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Abstract

In this paper, geometric Hermite interpolation by planar cubic G1 splines is studied. Three
data points and three tangent directions are interpolated per each polynomial segment. Suf-
ficient conditions for the existence of suchG1 spline are determined that cover most of
the cases encountered in practical applications. The existence requirements are based only
upon geometric properties of data and can easily be verified in advance. The optimal ap-
proximation order six is confirmed, too.
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Nonlinear equations, Existence, Approximation order.

1 Introduction

Geometric interpolation by parametric polynomial curves has gained a lot of at-
tention since it was introduced in [1]. The interpolants depend only on geometric
quantities such as data points, tangent directions, curvatures, etc. But the parame-
ters at which the interpolant should pass through a point, magnitudes of tangents or
curvatures may not be prescribed in advance. This often results in a higher approx-
imation order, and in a fact that geometric interpolants please human eye more than
their linear counterparts. But, what makes these schemes somewhat difficult are the
nonlinear problems included, so questions like the existence of the solution, the
approximation order and an efficient implementation need tobe considered. This
is the reason why most of the results are obtained by asymptotic analysis ([2], [3],
[4], [5], [6], [7], etc.). But only a few papers deal with geometric conditions for the
existence of the solution ([8], [9], [10], [11], etc.). An excellent recent overview of
the results on planar Hermite geometric interpolation is given in [12].
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In this paper, geometric interpolation by planar Hermite cubic G1 spline curves
that interpolate three points and three tangent directionsat every segment is stud-
ied. Entirely geometric conditions that imply the existence of the interpolant are
given, and optimal approximation order is confirmed. The problem considered is
the following. Suppose that 2m+1 points and tangent directions

TTTTTTTTT i ∈ R
2, dddddddddi ∈ R

2, TTTTTTTTT i 6= TTTTTTTTT i+1, ‖dddddddddi‖2 = 1, i = 0,1, . . . ,2m,

are prescribed. Find a regular cubicG1 spline curvePPPPPPPPP : [0,1]→R
2 with breakpoints

(t2i)
m
i=0,

0 =: t0 < t1 < · · · < t2m−1 < t2m := 1,

that interpolates the data pointsTTTTTTTTT i and tangent directionsdddddddddi at parametersti ,

PPPPPPPPP(ti) = TTTTTTTTT i ,
1

‖PPPPPPPPP′(ti)‖2
PPPPPPPPP′(ti) = dddddddddi, i = 0,1, . . . ,2m, (1)

where(t2i−1)
m
i=1 are the unknowns. Note that (1) makes sense even ifPPPPPPPPP′ jumps at a

breakpointt2i since the tangent direction is continuous. This interpolation scheme is
quite clearly local. Namely, the change of one point or one tangent direction effects
only those segments that the point or the direction belongs to. So all the analysis
and estimations can be done locally.

For a motivation, let us consider some numerical examples. As the first one suppose
that the data are sampled from an exponential and logarithmic spiral

fffffffff 1(t) := exp
( t

4

)





cost

sint



 , t ∈ [0,3π], fffffffff 2(t) := log(1+ t)





cost

sint



 , t ∈ [0,4π],

at equidistantly chosen parameters in the parameter domain. In Fig 1 interpolating
G1 spline curves composed of five segments, i.e.m= 5, are shown for each curvefffffffff 1
and fffffffff 2. The parametric error estimates ([13]) betweenfffffffff 1, fffffffff 2 and their interpolants
are

dist(PPPPPPPPP, fffffffff 1) = 0.007915, dist(PPPPPPPPP, fffffffff 2) = 0.051094.

Considering a single segment case, Table 1 numerically suggests that the approxi-
mation order is optimal, i.e., 6. However, the data do not need to be sampled from
smooth curves only, they can be provided in some other way, maybe given by the
user for design purposes, obtained from some other application, etc. The data do
not need to be convex either. Fig 2 shows some more examples and, as one can see,
the spline follows the shape of the data quite nicely.

The main results of the paper are given in the next two theorems.

Theorem 1 If on every segment[t2ℓ−2, t2ℓ], ℓ = 1,2, . . . ,m, one of the sufficient con-
ditions prescribed by Theorem 10, 11, 13 or 15 is fulfilled, then the G1 spline curve
PPPPPPPPP exists.
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Fig. 1. The interpolatingG1 spline curvesPPPPPPPPP for data obtained from curvesfffffffff 1 (left) and fffffffff 2
(right).

Table 1
The errors between curvesfffffffff 1 and fffffffff 2 and their polynomial geometric interpolants.

Interval Approximation error Decay exponent

fffffffff 1 fffffffff 2 fffffffff 1 fffffffff 2

[0,π] 3.3754×10−2 2.2251×10−1 / /
[

0, 9π
10

]

1.6644×10−2 1.0817×10−1 6.71 6.85
[

0, 8π
10

]

7.6630×10−3 5.1067×10−2 6.59 6.37
[

0, 7π
10

]

3.2233×10−3 2.2485×10−2 6.49 6.14
[

0, 6π
10

]

1.2017×10−3 8.8151×10−3 6.40 6.07
[

0, 5π
10

]

3.7917×10−4 2.8939×10−3 6.33 6.11
[

0, 4π
10

]

9.3807×10−5 7.2252×10−4 6.26 6.22
[

0, 3π
10

]

1.5773×10−5 1.4194×10−4 6.20 6.39

T0

T1

T2

T2 m-2

T2 m-1

T2 m
d0

d1

d2

d2 m-2

d2 m-1

d2 m

T0

T1

T2
T2 m-2

T2 m-1

T2 m

d0

d1

d2 d2 m-2

d2 m-1

d2 m

Fig. 2. CubicG1 spline curvesPPPPPPPPP for given data points and tangent directions.

Theorem 2 Suppose that the data are sampled from a smooth convex regular para-
metric curve fffffffff : [a,b]→ R

2,

TTTTTTTTT i = fffffffff (si), dddddddddi =
1

‖ fffffffff ′(si)‖2
fffffffff ′(si), a = s0 < s1 < · · · < s2m = b, i = 0,1, . . . ,2m,
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and let h:= max{∆si : i = 1,2, . . . ,2m−1}. Then one can find a constant h0 > 0
such that for all h,0 < h ≤ h0, a cubic G1 spline curve PPPPPPPPP that satisfies(1) exists,
and approximates fffffffff with the optimal approximation order six.

The outline of the paper is the following. In Section 2 a system of equations is
derived for a single segment case, and in Section 3 the conditions that imply its
solution to attain the values that are not allowed are given.These results together
with the number of solutions for some particular data lead tothe existence theorems
of Section 4. They are proved in Section 5 by the help of convexhomotopy and
Brouwer’s degree argument. The last section deals with asymptotic analysis and
contains the proof of Theorem 2.

2 Single segment case

Since theG1 interpolation scheme (1) is local, all the properties can bedetermined
from the simplest casem= 1. So from now on to the end of the paper we assume
m= 1. The equations (1) simplify to

PPPPPPPPP(ti) = TTTTTTTTT i , PPPPPPPPP′(ti) = αidddddddddi , αi > 0, i = 0,1,2, (2)

with 0 := t0 < t1 < t2 := 1. One is thus left with twelve equations for eight unknown
coefficients ofPPPPPPPPP, and four unknown parameterst1, α0, α1 andα2.

Remark 3 If the tangent directions are not normalized the existence of the solution
of (2) is not affected. Only the magnitudes ofαi , i = 0,1,2, change.

The first step is to separate the unknown coefficients from therest of the unknowns.
For anyt1, α0, α1 andα2 there exists a unique polynomialPPPPPPPPP5 of degree≤ 5 that
solves the interpolation problem (2). But thisPPPPPPPPP5 will be of degree three, i.e.,PPPPPPPPP5 = PPPPPPPPP,
iff the coefficients at powers 4 and 5 are zero. This is true iff

[t0, t0, t1, t1, t2]PPPPPPPPP5 = 0, [t0, t1, t1, t2, t2]PPPPPPPPP5 = 0, (3)

which gives the system of four equations for four unknownst1, α0, α1, α2, that
must lie in an open set

D := {t1; 0 < t1 < 1}×{(α0,α1,α2); αi > 0, i = 0,1,2}.

Establishing these parameters is the only nonlinear part ofthe problem. The coef-
ficients ofPPPPPPPPP are then obtained by using any standard interpolation scheme compo-

4



nentwise. Sincet0 = 0 andt2 = 1 the equations (3) simplify to

α0

t2
1

ddddddddd0 +
α1

(1− t1) t2
1

ddddddddd1−
(2+ t1)

t3
1

∆TTTTTTTTT0−
1

(1− t1)
2∆TTTTTTTTT1 = 0, (4)

α1

(1− t1)
2 t1

ddddddddd1+
α2

(1− t1)
2ddddddddd2−

1

t2
1

∆TTTTTTTTT0+
(t1−3)

(1− t1)
3∆TTTTTTTTT1 = 0.

To simplify the analysis it will be assumed from now on that the pointsTTTTTTTTT0, TTTTTTTTT1 and
TTTTTTTTT2 are not collinear. Using det(·,∆TTTTTTTTT0) and det(·,∆TTTTTTTTT1) on (4) one obtains

α0

t2
1

det(ddddddddd0,∆TTTTTTTTT0)−
α1

(1− t1) t2
1

det(∆TTTTTTTTT0,ddddddddd1)+
1

(1− t1)
2 det(∆TTTTTTTTT0,∆TTTTTTTTT1) = 0,

α0

t2
1

det(ddddddddd0,∆TTTTTTTTT1)+
α1

(1− t1) t2
1

det(ddddddddd1,∆TTTTTTTTT1)−
(2+ t1)

t3
1

det(∆TTTTTTTTT0,∆TTTTTTTTT1) = 0,

(5)
α1

(1− t1)
2 t1

det(∆TTTTTTTTT0,ddddddddd1)+
α2

(1− t1)
2 det(∆TTTTTTTTT0,ddddddddd2)+

(t1−3)

(1− t1)
3 det(∆TTTTTTTTT0,∆TTTTTTTTT1) = 0,

α1

(1− t1)
2 t1

det(ddddddddd1,∆TTTTTTTTT1)−
α2

(1− t1)
2 det(∆TTTTTTTTT1,ddddddddd2)−

1

t2
1

det(∆TTTTTTTTT0,∆TTTTTTTTT1) = 0.

Let us define the constants that are determined by the data as

λ1 :=
det(ddddddddd0,∆TTTTTTTTT0)

det(∆TTTTTTTTT0,∆TTTTTTTTT1)
, λ2 :=

det(∆TTTTTTTTT0,ddddddddd1)

det(∆TTTTTTTTT0,∆TTTTTTTTT1)
,

λ3 :=
det(ddddddddd1,∆TTTTTTTTT1)

det(∆TTTTTTTTT0,∆TTTTTTTTT1)
, λ4 :=

det(∆TTTTTTTTT1,ddddddddd2)

det(∆TTTTTTTTT0,∆TTTTTTTTT1)
, (6)

µ1 :=
det(ddddddddd0,∆TTTTTTTTT1)

det(∆TTTTTTTTT0,∆TTTTTTTTT1)
, µ2 :=

det(∆TTTTTTTTT0,ddddddddd2)

det(∆TTTTTTTTT0,∆TTTTTTTTT1)
.

Their signs have a clear geometric interpretation as one cansee in Fig 3. With these

Λ1< 0
Μ1>0

Λ1< 0
Μ1< 0

Λ1>0
Μ1< 0

Λ1>0
Μ1>0

Λ2>0
Λ3>0

Λ2>0
Λ3< 0

Λ2< 0
Λ3< 0

Λ2< 0
Λ3>0

Λ4< 0
Μ4>0

Λ4>0
Μ4>0

Λ4>0
Μ4< 0

Λ4< 0
Μ4< 0

DT0 DT1

Fig. 3. Geometric interpretation of signs of the constantsλi andµi .

constants, the equations (5) become

FFFFFFFFF(t1,ααααααααα) := FFFFFFFFF(t1,ααααααααα;λλλλλλλλλ ,µ1,µ2) := (Fi(t1,ααααααααα))4
i=1 = 000000000,
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where

F1(t1,ααααααααα) := λ1
α0

t2
1

−λ2
α1

t2
1 (1− t1)

+
1

(1− t1)
2 = 0,

F2(t1,ααααααααα) := µ1
α0

t2
1

+λ3
α1

t2
1 (1− t1)

− (2+ t1)

t3
1

= 0, (7)

F3(t1,ααααααααα) := µ2
α2

(1− t1)
2 +λ2

α1

(1− t1)
2 t1

− (3− t1)

(1− t1)
3 = 0,

F4(t1,ααααααααα) := λ4
α2

(1− t1)
2 −λ3

α1

(1− t1)
2 t1

+
1

t2
1

= 0.

Hereααααααααα := (αi)
2
i=0, λλλλλλλλλ := (λi)

4
i=1. Moreover, if

λ1λ3+λ2µ1 6= 0, λ2λ4+λ3µ2 6= 0, (8)

equations (7) can be rewritten as

α0 =

(

t3
1 −3t1+2

)

λ2− t3
1λ3

(t1−1)2 t1(λ1λ3 +λ2µ1)
,

α1 = − µ1t3
1 +

(

t3
1 −3t1+2

)

λ1

(t1−1) t1(λ1λ3+λ2µ1)
, (9)

α2 =
(t1−3)t2

1λ3− (t1−1)3 λ2

(t1−1) t2
1 (λ2λ4 +λ3µ2)

,

and
µ1t3

1 +
(

t3
1 −3t1+2

)

λ1

λ1λ3+λ2µ1
+

µ2 (t1−1)3+(t1−3) t2
1λ4

λ2λ4+λ3µ2
= 0. (10)

The only nonlinear part remained is (10) which is a cubic equation for t1 that can
easily be solved numerically. The next lemma follows immediately.

Lemma 4 A cubic polynomial curve PPPPPPPPP that satisfies(2) does not exist in any of the
following cases:

1. λ2 ≤ 0 and λ1 ≥ 0, 2. λ3 ≤ 0 and λ4 ≥ 0,

3. λ3 ≤ 0 and µ1 ≤ 0, 4. λ2 ≤ 0 and µ2 ≤ 0.

As can be seen in Fig 3 cases where one ofλi is equal to zero are very exceptional
and for the sake of simplicity it will be assumed from now on that λi 6= 0, i =
1,2,3,4. The first step to the existence ofPPPPPPPPP is to find the relations between the data
that force the solution of (7) to approach the boundary∂D . This analysis is given
in the next section.
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3 Relations, implying the solution to approach the boundary

If the solution(t1,ααααααααα) touches the boundary∂D , it attains the values that are not
allowed. As it turns out this implies certain relations between data that could be
used to avoid the parameter choices that are not admissible.The next two lemmas
reveal the relations fort1 → 0,1.

Lemma 5 Suppose thatλi 6= 0, i = 1,2,3,4. Parameter t1 tends to0 if

µ2 → ϕ2(λλλλλλλλλ ,µ1) :=
2λ1λ2λ4

λ2µ1−λ1λ3
,

λ1λ2 > 0 and

λ3 > 0, λ4 > 0, −λ1λ3

λ2
< µ1 <

λ1λ3

λ2
, or

λ3 > 0, λ4 < 0,
λ1λ3

λ2
< µ1, or

λ3 < 0, λ4 < 0, −λ1λ3

λ2
< µ1.

Under these conditionsλ1ϕ2(λλλλλλλλλ ,µ1) < 0.

Lemma 6 Suppose thatλi 6= 0, i = 1,2,3,4. Parameter t1 tends to1 if

µ1 → ϕ1(λλλλλλλλλ ,µ2) :=
2λ1λ3λ4

λ3µ2−λ2λ4
,

λ3λ4 > 0 and

λ1 > 0, λ2 > 0, −λ2λ4

λ3
< µ2 <

λ2λ4

λ3
, or

λ1 < 0, λ2 > 0,
λ2λ4

λ3
< µ2, or

λ1 < 0, λ2 < 0, −λ2λ4

λ3
< µ2.

Under these conditionsλ4ϕ1(λλλλλλλλλ ,µ2) < 0.

PROOF. From the symmetry betweenλi , λ5−i , i = 1,2, andµ1, µ2, and the sym-
metry in equations (7) it is enough to prove Lemma 5 only. Ifλ1λ3+λ2µ1 = 0, the
first two equations in (7) become

α0 =
−t2

1 +(1− t1)α1λ2

(1− t1)
2 λ1

,
λ3

(1− t1)
2λ2

− t1+2

t3
1

= 0.
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Therefore it is clear thatt1 cannot approach zero or one. The same is true when
λ2λ4+λ3µ2 = 0. Thus let us assume that conditions (8) hold. Equation (10)can be
rewritten as

2λ1

λ1λ3+λ2µ1
− µ2

λ2λ4+λ3µ2
+O(t1) = 0,

andt1 → 0 impliesµ2 → ϕ2(λλλλλλλλλ ,µ1). Moreover,

lim
t1→0

(t1α0) =
2λ2

λ1λ3+λ2µ1
, lim

t1→0
(t1α1) =

2λ1

λ1λ3+λ2µ1
,

lim
t1→0

(

t2
1α2

)

= − λ2

λ2λ4+λ3µ2
.

It is now easy to check thatααααααααα is positive iff the conditions in lemma are fulfilled,
and further thatλ1ϕ2(λλλλλλλλλ ,µ1) < 0, which completes the proof.

The relations implied byαi = 0 are given in the next lemma.

Lemma 7 Parameterα0 = 0 if λi > 0 for i = 2,3,4, andµ2 = φ2(λλλλλλλλλ), where

φ2(λλλλλλλλλ) := λ4
τ(λ2,λ3)

2(3−2τ(λ2,λ3))

(1− τ(λ2,λ3))2(1+2τ(λ2,λ3))
> 0,

andτ(λ2,λ3) is defined as a unique solution t1 of the problem

g(t1;λ2,λ3) :=
1
λ2

t2
1

1− t1
− 1

λ3

(1− t1)(2+ t1)
t1

= 0, 0 < t1 < 1. (11)

Similarly, parameterα2 = 0 if λi > 0 for i = 1,2,3, andµ1 = φ1(λλλλλλλλλ ), where

φ1(λλλλλλλλλ) := λ1
τ(λ3,λ2)

2(3−2τ(λ3,λ2))

(1− τ(λ3,λ2))2(1+2τ(λ3,λ2))
> 0.

Moreover, parameterα1 = 0 if λ1 < 0, λ4 < 0, µ1 > 0 and

µ2 = ψ2(λ1,λ4,µ1) := −λ4
(3− τ(−λ1,µ1))τ(−λ1,µ1)

2

(1− τ(−λ1,µ1))
3 > 0.

PROOF. First let us prove that forλ2 > 0 andλ3 > 0, the equation (11) has a
unique solution. Since

lim
t1↓0

g(t1;λ2,λ3) = −sign

(

1
λ3

)

·∞ = −∞, lim
t1↑1

g(t1;λ2,λ3) = sign

(

1
λ2

)

·∞ = ∞,

(12)

lim
t1→−∞

g(t1;λ2,λ3) = sign

(

1
λ2

− 1
λ3

)

·∞, lim
t1→∞

g(t1;λ2,λ3) = −sign

(

1
λ2

− 1
λ3

)

·∞,
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there exists at least onet1 ∈ (0,1) that solves (11). It is straightforward to compute
that whenλ2 = λ3 a solution is unique, i.e.,τ(λ2,λ3) := 2/3. Now, forλ2 6= λ3 the
only possible solutions are

t̃1 =
λ2(λ3−λ2)−σ

2
3

(λ3−λ2)σ
1
3

, (13)

t̃ ±1 =
(1± i

√
3)λ2(λ3−λ2)+(−1± i

√
3)σ

2
3

2(λ2−λ3)σ
1
3

, (14)

where
σ := λ2(λ3−λ2)

(

λ2−λ3+
√

λ3(λ3−λ2)
)

.

For λ3 > λ2 it is clear thatσ is a real number, so solutions (14) are complex, thus
(13) is a unique admissible solution andτ(λ2,λ3) := t̃1. For λ3 < λ2 function g
has three real zeros, but it follows from (12) that only one isin (0,1), namely
τ(λ2,λ3) := t̃ +

1 .

Let us now analyse the caseα0 = 0. It is easy to see from (7) that none ofλi ,
i = 2,3,4, can be equal to zero. From the first and the third equation in(7) one
obtains

α1 =
1
λ2

t2
1

1− t1
, µ2 =

3−2t1
(1− t1)α2

, (15)

and from the remaining equations

α1 =
1
λ3

(1− t1)(2+ t1)
t1

, α2 =
1
λ4

(1− t1)(1+2t1)

t2
1

. (16)

Therefore it follows that the system (15)–(16) has an admissible solutionα1 > 0,
α2 > 0 andt1 ∈ (0,1) iff λ2 > 0, λ3 > 0, λ4 > 0 andµ2 = φ2(λλλλλλλλλ ). The proof for the
caseα2 = 0 is symmetric to this one and it will be omitted.

Suppose now thatα1 = 0. It is clear from (7) that neitherλ1 norλ4 can be equal to
zero. From the first and the last equation in (7) one obtains

α0 = − t2
1

(t1−1)2λ1
, α2 = −(t1−1)2

t2
1λ4

.

The remaining two equations then simplify to

−t1+2

t3
1

− µ1

(t1−1)2 λ1
= 0,

3− t1
(t1−1)3 −

µ2

t2
1λ4

= 0. (17)

Since the solution must be inD , it is clear thatλ1 < 0, λ4 < 0, µ1 > 0 andµ2 > 0.

Multiplying the first equation in (17) by
1
µ1

t2
1(1− t1) it rewrites tog(t1;−λ1,µ1) =

9



0. Since−λ1 > 0 andµ1 > 0 there exists a uniqueτ(−λ1,µ1) ∈ (0,1) that solves
it. From (17) it then follows that

µ1 > 0, µ2 = ψ2(λ1,λ4,µ1), or equivalently µ2 > 0, µ1 = ψ1(λ1,λ4,µ2),

whereψ1(λ1,λ4,µ) := ψ2(λ4,λ1,µ). This completes the proof.

The following properties of functionsϕi , φi andψi , i = 1,2, will be needed.

Lemma 8 If λλλλλλλλλ > 0 then

− λ1λ3

λ2
< µ1 <

λ1λ3

λ2
=⇒ ϕ2(λλλλλλλλλ ,µ1) < −λ2λ4

λ3
, (18)

− λ2λ4

λ3
< µ2 <

λ2λ4

λ3
=⇒ ϕ1(λλλλλλλλλ ,µ2) < −λ1λ3

λ2
. (19)

Also, ifλλλλλλλλλ < 0, then

µ1 > −λ1λ3

λ2
=⇒ ϕ2(λλλλλλλλλ ,µ1) < −λ2λ4

λ3
, (20)

µ2 > −λ2λ4

λ3
=⇒ ϕ1(λλλλλλλλλ ,µ2) < −λ1λ3

λ2
. (21)

Furthermore, forλ1 > 0, λ2 > 0, λ3 < 0 andλ4 < 0 the following implication holds:

µ1 > −λ1λ3

λ2
=⇒ −λ2λ4

λ3
< ϕ2(λλλλλλλλλ ,µ1) <

λ2λ4

λ3
+

2λ1λ4

µ1
<

λ2λ4

λ3
. (22)

Lemma 9 For λλλλλλλλλ > 0 functionsφi are limited from below as

λ1λ3

λ2
< φ1(λλλλλλλλλ ) and

λ2λ4

λ3
< φ2(λλλλλλλλλ). (23)

Moreover, forλλλλλλλλλ < 0

ϕ2(λλλλλλλλλ ) < ψ2(λ1,λ4,µ1) and ϕ1(λλλλλλλλλ ) < ψ1(λ1,λ4,µ2), (24)
2λ1λ3λ4+λ2λ4µ1

λ3µ1
< ψ2(λ1,λ4,µ1), (25)

µ1 > 0, µ2 >
2λ1λ3λ4+λ2λ4µ1

λ3µ1
=⇒ ϕ1(λλλλλλλλλ ) < µ1. (26)

The proofs of Lemma 8 and Lemma 9 are elementary, but very technical. They can
easily be done by using a Computer Algebra system’s symbolicfacilities, thus they
will be omitted.
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4 Main theorems

In this section sufficient conditions that imply the existence of a cubic geometric
interpolantPPPPPPPPP that satisfies (2) will be given. There are twelve possibilities for the
signs ofλi as shown in Table 2. Lemma 4 shows that for the last seven options the
solution of (7) does not exist. Other possibilities are considered in the following
theorems.

Table 2
Twelve possibilities for the signs ofλi.

sign(λ1) +++++++++ +++++++++ −−−−−−−−− +++++++++ −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− +++++++++ +++++++++ +++++++++ +++++++++ −−−−−−−−− +++++++++ −−−−−−−−−

sign(λ2) +++++++++ +++++++++ +++++++++ +++++++++ −−−−−−−−− +++++++++ +++++++++ −−−−−−−−− −−−−−−−−− +++++++++ −−−−−−−−− −−−−−−−−− −−−−−−−−− +++++++++ −−−−−−−−− −−−−−−−−−

sign(λ3) +++++++++ +++++++++ +++++++++ −−−−−−−−− +++++++++ +++++++++ −−−−−−−−− +++++++++ −−−−−−−−− −−−−−−−−− +++++++++ −−−−−−−−− +++++++++ −−−−−−−−− −−−−−−−−− −−−−−−−−−

sign(λ4) +++++++++ −−−−−−−−− +++++++++ −−−−−−−−− +++++++++ −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− +++++++++ +++++++++ +++++++++ −−−−−−−−− +++++++++ −−−−−−−−− +++++++++

Theorem 10 Suppose that the data TTTTTTTTT i , dddddddddi , i = 0,1,2, satisfydet(∆TTTTTTTTT0,∆TTTTTTTTT1) 6= 0
andλλλλλλλλλ > 0. If one of the listed cases

(1) µ1 > φ1(λλλλλλλλλ ) andµ2 > φ2(λλλλλλλλλ ),
(2) λ1λ3

λ2
≤ µ1 < φ1(λλλλλλλλλ) andµ2 < φ2(λλλλλλλλλ),

(3) λ2λ4
λ3

≤ µ2 < φ2(λλλλλλλλλ) andµ1 < φ1(λλλλλλλλλ),

(4) −λ1λ3
λ2

< µ1 < λ1λ3
λ2

andϕ2(λλλλλλλλλ ,µ1) < µ2 < φ2(λλλλλλλλλ ),

(5) −λ2λ4
λ3

< µ2 < λ2λ4
λ3

andϕ1(λλλλλλλλλ ,µ2) < µ1 < φ1(λλλλλλλλλ ),

holds, then the interpolating curve PPPPPPPPP that satisfies(2) exists.

Theorem 11 Suppose that the data TTTTTTTTT i , dddddddddi , i = 0,1,2, satisfydet(∆TTTTTTTTT0,∆TTTTTTTTT1) 6= 0,
λi > 0, i = 1,2,3, andλ4 < 0. If

µ1 > φ1(λλλλλλλλλ) and µ2 > ϕ2(λλλλλλλλλ ,µ1), or
λ1λ3

λ2
< µ1 < φ1(λλλλλλλλλ) and µ2 < ϕ2(λλλλλλλλλ ,µ1),

then the interpolating curve PPPPPPPPP that satisfies(2) exists.

Remark 12 The caseλ1 < 0 andλi > 0, i = 2,3,4, is symmetric to the one consid-
ered in Theorem 11. The result is the following. Ifµ2 > φ2(λλλλλλλλλ ) andµ1 > ϕ1(λλλλλλλλλ ,µ2),

or
λ2λ4

λ3
< µ2 < φ2(λλλλλλλλλ ) and µ1 < ϕ1(λλλλλλλλλ ,µ2), then the interpolating curve PPPPPPPPP that

satisfies(2) exists.

Theorem 13 Suppose that the data TTTTTTTTT i , dddddddddi , i = 0,1,2, satisfydet(∆TTTTTTTTT0,∆TTTTTTTTT1) 6= 0

11



andλ1 > 0, λ2 > 0, λ3 < 0, λ4 < 0. If

−λ1λ3

λ2
< µ1 and ϕ2(λλλλλλλλλ ,µ1) < µ2 <

λ2λ4

λ3
+

2λ1λ4

µ1
,

then the interpolating curve PPPPPPPPP that satisfies(2) exists.

Remark 14 The case whereλ1 < 0, λ2 < 0, λ3 > 0, λ4 > 0 is symmetric to the one
considered in Theorem 13, and the result is the following. If

−λ2λ4

λ3
< µ2 and ϕ1(λλλλλλλλλ ,µ2) < µ1 <

λ1λ3

λ2
+

2λ1λ4

µ2
,

then the interpolating curve PPPPPPPPP that satisfies(2) exists.

Theorem 15 Suppose that the data TTTTTTTTT i , dddddddddi , i = 0,1,2, satisfydet(∆TTTTTTTTT0,∆TTTTTTTTT1) 6= 0
andλ1 < 0, λ4 < 0, µ1 > 0. If one of the following cases holds,

(1) λ2 > 0, λ3 > 0, µ2 > ψ2(λ1,λ4,µ1),
(2) λ2 < 0, λ3 > 0, 0 < µ1 ≤ λ1λ3

λ2
, µ2 > ψ2(λ1,λ4,µ1),

(3) λ2 > 0, λ3 < 0, 0 < µ2 ≤ λ2λ4
λ3

, µ1 > ψ1(λ1,λ4,µ2),

(4) λ2 < 0, λ3 < 0, µ1 > −λ1λ3
λ2

, ϕ2(λλλλλλλλλ ,µ1) < µ2 < ψ2(λ1,λ4,µ1),

(5) λ2 < 0, λ3 < 0, 0 < µ1 ≤−λ1λ3
λ2

, 2λ1λ3λ4+λ2λ4µ1
λ3µ1

< µ2 < ψ2(λ1,λ4,µ1),

then the interpolating curve PPPPPPPPP that satisfies(2) exists.

Remark 16 The constantsλλλλλλλλλ , µ1 andµ2 change if lengths of dddddddddi change, but all the
relations in Theorems 10–15 stay the same.

These theorems provide us with sufficient conditions that imply the existence of
the interpolating polynomial. If none of these conditions is fulfilled the number
of solutions is even, almost always zero. Let us take for example Theorem 10 and
choose data so thatλi = 1, i = 1,2,3,4, and(µ1,µ2) = (3,1), (2,3), (0,±3), (±3,0),
(−3,±3). In all of these examples the data do not satisfy any of the conditions of
Theorem 10, and since the solutions can be computed analytically, one can easily
check that there is no solution inD .

The proof of these theorems will be made in two steps and will be given as the next
section. First the existence of the solution will be proved for the particular data. In
the second step conclusions will be carried from the particular case to the general
one by a convex homotopy and Brouwer’s degree argument.
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5 Proofs of main Theorems

5.1 Step1: Particular cases

Let the points be chosen as

TTTTTTTTT0 = (−1,−1)T , TTTTTTTTT1 = (0,0)T , TTTTTTTTT2 = (1,−1)T , (27)

and the tangent directions given in Table 3. Table 4 shows theconstants for this
Table 3
The tangent directions for different choices of data.

ddddddddd0 ddddddddd1 ddddddddd2

data 1 (3,5)T (2,0)T (3,−5)T

data 2 (1,3)T (2,0)T (1,−3)T

data 3 (−0.5,1.5)T (2,0)T (−0.5,−1.5)T

data 4 (3,5)T (2,0)T (5,−3)T

data 5 (1,3)T (2,0)T (−7,9)T

data 6 (2,4)T (0,−2)T (1,1)T

data 7 (7,5)T (2,0)T (7,−5)T

data 8 (1.8,−0.2)T (0,2)T (41,−39)T

data 9 (3,1)T (−2,0)T (3,−1)T

data 10 (1.5,−0.5)T (−2,0)T (11,−9)T

data, and Table 5 gives the admissible solutions(t1,ααααααααα) ∈ D . Note that there is a
unique admissible solution in all the cases (Fig 4).

5.2 Step2: Homotopy

In order to prove Theorems 10, 11, 13 and 15 one needs to show that the system (7)
has a solution(t1,ααααααααα) ∈D . The conclusions for the particular data outlined in Table
4 will be carried to the general case by the use of convex homotopy and Brouwer’s
degree argument. Let the general data be denoted by(λλλλλλλλλ ,µ1,µ2) and particular one
by (λλλλλλλλλ ∗,µ∗

1 ,µ∗
2). A homotopy is defined as

HHHHHHHHH(t1,ααααααααα;ξ ) := FFFFFFFFF (t1,ααααααααα;λλλλλλλλλ(ξ ),µ1(ξ ),µ2(ξ )) ,

where

λλλλλλλλλ (ξ ) := (1−ξ )λλλλλλλλλ ∗ +ξ λλλλλλλλλ , µi(ξ ) := qi(ξ ; µ∗
i ,µi), i = 1,2,

13



Table 4
The constants for the particular data.

data λ1 λ2 λ3 λ4 µ1 µ2 φ1(λλλλλλλλλ ) φ2(λλλλλλλλλ ) ϕ1(λλλλλλλλλ ,µ2) ϕ2(λλλλλλλλλ ,µ1) ψ2(λλλλλλλλλ ,µ1)

1 1 1 1 1 4 4 2.8571 2.8571 / / /

2 1 1 1 1 2 2 2.8571 2.8571 / / /

3 1 1 1 1 1
2

1
2 2.8571 2.8571 −4 −4 /

4 1 1 1 −1 4 4 2.8571 / / −2
3 /

5 1 1 1 −1 2 −8 2.8571 / / −2 /

6 1 1 −1 −1 3 0 / / 2 −1
2 /

7 −1 1 1 −1 6 6 / / / / 4.1724

8 −1 −1 1 −1 0.8 40 / / / / 36.2152

9 −1 −1 −1 −1 2 2 / / 2
3

2
3 12.96

10 −1 −1 −1 −1 0.5 10 / / 2
11 / 63.1769

Table 5
The admissible solutions for the particular data.

t1 α0 α1 α2

data 1 1
2

4
5

9
10

4
5

data 2 1
2

4
3

7
6

4
3

data 3 1
2

8
3

11
6

8
3

data 4 0.3624 1.2392 0.9961 0.3470

data 5 0.1902 3.8203 3.1384 1.6290

data 6 0.4462 3.0658 2.0574 6.1521

data 7 0.5 0.8 0.1 0.8

data 8 0.6860 4.8270 0.0169 0.1849

data 9 0.5 4 1.5 4

data 10 0.7620 13.2434 0.7134 1.0338

andqi := qi(.; µ∗
i ,µi) : [0,1]→ R will be chosen later on as continuous piecewise

linear functions that satisfyqi(0;µ∗
i ,µi) = µ∗

i , qi(1;µ∗
i ,µi) = µi . The idea of the

proof is to connect particular and general data so that a set of solutions

S := {(t1(ξ ),ααααααααα(ξ )) ∈ D ; HHHHHHHHH(t1(ξ ),ααααααααα(ξ );ξ ) = 000000000, ξ ∈ [0,1]}

stays away from the boundary∂D . If this can be done, one can find a compact set
K ⊂ D , such that

S ⊂ K ⊂ D , S ∩∂K = /0. (28)
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Fig. 4. Cubic Hermite geometric interpolants for particular data points defined by (27) and
tangent directions given in Table 3.

Therefore the mapHHHHHHHHH does not vanish at the boundary∂K, and a Brouwer’s degree
([14]) of HHHHHHHHH on K is invariant for allξ ∈ [0,1]. But since it is odd for the particu-
lar mapFFFFFFFFF(·, ·;λλλλλλλλλ∗,µ∗

1 ,µ∗
2), equationsFFFFFFFFF(t1,ααααααααα;λλλλλλλλλ ,µ1,µ2) = 000000000 must have at least one

admissible solution.

One is now left to show how to chooseq1 andq2, and to prove that (28) holds.
Namely, it must be shown that solutions ofHHHHHHHHH(t1(ξ ),ααααααααα(ξ );ξ ) = 000000000 satisfy

t1(ξ ) ≥ const> 0, 1− t1(ξ ) ≥ const> 0, αi(ξ ) ≥ const> 0, i = 0,1,2,
(29)

for all ξ ∈ [0,1]. Here and throughout the rest of the paper term ’const’ will stand
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for an arbitrary constant. The inequality

|λi(ξ )| ≥ min
ξ∈[0,1]

{|(1−ξ )λ ∗
i +ξ λi |} ≥ min{|λ ∗

i |, |λi|} ≥ const> 0

will be fulfilled, and the results of Lemma 5, Lemma 6 and Lemma7 will be the
main tool in the proof of all four theorems. Each of them will be analysed sepa-
rately.

Theorem 10: There are five cases to be considered. Choosing data 1, 2 or 3 as
particular data yieldλλλλλλλλλ (ξ ) > 0, and thusα1(ξ ) cannot approach zero, i.e.,α1(ξ )≥
const> 0 for all ξ ∈ [0,1]. In the first case whereµi > φi(λλλλλλλλλ ), i = 1,2, choose
data 1 as the particular data. Sinceµ∗

i > φi(λλλλλλλλλ ∗) andφi does not depend onµi , there
obviously existsqi , such that

µi(ξ ) > φi(λλλλλλλλλ(ξ )), ξ ∈ [0,1], i = 1,2.

Thereforeα0(ξ ) andα2(ξ ) cannot approach zero for anyξ ∈ [0,1], and by (23)
parametert1(ξ ) cannot approach zero or one either.

Suppose now that
λ1λ3

λ2
≤ µ1 < φ1(λλλλλλλλλ) andµ2 < φ2(λλλλλλλλλ) (case 2) and choose data 2.

There clearly existsq2 that satisfiesµ2(ξ ) < φ2(λλλλλλλλλ (ξ )) for everyξ ∈ [0,1]. More-

over, from (23) it follows that
λ1(ξ )λ3(ξ )

λ2(ξ )
< φ1(λλλλλλλλλ(ξ )), so one can findq1 such

that
λ1(ξ )λ3(ξ )

λ2(ξ )
< µ1(ξ ) < φ1(λλλλλλλλλ (ξ )), ξ ∈ [0,1].

Now, it is clear thatα0(ξ ),α2(ξ ), t1(ξ )≥ const> 0 for all ξ ∈ [0,1]. Moreover, by
(19) parametert1(ξ ) cannot approach one either which completes the proof. Case
3 is symmetric to the second one and will be omitted.
Consider now case 4 and choose data 3 that satisfy

−λ ∗
1 λ ∗

3

λ ∗
2

< µ∗
1 <

λ ∗
1 λ ∗

3

λ ∗
2

and ϕ2(λλλλλλλλλ ∗,µ∗
1) < µ∗

2 < φ2(λλλλλλλλλ ∗).

There obviously existsq1 such that

−λ1(ξ )λ3(ξ )

λ2(ξ )
< µ1(ξ ) <

λ1(ξ )λ3(ξ )

λ2(ξ )
, ξ ∈ [0,1].

Since by (18) and (23)

ϕ2(λλλλλλλλλ (ξ ),µ1(ξ )) < −λ2(ξ )λ4(ξ )

λ3(ξ )
<

λ2(ξ )λ4(ξ )

λ3(ξ )
< φ2(λλλλλλλλλ(ξ )), ξ ∈ [0,1],

there existsq2 that satisfiesϕ2(λλλλλλλλλ(ξ ),µ1(ξ )) < µ2(ξ ) < φ2(λλλλλλλλλ (ξ )). Thus α0(ξ ),
t1(ξ ) ≥ const> 0. Further, by (19) and (23),α2(ξ ), 1− t1(ξ ) ≥ const> 0, and
(29) holds.
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Case 5 is symmetric to case 4 and will be omitted. This completes the proof of
Theorem 10.

Theorem 11: Particular data must be chosen so thatλi(ξ ) > 0, i = 1,2,3, and
λ4(ξ ) < 0. It is then clear that there exists a constant ’const’ such that αi(ξ ) ≥
const> 0, i = 0,1, and 1− t1(ξ ) ≥ const> 0, no matter how we defineq1 andq2.

By (23),
λ1(ξ )λ3(ξ )

λ2(ξ )
< φ1(λλλλλλλλλ(ξ )). Now, for the first case choose data 4, defineq1

so thatµ1(ξ ) > φ1(λλλλλλλλλ(ξ )), and then choose suchq2 thatµ2(ξ ) > ϕ2(λλλλλλλλλ (ξ ),µ1(ξ )),
ξ ∈ [0,1]. In the second case choose data 5, defineq1 so that

λ1(ξ )λ3(ξ )

λ2(ξ )
< µ1(ξ ) < φ1(λλλλλλλλλ (ξ )), ξ ∈ [0,1],

and choose suchq2 thatµ2(ξ ) < ϕ2(λλλλλλλλλ (ξ ),µ1(ξ )). Now, (29) obviously holds and
Theorem 11 is proved.

Theorem 13: Let us choose data 6 as the particular data. Sinceλ1(ξ ) > 0, λ2(ξ ) >
0, λ3(ξ ) < 0 andλ4(ξ ) < 0 it is clear from Lemma 7 thatαi(ξ ) ≥ const> 0,

i = 0,1,2, forξ ∈ [0,1]. Letq1 be chosen in such a way that−λ1(ξ )λ3(ξ )

λ2(ξ )
< µ1(ξ )

for ξ ∈ [0,1]. By using (22) one can findq2 that satisfies

−λ2(ξ )λ4(ξ )

λ3(ξ )
< ϕ2(λλλλλλλλλ (ξ ),µ1(ξ )) < µ2(ξ ) <

λ2(ξ )λ4(ξ )

λ3(ξ )
+

2λ1(ξ )λ4(ξ )

µ1(ξ )
<

λ2(ξ )λ4(ξ )

λ3(ξ )
.

Thereforet1(ξ ) cannot approach zero for anyξ ∈ [0,1]. Now, it can easily be
proved thatµ1(ξ ) > ϕ1(λλλλλλλλλ (ξ ),µ1(ξ )), thus parametert1(ξ ) cannot approach one
either and the proof is completed.

Theorem 15: Particular data must be chosen so thatλ1(ξ ) < 0 andλ4(ξ ) < 0. Then
it is clear thatαi(ξ )≥ const> 0, i = 0,2, for all ξ ∈ [0,1]. In case 1 choose data 7.
It is clear thatt1(ξ ) cannot approach zero or one. The only problem could be if
α1(ξ ) would go to zero. But forq1(ξ ; µ∗

1 ,µ1) := (1−ξ )µ∗
1 +ξ µ1, andq2 chosen

so thatµ2(ξ ) > ψ2(λ1(ξ ),λ4(ξ ),µ1(ξ )), this cannot happen.

In the second case choose data 8 and defineq1 so that 0< µ1(ξ ) ≤ λ1(ξ )λ3(ξ )

λ2(ξ )
.

Now, 1− t1(ξ ), t1(ξ ) ≥ const> 0 for all ξ ∈ [0,1]. Choosingq2 as in the previous
case completes the proof. Next case is symmetric to this one and will be omitted.

In case 4 choose data 9 andq1 so thatµ1(ξ ) > −λ1(ξ )λ3(ξ )

λ2(ξ )
. Now, by (20) and

(24),

ϕ2(λλλλλλλλλ(ξ ),µ1(ξ )) <−λ2(ξ )λ4(ξ )

λ3(ξ )
andϕ2(λλλλλλλλλ (ξ ),µ1(ξ )) < ψ2(λ1(ξ )λ4(ξ ),µ1(ξ )).

So there existsq2 such thatϕ2(λλλλλλλλλ (ξ ),µ1(ξ )) < µ2(ξ ) < ψ2(λ1(ξ ),λ4(ξ ),µ1(ξ )),
and thust1(ξ ),α1(ξ ) ≥ const> 0 for ξ ∈ [0,1]. Parametert1(ξ ) can approach

17



1 only for µ2(ξ ) > −λ2(ξ )λ4(ξ )

λ3(ξ )
, but in this case, by (21),ϕ1(λλλλλλλλλ (ξ ),µ2(ξ )) <

−λ1(ξ )λ3(ξ )

λ2(ξ )
, so 1− t1(ξ ) ≥ const> 0 for ξ ∈ [0,1].

For the last case choose data 10 andq1 so that 0< µ1(ξ ) ≤−λ1(ξ )λ3(ξ )

λ2(ξ )
. More-

over, by (25),q2 can be chosen so that

2λ1(ξ )λ3(ξ )λ4(ξ )+λ2(ξ )λ4(ξ )µ1(ξ )

λ3(ξ )µ1(ξ )
< µ2(ξ ) < ψ2(λ1(ξ ),λ4(ξ ),µ1(ξ )).

It is clear thatt1(ξ )≥ const> 0 andα1(ξ )≥ const> 0 for ξ ∈ [0,1]. But, by (26),
µ1(ξ ) > ϕ1(λλλλλλλλλ(ξ ),µ2(ξ )), so 1− t1(ξ )≥ const> 0 too and the proof is completed.

6 Approximation order

In this section Theorem 2 will be proved. Recall the notationdeclared there. One
needs to show that there existsh0 > 0 small enough and a constantC > 0, so that
for everyh = max

ℓ
∆sℓ, 0< h≤ h0, theG1 spline exists as well as

dist( fffffffff ,PPPPPPPPP) = dist( fffffffff ,PPPPPPPPP)[a,b] = inf
θ
‖ fffffffff −PPPPPPPPP◦θ‖ ≤C h6, (30)

whereθ : [a,b]→ [0,1] is a regular reparameterization. Since

dist( fffffffff ,PPPPPPPPP) ≤ max
{

dist( fffffffff ,PPPPPPPPP)[s2ℓ−2,s2ℓ]; ℓ = 1,2, . . . ,m
}

,

it is again enough to analyse the polynomial casem= 1 only. Without losing gen-
erality, one can assumea = 0, fffffffff (0) = (0,0)T, fffffffff ′(0) = (1,0)T. Further, leth be
redefined ash := s2−s0. For h small enough,fffffffff can be parameterized by the first
component,

fffffffff (s) =





s

y(s)



 , y(s) =
1
2

y′′(0)s2+
1
3!

y(3)(0)s3+O
(

s4) , y′′(0) 6= 0.

Moreover, letηi := si/h, i = 0,1,2. By Remark 3 the tangent directions can be
redefined asdddddddddi = h fffffffff ′(hηi), i = 0,1,2. Since fffffffff is convex, det(TTTTTTTTT0,TTTTTTTTT1) 6= 0 and
constants (6) are well defined. It is straightforward to compute

λ1 =
η1

1−η1
+O(h), λ2 =

η1

1−η1
+O(h), λ3 =

1−η1

η1
+O(h),

λ4 =
1−η1

η1
+O(h), µ1 = 1+

1
η1

+O(h), µ2 = 1+
1

1−η1
+O(h),
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and the nonlinear system (7) becomes

FFFFFFFFF

(

t1,ααααααααα; λ̃λλλλλλλλ ,1+
1

η1
,1+

1
1−η1

)

+O(h) = 0, (31)

whereλ̃λλλλλλλλ :=

(

η1

1−η1
,

η1

1−η1
,
1−η1

η1
,
1−η1

η1

)

. It is easy to check that the solution

at the limith = 0 is t1 = η1, αi = 1, i = 0,1,2. But unfortunately, the Jacobian at
the limit solution is singular, and one can not make use of theImplicit Function
Theorem. To show that the solution exists also for allh small enough Theorem 1
will be used. There obviously exists suchh0 that λλλλλλλλλ > 0 for all 0< h ≤ h0. With
some elementary mathematics one can prove that the inequalities

1+
1

η1
> φ1(λ̃λλλλλλλλ ), 1+

1
1−η1

> φ2(λ̃λλλλλλλλ )

hold. Furthermore,
φi(λλλλλλλλλ ) = φi(λ̃λλλλλλλλ )+O(h),

thush0 can be chosen so small thatµi > φi(λλλλλλλλλ) for all 0 < h≤ h0. The existence of
the solution is now guaranteed by Theorem 10 (case 1), which also shows that this
is probably the most important existence result. Now that the existence is provided
it is well known (see [7], [4]) that approximation order is optimal which completes
the proof.
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