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Abstract

In this paper, geometric Hermite interpolation by planasic@@! splines is studied. Three
data points and three tangent directions are interpolagedarh polynomial segment. Suf-
ficient conditions for the existence of su@t spline are determined that cover most of
the cases encountered in practical applications. Theeexistrequirements are based only
upon geometric properties of data and can easily be verifiedivance. The optimal ap-
proximation order six is confirmed, too.

Key words: Cubic spline curve, Hermite geometric interpolati@t, continuity,
Nonlinear equations, Existence, Approximation order.

1 Introduction

Geometric interpolation by parametric polynomial curves lgained a lot of at-
tention since it was introduced in [1]. The interpolants efgpb only on geometric
guantities such as data points, tangent directions, awestetc. But the parame-
ters at which the interpolant should pass through a poingnit@des of tangents or
curvatures may not be prescribed in advance. This ofteritsgawa higher approx-
imation order, and in a fact that geometric interpolantagéehuman eye more than
their linear counterparts. But, what makes these schenmesvgbat difficult are the
nonlinear problems included, so questions like the exegtesf the solution, the
approximation order and an efficient implementation neebet@onsidered. This
is the reason why most of the results are obtained by asyioptadlysis ([2], [3],
[4], [5], [6], [7], etc.). But only a few papers deal with geetric conditions for the
existence of the solution ([8], [9], [10], [11], etc.). An@dlent recent overview of
the results on planar Hermite geometric interpolationvegiin [12].
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In this paper, geometric interpolation by planar HermiteicuG! spline curves

that interpolate three points and three tangent direcbrevery segment is stud-
ied. Entirely geometric conditions that imply the existerof the interpolant are
given, and optimal approximation order is confirmed. Thebf@m considered is
the following. Suppose than2+ 1 points and tangent directions

TieR? dieR?% Ti#Ti, |di,=1 i=0/1,...,2m

are prescribed. Find a regular cuk®é spline curveP : [0, 1] — R? with breakpoints

(t2){%o,
O=th<t1 < - <tomi1<tom:=1,

that interpolates the data poiriis and tangent directiordy at parameters,

P(ti):Ti, mpl(ti):div i20717"'72m7 (l)

where(tyi_1), are the unknowns. Note that (1) makes sense e@hjifmps at a
breakpointy; since the tangent direction is continuous. This interpatescheme is
quite clearly local. Namely, the change of one point or ongéat direction effects
only those segments that the point or the direction belongSa all the analysis
and estimations can be done locally.

For a motivation, let us consider some numerical examplsshafirst one suppose
that the data are sampled from an exponential and logactbpnial

cost
te[0,3m,  fy(t):=log(1+1)  te[0,4m,

t > cost
sint sint

fi(t) ::exp(z1

at equidistantly chosen parameters in the parameter doinaking 1 interpolating
G! spline curves composed of five segmentsme: 5, are shown for each cunfg
andf,. The parametric error estimates ([13]) betwdgnf, and their interpolants
are

dist(P, f;) =0.007915 dist(P, f,) =0.051094

Considering a single segment case, Table 1 numericallyestigthat the approxi-
mation order is optimal, i.e., 6. However, the data do notitede sampled from
smooth curves only, they can be provided in some other waybegiven by the

user for design purposes, obtained from some other appincaitc. The data do
not need to be convex either. Fig 2 shows some more exampleasone can see,
the spline follows the shape of the data quite nicely.

The main results of the paper are given in the next two thesrem

Theorem 1 If on every segmerfiib,_»,ty], £ =1,2,...,m, one of the sufficient con-
ditions prescribed by Theorem 10, 11, 13 or 15 is fulfilleéntthe G spline curve
P exists.



Fig. 1. The interpolatings! spline curved for data obtained from curvek, (left) and f,
(right).

Table 1

The errors between curvds and f, and their polynomial geometric interpolants.

Interval Approximation error Decay exponen
f, f, f, f,
[0, 3.3754x 1072 | 2.2251x 1071 / /
0, 1.6644x 102 | 1.0817x 101 6.71 6.85

7.6630x 1072 | 5.1067x 1072 | 6.59 6.37

o

3.2233x 1073 | 2.2485x 102 | 6.49 6.14

o

1.2017x 1073 | 8.8151x 1073 | 6.40 6.07

3.7917x 104 | 2.8939x 103 | 6.33 6.11

o

0.3807x 10°° | 7.2252x 104 | 6.26 6.22

o

e e e e | [ [

1.5773x107° | 1.4194x 1074 | 6.20 6.39
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Fig. 2. CubicG! spline curved for given data points and tangent directions.

Theorem 2 Suppose that the data are sampled from a smooth convex rezarks:
metric curveff: [a,b] — R?,

1 .
Ti= f(s>7 di:mf,(S), a=99<s1< - <Sm=>b,i=0,1,...,2m,



and let h:=max{As : i =1,2,...,2m— 1}. Then one can find a constarg i O
such that for all h,0 < h < hg, a cubic G spline curvePPthat satisfie€1) exists,
and approximated fvith the optimal approximation order six.

The outline of the paper is the following. In Section 2 a syst& equations is
derived for a single segment case, and in Section 3 the ¢onslithat imply its
solution to attain the values that are not allowed are giVéese results together
with the number of solutions for some particular data leatiécexistence theorems
of Section 4. They are proved in Section 5 by the help of comaxotopy and
Brouwer’s degree argument. The last section deals with pgytin analysis and
contains the proof of Theorem 2.

2 Single segment case

Since theG! interpolation scheme (1) is local, all the properties caddtermined
from the simplest case = 1. So from now on to the end of the paper we assume
m= 1. The equations (1) simplify to

P()=T;, P/(ti) =aidi, a; >0, i=0,12, (2)

with 0 :=tg <t; <ty :=1. One is thus left with twelve equations for eight unknown
coefficients ofP, and four unknown parametess ap, a1 andas,.

Remark 3 If the tangent directions are not normalized the existeritbasolution
of (2) is not affected. Only the magnitudesmpfi = 0,1, 2, change.

The first step is to separate the unknown coefficients fromesieof the unknowns.
For anyty, ap, a1 and az there exists a unique polynomiBg of degree< 5 that

solves the interpolation problem (2). But tilg will be of degree three, i.eP5 =P,
iff the coefficients at powers 4 and 5 are zero. This is true iff

[to, to, t1,t1,12]P5 =0,  [to,t1,t1,t2,12]P5 =0, (3)

which gives the system of four equations for four unknowngrg, ai, a», that
must lie in an open set

2 = {t1; 0<ty < 1} x {(ap,01,02); a; >0, i=0,1,2}.

Establishing these parameters is the only nonlinear paheoproblem. The coef-
ficients of P are then obtained by using any standard interpolation seloempo-



nentwise. Sinc& = 0 andt, = 1 the equations (3) simplify to

(00s) aq (2+t1)
Do+ _d,— ATo— AT1=0 4
t]2_ 0+ (l—tl)tf 1 tf 0 (1_t1)2 1 ; ( )
a a 1 t1—3
1 5 d,+ 2 2d2——2AT0—|— (ta >3AT1=0.
(1—t1) 11 (1—t1) tl (l—tl)

To simplify the analysis it will be assumed from now on thag gointsT o, T, and
T, are not collinear. Using dét ATo) and de{-,AT;) on (4) one obtains

Qo ag 1
—- det(dp,ATg) — —————— det(ATo,d det(AT,AT1) =0
2 (do,ATo) At (ATo, 1>+(1—t1)2 (ATo,AT1) =0,
ao ay (2+1)
—-det(dg, AT ———det(d,AT1) — ——=2det(ATo,AT1) =0
t]2_ ( 0, l) + (1—t1>t% ( 1 1) tf ( 0, l) 9
(5)
ay a2 (tt—3)
————det(ATo,d1) + det(ATo,d2) + det(AT(,AT1) =0,
(1-t2)*ty (1—1t2)? (1-1y)°
ax ar 1
————det(d1,AT1) — det(AT,d2) — 5 det(ATo,AT;) = 0.
(1-t)%ty (1—t1)? t?
Let us define the constants that are determined by the data as
o det(do,ATo) __ det(ATo,dy)
L7 det(ATo,AT1) "2 det(ATo,ATy)
det(d1,AT1) det(AT,d2)
3=, M= (6)
det(ATo,AT1) det(ATo,AT1)
det(do,AT1) . det(ATo,d2)

Hi-= det(ATo,ATl)’ 2= det(ATo,AT1) ’
Their signs have a clear geometric interpretation as onse@ain Fig 3. With these
\\\ /12<0 /4

N\ < l3>0 4 /
A2<0 b 4 l2>0

\\ h1>0 A4<0 /4
h < H1>0 Ha<0 g
/11>0 D )(1<0 )(4>0 //\4<0
#1<0 = >0 Ha<0 = us>0
L 0<0 VRN

N\

¥ <0y ¥ om0 Ny
Fig. 3. Geometric interpretation of signs of the constaintend ;.
constants, the equations (5) become

F(ty,a) :=F(t1,a;A, iy, 1) = (Fi(tg, @)1 =0,



where

dp ag 1

Fi(ty, @) i=A1— — Ao + ~0,
1t @) 2R (1) (1-t)?
ao a; (2+11)
Fo(ty, @) = t1— +A3 - =0, 7
as aq (3—ty)
F3(tlaa> = I«l2 +)\2 - :Oa
(1-t1)%  “(1-t)%ts (1-t)®
ar ai 1
Fa(ty,a) :=A —A +==0.
Herea := (ai)2 o, A := (A);. Moreover, if
A1Az+ A2l # 0, A2Az+Azpe # O, (8)
equations (7) can be rewritten as
(tf -3t + 2) Ao — tf)\g
(t1— 1)tg (AMAz+Aop)
34+ (12— 3t +2) A
alz_u11+(1 1+) 1 (9)

(t1 — D)ty (A1Az+ Agpa)’
(ti—3)tA3— (1 —1)%A;
(t]_ — l) t% ()\2)\4 -+ )\3[,[2) ’

and
P+ (B -3u+2) A o (ti—1)°+ (0 —3)tAs
A1A3+Azly A2A4+Azlz B
The only nonlinear part remained is (10) which is a cubic équdor t; that can
easily be solved numerically. The next lemma follows imnaégly.

0. (10)

Lemma4 A cubic polynomial curv®Phat satisfie$2) does not exist in any of the
following cases:

1. A2<0 and A1 >0, 2. 23<0 and Az>0,
3. A3<0 and <0, 4. A, <0 and p <O.

As can be seen in Fig 3 cases where ong; a$ equal to zero are very exceptional
and for the sake of simplicity it will be assumed from now oatth; # 0, | =
1,2, 3,4. The first step to the existenceBfs to find the relations between the data
that force the solution of (7) to approach the bounda®. This analysis is given
in the next section.



3 Rédations, implying the solution to approach the boundary

If the solution(t;, a) touches the bounda@Z, it attains the values that are not
allowed. As it turns out this implies certain relations beén data that could be
used to avoid the parameter choices that are not admis$itdenext two lemmas

reveal the relations fag — 0, 1.

Lemmab Suppose that; #0, 1 = 1,2, 3,4. Parameter { tends ta0 if

2A1A2A4
A? YTV
He = 924, 1) A2p1 — A1A3
A1A2 > 0and
A1A A1A
A3>0, A>0 2B 273 or
Ao A
AA
A3>0, As<O, )1\—3<u1, or
2
A1A
A3<0, Ag<0O, —%<ul.
2

Under these conditionk; (A, u1) < 0.

Lemma6 Suppose that; #0, 1 =1,2, 3,4. Parameter { tends tol if

. 2M1A3M4
M1 — $1(A, ) 1= Aokl —AoAs’
A3Ag > 0and
A2A A2A
A>0, A>0 o< or
A3 A3
A2A
A1 <0, A2>0, %<uz, or
3
A2A
A1 <0, Ax<O, —ﬂ<uz.
A3
Under these conditionk¢1(A, 1) < 0.
PROOF. From the symmetry between, As_;, i = 1,2, andy, Uz, and the sym-

metry in equations (7) it is enough to prove Lemma 5 onlyj13+ A>u; = 0, the
first two equations in (7) become

—t%—l—(l—tl) a1z A3 _t1—|—2_

, 0.
(1—1t1)% A4 (1-t1)%A, 8




Therefore it is clear that cannot approach zero or one. The same is true when
A2A4+ A3z = 0. Thus let us assume that conditions (8) hold. Equationgaf)e
rewritten as

2A1 M2
— +0(t1) =0,
MAz+A2in A2Aa+Aspiz (t)
andt; — O impliesu, — ¢2(A, p1). Moreover,
_ 2)5 . 2A1
lim (ti00) = —————, Iim (t101) = ————
two( 100) AAz+ Az’ t1—>0( 101) A1Az+ Aoy’
: A2
lim (t2ap) = ————=—.
t1—>0( 1 2) A2Ag+ Asllp

It is now easy to check that is positive iff the conditions in lemma are fulfilled,
and further thaf1¢2(A, u1) < 0, which completes the proof.

The relations implied by = 0 are given in the next lemma.
Lemma 7 Parameterag = 0if Aj > 0fori=2,3,4, andu; = @(A), where

 T(A2,43)2(3—21(Mg, A3))
®(A) = )‘4(1_ T(A2,3))2(1+ 21(A2, A3))

>0,

and1(Az,A3) is defined as a unique solutiondf the problem

1 t? 1 (1-t1)(2+ty)
A2, A3) = ——Lt - —

=0, O<t1<1. (11)

Similarly, parameten, = 0if A; > 0fori=1,2,3, andu; = @(A), where

T()\g, )\2)2(3 — 21’()\3, )\2))

A= 100 )2+ 2 e Ag))

@A) =21

Moreover, parametesr; = 0if A1 <0, A4 <0, yp > 0and

(3—T(=A1, 1)) T(—A1, p1)?

(1—1(—A1,))° =0

Ho = Y2(A1, A4, 1) = —Ag

PROOF. First let us prove that foA, > 0 andAz > 0, the equation (11) has a
unigue solution. Since

N
gﬂ%g(tlv)\Z)A?:) - Slgn()\3> 100 = —00, ngqg(tl’AZa)\3) - Slgn<)\2> 0 = 00,
(12)

_ L /11 im ot Ao ) — —sign( £ — L
Jm_ g2z =son( 3 ) o fm olsiade) = s )

1—0



there exists at least oige (0,1) that solves (11). Itis straightforward to compute
that whem\; = A3 a solution is unique, i.er,(A2,A3) := 2/3. Now, forA, # Az the
only possible solutions are

Ao(Az—Ag) — 0

v : (13)
<A3 - )\2)0'§
i = uii‘@’))\Z("S—"z)+(—1ii\@>o%7 (14)

2(Ay— A3)03

where
g .= /\2()\3 — )\2) ()\2 — A3+ +/ )\3(/\3 — )\2)) .

For A3 > Az itis clear thato is a real number, so solutions (14) are complex, thus
(13) is a unique admissible solution ami,, A3) := f1. For A3 < A, functiong

has three real zeros, but it follows from (12) that only onénig0,1), namely
T()\z,/\g) = f1+_

Let us now analyse the casg = 0. It is easy to see from (7) that none A&f
i = 2,3,4, can be equal to zero. From the first and the third equatiqi)imne
obtains

1t 3-2
o =——— = 15
1 )\21_t1’ L2 (1—t1>027 ( )
and from the remaining equations
1 (1—t1)(2+1ty) 1 (1—-t1)(1+2t)
0= ——"—" QOp=— . 16

Therefore it follows that the system (15)—(16) has an adbiessolutiona; > 0,
ap > 0andt; € (0,1) iff A2 >0,A3>0,A4>0andu, = @(A). The proof for the
casea, = 0 is symmetric to this one and it will be omitted.

Suppose now that; = 0. It is clear from (7) that neitheY, nor A4 can be equal to
zero. From the first and the last equation in (7) one obtains

t2 t; — 1)
Go=—712 ) C¥2=—7<12 )
(t]_— l) )\1 t]_)\4
The remaining two equations then simplify to
t1+2 3-t
btz H1 —0, 1 H 0. (17)

8 (-1)%M\ (ti—1)° tAs

Since the solution must be @, it is clear thatA;1 < 0,A4 <0, u; > 0 andup > 0.
Multiplying the first equation in (17) byu—tf(l— t1) it rewrites tog(ty; —A1, H1) =
1



0. Since—A; > 0 andyy > 0 there exists a unique(—Aq, H1) € (0,1) that solves
it. From (17) it then follows that

H1 >0, Mo =Un(A1,A4,11), orequivalently pp >0, 1= yn(A1,A4, ),

wheres (A1, A4, 1) := Ya(Ag,A1, ). This completes the proof.

The following properties of functiong;, @ andy;, i = 1,2, will be needed.

Lemmas8 If A > 0then

AA A1A AoA
_£<ul<£ —— ¢2(A,I11) <—ﬂ, (18)
)\2 )\2 )\3
AoA AoA AA
204 <P (A ) < TS (19)
)\3 /\3 /\2
Also, ifA <0, then
AA AoA
>0 (A < 2224 (20)
/\2 )\3
AoA A1A
> -2 = i) < (21)
)\3 AZ

Furthermore, forA1 > 0, A2 > 0, A3 < 0andA4 < Othe following implication holds:

A1A3 AoAg AoAg  2A1A4  AodMg
> = <A )< + < ) 22
Ha " s ¢2(A, 1) A m s (22)
Lemma9 For A > Ofunctionsq@ are limited from below as
A1A A2A
A @A) and Z22% < g(A). (23)
Ao A3
Moreover, forA < 0
$2(A) < Yo(A1,Ag, 1) and  @1(A) < Pr(A1, A4, Lh2), (24)
2A1A3A4 + A2A
- 3; 204 Wo(A1,A4, l1), (25)
3H1
2A1A3A4 + A2A
>0, > AT 2R $1(A) < . (26)

Azl

The proofs of Lemma 8 and Lemma 9 are elementary, but verytegh They can
easily be done by using a Computer Algebra system’s symfadilities, thus they
will be omitted.
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4 Main theorems

In this section sufficient conditions that imply the existerof a cubic geometric
interpolantP that satisfies (2) will be given. There are twelve possibsifor the
signs ofA; as shown in Table 2. Lemma 4 shows that for the last sevenrogptice
solution of (7) does not exist. Other possibilities are adeed in the following
theorems.

Table 2

Twelve possibilities for the signs a.

sign@a) |+ |+ | = [+ | = | = |- - |-
sign@z) | + |+ |+ |+ | — [+ |+ |—]|—
sign@z) | + |+ |+ | — |+ |+ |- |+ |-
sign\g) | + | — — -

Theorem 10 Suppose that the daff;Td;, i = 0,1, 2, satisfydet(ATo,AT;) #0
andA > 0. If one of the listed cases

(1) p1> @ (A)andp > @x(A),

(2 42 << @A) andu < @(A),

(3) %4 < < () andpn < @(A),

(4) —24% <y < 42 andgp(A, 1) < p2 < @(A),
(5) —%2 <y < %M and1(A, ) < p1 < @(A),

holds, then the interpolating cunk® that satisfie$2) exists.

Theorem 11 Suppose that the dafh;Td;, i = 0,1, 2, satisfydet(ATo,AT1) # O,
Ai>0,i=123 andAs < 0. If

> @(A) and pp > ¢2(A, 1), or
Aha

_x;<ur<@u) and L < ¢2(A, ),

then the interpolating curvP Ehat satisfie$2) exists.

Remark 12 The case\; < 0andA; > 0,1 =2, 3,4, is symmetric to the one consid-
ered in Theorem 11. The result is the followingudf> @(A) and iy > ¢1(A, U2),
AoAy

A3
satisfieq?2) exists.

or < M2 < @(A) and Ly < ¢1(A, 42), then the interpolating curv® Phat

Theorem 13 Suppose that the daf®; Td;, i = 0,1, 2, satisfydet(ATo,AT;) #0

11



andA; >0,A2>0,A3<0,A4 <O0. If

MA Aoda 2MA
S and go(A,pr) < pp < St A
Ao A3 H1

then the interpolating curvP Ehat satisfie$2) exists.

Remark 14 The case wherg; < 0, A2 < 0, A3 > 0, Az > 0is symmetric to the one
considered in Theorem 13, and the result is the following. If

AoA Az 2MA
P22l and gi(A ) < py < 4+ A
A3 A2 H2

then the interpolating curvP Ehat satisfie$2) exists.

Theorem 15 Suppose that the daf®; Td;, i = 0,1, 2, satisfydet(ATo,AT;) # 0
andA; <0, A4 <0, ug > 0. If one of the following cases holds,

(1) A2>0, A3>0, 2> hp(A1,Ag, 1),
(2) 22<0, 23>0, O<p < )‘123, Mz > Ya(A1, A4, 1),

(B) A2>0, A3<0, O< < /\i/\“, My > Pr(A1, A4, l2),
(4) A2<0, A3<0, py>—Y2, ¢5(A, ) < 2 < Wa(A1, Aa, pia),

(5) A2<0, A3<0, 0< < WS, DuSat bt < 1y < (M, Mg, ),

then the interpolating curvP Ehat satisfie$2) exists.

Remark 16 The constantd, u; and u, change if lengths adicchange, but all the
relations in Theorems 10-15 stay the same.

These theorems provide us with sufficient conditions thatlynthe existence of
the interpolating polynomial. If none of these conditiosdulfilled the number
of solutions is even, almost always zero. Let us take for @tamheorem 10 and
choose datasothai=1,i=1,2 3,4, and(u1, t2) =(3,1),(2,3), (0,+3), (£3,0),
(—3,£3). In all of these examples the data do not satisfy any of thelitons of
Theorem 10, and since the solutions can be computed aradlytione can easily
check that there is no solution ia.

The proof of these theorems will be made in two steps and widjiken as the next
section. First the existence of the solution will be provedthe particular data. In
the second step conclusions will be carried from the pddiatase to the general
one by a convex homotopy and Brouwer’s degree argument.

12



5 Proofsof main Theorems
5.1 Stepl: Particular cases

Let the points be chosen as
To=(-1,-1)7, T:1=(0,07, T,=(1,-1)7, (27)

and the tangent directions given in Table 3. Table 4 showsdnstants for this

Table 3
The tangent directions for different choices of data.

do d; d,
datal| (3,57 (2,07 (3,-5)7
data2 | (1,3)7 (2,07 (1,-3)7
data3 | (~0.5,1.57 | (2,07 | (~0.5,-15)T
data4 | (3,57 (2,07 (5,—3)7
data 5 (1,37 (2,07 (-7,97

data 6 2,47 (0,—-2)7 (1,17
data 7 (7,57 (2,07 (7,-5)7
data8 | (1.8,-0.2)T | (0,2)7 (41,—-39)7
data 9 3,17 (-2,0)7 (3,-1)7
data 10| (1.5,—0.5)" | (-2,0)7 (11,-9)7

data, and Table 5 gives the admissible solutinsxr) € 2. Note that there is a
unigue admissible solution in all the cases (Fig 4).

5.2 Ste®: Homotopy

In order to prove Theorems 10, 11, 13 and 15 one needs to slabththsystem (7)
has a solutiorfty, a) € . The conclusions for the particular data outlined in Table
4 will be carried to the general case by the use of convex hopyand Brouwer’s
degree argument. Let the general data be denotéd lyy1, 1») and particular one
by (A", uj, 43). A homotopy is defined as

H(tl,a;f) =F (tlaa;A(E>7ul(E>7u2(E)>a

where

AE)=(1-A"+&A, w(&) =a(&u,m), 1=12

13



Table 4

The constants for the particular data.

data| Az | A2 | Az | Ag | pr | k2 | @(A) | @A) | ¢1(A, ) | ¢2(A, 1) | Wo(A, 1)
1 | 1|21 |1] 1] 4] 4 |28571|28571 / / /
2 |1 |1 |1] 1] 2| 2 |28571|28571 / / /
3 1|11 |1 %3 |28571|28571 -4 —4 /
4 | 1] 1| 1]|-1| 4| 42871 [/ / -4 /
5 1|1 |1]|-1|2|-8|28571| / / -2 /
6 [ 1|1 |-1|-1|3]|0 / / 2 -1 /
7 |-1| 1| 1|-1|6|6 / / / / 4.1724
8 |-1|-1| 1 |-1|08] 40 / / / / 36.2152
9 |-1|-1|-1|-1| 2|2 / / z z 1296
0 | -1| -1|-1|-1|05] 10 / / Z / 63.1769
Table 5
The admissible solutions for the particular data.
2] aop ai az

data 1 3 2 > 2

data 2 3 3 ¢ 2

data 3 1 8 a 8

data 4 | 0.3624 | 1.2392 | 0.9961 | 0.3470

data 5 | 0.1902 | 3.8203 | 3.1384 | 1.6290

data 6 | 0.4462 | 3.0658 | 2.0574 | 6.1521

data7 | 05 0.8 0.1 0.8

data 8 | 0.6860 | 4.8270 | 0.0169 | 0.1849

data 9 0.5 4 15 4

data 10| 0.7620 | 132434 | 0.7134 | 1.0338

andq; :=qi(-; ", 1) : [0,1] — R will be chosen later on as continuous piecewise
linear functions that satisfg;(O; 1", 1) = ", Gi(1; ", ki) = K. The idea of the
proof is to connect particular and general data so that af sefations

K C 2, such that

S ={(u(),a(§) 2, Ht),a(&){)=0 ¢&c[01]}

stays away from the boundad/. If this can be done, one can find a compact set

S CKCP, #NiK=0.
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do do do
To T, To T, To T2
dz d2 d2

data 1 data 2 data 3
T1 dp
Tl d]_ T1
do d;
d To T, 4 dy
0
To T, g T dy
2 ‘|'2
data 4 data 5 data 6
T dy . dy 4 T
1
To do T2 " § To ” T2 g,
2
To do o
data 7 data 8 data 9
d T
T
To g, d>
data 10

Fig. 4. Cubic Hermite geometric interpolants for particudata points defined by (27) and
tangent directions given in Table 3.

Therefore the mapl does not vanish at the boundati, and a Brouwer’s degree
([14]) of H onK is invariant for all¢ € [0,1]. But since it is odd for the particu-
lar mapF (-, A", u5, 13 ), equationd (t1, a; A, pa, H2) = 0 must have at least one
admissible solution.

One is now left to show how to choosg and gy, and to prove that (28) holds.
Namely, it must be shown that solutionstft; (&), a(¢); &) = 0 satisfy

t1(¢) >const>0, 1-—t1(&)>const>0, aj(é)>const>0, i=0,12,

(29)
for all & € [0,1]. Here and throughout the rest of the paper term 'const’ walhd
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for an arbitrary constant. The inequality

Ai(€)] > ErrE(i)nl]{l(l—E))\i*+E/\i|} > min{|A*|,|Ai|} > const> 0

will be fulfilled, and the results of Lemma 5, Lemma 6 and Lemmaill be the
main tool in the proof of all four theorems. Each of them w# Analysed sepa-
rately.

Theorem 10: There are five cases to be considered. Choosiaglda or 3 as
particular data yield (&) > 0, and thusx1 (&) cannot approach zero, i.e; (&) >
const> 0 for all £ € [0,1]. In the first case wherg; > @(A), i = 1,2, choose
data 1 as the particular data. Sin¢e> @(A*) and@ does not depend qn, there
obviously existg);, such that

“I(E)>(H(A(E>)v EE[O,].], =12

Thereforeap(&) and az(&) cannot approach zero for adye [0,1], and by (23)

parametet; (&) cannot approach zero or one either.

Suppose now tha){\% <pr<@(A)anduy < @(A) (case 2) and choose data 2.
2

There clearly existsp that satisfiegin (&) < @(A (&)) for everyé € [0, 1]. More-

over, from (23) it follows that% < @(A(&)), so one can findy; such
that AL(E (& ’
MUT <m@® <an@), ey

Now, itis clear thatip(&), a2(€),t1(&) > const> O for all £ € [0, 1]. Moreover, by

(19) parametet; (&) cannot approach one either which completes the proof. Case
3 is symmetric to the second one and will be omitted.

Consider now case 4 and choose data 3 that satisfy

AiAs _ s AlAg
A3 A3

pi < and ¢2(A", uy) < pz < @2(A7).

There obviously existg; such that

A1(€)A3(€)
M) =

Since by (18) and (23)

CA2(&)A4(8) - A2(&)A4(&)
A3(€) A3(€)

there existsy, that satisfiespa(A (&), u1(€)) < H2(&) < @(A(&)). Thus ag(é),
t1(&) > const> 0. Further, by (19) and (23p2(¢),1—1t1(&) > const> 0, and
(29) holds.

$2(A (&), () < <@(A(8)), &€[01],
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Case 5 is symmetric to case 4 and will be omitted. This corapléte proof of
Theorem 10.

Theorem 11: Particular data must be chosen so Ahdt) > 0, i = 1,2,3, and
A4(&) < 0. It is then clear that there exists a constant 'const’ shetid;(&) >
const> 0,i = 0,1, and 1-t;(&) > const> 0, no matter how we defing andqgp.

oy (29, E (O

so thaty; (£) > @1(A (&), and then choose sudh that 1io(&) > $2(A (&), pu(£)),
& €10,1]. In the second case choose data 5, defingo that

A1(§)A3(€)
A2(&)

and choose suatp that (&) < ¢2(A (&), 11(€)). Now, (29) obviously holds and
Theorem 11 is proved.

< @(A(&)). Now, for the first case choose data 4, defipe

<u(é) < @A), &<l0,1,

Theorem 13: Let us choose data 6 as the particular data. $j€¢ > 0, A>(&) >

0, A3(¢) < 0 andA4(&) < O it is clear from Lemma 7 thatr; (&) > const> 0,
i=0,1,2,foré €0,1]. Letqy be chosen in such away that)% < pi(€)
2

for £ € [0,1]. By using (22) one can find, that satisfies

~A2(§)Aa(E) A2()A) | 2(D)A(E) _ Aa(E)Aa(d)
As(§) A3(§) Ha(§) As(§)

Thereforet;(§) cannot approach zero for afy< [0,1]. Now, it can easily be
proved thatu; (&) > ¢1(A (&), u1(€)), thus parameter (&) cannot approach one
either and the proof is completed.

< 92(A (&), k(&) < H2(E) <

Theorem 15: Particular data must be chosen sof{dt) < 0 andA4(&) < 0. Then
it is clear thato; (&) > const> 0,i = 0,2, for all £ € [0,1]. In case 1 choose data 7.
It is clear thatt; (&) cannot approach zero or one. The only problem could be if
a1(¢) would go to zero. But for (&; puy, uy) := (1 — &)y + & g, andgp chosen
so thattiz (&) > W2(A1(§),A4(€), Ha(&)), this cannot happen.
A1(§)As(§)

In the second case choose data 8 and defire that 0< (&) < Ao(E)
2

Now, 1—t;(&),t1(&) > const> 0 for all ¢ € [0,1]. Choosing, as in the previous
case completes the proof. Next case is symmetric to this odevdl be omitted.

In case 4 choose data 9 agdso thatys (&) > —%. Now, by (20) and
(24), i
022 (8), (&) < 23 ) andoA(8). () < Yaha(EAa(E). s 8)).

So there exists, such thatpo(A (&), u1(&)) < H2(&) < Wa(A1(&),A4(&), u1(E)),
and thusty(&),a1(&) > const> 0 for & € [0,1]. Parametet;(&) can approach
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~A2(§)A4(¢)

a(E) but in this case, by (21)1(A(§),u2(&)) <

1 only for pp(&) >

—M, so 1-t1(&) > const> 0 for & € [0, 1].
A2()
For the last case choose data 10 gndo that 0< (&) < —%. More-
2

over, by (25)02 can be chosen so that

2A1(€)A3(&)Aa(&) +A2(&)Aa()a(E)
A3(&)ua(€)

It is clear thaty(&) > const> 0 anda; (&) > const> 0 for & € [0, 1]. But, by (26),
H1(&) > d1(A (&), u2(&)), so 1-t1(&) > const> 0 too and the proof is completed.

< H2(&) < Pa(A1(&),Aa(&), 1a(E))-

6 Approximation order

In this section Theorem 2 will be proved. Recall the notatieclared there. One
needs to show that there exisis> 0 small enough and a constahit> 0, so that
for everyh = mgaxASg, 0 < h < hg, theG! spline exists as well as

dist(f,P) = dist(f,P)jay; = inf[|f - Po 6] <CH, (30)

wheref : [a,b] — [0, 1] is a regular reparameterization. Since
dist(f,P) < max{dist(f,P)s, ,¢5; {=1,2,...,m},

it is again enough to analyse the polynomial case 1 only. Without losing gen-
erality, one can assune= 0, f(0) = (0,0)T, f/(0) = (1,0)". Further, leth be
redefined a$ := s, — 59. Forh small enoughf can be parameterized by the first
component,

f<s>—( S), Vs = 3 (OF+ 3y O+ 0 (), ¥'(0)£0.

Moreover, letn; := s/h, i = 0,1,2. By Remark 3 the tangent directions can be
redefined agd; = hf’(hn;), i = 0,1,2. Sincef is convex, detTo,T1) # 0 and
constants (6) are well defined. It is straightforward to catep

N1 N1 1-m
A= Lo, A= Lo, Az= o,
T iem (), 42 1-m (), As m ")
1—n1 1
A= +0(h), =1+—+0(h), =1+ +0(h),
4= (h), m (h), H2 i (h)



and the nonlinear system (7) becomes

F (tl,a;ﬁ,l+i,1+
n1 1-m

) +6(h) =0, (31)

1-n1 1— . .

m , m , I71, m . Itis easy to check that the solution
o \1-m1-nn nm m _
at the limith=0ist; = n1, a; = 1,i = 0,1, 2. But unfortunately, the Jacobian at
the limit solution is singular, and one can not make use ofitlygicit Function
Theorem. To show that the solution exists also forhadimall enough Theorem 1
will be used. There obviously exists subfthatA > 0 for all 0 < h < hg. With
some elementary mathematics one can prove that the ineBgsiali

wherej =

1
1+—>@(A), 1+
N1

> @(A
1, @)

hold. Furthermore,

@A) =aA)+0(h),
thushg can be chosen so small that> @(A) for all 0 < h < hg. The existence of
the solution is now guaranteed by Theorem 10 (case 1), wisdshows that this
is probably the most important existence result. Now thattkistence is provided
it is well known (see [7], [4]) that approximation order istmpal which completes
the proof.
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