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Abstract In this paper the approximation of circular arcs by parametric polyno-
mial curves is studied. If the angular length of the circular arc is h, a parametric
polynomial curve of arbitrary degreen∈ N, which interpolates given arc at a par-
ticular point, can be constructed with radial distance bounded by h2n. This is a
generalization of the result obtained by Lyche and Mørken for oddn.
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1 Introduction

The approximation of circular arcs is an important task in Computer Aided Geo-
metric Design (CAGD), Computer Aided Design (CAD) and Computer Aided
Manufacturing (CAM). Though a circle arc can be exactly representedby a ra-
tional quadratic B́ezier curve (or, generally, by rational parametric curve of low
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degree, see [1], e.g.), some CAD/CAM systems require a polynomial representa-
tion of circular segments. Also, some important algorithms, such as lofting and
blending can not be directly applied to rational curves.
On the other hand, circular arcs can not be represented by polynomials exactly,
thus interpolation or approximation has to be used to represent them accurately.

Among others, Lyche and Mørken have studied the problem of approximation
of circular segments by polynomial parametric curves (see [3]). Theyhave found
an excellent explicit approximation by odd degree parametric polynomial curves,
but conjectured that the same problem with even degree could be atough task.
Their method is based on Taylor-type approximation and explicitly provides para-
metric polynomials of odd degreen with high asymptotic approximation order,
i.e., 2n.

In this paper the general case for anyn∈ N is solved. First, the approximation
problem will be stated. Let

fffffffff (ϕ) :=

(

sinϕ
cosϕ

)

, 0≤ ϕ ≤ α < 2π, (1.1)

be a particular parametrization of a circular arc of angular length α. It is enough
to consider arcs of the unit circle only, since any other arc of the same angular
length can be obtained by affine transformations. Our goal is to find a parametric
polynomial curve

pppppppppn := ppppppppp :=

(

xn
yn

)

(1.2)

of degree≤ n with nonconstant scalar polynomialsxn,yn ∈ R[t],

xn(t) :=
n

∑
j=0

a j t
j , yn(t) :=

n

∑
j=0

b j t
j , (1.3)

which provides “the best approximation” of (1.1). The only prescribed interpola-
tion point is fffffffff (0) := (xn(0),yn(0))T := (0,1)T , thusa0 := 0 andb0 := 1 in (1.3).
In CAGD, we are interested mainly in geometric properties of objects. A particular
parametrization is just a representation of an object in a desiredform. Therefore
the approximation error will be considered as a distance betweenset of points on
given curves, i.e., a circular arc and a parametric polynomial in this case. It seems
natural to choose a“radial distance”here (see Figure 1), i.e.,

d( fffffffff , ppppppppp) := max
t∈I

{∣

∣

∣

∣

√

x2
n(t)+y2

n(t)−1

∣

∣

∣

∣

}

, (1.4)

whereI is some interval of observation.
If ppppppppp is a good approximation offffffffff on I then (1.4) is small and

√

x2
n(t)+y2

n(t)≈
1, thus
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∣

∣

∣

√

x2
n(t)+y2

n(t)−1

∣

∣

∣

∣

=

∣

∣x2
n(t)+y2

n(t)−1
∣

∣

√

x2
n(t)+y2

n(t)+1
≈ 1

2

∣

∣x2
n(t)+y2

n(t)−1
∣

∣ ,

and, for computational purposes, it is enough to consider onlythe “error”

e(t) :=
∣

∣x2
n(t)+y2

n(t)−1
∣

∣ . (1.5)
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Fig. 1 Radial distance between circular arc (solid) and a parametric curve approximation
(dashed)

Ideally, e would be zero if a polynomial parametrization of a circular arc would
exist. But if at least one ofxn or yn is of degreen, then (1.3) implies

x2
n(t)+y2

n(t) = (a2
n +b2

n) t2n + · · · 6= 1. (1.6)

Now it follows from (1.5) thate will be small (at least for smallt), if coefficients
at the lower degree terms in (1.6) will vanish. This implies thate will be as small
as possible if

x2
n(t)+y2

n(t) = 1+const· t2n. (1.7)

A proper reparametrization

t → t
2n
√

a2
n +b2

n

transforms (1.7) to
x2

n(t)+y2
n(t) = 1+ t2n, (1.8)

which gives 2n nonlinear equations for 2n unknown coefficients(a j)
n
j=1 and

(b j)
n
j=1.

The paper is organized as follows. In Section 2 the system of nonlinear equa-
tions will be studied and a general closed form solution will be derived. In Sec-
tion 3 the optimal asymptotic approximation order will be confirmed and in the
last section some concluding remarks regarding the optimal approximation of cir-
cular arcs will be given.

2 Solution of the problem

Although the solutions of the system of nonlinear equationsgiven by (1.8) can be
obtained numerically for particular values ofn, finding a closed form solution is
a much more complicated problem. In [3], authors proposed a very nice approach
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to solve this problem. They have used a particular rational parametrization of the
unit circle to obtain the coefficients of the polynomialsxn andyn. Indeed, if

x0(t) :=
2t

1+ t2 , y0(t) :=
1− t2

1+ t2 , t ∈ (−∞,∞), (2.1)

is a parametrization of a unit circle, then the functions

xn(t) := x0(t)− (−1)(n−1)/2 tny0(t),

yn(t) := y0(t)+(−1)(n−1)/2 tnx0(t),

are actually polynomials of degree≤ n for which (1.8) holds. It is also easy to find
their explicit form, but unfortunately ifn is even, their coefficients are no more real
numbers. However, this idea can be applied for evenn too, but slightly different
rational parametrization of the unit circle has to be considered.Namely, let

n = 2k (2r −1), k∈ N0, r ∈ N, (2.2)

and letx0, y0 be redefined as

x0(t) :=
2
√

1−c2 t (1−ct)
1−2ct+ t2 , y0(t) :=

1−2ct+(2c2−1) t2

1−2ct+ t2 , (2.3)

wherec∈ [0,1). It is straightforward to see thatx2
0(t)+y2

0(t) = 1. Note that (2.1) is
a particular case of (2.3) wherec = 0. The following theorem, which has already
been considered in [2] in a different context, gives one of the solutions of the
nonlinear system (1.8) for anyn in a closed form.

Theorem 2.1 Suppose that n, k, and r satisfy(2.2), and let the constants ck, sk be
given as ck := cosψk and sk := sinψk, whereψk := π/2k+1. Further, suppose that
x0 and y0 are defined by(2.3) with c := ck. Then the functions xn and yn, defined
by

(

xn(t)
yn(t)

)

:=

(

1 (−1)r tn

(−1)r+1 tn 1

)(

x0(t)
y0(t)

)

, (2.4)

are polynomials of degree≤ n that satisfy(1.8). Furthermore, their coefficients
are given as

a j =2sk cos(( j −1)ψk) = 2sk Tj−1(ck), j = 1,2, . . . ,n−1, (2.5)

an =2sk cos((n−1)ψk)+(−1)r = 2sk Tn−1(ck)+(−1)r , (2.6)

and

b0 = 1, b1 = 0, (2.7)

b j = −2sk sin(( j −1)ψk) = −2s2
kU j−2(ck), j = 2,3, . . . ,n, (2.8)

where Tj and Uj are Chebyshev polynomials of the first and the second kind.
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Proof The proof given here is an extended version of the proof in [2].
The equation (2.4) yields

xn(t) =
2
√

1−c2
k t (1−ck t)+(−1)r tn (1−2ck t +(2c2

k −1) t2)

1−2ck t + t2 ,

yn(t) =
(−1)r+1 tn

(

2
√

1−c2
k t (1−ck t)

)

+1−2ck t +(2c2
k −1) t2

1−2ck t + t2 .

To verify that the functionxn is a polynomial of the form (1.3), it is enough to see
that

(1−2ck t + t2)
n

∑
j=0

a j t
j = a1 t +(a2−2ck a1) t2

+
n

∑
j=3

(a j −2ck a j−1 +a j−2) t j +(−2ck an +an−1) tn+1 +an tn+2

= 2
√

1−c2
k t (1−ck t)+(−1)r tn (1−2ck t +(2c2

k −1) t2).

A comparison of the coefficients implies the linear recurrence

a1 = 2sk, a2 = ck a1, a j −2ck a j−1 +a j−2 = 0, j = 3,4, . . . ,n−1, (2.9)

with additional conditions

an−2ck an−1 +an−2 =(−1)r ,

2ck an−an−1 =(−1)r 2ck, (2.10)

an =(−1)r (2c2
k −1).

Similarly, for yn it is enough to see that

(1−2ck t + t2)
n

∑
j=0

b j t
j = b0 +(b1−2ckb0) t +

n

∑
j=2

(b j −2ck b j−1 +b j−2) t j

+(−2ck bn +bn−1) tn+1 +bn tn+2

= (−1)r+1 tn
(

2
√

1−c2
k t (1−ck t)

)

+1−2ck t +(2c2
k −1) t2.

Here, the conditions onb j are

b1 = 0, b2 = −2s2
k, b j −2ck b j−1 +b j−2 = 0, j = 3,4, . . . ,n, (2.11)

and

−2ck bn +bn−1 =(−1)r+12sk, (2.12)

bn =(−1)r 2skck.

The theory of linear recurrence equations gives the general form of the solution of
(2.9), namely

a j = Aei ψk j +Be−i ψk j ,
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wherei2 := −1. From the initial conditions

a1 = 2sk = Aei ψk +Be−i ψk,

a2 = 2cksk = Ae2i ψk +Be−2i ψk,

and the relationeiψk = ck + isk, it is easy to obtainA = ske−i ψk andB = skei ψk.
Therefore,

a j = 2sk cos(( j −1)ψk) = 2sk Tj−1(ck), j = 1,2, . . . ,n−1.

Additional conditions (2.10) imply

an = 2
√

1−c2
k cos((n−1)ψk)+(−1)r = 2sk Tn−1(ck)+(−1)r .

Since the general recurrence relation (2.11) is the same as in (2.9),its solution
reads

b j = Cei ψk j +De−i ψk j .

The initial conditions

b1 = 0 = Cei ψk +De−i ψk,

b2 = −2s2
k = Ce2i ψk +De−2i ψk,

imply C = i ske−iψk, D = −i skeiψk. Hence

b j = isk

(

eiψk( j−1)−e−iψk( j−1)
)

= −2sk sin(( j −1)ψk) = −2s2
kU j−2(ck),

for j = 1,2, . . . ,n. Additional conditions (2.12) are satisfied and the proof is com-
plete. ⊓⊔

3 Approximation order

The study of the approximation order in parametric case is not a trivial task. The
main problem is how the distance between parametric objects is measured. Since
objects are usually considered as sets of points, the distancebetween sets is nat-
urally involved. This leads to a very well known Hausdorff distancedH , which
is difficult to compute in practice. As its upper bound the so called parametric
distancedP has been proposed by Lyche and Mørken in [3].

Definition 3.1 Let fffffffff 1 and fffffffff 2 be two parametric curves defined on the intervalsI1
andI2. The parametric distance betweenfffffffff 1 and fffffffff 2 is defined by

dP( fffffffff 1, fffffffff 2) = inf
φ

max
t∈I2

‖ fffffffff 1(φ(t))− fffffffff 2(t)‖,

whereφ : I2 → I1 is a regular reparametrization, i.e.,φ ′ 6= 0 onI2.

Their result will be used here to prove the following lemma.
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Lemma 3.1 Let a circular arc fffffffff be defined by(1.1) and its parametric approx-
imation ppppppppp by (1.2). Let the coefficients of xn and yn be given by(2.5)–(2.8). If
ppppppppp : [0,h] → R

2, where h is sufficiently small, then

dH( fffffffff , ppppppppp) ≤ dP( fffffffff , ppppppppp) ≤ d( fffffffff , ppppppppp) ≤ h2n,

where d is defined by(1.4).

Proof By [3], dP is a metric on a set of parametric curves on[0,h]. Obviously, for
a particularφ , which is a regular reparametrization offffffffff on [0,h],

dP( fffffffff , ppppppppp) ≤ max
t∈[0,h]

|| fffffffff (φ(t))− ppppppppp(t)||2.

Thus, it is enough to find a regular reparametrizationφ of fffffffff for which

max
t∈[0,h]

|| fffffffff (φ(t))− ppppppppp(t)||2 ≤ h2n.

Let φ : [0,h] → I be defined as

φ(t) := arctan

(

xn(t)
yn(t)

)

. (3.1)

Sincexn(0) = 0, yn(0) = 1 and by (2.5)x′n(0) = 2sk,

φ ′(0) =
x′n(0)yn(0)−xn(0)y′n(0)

x2
n(0)+y2

n(0)
= 2sk > 0,

and there existsh0 > 0, such thatφ is a regular reparametrization on[0,h] for
0 < h < h0. But a point( fffffffff ◦φ)(t) lies on the circular arc defined byfffffffff and on the
ray from the origin toppppppppp(t). This implies

||( fffffffff ◦φ)(t)− ppppppppp(t)||2 = |
√

x2
n(t)+y2

n(t)−1| ≤ |x2
n(t)+y2

n(t)−1| = t2n,

where the last equality follows from (1.8). Finally,

max
t∈[0,h]

||( fffffffff ◦φ)(t)− ppppppppp(t)||2 ≤ h2n

and the proof of the lemma is complete. ⊓⊔

An interesting question is, how large can be the angular length of the circular
arc, which can be approximated by the previous method. First of all, the regularity
of φ has to be assured, i.e.,h has to be small enough. Then the angular length of
the reparametrized circular arcfffffffff ◦φ can be derived at least asymptotically.

Lemma 3.2 If φ is a regular reparametrization on[0,h] defined by(3.1), then the
length of the circular arc fffffffff ◦φ : [0,h] → R

2 is 2sk h+O(h2).
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Proof The proof is straightforward. The regularity ofφ , (1.8), (2.5)–(2.8) and the
fact that(1+ t2n)−1 = 1+O(t2n), simplify the arc-length to

s=
∫ h

0

∥

∥( fffffffff ◦φ)′(t)
∥

∥

2 dt =
∫ h

0

|x′n(t)yn(t)−xn(t)y′n(t)|
x2

n(t)+y2
n(t)

dt =

∫ h

0

x′n(t)yn(t)−xn(t)y′n(t)
1+ t2n dt =

∫ h

0
(x′n(t)yn(t)−xn(t)y′n(t))(1+O(t2n))dt = 2sk h+O(h2).

⊓⊔

4 Concluding remarks

Since we know that the best local approximation at a particularpoint in the func-
tional case is the Taylor expansion, the natural question arises how good the ap-
proximation can be, ifxn and yn are taken as Taylor polynomials for sine and
cosine att = 0. The result is summarized in the following lemma.

Lemma 4.1 Let xn and yn be the degree n Taylor polynomials of sine and cosine,
respectively. Then

x2
n(t)+y2

n(t) = 1+
1

wn
tm+O(tm+1),

where

m :=

{

n+1, n is odd,
n+2, n is even,

and

wn =

{

m
2 n! if nmod4= 1,2,

−m
2 n! otherwise.

The proof is straightforward and will be omitted. The last lemma confirms that
the Taylor polynomials are not an optimal choice if the radial distance is used as
a measure of the approximation order.

The construction proposed by Theorem 2.1 has a very small local approxima-
tion error, but only interpolates one point on a circular arc. More general results
concerning the Lagrange interpolation of 2n points on a circle-like curve by a
parametric polynomial curve of degreen and the same approximation error, i.e.,
2n, are in [2].
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