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Abstract. In this paper, a (d + 1)-pencil lattice on a simplex in Rd is studied.
The lattice points are explicitly given in barycentric coordinates. This enables the
construction and the efficient evaluation of the Lagrange interpolating polynomial
over a lattice on a simplex. Also, the barycentric representation, based on shape
parameters, turns out to be appropriate for the lattice extension from a simplex to
a simplicial partition.
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1. Introduction

The approximation of multivariate functions by the polynomial inter-
polation is one of the fundamental approaches in multivariate approxi-
mation theory. Among crucial steps in this process, one is particularly
important, namely a selection of interpolation points. It is well known
that the existence and the uniqueness of the Lagrange interpolant in
Πd

n (d > 1), the space of polynomials in d variables of total degree ≤ n,
heavily depends on the geometry of the interpolation points. This fact
makes interpolation in several variables much more complicated than
the univariate one. Although a simple algebraic characterization states
that a set of interpolation points is correct in Πd

n if and only if they
do not lie on an algebraic hypersurface of degree ≤ n, it is useless in
practical computations, since in general it can not be checked in the
floating point arithmetic. Thus a considerable research has been focused
on finding configurations of points which guarantee the existence and
the uniqueness of the Lagrange interpolant.

Perhaps the most frequently used configurations of this type are
lattices which satisfy the well-known GC (geometric characterization)
condition (see [2]). They have a nice geometric background, since they
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are constructed as intersections of hyperplanes. Furthermore, they pro-
vide an easy way to construct the Lagrange basis polynomials as prod-
ucts of linear factors. Among several known classes of lattices ([1], [3]),
principal lattices ([2]), and their generalization, (d + 1)-pencil lattices
([6]) are the most important.

The first step in multivariate Lagrange interpolation in Rd is usually
a construction of interpolation points on a simplex, a corner stone of
the d dimensional Euclidean space. This leads to a natural general-
ization, lattices over triangulations, or more generally, over simplicial
partitions. Two main questions arise: what are explicit coordinates of
lattice points and how should such lattices be put together to ensure
at least continuity over common faces of simplices.

In this paper we use a straightforward approach to answer the first
question. We provide a closed form formula for lattice points on a
simplex in barycentric coordinates. The novel representation, based on
control points, provides shape parameters of the lattice with a clear
geometric interpretation. Furthermore, the corresponding Lagrange in-
terpolating polynomial is derived. Since the Lagrange basis polynomials
are products of linear factors, some simplifications are done in order to
decrease the amount of work needed.

This representation of lattices is useful in many practical appli-
cations, such as an explicit interpolation of multivariate functions,
in particular, approximation of functionals defined on a simplex (nu-
merical methods for multidimensional integrals, e.g.), finite elements
methods in solving partial differential equations . . . . On the other hand,
we provide fundamental tools for the construction of continuous splines
over simplicial partitions, the problem which has already been observed
in [4] but only for triangulations.

The paper is organized as follows. In the next section a novel defini-
tion of a lattice, based on control points, is given and the barycentric
coordinates of lattice points are derived. In Section 3 the Lagrange in-
terpolation polynomial is presented, and in the last section an example
is given to conclude the paper.

2. Barycentric form of a (d + 1)(d + 1)(d + 1)(d + 1)(d + 1)(d + 1)(d + 1)(d + 1)(d + 1)-pencil lattice in RdRdRdRdRdRdRdRdRd

In [6] an explicit representation of a (d + 1)-pencil lattice of order n
on a d-simplex was provided. This approach heavily depends on homo-
geneous coordinates, and a nice illustrative explanation can be found
in [7], where the cases perhaps most often met in practice, i.e., d = 2
and d = 3, are outlined. Here our goal is an explicit representation
in barycentric coordinates using a novel approach, since this enables a
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Lattices on a simplex 3

natural extension from a simplex to a simplicial partition (see [4] for
the case d = 2).

A simplex in Rd is a convex hull of d + 1 vertices TTTTTTTTT i, i = 0, 1, . . . , d.
Since for our purposes the ordering of the vertices of the simplex will
be important, the notation

4 := 〈TTTTTTTTT 0, TTTTTTTTT 1, . . . , TTTTTTTTT d 〉,

which defines a simplex with a prescribed order of the vertices TTTTTTTTT i, will
be used. The standard simplex of vertices

TTTTTTTTT i = (δi,j)
d
j=1 , i = 0, 1, . . . , d, δi,j :=

{
1, i = j,
0, i 6= j,

will be denoted by 4d.
A (d + 1)-pencil lattice of order n on 4 is a set of

(n+d
d

)
points,

generated by particular d + 1 pencils of n + 1 hyperplanes, such that
each lattice point is an intersection of d+1 hyperplanes, one from each
pencil. Furthermore, each pencil intersects at a center

CCCCCCCCCi ⊂ Rd, i = 0, 1, . . . , d,

a plane of codimension two. The lattice is actually based upon affinely

T0 T1

T2

T3

P0

P1P2

P3

C2 C0

C1

C3

Figure 1. A 3-simplex 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉 in R3, lattice control points PPPPPPPPP i and centers
CCCCCCCCCi.

independent control points

PPPPPPPPP 0, PPPPPPPPP 1, . . . , PPPPPPPPP d, PPPPPPPPP i ∈ Rd,
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where PPPPPPPPP i lies on the line through TTTTTTTTT i and TTTTTTTTT i+1 outside of the seg-
ment TTTTTTTTT iTTTTTTTTT i+1 (Fig. 1). The center CCCCCCCCCi is then uniquely determined by a
sequence of control points

PPPPPPPPP i, PPPPPPPPP i+1, . . . , PPPPPPPPP i+d−2, (1)

where
{PPPPPPPPP i+1, PPPPPPPPP i+2, . . . , PPPPPPPPP i+d−2} ⊆ CCCCCCCCCi ∩ CCCCCCCCCi+1.

Here and throughout the paper, indices of points, centers, lattice pa-
rameters, etc., are assumed to be taken modulo d + 1.

Thus with the given control points, the lattice on a simplex is deter-
mined. Quite clearly, the geometric construction of the lattice assures
CCCCCCCCCi ∩4 = ∅, i = 0, . . . , d, and also that each CCCCCCCCCi is lying in a supporting
hyperplane of a facet 〈TTTTTTTTT i, TTTTTTTTT i+1, . . . , TTTTTTTTT i+d−1 〉 of 4 (Fig. 2).

T0

T2

T1

T3

T0

T2

T1

T3

Figure 2. The 4-pencil lattices of order n = 2, 3 on a simplex4 and the intersections
of hyperplanes through the centers of the lattice with facets of 4.

Let γγγγγγγγγ = (γ1, . . . , γd), γi ∈ N0, denote an index vector and let

|γγγγγγγγγ| :=
d∑

i=1

γi, [j]α :=





1− αj

1− α
, α 6= 1,

j, α = 1,
j ∈ N0.

A (d + 1)-pencil lattice of order n on the standard simplex 4d, as
introduced in [6], is given by free parameters

α > 0 and βββββββββ := (β0, β1, . . . , βd) , βi > 0, i = 0, . . . , d.

Control points PPPPPPPPP i = PPPPPPPPP i (α, βββββββββ) of the lattice on 4d are determined as

PPPPPPPPP 0 =


 β1

β1 − β0
, 0, 0, . . . , 0︸ ︷︷ ︸

d−1


 ,

PPPPPPPPP i =


0, 0, . . . , 0︸ ︷︷ ︸

i−1

,
βi

βi − βi+1
,

βi+1

βi+1 − βi
, 0, 0, . . . , 0︸ ︷︷ ︸

d−1−i


 , i = 1, . . . , d− 1,
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PPPPPPPPP d =


0, 0, . . . , 0︸ ︷︷ ︸

d−1

,
βd

βd − αnβ0


 . (2)

If βi+1 = βi for some 0 ≤ i ≤ d (and α = 1 if i = d), then the control
point PPPPPPPPP i is at the ideal line and the hyperplanes in the corresponding
pencil are parallel. Further, lattice points are given as

(
QQQQQQQQQγγγγγγγγγ

)
|γγγγγγγγγ|≤n

:=
(
QQQQQQQQQγγγγγγγγγ (α, βββββββββ)

)
|γγγγγγγγγ|≤n

,

where

Qγγγγγγγγγ (α, βββββββββ) =
1
D

(
β1α

|γγγγγγγγγ|−γ1 [γ1]α , β2α
|γγγγγγγγγ|−γ1−γ2 [γ2]α ,

β3α
|γγγγγγγγγ|−γ1−γ2−γ3 [γ3]α , . . . , βdα

0 [γd]α
)

, (3)

and

D = β0α
|γγγγγγγγγ| [n− |γγγγγγγγγ|]α + β1α

|γγγγγγγγγ|−γ1 [γ1]α + · · ·+ βdα
0 [γd]α .

Since the points PPPPPPPPP i, TTTTTTTTT i and TTTTTTTTT i+1 are collinear, the barycentric coordi-
nates PPPPPPPPP i,4 of PPPPPPPPP i w.r.t. 4 are particularly simple,

PPPPPPPPP i,4 =


0, 0, . . . , 0︸ ︷︷ ︸

i

,
1

1− ξi
,− ξi

1− ξi
, 0, 0, . . . , 0︸ ︷︷ ︸

d−1−i


 , i = 0, 1, . . . , d− 1,

PPPPPPPPP d,4 =


− ξd

1− ξd
, 0, 0, . . . , 0︸ ︷︷ ︸

d−1

,
1

1− ξd


 , (4)

where
ξξξξξξξξξ = (ξ0, ξ1, . . . , ξd)

are new free parameters of the lattice. Note that ξi > 0, since PPPPPPPPP i is not
on the line segment TTTTTTTTT iTTTTTTTTT i+1, and that a special form of barycentric co-
ordinates is used in order to cover also the cases of parallel hyperplanes
(ξi = 1). We are now able to give the relations between parameters βββββββββ
and ξξξξξξξξξ.

Theorem 1. Let 4 ⊂ Rd be a d-simplex, and let the barycentric
representation PPPPPPPPP i,4, i = 0, 1, . . . , d, of control points PPPPPPPPP i of a (d + 1)-
pencil lattice on 4 be prescribed by ξξξξξξξξξ = (ξ0, ξ1, . . . , ξd) as in (4). Then
the lattice is determined by parameters α and βββββββββ that satisfy

α = n

√√√√
d∏

i=0

ξi,
βi

β0
=

i−1∏

j=0

ξj , i = 1, 2, . . . , d. (5)
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Proof. An affine map A carries 4 to the standard simplex 4d,
where the lattice is given by (3) with the control points (2). The i-
th barycentric coordinate of a point xxxxxxxxx = (x1, x2, . . . , xd) w.r.t. 4d =
〈TTTTTTTTT 0, TTTTTTTTT 1, . . . , TTTTTTTTT d 〉, TTTTTTTTT i = (δi,j)

d
j=1, is obtained as

vol(〈
i−1︷ ︸︸ ︷

TTTTTTTTT 0, TTTTTTTTT 1, . . . , TTTTTTTTT i−2, xxxxxxxxx, TTTTTTTTT i, . . . , TTTTTTTTT d 〉)
vol (4d)

=





1−
d∑

j=1

xj , i = 1,

xi−1, i ≥ 2,

(6)

where vol is a signed volume in Rd. So it is straightforward to compute
the barycentric coordinates of (2) w.r.t. 4d. The inverse map A−1

brings the control points (2) as well as the lattice from 4d back to 4.
But barycentric coordinates are affinely invariant, so the barycentric
coordinates of transformed control points w.r.t. 4 do not change and
are given by (4). Therefore

β1

β1 − β0
= − ξ0

1− ξ0
,

βi

βi − βi+1
=

1
1− ξi

, i = 1, 2, . . . , d− 1,

βd

βd − αnβ0
=

1
1− ξd

.

This describes the system of d + 1 equations for d + 1 unknowns

α,
βi

β0
, i = 1, 2, . . . , d.

Since the solution is given by (5), the proof is completed. 2

Note that, in contrast to parameters βββββββββ, the introduced parameters ξξξξξξξξξ
have a clear geometric meaning, and can be used as shape parameters
of the lattice (see [4] and Fig. 3, e.g.).

Let us shorten the notation with the following operator

W : Rk
+ → Rk

+, Wxxxxxxxxx :=
1

111111111T xxxxxxxxx
xxxxxxxxx, W000000000 := 000000000.

Corollary 1. The barycentric coordinates of a (d+1)-pencil lattice of
order n on 4 = 〈TTTTTTTTT 0, TTTTTTTTT 1, . . . , TTTTTTTTT d 〉 w.r.t. 4 are determined by ξξξξξξξξξ as

Bγγγγγγγγγ = W
(
αn−γ0 [γ0]α , ξ0α

n−γ0−γ1 [γ1]α , . . . , ξ0 · · · ξd−1α
0 [γd]α

)
, (7)

where γγγγγγγγγ ∈ Nd+1
0 , |γγγγγγγγγ| = n, and αn =

∏d
i=0 ξi.
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Proof. By applying (6) and (5) to (3), one obtains

Bγγγγγγγγγ = W
(
α|γγγγγγγγγ| [n− |γγγγγγγγγ|]α , ξ0α

|γγγγγγγγγ|−γ1 [γ1]α , . . . , ξ0 · · · ξd−1α
0 [γd]α

)
,

where γγγγγγγγγ ∈ Nd
0, |γγγγγγγγγ| ≤ n. To make the formula more symmetric, we can,

without loss of generality, replace the index vector γγγγγγγγγ = (γ1, . . . , γd) by
the index vector γγγγγγγγγ = (γ0, γ1, . . . , γd), γ0 := n− |γγγγγγγγγ|, and (7) follows. 2

Note that ξd appears in (7) implicitly, since αn =
∏d

i=0 ξi.

3. Lagrange interpolation

One of the main advantages of lattices is that they provide an explicit
construction of Lagrange basis polynomials as products of linear fac-
tors. Therefore some simplifications can be done in order to decrease the
amount of work needed. Details on how this can be done in barycentric
coordinates are summarized in the following theorem.

Theorem 2. Let a (d + 1)-pencil lattice of order n on 4 be given in
the barycentric form by parameters ξξξξξξξξξ = (ξ0, ξ1, . . . , ξd) as in Corollary 1
and let data

fγγγγγγγγγ ∈ R, γγγγγγγγγ = (γ0, γ1, . . . , γd) ∈ Nd+1
0 , |γγγγγγγγγ| = n,

be prescribed. The polynomial pn ∈ Πd
n that interpolates the data(

fγγγγγγγγγ
)
|γγγγγγγγγ|=n

at the points
(
Bγγγγγγγγγ

)
|γγγγγγγγγ|=n

is given as

pn(xxxxxxxxx) =
∑

|γγγγγγγγγ|=n

fγγγγγγγγγ Lγγγγγγγγγ(xxxxxxxxx), xxxxxxxxx ∈ Rd+1,
d∑

i=0

xi = 1. (8)

The Lagrange basis polynomial Lγγγγγγγγγ is a product of hyperplanes, i.e.,

Lγγγγγγγγγ(xxxxxxxxx) =
d∏

i=0

γi−1∏

j=0

hi,j,γγγγγγγγγ(xxxxxxxxx), (9)

where

hi,j,γγγγγγγγγ (xxxxxxxxx) :=
ci,γγγγγγγγγ

1− [n− γi]α
[n− j]α

(
xi +

(
1− [n]α

[n− j]α

)
qi (xxxxxxxxx)

)
, (10)

and

qi (xxxxxxxxx) :=
i+d∑

t=i+1

1
t−1∏
k=i

ξk

xt, ci,γγγγγγγγγ :=

(
1− [n− γi]α

[n]α

)
1(

Bγγγγγγγγγ
)
i

.
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Proof. Let γγγγγγγγγ = (γ0, γ1, . . . , γd), |γγγγγγγγγ| = n, be a given index vector. Let
us construct the Lagrange basis polynomial Lγγγγγγγγγ that satisfies

Lγγγγγγγγγ
(
Bγγγγγγγγγ′

)
=

{
1, γγγγγγγγγ′ = γγγγγγγγγ,
0, γγγγγγγγγ′ 6= γγγγγγγγγ.

Based upon the GC approach, this polynomial can be found as a
product of hyperplanes Hi,j,γγγγγγγγγ with the equations hi,j,γγγγγγγγγ = 0, j =
0, 1, . . . , γi − 1, i = 0, 1, . . . , d, where Hi,j,γγγγγγγγγ contains the lattice points
indexed by

(η0, η1, . . . , ηi−1, j, ηi+1, . . . , ηd) ,
d∑

k=0

k 6=i

ηk = n− j.

Quite clearly, the total degree of such a polynomial is bounded above by∑d
i=0

∑γi−1
j=0 1 = n. But, for fixed i and j, 0 ≤ j ≤ γi − 1, a hyperplane

Hi,j,γγγγγγγγγ is determined by the center CCCCCCCCCi+1 and the point UUUUUUUUU at the edge
〈TTTTTTTTT i, TTTTTTTTT i+1 〉 with the barycentric coordinates w.r.t. 〈TTTTTTTTT i, TTTTTTTTT i+1 〉 equal to

(
[n]α − [n− j]α

[n]α − [n− j]α + [n− j]α ξi
,

[n− j]α ξi

[n]α − [n− j]α + [n− j]α ξi

)
.

The equation hi,j,γγγγγγγγγ = 0 is by (1) given as

det (xxxxxxxxx,UUUUUUUUU,PPPPPPPPP i+1, PPPPPPPPP i+2, . . . , PPPPPPPPP i+d−1) = 0. (11)

Let us recall the barycentric representation (4) of PPPPPPPPP i. A multiplication
of the matrix in (11) by a nonsingular diagonal matrix

diag (1, [n]α − [n− j]α + [n− j]α ξi, 1− ξi+1, 1− ξi+2, . . . , 1− ξi+d−1) ,

and a circular shift of columns simplifies the equation (11) to

det




xi xi+1 . . . . . . xi+d

[n]α − [n− j]α [n− j]α ξi

1 − ξi+1

1 − ξi+2

. . . . . .
1 − ξi+d−1




= 0.

A straightforward evaluation of the determinant yields

[n− j]α

(
i+d−1∏

k=i

ξk

)
xi − ([n]α − [n− j]α)

i+d∑

t=i+1

xt

(
i+d−1∏

k=t

ξk

)
= 0,
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and further

[n− j]α xi − ([n]α − [n− j]α)
i+d∑

t=i+1

1
t−1∏
k=i

ξk

xt =

= [n− j]α xi − ([n]α − [n− j]α) qi (xxxxxxxxx) = 0.

If j > 0, this gives also a relation

qi (xxxxxxxxx) =
[n− j]α

[n]α − [n− j]α
xi

for a particular xxxxxxxxx that satisfies (11). But 0 ≤ j < γi ≤ n, so

qi
(
Bγγγγγγγγγ

)
=

[n− γi]α
[n]α − [n− γi]α

(
Bγγγγγγγγγ

)
i

simplifies the equation of the hyperplane

hi,j,γγγγγγγγγ (xxxxxxxxx) =
[n− j]α xi − ([n]α − [n− j]α) qi (xxxxxxxxx)

[n− j]α
(
Bγγγγγγγγγ

)
i
− ([n]α − [n− j]α) qi

(
Bγγγγγγγγγ

) (12)

to the assertion (10). Consider now an index vector γγγγγγγγγ′ 6= γγγγγγγγγ. Since
|γγγγγγγγγ′| = |γγγγγγγγγ| = n, there must exist an index i, 0 ≤ i ≤ d, such that
γ′i < γi. So γ′i appears as one of the indices j in the product (9). Thus
Lγγγγγγγγγ

(
Bγγγγγγγγγ′

)
= 0. But from (12) one deduces Lγγγγγγγγγ

(
Bγγγγγγγγγ

)
= 1, and the proof

is completed. 2

Note that hi,j,γγγγγγγγγ in (10) depends only on the i-th component of the
corresponding point Bγγγγγγγγγ . This is not obvious from the classical rep-
resentation of Lagrange basis polynomial, and is vital for an efficient
computation.

Let us now give some remarks on how to organize the computations.
Let 4 be a simplex in Rd with vertices VVVVVVVVV i, i = 0, . . . , d, given in
Cartesian coordinates. The Cartesian coordinates of the lattice points
are

(
Qγγγγγγγγγ

)
i
=

d∑

j=0

(
Bγγγγγγγγγ

)
j+1

(Vj)i , i = 1, 2, . . . , d.

If one is looking for an explicit expression of the Lagrange interpolating
polynomial pn(uuuuuuuuu), uuuuuuuuu = (u1, u2, . . . , ud) ∈ Rd, over the given 4, the
symbolic system

d∑

j=0

(VVVVVVVVV j)i xj = ui, i = 1, 2, . . . , d,
d∑

j=0

xj = 1,
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has to be solved. This leads to the solution of the form

xj = gj(uuuuuuuuu), j = 0, 1, . . . , d. (13)

After inserting (13) into (8), one obtains the interpolating polynomial
pn(uuuuuuuuu) over the lattice on 4.

Let now UUUUUUUUU be an arbitrary point in 4. We would like to efficiently
evaluate the interpolating polynomial pn at the point UUUUUUUUU . The previous
observation gives one of the possible ways, but one can use a more
efficient method by computing the barycentric coordinates ŨUUUUUUUU of the
point UUUUUUUUU w.r.t. 4. They can be obtained by solving a linear system

(
1 1 · · · 1

VVVVVVVVV 0 VVVVVVVVV 1 · · · VVVVVVVVV d

)
ŨUUUUUUUU =

(
1
UUUUUUUUU

)
.

By inserting ŨUUUUUUUU into (8), the desired value pn(UUUUUUUUU) is obtained.
It can be shown that the computational cost needed for the deriva-

tion of the lattice points on an arbitrary simplex 4 and for the evalu-
ation of the Lagrange polynomial over 4 are roughly equivalent to the
one presented in [6].

4. Example

In this section the results of the paper will be illustrated by an example
for the planar case, i.e., d = 2, where a 2-simplex is a triangle 4 :=
〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 2 〉. Let a 3-pencil lattice of order 3 on 4 be given by control
points PPPPPPPPP 0, PPPPPPPPP 1, PPPPPPPPP 2 ∈ R2 and let the data fγγγγγγγγγ ∈ R, |γγγγγγγγγ| = 3, at lattice
points be prescribed. Barycentric coordinates w.r.t. 4 of the lattice on
4 are given by free parameters ξ0, ξ1 and ξ2 as

Bγγγγγγγγγ = W
(
αγ1+γ2 [γ0]α , ξ0α

γ2 [γ1]α , ξ0ξ1 [γ2]α
)
,

α = 3
√

ξ0ξ1ξ2, |γγγγγγγγγ| = 3. Let us now compute the Lagrange interpo-
lating polynomial p3(xxxxxxxxx), xxxxxxxxx ∈ R3,

∑2
i=0 xi = 1, over the lattice that

interpolates data fγγγγγγγγγ sampled from the surface given by

f(ζζζζζζζζζ) = 3e−(ζ2
1+ζ2

2 ) + e−2(ζ2
1+ζ2

2 ) + 3. (14)

By Theorem 2,

p3(xxxxxxxxx) =
∑

|γγγγγγγγγ|=3

fγγγγγγγγγLγγγγγγγγγ(xxxxxxxxx),
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where Lγγγγγγγγγ , |γγγγγγγγγ| = 3, is equal to one of the following cases
∏2

j=0 hi,j , ∃ i, γi = 3,

( (
α2+α+

∏j−1

k=i
ξk

)3

α2(1+α+α2)
(∏j−1

k=i
ξk

)
) (

hj,0
∏1

k=0 hi,k

)
, ∃ i < j, γi = 2, γj = 1,




(
α2+(α+1)

∏i−1

k=j
ξk

)3

α2(1+α+α2)

(∏i−1

k=j
ξk

)2




(
hj,0

∏1
k=0 hi,k

)
, ∃ i > j, γi = 2, γj = 1,

(
(α2+ξ0(α+ξ1))3

α3ξ2
0ξ1

) (∏2
i=0 hi,0

)
, γγγγγγγγγ = (1, 1, 1),

with

hi,j(xxxxxxxxx) = xi +
[n− j]α − [n]α

[n− j]α ξi
xi+1 +

[n− j]α − [n]α
[n− j]α ξi ξi+1

xi+2.

Combining these with the results in [4], where 3-pencil lattices on
triangulations have been studied, a continuous piecewise polynomial
interpolant over the triangulation can be obtained (Fig. 3).

Figure 3. The surface (14) over a star ([5]) with two different continuous piecewise
polynomial interpolants.
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