vertices of T ′. Thus the assertion holds true. Suppose
now that it holds true for T ′, and let us show that it holds also for

T ′ ∪ {△′}, △′ = 〈T i′0
, T i′1

, . . . , T i′
d
〉 /∈ T ′.
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Let the local barycentric lattice representation on △′ depend on parameters
ξ′ = (ξ′i)

d
i=0, and let {F1, F2, . . . , Ff} be the set of all distinct (d − 1)-faces

of △′ that are shared with simplices in T ′. Since (19) holds, Corollary 7 (a)
confirms that the lattice can be extended from the common face F1 to △′

provided particular d relations concerning ξ′ are satisfied. With an index r
uniquely determined by T i′r ∈ △′ \ F1, these relations determine d values

(

ξ′0, ξ
′
1, . . . , ξ

′
r−2, ξ′r−1ξ

′
r, ξ′r+1, ξ

′
r+2, . . . , ξ

′
d

)

,

and assure
∏d

i=0 ξ′i = αn. If f = 1, T i′r /∈ T ′. So T ′ → T ′ ∪ {△′} brings up
precisely one additional vertex as well as one additional free parameter, and
the induction step in the case f = 1 is concluded. Let now 2 ≤ f ≤ d. The
number of vertices in T ′∪{△′} is equal to the number of vertices in T ′. At least
one of the edges 〈T i′

r−1
, T i′r 〉, and 〈T i′r , T i′

r+1
〉 belongs to F2. Let us denote it

by e. Since α has already been determined, a restriction of the lattice to the
edge e determines the last free parameter in ξ′ uniquely. Note that the lattice
given by ξ′ by the construction agrees with any lattice on F2, inherited from
T ′, on F1 ∩ F2 and e. But G ((F1 ∩ F2) ∪ e) spans G (F2), so by Corollary 4
both lattices have to coincide on all of F2. Similarly, G ((F1 ∩ Fj) ∪ (F2 ∩ Fj))
spans G (Fj) for any j, 3 ≤ j ≤ d, and the lattice given by ξ agrees with
inherited lattice on any Fj . The induction step in the case f > 1 is concluded
too, and the proof is completed. 2

5 Example

In this section an example for the case d = 3 is given, which illustrates the re-
sults from previous sections. Here △ = 〈T 0, T 1, T 2, T 3 〉 is a tetrahedron. Let
us observe an example of a star ([6]) with 2m−2, m ≥ 3, tetrahedrons, where m
and m−2 tetrahedrons are glued together in such a way, that they share a com-
mon edge, respectively (see Fig. 6). This example also covers the minimal pos-
sible star in R

3 with 4 tetrahedrons (m = 3). Our aim is to explicitly express

(d+1)(2m−2) = 8(m−1) parameters ξ
(j)
i > 0, i = 0, . . . , 3, j = 1, . . . , 2m−2,

with V = m + 2 independent free parameters that determine the lattice
on this simplicial partition with V vertices and 2m − 2 tetrahedrons. Here
ξ

(j)
i is the parameter that determines the control point P

(j)
i of a lattice on

the i-th tetrahedron △i (Fig. 6). Let us label the vertices of the simpli-
cial partition with T i, i = 0, 1, . . . , m + 1, (Fig. 6) and let us denote the
simplices as △i := 〈T 0, T 1, T i+1, T i+2 〉, i = 1, . . . , m, T m+2 := T 2, and
△i := 〈T 1, T i−m+1, T i−m+2, T m+1 〉, i = m + 1, . . . , 2m − 2 (Fig. 6). The
construction in the proof of Theorem 8 gives us the relations between the pa-
rameters ξ

(i)
j so that the lattice points on all common faces of the star agree.
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T1

T3
T2

T4

T0

Tm+1
D1 D2

Dm

↑
T1

Tm+1

T3
T2

T4

D2 m-2

Dm+1

Fig. 6. The star with 2m − 2 tetrahedrons, where m and m − 2 tetrahedrons have
a common edge, respectively.

All parameters can be expressed by V parameters

ξ
(1)
0 , ξ

(1)
1 , ξ

(1)
2 , ξ

(1)
3 , ξ

(2)
2 , ξ

(3)
2 , . . . , ξ

(m−1)
2

as

ξ
(i)
0 = ξ

(1)
0 , ξ

(i)
1 = ξ

(1)
1 ξ

(1)
2

i−1∏

j=2

ξ
(j)
2 , ξ

(i)
2 = ξ

(i)
2 , ξ

(i)
3 =

ξ
(1)
3

∏i
j=2 ξ

(j)
2

,

for i = 2, 3, . . . , m − 1, and

ξ
(m)
0 = ξ

(1)
0 , ξ

(m)
1 = ξ

(1)
1 , ξ

(m)
2 = ξ

(1)
2

m−1∏

j=2

ξ
(j)
2 , ξ

(m)
3 =

ξ
(1)
3

∏m−1
j=2 ξ

(j)
2

,

ξ
(m+1)
0 = ξ

(1)
1 , ξ

(m+1)
1 = ξ

(1)
2 , ξ

(m+1)
2 =

m−1∏

j=2

ξ
(j)
2 , ξ

(m+1)
3 =

ξ
(1)
0 ξ

(1)
3

∏m−1
j=2 ξ

(j)
2

,

ξ
(m+i)
0 = ξ

(1)
1 ξ

(1)
2

i−1∏

j=2

ξ
(j)
2 , ξ

(m+i)
1 = ξ

(i)
2 , ξ

(m+i)
2 =

m−1∏

j=i+1

ξ
(j)
2 , ξ

(m+i)
3 =

ξ
(1)
0 ξ

(1)
3

∏m−1
j=2 ξ

(j)
2

,

for i = 2, 3, . . . , m − 2.
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