Annali dellUniversita di Ferrara manuscript No.
(will be inserted by the editor)

GasSper Jaklic - Jernej Kozak - Marjeta
Krajnc - Emil Zagar

Approximation of circular arcs by
parametric polynomial curves

Received: 4 October 2005 / Accepted: 28 March 2006

Abstract In this paper the approximation of circular arcs by parametricrpmly
mial curves is studied. If the angular length of the circular aft, ia parametric
polynomial curve of arbitrary degreec N, which interpolates given arc at a par-
ticular point, can be constructed with radial distance bodrueh?". This is a
generalization of the result obtained by Lyche and Mgrken forrodd
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1 Introduction

The approximation of circular arcs is an important task in Coreipaided Geo-
metric Design (CAGD), Computer Aided Design (CAD) and Computéatedl
Manufacturing (CAM). Though a circle arc can be exactly represeyed ra-
tional quadratic Bzier curve (or, generally, by rational parametric curve of low
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degree, see [1], e.g.), some CAD/CAM systems require a polynonisdsenta-
tion of circular segments. Also, some important algorithmshsas lofting and
blending can not be directly applied to rational curves.
On the other hand, circular arcs can not be represented by poigisoaxactly,
thus interpolation or approximation has to be used to reprelsent &ccurately.

Among others, Lyche and Mgrken have studied the problem of appation
of circular segments by polynomial parametric curves (see [3]). Tlagg found
an excellent explicit approximation by odd degree parametiignponial curves,
but conjectured that the same problem with even degree couldidnega task.
Their method is based on Taylor-type approximation and eixigligrovides para-
metric polynomials of odd degreewith high asymptotic approximation order,
i.e., 2n.

In this paper the general case for ang N is solved. First, the approximation
problem will be stated. Let

f(9):= (é’;g), 0<¢p<a<2m (1.2)

be a particular parametrization of a circular arc of angular kengtlt is enough
to consider arcs of the unit circle only, since any other arc efsame angular
length can be obtained by affine transformations. Our goal isitbdiparametric

polynomial curve
P = pi= (;ﬂ) (1.2)

of degree< n with nonconstant scalar polynomiads y, € R]t],

n

x(t) =S ajt!  yn(t bitl, (1.3)
3,3t Wit 3

which provides “the best approximation” of (1.1). The only prdsedi interpola-
tion point is f(0) := (x1(0),yn(0))" := (0,1)T, thusag := 0 andbp := 1 in (1.3).

In CAGD, we are interested mainly in geometric properties of objecparticular
parametrization is just a representation of an object in a de&ired Therefore
the approximation error will be considered as a distance betaetenf points on
given curves, i.e., a circular arc and a parametric polynomiddigdase. It seems
natural to choose &adial distance’here (see Figure 1), i.e.,

40+ -1}, (1.4)

wherel is some interval of observation.

If pis a good approximation df on| then (1.4) is small ang)/x2(t) + y(t) ~
1, thus

2
\ x%<t>+y%<t>—\ PO A0 AL a3 -

VXE(t) +yat)+1

and, for computational purposes, it is enough to consider thielyerror”

= [xa(t) +yat) —1|. (1.5)

d(f,p) = rpezlix{
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Fig. 1 Radial distance between circular arc (solid) and a pardmetrve approximation
(dashed)

Ideally, e would be zero if a polynomial parametrization of a circular arc ldou
exist. But if at least one of,, or y, is of degreen, then (1.3) implies

Xa(t) +Yya(t) = (@ + bR+ # L. (1.6)

Now it follows from (1.5) thate will be small (at least for smat), if coefficients
at the lower degree terms in (1.6) will vanish. This implies #aill be as small
as possible if

X2 (t) +y2(t) = 14 const t2". (1.7)
A proper reparametrization

t
t————
YRR
transforms (1.7) to
Xa(t) +¥a(t) = 1+, (1.8)
which gives J nonlinear equations for r2 unknown coefficientsa;)j_; and

(bj)i_y-

'IJ'he paper is organized as follows. In Section 2 the system dimear equa-
tions will be studied and a general closed form solution will be\ed. In Sec-
tion 3 the optimal asymptotic approximation order will be com&d and in the
last section some concluding remarks regarding the optimal gippation of cir-
cular arcs will be given.

2 Solution of the problem
Although the solutions of the system of nonlinear equatiginen by (1.8) can be

obtained numerically for particular values mffinding a closed form solution is
a much more complicated problem. In [3], authors proposed a very ppeach
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to solve this problem. They have used a particular rational patrézation of the
unit circle to obtain the coefficients of the polynomiglsandy,. Indeed, if

2t 1-t2

yo(t) := 15 t € (—o0,00), (2.1)

)= ——
Xo(t) i

is a parametrization of a unit circle, then the functions

Xa(t) 1= X0(t) = (=1) "V 2ty (),

Yn(t) 1= Yo(t) + (=1) " V2t (),
are actually polynomials of degreen for which (1.8) holds. It is also easy to find
their explicit form, but unfortunately ifiis even, their coefficients are no more real

numbers. However, this idea can be applied for evéoo, but slightly different
rational parametrization of the unit circle has to be consideétadely, let

n=2¢(2r—1), keNp, reN, (2.2)
and letxg, Yo be redefined as

~ 2vV1-c’t(1—ct)

1-2ct+(2¢2 - 1)t?
t) = -
%(t) 1—2ct+t2

1—2ct+t2 ’

Yo(t) : (2.3)

wherec € [0,1). Itis straightforward to see tha(t) +y3(t) = 1. Note that (2.1) is
a particular case of (2.3) wheee= 0. The following theorem, which has already
been considered in [2] in a different context, gives one of thatsmis of the
nonlinear system (1.8) for anyin a closed form.

Theorem 2.1 Suppose that,rk, and r satisfy(2.2), and let the constantgcsy be
given as ¢:= cosy and & := siny, whereyy := 7T/2"+1. Further, suppose that
Xo and y are defined by2.3) with c:= ¢x. Then the functionsyand y,, defined

by
)= (care ) G0) @9

are polynomials of degre€ n that satisfy(1.8). Furthermore, their coefficients
are given as

qj =25 Cos((j _1) Ll"k) :ZSij,]_(Ck), J :1727"'7n_17 (25)
an =2sccos(N—1) Yi) + (—1)" = 25 Tn-1(c) + (-1)", (2.6)

and

bp=1,b; =0, (2.7)
bj = —2scsin((j — 1) gh) = —22Uj 2(c), j=2,3,...,n, (2.8)

where T and U; are Chebyshev polynomials of the first and the second kind.
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Proof The proof given here is an extended version of the proof in [2].
The equation (2.4) yields

24/1—-c2t (1—ckt) +(—1)"t"(1—2ct+ (22 — 1)t?)

%(t) = 12t +t2 ’
(—1) 10 (2, /1-c2t (1—ckt)) +1-2¢t+ (22— 1)t2
¥nlt) = 120t +t2 '

To verify that the functiorx, is a polynomial of the form (1.3), it is enough to see
that

n .
(1—2cct+1?) %ajtJ = ayt+ (ap— 2ckay)t?
=

n .
+ ;(aj —chaj,1+aj,2)t1 + (—ZCkan—i-an,l)tMl—i—anthrz
J:

=2y/1-c2t (1—ct) + (—1)"t" (1 — 2ckt + (2¢2 — 1)t?).
A comparison of the coefficients implies the linear recurrence
ap =2s, a =Ckay, aj —2¢aj—1+aj—2=0, j=3,4,...,n-1, (2.9)

with additional conditions

@ —20kan-1+an2=(-1)',
2¢an —an-1 =(—1)" 2c, (2.10)
an =(-1)"(2¢f - 1).

Similarly, fory, it is enough to see that
n . n .
(1—2¢t -l—tz) Z]bjtj = bp+ (by — 2ckbo)t + Zz(bj —ZCkbj,l—l—bj,z)tJ
= =

+(—20kbn+ byp_1) "+ bt
= (—1)rLn (2\ /1—c2t (1 ckt)> +1—-2¢t+ (22— 1)t2

Here, the conditions oh; are
by =0, bp = —2, bj —2¢ckbj_1+bj_2=0, j=3,4,....n (2.11)
and

—2¢cn + b1 =(—1)""t2g, (2.12)
bn =(—1)" 25ck.
The theory of linear recurrence equations gives the general forheaiution of

(2.9), namely o .
aj — Ad ¥l _|_B(:’.—H‘U|<J7
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wherei? := —1. From the initial conditions
a; =25 =Ad% + Be ¥,
a =20 = AP ¥k Be 2 ¥k,

and the relatiord¥ = ¢, + sy, it is easy to obtairA = s ¥ andB = g %.
Therefore,

a = 25ccos((j — 1) W) = 28Tj-1(c), j=1,2,...,n—1.

Additional conditions (2.10) imply

an=2y/1—c2cos((n—1) Yi) + (—1)" = 25 Tn_1(ck) + (—1)".

Since the general recurrence relation (2.11) is the same as ini@ $)lution
reads

bj = Cd¥ y De ¥,
The initial conditions
by =0=Céd% {De %,
by = —282 =Ce&'% 1 De 2%,
imply C = isge "%, D = —isd%:. Hence

bj = isi (%(17Y — e (I3} — _2gsin((j — 1)) = —25FU; 2(c),

for j =1,2,...,n. Additional conditions (2.12) are satisfied and the proof is<com
plete. ad

3 Approximation order

The study of the approximation order in parametric case is notialttask. The
main problem is how the distance between parametric objecteasuned. Since
objects are usually considered as sets of points, the dist@taeen sets is nat-
urally involved. This leads to a very well known Hausdorff digtady, which
is difficult to compute in practice. As its upper bound the sbedaparametric
distanceadp has been proposed by Lyche and Mgrken in [3].

Definition 3.1 Let f, andf, be two parametric curves defined on the intervals
andl,. The parametric distance betweepandf, is defined by

dp(fy, f2) =infmax| f,(@(t)) — f(t)[],
@ telp

whereg: I, — |1 is a regular reparametrization, i.e/, 0 onl,.

Their result will be used here to prove the following lemma.
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Lemma 3.1 Let a circular arc ff be defined byl.1) and its parametric approx-
imation pp by (1.2). Let the coefficients of,xand y, be given by(2.5)(2.8). If
p: [0,h] — R?, where h is sufficiently small, then

du(f,p) < dp(f,p) <d(f,p) <h?",
where d is defined b{1.4).

Proof By [3], dp is a metric on a set of parametric curves|0rh]. Obviously, for
a particularg, which is a regular reparametrization bbn [0, h],

cb(f.p) < max||(p(t)) - PVl

Thus, it is enough to find a regular reparametrizatpoof f for which

f(p(t) — p(t)|]2 < h*".
max|If (@(t) - pW)ll2 <

Let @:[0,h] — | be defined as

o(t) = arctan<§:g;> . (3.1)

Sincex,(0) = 0, yn(0) = 1 and by (2.5x;,(0) = 2,

X(0) Yn(0) — %a(0) yn(0)
x2(0) +y2(0)

¢ (0) = =25,>0,

and there existp > 0, such thatp is a regular reparametrization ¢@, h] for
0 < h < hg. But a point(f o ¢)(t) lies on the circular arc defined Hyand on the
ray from the origin top(t). This implies

1(fo@)(t) = P(t)]]2 = [\ X3(t) +YA(t) — 1| < [xa(t) +YA(t) — 1 =",
where the last equality follows from (1.8). Finally,

f t) — p(t)||» < h2"
trer?gﬁll( o) (t) — p(t)]]2 <

and the proof of the lemma is complete. O

An interesting question is, how large can be the angular keafjthe circular
arc, which can be approximated by the previous method. First,ahalregularity
of ¢ has to be assured, i.& has to be small enough. Then the angular length of
the reparametrized circular afe @ can be derived at least asymptotically.

Lemma 3.2 If @is a regular reparametrization of®, h] defined by3.1), then the
length of the circular arcfb ¢ : [0,h] — R? is 25ch+ &'(h?).
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Proof The proof is straightforward. The regularity @f (1.8), (2.5)—(2.8) and the
fact that(1-+t2")~! = 1+ ¢(t?"), simplify the arc-length to

h , 01X () yn(t) — Xn(t) Vit
A e

/h Xﬁ(t)yn(t) - Xn(t) )/n(t) dt =
0 1+t2n

[ GO0 O35 0) L+ O ot = 250+ (1),

4 Concluding remarks

Since we know that the best local approximation at a partiqudart in the func-
tional case is the Taylor expansion, the natural questioestisw good the ap-
proximation can be, ik, andy, are taken as Taylor polynomials for sine and
cosine at = 0. The result is summarized in the following lemma.

Lemma 4.1 Let x, and y, be the degree n Taylor polynomials of sine and cosine,
respectively. Then

1
RO+ =1+ T+ O™,
n
where

— n+1, nis odd,
1 n+2 niseven,

and
{ Mnlif nmod4= 1,2,
Wn ==

—%‘ n! otherwise

The proof is straightforward and will be omitted. The last lemmaficms that
the Taylor polynomials are not an optimal choice if the radistahce is used as
a measure of the approximation order.

The construction proposed by Theorem 2.1 has a very small lopabgima-
tion error, but only interpolates one point on a circular arc. Maeegal results
concerning the Lagrange interpolation ofi points on a circle-like curve by a
parametric polynomial curve of degreeand the same approximation error, i.e.,
2n, arein [2].
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