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ON INTERPOLATION BY PLANAR CUBIC G?
PYTHAGOREAN-HODOGRAPH SPLINE CURVES

GASPER JAKLIC, JERNEJ KOZAK, MARJETA KRAJNC, VITO VITRIH,
AND EMIL ZAGAR

ABSTRACT. In this paper, the geometric interpolation of planar data points
and boundary tangent directions by a cubic G? Pythagorean-hodograph (PH)
spline curve is studied. It is shown, that such an interpolant exists under some
natural assumptions on the data. The construction of the spline is based upon
the solution of a tridiagonal system of nonlinear equations. The asymptotic
approximation order 4 is confirmed.

1. INTRODUCTION

Pythagorean-hodograph (PH) curves ([5, 4]) form a special subclass of planar
polynomial parametric curves. They are distinguished by having an exact rep-
resentation of an arc-length and a rational offset. This makes them very useful
in practical applications, such as CAGD, CAD/CAM systems, robotics, anima-
tion,. .. Although they have less degrees of freedom than general parametric curves,
they still admit nice shape properties, which makes them interesting in shape pre-
serving techniques. The parametric and the geometric Hermite interpolation are
nowadays well established approaches for an approximation of discrete data by
polynomial parametric objects. In the last decade a lot of results on a Hermite
type interpolation have been obtained (see [7], [1], [13], [11], [15], [6], [14], e.g.). It
is well-known that regular PH curves must be of odd degrees. This clearly reduces
spline interpolants to the cubic and the quintic case, perhaps even up to degree
seven. Higher degrees are rarely used since PH characterization equations become
too complicated.

In [13], a G! continuous Hermite interpolation by PH cubics was considered.
The interpolating cubic PH curve is determined by the local data only and the
construction is based upon data points and tangent directions at these points.
However, tangent directions are often hard to obtain. So why not to look for a
cubic PH interpolant based upon data points only (except at the boundary) as it
is shown in Fig. 1. But at the same time the approximation order achieved should
stay optimal and the obtained interpolant should preserve some shape properties
of the data (convexity e.g., formally defined in (2.2)).

This suggests a natural interpolation problem to be considered, i.e., an inter-
polation of planar data points and tangent directions at the boundary by a cubic
G? PH spline. This kind of problem was somehow overlooked in the past. One of
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FIGURE 1. A cubic G? PH curve.

the reasons might have been the fact that cubic PH curves are restricted to basi-
cally only one curve (up to translation, rotation, scaling and reparameterization),
namely the Tschirnhausen’s cubic [8]. As it is well known it has no inflection points,
which restricts the interpolation flexibility. Nevertheless, a cubic interpolatory G2
PH spline is a simple tool that preserves convexity of the data. Also, it offers the
arc-length reparameterization of the spline curve in a closed form. On the other
hand, since a cubic PH curve is without inflection points, a cubic G? PH spline must
possess the same property. Thus this scheme is not appropriate for interpolation of
free-form data in its basic form. To overcome this obstacle, a simple preprocessing
algorithm is suggested that breaks down the general data to convex segments.

In this paper, an interpolation of convex planar data points and tangent directions
at the boundary by a cubic G? PH spline is considered. Under some natural as-
sumptions on the data, the existence of the interpolating cubic G? PH spline is
shown and the approximation order 4 is confirmed. As a special case and a basis
for the induction step, the cubic Hermite PH interpolation is studied in detail, and
the results in [12] are enhanced. The obtained results naturally extend to the closed
curve interpolation.

If the data points fail to be convex, a preprocessing algorithm for point insertion
is proposed in the last section of the paper. In this case a tangent direction at a
new breakpoint is prescribed which reduces the G2 to G continuity at that point.

The outline of the paper is as follows. In Section 2 the interpolation problem
considered is presented, and the main results of the paper are given. In the next
section the single segment, a cornerstone of a PH cubic spline interpolation, is
analysed. In Section 4, a proof of the main result is outlined, and in the next
section an asymptotic approximation order is studied. The paper is concluded by
some numerical examples and a preprocessing algorithm for point insertion.
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2. INTERPOLATION PROBLEM

Let us introduce the interpolation problem considered. Suppose that data
(21) dOaPOaPh"'?Pmadma PZ#PZ+17

are prescribed, where P, denotes a point in R? to be interpolated, and dy, |de|| = 1,
is the tangent direction at the boundary point Py, £ = 0, m. Our goal is to construct
an interpolating G2 cubic PH spline curve B. In order to overcome the problem of
inflections, we will assume throughout the paper, that the data (2.1) are convex. In
the last section of the paper, this restriction will be surmounted by a preprocessing
algorithm for dealing with general data. In this case the resulting spline curve will
not be globally G2 but nonetheless it will be loop-free.

Before we introduce convexity, some additional notation is needed. The norm |||
will denote the Euclidean norm, implied by the scalar product u-v, and u x v will be
the planar vector product. Furthermore, Z (u,v) will be the angle between vectors
u and v, and AP, := Py,1 — Py. The term convex refers to the requirement that
AP;x APy, is of the same sign for any two consecutive APy, £ =0,1,...,m—1,
and for the appropriate vector products at the boundary. Without loss of generality,
we may assume throughout the paper that this sign is positive, i.e.,

do X APO > 0,
(2.2) AP@XAP@+1>O, £=0,1,...,m— 2,
AP,,_1 xd,, >0.
Now let us consider the smoothness and PH conditions of the G? cubic PH

interpolating spline B. A natural approach is to express segments B of the spline
curve B as cubic Bézier curves

3
(2.3) B' = Z b3r—3+iBsi-
i=0

Here, B, ; are the cubic Bernstein basis polynomials of degree n, and
bcR?, i=0,1,...,3m,

are the control points of the spline curve that satisfy the end-point interpolation
property of Bézier curves, i.e.,

b3g=Pz, 520,1,...,771.

The remaining 4 m unknowns bsy_s, bge—1, £ = 1,2,...,m, need to be determined
by the fact that the interpolating curve is G2 continuous and piecewise PH.

As can be seen in Fig. 3, not every PH interpolatory cubic spline preserves the
shape of the data (2.2). Although it is a convex curve it can have undesired loops
(see [12, 10], e.g.). In order to avoid this, we will require that the control polygon
of every spline segment satisfies

Absy_3x Absp_o > 0, Absy_ox Absp_1 > 0, = 1,2,...,m.

Such an interpolatory cubic spline curve will be called admissible.
The G* continuity requires collinearity of the tangents at Py [9, e.g], i.e.,

d() X Abo = O,
(24) Abgg_l X Abge = O, = 1,2,...,m—1,
Ab3rn—1 X dm = Oa
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and the curvature continuity conditions at Py, £ =1,2,...,m — 1, are
(2.5) Abgo_1 X (—APy_1 + Absy_3) _ Aby x (AP; — Absgyo)
' [[Abse—1? [| Abs||?

Note that the closed curve interpolation problem can be stated in a similar way
thus its analysis will be omitted.
By (2.4) the directions of Absy_1 and Abs, should agree. Thus it is natural to
introduce
de, |lde =1, ¢£=1,2,...,m—1,
as unknown tangent directions at Py. Recall that dy and d,,, are prescribed. The
unknown differences of control points can be expressed as

(2.6) Absp = Aaedy, Abzpiro = Aoppaderr, €=0,1,...,m—1.

Provided the tangent directions dy and dyy; are known, the lengths Agp = ||Abse]|
and Aggp1 = ||Absgs2|| are determined from a PH characterization (see [12]). Thus,
Ao2e = Nog (do, dos1), Aoer1 = Aops1 (de,dos1), and with the help of (2.6) the curva-
ture continuity conditions (2.5) simplify to m — 1 equations

1 1

d; x (/\—2 (AP;— Aypq1degr) + SO (AP;_1 — Xopo de1)) =0,
20 20—1

(2.7) (=1,2,...,m—1,

for m — 1 unknown directions dy. The main results of the paper can now be stated

as follows.

Theorem 2.1. Suppose that the data (2.1) are convex as explained in (2.2). The
system of nonlinear equations (2.7) has an admissible solution if and only if the
angles

Yo = 4(d0,APO),
Z(A.Pg,l,APg), €:1,2,...,m—1,
Pm = / (APm—ladm)a

satisfy p; + piy1 <4nw/3 fori=0,1,...,m — 1. If the upper bound is decreased to
Km,

K =1+ Larccos (?) ~ 1.304087 < 4/3,
™

the solution is unique.

Theorem 2.2. The asymptotic approrimation order of the solution, obtained by
the assertions of Theorem 2.1, is 4.

3. SINGLE SEGMENT

In order to prove Theorem 2.1, we have to consider the single segment case first.
So let us assume m = 1 through the rest of this section. The cubic Hermite PH
interpolation has already been analysed in [12], but here some additional facts will
be outlined. In particular, not all tangent directions that form convex data give
admissible solutions, a fact that was overlooked in [12]. As stated in Theorem 2.1,
an additional angle restriction is necessary in order for the solution to exist. Fur-
thermore, besides the unique admissible solution, a solution with a loop may exist.
Explicit formulae for both solutions will be given.
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—— Py

FIGURE 2. Inappropriate data which lead to a cubic PH inter-
polant with a loop.

For a single segment, the prescribed data are
do, Py, Py, dy,
and the convexity requirements become
(3.1) dox APy >0, APgxd; > 0.

Note that a solution may still exist if the suppositions (3.1) are violated, but it
usually has a loop since no inflection points are possible (see Fig. 2). This is
undesirable for a shape preserving spline interpolation.

The cubic interpolatory Bézier curve B is determined by control points b;,
(3.2) bo = Py, b1 =Po+ \do, by=P;—\idy, b3=P.

Our goal is to obtain the parameters A; > 0,7 = 0,1. A well known characterization
of cubic PH curves in Bézier form [8] will be used. First, the equality of angles ([8])

L (Abg, Abr) = £ (Aby, Aby),
can be by (3.1) simplified to
cos (£ (Abg, Aby)) = cos (£ (Aby, Abs)),

or equivalently

(3.3) (do — d1)-Aby = 0.
Thus, with new unknowns &;, introduced as
/\0 — )\1 /\0 + )\1
34 = ——, = P Trer——
-4 ©T AP T 2AP|
and
v L AP
= TAo 0,
AP
the equation (3.3) simplifies to
= L ].(d()—dl)-’v
(35) 50 — =0 (do,v,dl) — §m

The second characteristic equation of cubic PH curves ([8]) is

[AbL| = V/[[Abol| [ Aby -
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By (3.2), (3.4) and (3.5) it can be written as a quadratic equation for &,
(3.6) (14+2do-d1)& —2(do+dr)vé& +1—(1—2do-dy) &5 =0.
Its solutions are
(3.7) & =Ef (do,v,dy1) =
1— (1 —2do-d1)&5
(do+di)v++/((do+di)v)2—(1—(1—2do-d1)&3) (1+2do-d1)’

where & satisfies (3.5). From (3.4), (3.5), and (3.7) we obtain solutions of the
interpolation problem

Ao = AL (do, APy, dy) =

AP AP
3.8 = | AP, Ei(d,io,d>+5 (d,io,d)),
2% Iapol (=7 (a0 papp ) +2 (0 75

AF =AY (do, APy, dy) =

AP AP
._ =t 0 _= 0
T ||APO|| <‘—‘1 (d07 HAPOH )d1> —0 <d0) ||APO|| 7d1)) ’

and (3.2) yields the control points b; of the interpolant B.

Note that a translation or a rotation of the coordinate system does not change
the values of & in (3.5), and £ in (3.7). Thus let us assume from now on till the
end of this section that Py and Py lie on the z-axis, and that the tangent directions
are given by the angles pg = £ (do, APy) and ¢1 = £ (APy,d;). Further discussion
will be simplified by introducing new parameters Gy and (1, satisfying o = (31 — fo,
01 = P1+ Bo. Now,

(3.9) dy = { cos (81 — o) } L w= [1] Cody = [COS (B +ﬂo)} .

—sin (61 — Bo) 0 sin (61 + Bo)
To fulfill the convexity requirements (3.1), the angles [; are restricted to
(3.10) I:={(B0,51):0<pB1 <m, |Bo| <min{p,m— S1}}.
The assumption (3.9) simplifies & in (3.5) to
1 sin Gy
3.11 P
(3.11) &o 3 s,

and &5 in (3.7) to

(3.12) & = Ai1(Bo, B1) ,
Az(Bo, B1) £ /A3 (Bo, B1)
where
1 2 25 3 . Qﬁ
A1(Bo, B1) = cos® B + ZZETﬁ?’ A3(Bo, 51) =1~ Z—ZEQ ﬁ?’

and As(0o, 1) := 2cosfpcosfr. It is clear that —% <& < % Since A\; must be
positive, this must be also true for ff.

Lemma 3.1. Let &5 be given by (3.12). Then & is positive iff

(ﬁOaﬁl)€I+ = {(60761)6-[7 0<ﬁ1<2§}7
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and & is positive iff

(6o, 1) € I = {(Bo.B) €1, 0<Pr<Z}.

Proof. Since As(fo,41) > 1/4, € is real. The numerator in (3.12) is clearly pos-
itive, but the denominator may vanish. It is straightforward to verify that this
happens only if 3; = /3 or #; = 27/3. Since cos fycos 31 > 0 for 0 < #; < § and
cos Fpcos B1 < 0 for § < By < 7, the denominator in & is zero iff B = %71’, and
the denominator in &; is zero iff §; = %W. Since

(A2(»3oyﬂ1) + A3(»3oyﬂ1)) |50:0 =2cosB1+£1>0
for (Bo, /1) € I+, the assertion follows. O
Lemma 3.2. Suppose that (8o, 1) € I+. Then )\ZjE >0,i=0,1.

Proof. Note that & defined by (3.11) and & defined by (3.12) are continuous
functions of ;. Further, by (3.8), A& = 0 or A\f = 0 iff ¢ = +&,. But, by using
(3.11), the equation (3.6) for £ = 4&, simplifies to

sin” (6o F 1) _0
Sil’l2 ﬁl ’
which clearly does not have any solution in the domain 1. Since for (0,51) € I,
APy
)\:t — )\:t _ || 0
0 1 2cos 31 £ 1 >0,
AE >0, i=0,1, for all (B, 51) € L. O

Now it remains to see whether the solution of the interpolation problem is ad-
missible as far as the shape preservation is concerned. It is enough to consider the
sign of the planar vector product Aby x Ab; only. A simple calculation shows

(Aby x Ab)E - = AT (do x APy — Mdy x dy) =

A4(Bo, 1) + 2/ A3(Bo, 1)
2 A1(fBo, 51)

= || APy|| )\g £1i cos By sin (31

cos (1 sin® By

where A4(Bo, /1) == F ——. It is straightforward to verify that (Abg x
cos B sin” B;

Aby)T > 0 for all (B, 31) € I+, and (Aby x Aby)~ < 0 for all (By, 1) € I—. Thus
the first curve is admissible, but the second one has a loop.

This discussion proves a variation of the theorem found in [12], and adds the
angle range considerations that have been there omitted.

Theorem 3.3. Suppose that dgy, Py, Py, d1, Py # Py, are given convexr data and
o = Z(do, APy), 1 =2(APy,dy).

A unique admissible Hermite interpolating PH cubic curve exists iff the angles o;
satisfy

4
(3.13) wo +p1 < gw.

The interpolating curve in the Bézier form is determined by

(3.14) Ao = Af (do, APg,d1), M\ = AT (do, APy, dy),
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with Aj given by (3.8).

Remark 3.4. Suppose that the suppositions of Theorem 3.3 hold true. If g+ @1 <
%ﬂ', then besides (3.14) there exists an another Hermite interpolating PH cubic
curve, determined by

Xo = Ay (do, APy, dv), M =A7 (do,APy,d1),

with A; given by (3.8). This solution is not shape preserving, since it has a loop
(see Fig. 3).

Remark 3.5. Note that the necessity of (3.13) follows from [10].

FIGURE 3. The data where two Hermite interpolating PH cubic
curves exist.

By using the introduced notation it is easy to give an explicit form of the square
root of the hodograph. Furthermore, a nice explicit formula for a reparameterization
by a natural parameter can be obtained.

Theorem 3.6. Suppose that the suppositions of Theorem 3.8 hold, and let the
Hermite interpolating PH cubic curve B be determined by (3.14). The square root
of its hodograph is

(3.15) B/(t)-Bl(t) = C1B3o(t) + C2B31(t) + C3 B2 o(t),
where
3
Cl = 3)\0, CQ = 5((d0+d1)'APQ—(>\O+)\1)(1+d0'd1)), 03 = 3)\1
The arc-length reparameterization
P .= (I)(d(), APQ,dl) : [O,L] — [0, ].],
where L :=1/3(Cy + Ca + Cs) is the length of B, is given by
Ci—Cy+ ¢ %@(0103—022)— Y CIT(S)
1 P(s) =
(3.16) (5 T 7
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where

e1(s) = ex(5) + /4 (C1C5 — C3)* + 3(s),
e2(5) := (C1 — Cs) ((C1 — C2)? + 3 (C1C5 — C3)) — 3(Cy — 2Co + C3)° s.

Proof. With some algebraic computations and the use of (3.4), (3.5) and (3.6)
one can verify that (3.15) holds. Then the arc-length s of the Bézier curve B is

computed as
s=s(t)=/0 JB (W) -B () du, teo1].

Since by [3]
(3.17) B'(t)-B'(t) > 0,

s is a monotone function of ¢ and thus invertible. The inverse ¢t = t(s) = ®(s),
given by (3.16), is computed as a solution of a cubic equation

1
g(Cl —2C5 + Cg)tg + (02 — Cl)tQ + Cit = s.

Since there is only one real solution, we need to check that (3.16) is real. The in-
equality (3.17) and the fact, that a circle can not be parameterized by polynomials,
imply C; — 2C5 + C3 > 0 and C1C3 — C3 > 0. Therefore it is clear that ¢1(s) > 0
and the assertion follows. O

4. INDUCTIVE STEP OF THE PROOF

In this section, an inductive proof of Theorem 2.1 will be given. The first step of
the induction, the single segment case, has already been confirmed by Theorem 3.3.
So, let us assume that there exist cubic PH G?-continuous splines which interpolate
the data

do, Py, Py,..., Py, dy,
and
dZaPZ7P€+1a"'7Pm7dma

respectively, for any direction dy in the cone, determined by APy_; and AP,. We
have to show that there exists a unique direction d; for which the splines have a
G? joint. Consider the equation (2.7) at P,. Since a rotation preserves it, we may
choose the coordinate system in such a way that

1
” il
Further, as shown in Fig. 4,

1 cos (e — ag) } 1 [cos ag]
1 AP = . , —— AP, =|. ,
[AP,—1]] ot {_ sin (e — ap) [|AP,]| £ |sinay
and

dy, = | oSl —artac) o, = |COS(aet P —ar)
N —sin(pe —ar + )|’ T sin (g + @ep1 — aprr) |
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Pre1= Xy, ’
/

FIGURE 4. Joining two G2-continuous cubic PH splines at P,.

The assumption (4.1) reduces the curvature condition (2.7) to the requirement that
the last components of vectors

1 A2yt 1 <|APe||)2< AP, Aorg1 )
42) AP, —=dey, = - diyy ),
42 sp A== e = 3E [AP,] ~ AP~

and

1 Aog_
(4.3) BV AP, + —Aie 2diy =
20-1 20-1

_ 1 <|AP“||)2 <_ APy | s o 1>
AP 1| \ Aze—1 [AP_1||  [[AP._af
are equal. A straightforward algebraic simplification, with the help of (3.8) and the
functions

sin -~y sin §
=41 4+6 —
n(7,9) \/ 61—cos(7+5)’

(cos(y — 0) — 1) sin(y + d) + (1 — cos(y + 9))(sinvy + sin §)n(y, 9)
2(1 — cos(y + 0))(2(cosy + cos d) + n(7,9)) ’
3 — cosycosd — 2cos(20) + 3sinysind + (cosy — cosd)n(7, )
2(1 — cos(y + 6))(2(cosy + cos §) + n(v,9))

X(’% 5) =

p(7,0) =

)

reveals the G?-continuity condition expressed by (4.2) and (4.3) as

(4.4) 1 x(oe, @1 — apqr) 1 X (e — o, 1)

[AP|| p* (e, per1 — argr)  [[APe-a|l p2(pe — ar, 1)
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Note that p(a, per1 —es1) = A (de, APg,desr) /| AP||, and x(aw, o1 — aes1)
corresponds to the last component of
AP, A (dy, APy, de+1)d
- 0415
[AP,| AP
and similarly for the right hand side of (4.4). Let

_ Xla,7) p?(8,9)
OB ) MG )

We are looking for ay € (0, pp) that satisfies

AP
(4.5) w(ay) = w(ae, oo — ap, Pri1 — apg1,u-1) = ||AP:!||7

with the following requirements met by the data and the neighbouring tangent
directions

0<pr1<m, O0<@r<m, 0<g@r<m,

(4.6) we—1+ we < %ﬂ', Ve + pep1 < %77;
0< a1 <we—1, 0< a1 < @ey1.
By Theorem 3.3, the conditions (4.6) imply
plae, pev1 —apr1) >0, ploe —ag,a-1) >0, 0<ap<gy,
and
X, pey1 —aper1) >0, 0<ap<wr, x(pr—apamr1)>0, 0<ap<qpg.
So, w is a continuous, even smooth function in (4.6). Further, from the expansions
2 -
e+,
RS 0 (g - af).

we conclude that the equation (4.5) has a solution ay € (0,¢¢). In order to show
that this solution is unique, it is enough to prove monotonicity too. In general,

wlay) = ay

w(ay) =

104f
102}
100+

098l

FIGURE 5. An example of w = w(ay) that admits three solutions.
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there may be multiple solutions. For example, data
m 41
= -, — = (Xy_ = —17T
Pe 5 Pe+1 +1 -1 50

clearly give three solutions if |[AP,|| = ||[AP,_:|| =1 (Fig. 5, and Fig. 6),
ap = 0.326428, of = 0.785398, «f = 1.24437.

Thus an additional restriction as assumed in Theorem 2.1 is necessary, which

FIGURE 6. Three admissible solutions («y = 0.326428, 0.785398, 1.24437).

strengthens the bounds (4.6) imposed on the data by
(4.7) 0<pr1+@e <Km, 0<pp+ @1 < K.

It is enough to consider the monotonicity of Inw only. Its derivative is given as

d
— Inw(ay) = T(ae, pry1 — o) + 7(0e — e, 1),

dOég
where 9 5
o x(1,0) 5= p(7,9)
7(v,90) := Oy -2 Oy
’ X(76) p(7,0)
The complete expression 7 is rather long,
r(,8) = cot TEE
n 3sin(y — J)sind +
(v, 6)((1 — cos(y — 6)) sin(y + ) + (cos(y + 6) — 1)(siny + sind)n(v,d))
+1(v,9) (—2(2 cosy + cos 8)n(7y, §) sin? 774—6 — cos 27y + cos(y + 5))
+
(cosy — cosd)sind )
— 2sin(y
(costr +9) Py
2(cos7y + cosd) + n(7,9)
sin § (cosy — cos §)? . . .
4 cosdsiny 4+ 3 cosysind — sin ,0
+ g (oS +8) 1Pn0.0) TS Y

20826 — 3sinysind — cosyn(y,d) + cosd (cosy +n(v,d)) — 3
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but one can establish that it is decreasing in the variable § if both parameters
belong to the domain

4
DT:{(%(S):O<75§’0<5<7T}U{(%5)1g<7<7r,0<5<§—7}.

or

04

Let us prove that 75 := is negative on D.. At the boundary of D, the following

30H
25H

20H

FIGURE 7. The domain D, and the behaviour of the function
75(7,0) on D

hold true,
g
75(7,8) = =67 2 +0(7) <0, 0<s<m,
sin® =
2
3
75(7,0) = === + 0 () <0, 0<y<m,
SN 2
cosysinzg T
7’6(’775):_1873+O(7T—5)<0, 0<vy< -,
cos? 3
3 59 — 1)2 26+ 1
7'<5(’Y75)=——((C0b ) +3§O§ ha )+O(7T—’Y)<0, 0<d< .
2 cos? 3

Further, if § — 4 —~ and Z <~ < m, then 75(7,8) — —oc. This shows that 75

is negative near the boundary. A direct numerical evaluation confirms this fact for
all (v,0) € D,. More precisely, the maximum of 75 on D, is zero, and it is attained
at the boundary v = 0 (see Fig. 7). Therefrom for data satisfying (4.7) we obtain

the following estimations. If 0 < ¢, < %, then

(e, pe1 — qus1) + (e — 1) > T(aw, ) + (P — au, ™) = Vi (aw, o),
and if § <y <, then
T(aw, Pov1 — aptr) + T(pe — apy 1) > T(ap, K — pp) + (00 — au, K7 — @)
=: Wg (o, pr).
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We need to show that ¥; and Ux are nonnegative on D; and Ds respectively,
where

™
Dlz{(ae,w): 0<0‘4<‘P€vo<<ﬂe§§},

— < < }
[%2) ™.
3 ¢

One can verify that the global minimum of ¥y is V3 — 1 and it is reached on
the boundary in the point (ag,pe) = (%,%) The global minimum of ¥y is
zero, reached in the interior stationary point (ay, ¢r) = (K — 1), 2(K — 1)) (see

Fig. 8). It is easy to check that for any K, K < K < %, VU~ attains negative

D2 - {(Oé[,%pe) : 0< ay < e,

F1GURE 8. Plots of ¥; and ¥ on D; and Do, respectively, with
a marked global minimum.

values in Ds. So K is the best constant bound we can get. From the other point
of view, the meaning of K is the following. For ¢, = 2(K — 1), the derivative
of w(ay, ¢ — ag, Km — g, KT — ) has a double zero in oy = £, and further,
w(ayg, oo — ay, (K + €1)m — @, (K + €2)m — og) is not a monotone function for any
€1,€2 € (0,% —K).

5. APPROXIMATION ORDER

Let us now consider the asymptotic behaviour of the system (2.7). For this pur-
pose, we assume that data are sampled from a smooth convex curve f : [0, h] — R2,
parameterised by the arclength. Further, let the data points be determined by the
partition

0=po <p1<- < pm=h,
with a bounded global mesh ratio. Namely,

Py=f(ue), €=0,1,...,m,
and similarly for the derivatives at the boundary. So, with
(5.1) Apg =:vph,
for some constant const > 0,

Ui
(5.2) sup — < const < co.
ig Vi
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Let us now show that the unknown directions d; that satisfy the system (2.7) can
be looked for as

(5.3) di=Q(—h*u)f (me), €=1,2,....m—1,
for all h small enough. Here, Q denotes the rotation matrix

Qly) = [CF’W ‘Smﬂ |

sing  cosg

and u, are unknowns to be determined by the system (2.7). Let us expand the
equation of this system at a particular index ¢. Some simplifications can be done
in advance. The equation concerned is obviously independent of a translation of
the coordinate system. Also, in view of Section 3, a rotation does not change the
values of \;. Let @, denote the rotation matrix that brings dy to e; := [1, 0]". The
equation e; x g, = 0, where

A A
(54) q,:= <)\2 QAP + QAP 1) — 22 Quds 1 — 225 Qudy
20

VR 2 2
>\2€ 1 )\26 1 >\2€

is equivalent to the original one. But this is the same as to require that the second
component of the vector g, vanishes, i.e.,

(5.5) (@qZ)Q ~0.

The assumption (5.3) implies that @, can be written as a product of rotations
Qe = QuQT(=h* w) = QuQ(h* we), with Qef’ (1e) = ex.

Since rotations in R? commute, the vectors in (5.4) can be simplified to

(5.6) QAP = Q(h* up) (QeAPe) . QAP = Q(R® uy) (QeAPe—l) ;

and

(5.7) Qedps1 = Q(h® (ug — ugs1)) (Qéfl(ﬂéil)) :

This shows that the asymptotic behaviour of the equation (5.5) can be studied with
f expanded locally as g,,

90(8) = Qe (f(ue +5) = Po), s € [~ve—rh,veh],

at each (¢ separately. Since the parameter s is the arclength, we may assume that
the tangent direction is given as

1oy |cosBe(s)
9u(s) = [sin 9@(8):| ’
where 6(s) > 0 is the curvature of f. An expansion

Oe(s) =015+ 0@7282 + 0@7353 + 9@7454 +0 (55)

yields
1
— 0%, 3 — —9@ 10@ 28 + 0 249@_30@71 —1262.) s°
g,(s) = 941641%2 4 | 120(41 ] : z,2) +(’)(56).
5y s? + T s3 + — (694 3 — 96,1) sT 4+ 10 (294’4 — 92194’2) s°
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Note that 6,1 > 0 by the assumption. Since the rotation matrices needed expand

as
: 1— 2u?s —u s
3 8
Q(us):[ 2 L2 +0(s%),
it is straightforward to compute the expansions (5.6) and (5.7). Further, by insert-

ing these expansions in \;, one obtains

2
Ve—1 I/Zflgza 2
5.8) Aap_o = 21p, h
(5.8) A2r—2 3 + 60, +
(931——189A39¢1—F13922)1611——369&1(ue71+—u4)h3 -
+ 720, +0 ()
2
Vyp_1 Z/Z719572 2
9) Ngpq = 2=ty h
(5.9) Aar—1 3 660 +
(92{14—189@,39@,1—119572) V?_1+369e,1(ue—1+ue)h3 o
+ 7207, +0 ()
2
Vy Veegg 2
Nop = Zep 4 Y282
20 3 + 6001 +
@iy+B@3@J—1M%JV?—MW“&u+uHﬂh3 o
+ 7207, +0 (%)
2
Vy Veegg 2
Nopyr = Sbp - Yok2y
20+1 3 69@71 +
(9;1-— 189&39&1-+-13932) V3 + 36001 (e + togr)
NE N il W+ 0 (hY).
7207,

Let us apply the obtained expansions in (5.5). The system of equations for i small
enough reads
Vy Ve—1
5 Wl U U1 =
2 (ve—1 + ) 21 +ve)

Vo1 (Ve—1 — ve) Ve (02171 + 66,3001 — 79572)
= + O (h),
180,

(5.10) (=1,2,...,m—1.

The matrix involved in the system (5.10) has been around for quite a while, and
appears in the cubic spline interpolation (see for example [2] and the references
therein). It is strictly diagonally dominant, totally positive, etc. As a consequence,
a unique (and by (5.2) bounded) solution of the system (5.10) exists for all h small
enough. The unknowns that satisfy the system are of the form

ug =constg + O (h), €=1,2,...,m—1.

We are now ready to prove that the asymptotic approximation order is 4. It is
enough to show that this is true for any segment B of the spline curve. Thus let
B’ be an ¢-th segment of the interpolating G2 cubic PH spline defined by (2.3),
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and let H' be the standard cubic C' Hermite interpolant of f/(,, 1
He(:ui) :f(:ui)v i=0—1,¢,

d o d ey o,
ZH (1) = = f ) = F (), =010,

] 1.e.,

The distance dist (ﬂ[w—l,w]’BZ) is clearly bounded as

dist (f|w 1pae]s ) < dist (f|w L) Z)—I—dist (He,Be)
Fs) B )|+ _max () = B'(on(s)

Elpe—1,1e]

< max
SE€[pe—1,/1e]

where, without loosing generality, ¢, might be chosen as

1
AVI7ESY

be(s) == (5 — pe—1)-

A very well known result on Hermite interpolation and (5.1) lead to

Fls) — HZ(S)H -0 ((Aw_l)“) -0 ((W_1 h)4) =0 ().

max
SE€[pe—1,pue]

Thus it remains to prove that maxgej,, , .,

H'(s) — B*(¢(s H = It

well known that H’ can be written in the Bézier form as

H'(s) = f(jue—1) Bso(r) + (fw_l) 1 Bpe f'w_l)) B (r)+

3

+ (f(w) - %f’(w)) Bso(T) + f(pe) Bss(r), 7= %, 5 € [po—1, pe).

On the other hand, (2.6) implies

B (¢4(5)) = f(e—1) Bs,o(7) + (F(pe—1) + A2 e—2de—1) Bs1(7)+

+ (Fe) = Aosm1de) Boo(r) + £(ue) Ba(r), 7= "EL s € oy, pu.
He—1
Consequently,
H'(s) — B'(¢u(s)) =
Ap

= (%f/(,ué—l) - /\ze—Qde—l> Bs () + (/\ze—lde - AM;_lfI(W)) B3 o (7).

But by (5.3), di = f'(wi) + O (h?), i = £ — 1,£. Using this together with (5.1),
(5.8), (5.9) and the fact that u; is bounded by a constant, leads to

max
SE€[pe—1,p1e]

H'(s) — B (¢u(s H =

Note that the first and the last segment should be analysed slightly differently, since
tangent directions are prescribed there. But it is easy to see that the same results
hold and we shall skip the details. This completes the proof.
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6. NUMERICAL EXAMPLES AND PREPROCESSING ALGORITHM

An efficient and reliable numerical algorithm for convex data, satisfying the
assumptions of Theorem 2.1 with the bound on the angles decreased to K, can
be obtained by using the continuation method. Note that the problem involves
solving a tridiagonal system of nonlinear equations. Although all the examples were
computed using this method, we suggest an alternative, computationally simpler
approach. The algorithm iteratively computes the unknown tangent directions dp,
(=1,2,...,m— 1, with

dgo] _ Pra— Py
[Pe1 — Poa’

as the starting values. In the (r 4+ 1)-th iteration we first compute

)\ZZ = Ag (dy]7APZ7dE:',]-1) ) )\2Z+1 = Af (dg]’ AP@ad[T] ) ) (= Oa ]-7 s, — ]-7

(=1,2,....m—1,

£+1
and then for { =1,2,....m —1,

s 1 T 1 ,
dg +1] _ <)\—%Z (AP@ — /\Qg+1 dEJ]rl) + )\%Z ) (APe—l - )\28—2 d£]1)) .

Here d([)r] = dy and d%] = d,, for each r. Numerical evidence suggests that the

procedure is reliable and convergent, but it seems hard to prove the convergence in
general.

When closed splines are under consideration all tangent directions are unknown

and the algorithm needs only slight modifications. An example of such an inter-
polant together with its curvature plot is shown in Fig. 9.

e |
// 20} |

i

|
\ 10t \ [
\ |
Vo
Vo /\/_\
/|
05f N/

. — \—J/ \/ \\\//

FIGURE 9. A closed cubic PH spline interpolant and its curvature.

—e ~

But since for general data an interpolating cubic PH G2 spline might not exist,
a preprocessing algorithm must be considered first. Since convexity of the data is
necessary for such a spline, an efficient split of the data into convex segments is
needed. Thus an additional point has to be inserted, whenever an inflection point
in the data polygon occurs (Fig. 10). Let Py_o, Py_1, Py, Pyy1 be a nonconvex
segment of data points. Then one possibility how to determine a new point P’ and
a new direction d’ is to use the cubic polynomial curve which interpolates the given
four data. The point P’ can then be chosen as an intersection of the polynomial
and the line segment P,_; Py, while an appropriate choice for the direction d’ is
to take a normalized tangent vector of the polynomial at P’. If the intersection
is empty, take P’ = (P;_1 + P;)/2 and choose d’ appropriately. Recall that we
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have to restrict our requirements to G! continuity at the newly added points. The

FIGURE 10. An insertion of an additional point in a locally non-
convex segment.

data are now split into convex segments. But if for some convex segment any of
the angles in Theorem 2.1 is greater than K, the solution may not be unique or
may not even exist on this segment. Thus an insertion of an additional point is
necessary (Fig. 11). The following lemma, that needs no additional proving (see
Fig. 11), and Remark 6.2 show that it suffices to add one additional point on each

such segment, and suggest a way to do it.

Ea-

FIGURE 11. T'wo examples of the insertion of an additional point
P’ in a locally convex segment.

Lemma 6.1. Let Py_o,Py_1, Py, Py be convex data with
Ye—1+ e > K,
and let P' be any point inside the open domain Q, bounded by the lines
() =P +tQ(pe — (K — 1)m)APy_1, U3(t) =Py +t Q(Km — wr—1)AP,y_1,
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and the half-plane determined by the line £(t) := Py_q1 + tAPy_1 not containing
Py o and Pyyy. Then

4(AP,€72,P1_P[71)+4(P/_P,€71,P,€_Pl) < Km,

and
Z(Pl—ngl,Pg—P/) —I—Z(Pz—P/,APg) < K.

Remark 6.2. By the Bézout’s theorem, the cubic polynomial curve which interpo-
lates the data given in Lemma 6.1 does not form a loop and has no inflection points.
Since usually the cubic interpolating polynomial intersects the domain €2, an addi-
tional point P’ can in this case be chosen as the intersection of the polynomial and
the angle bisector at the point T':= ¢; N ¢5 (see Fig. 11).

In Fig. 12, two examples, obtained by the presented preprocessing algorithm, are
shown. Note that in the first example, there are only two additional points added
by the preprocessing algorithm.

Finally, a comparison between a cubic G2 PH spline and a classical cubic C?
spline is shown in Fig. 13. Both splines have the same end-point tangent vectors.

/’//_\. \\ r
) BN [ \ ’\ : \\
[/ TN [

("ﬁ} -/\ I
. ( //\h \J ¢ it ‘

20+
J
I
\ e
= ‘

\
s | ”ﬁmﬂﬂ \(ﬁﬂﬂﬂ(ﬁf

=)

\ . 4‘/ \ / -20F

FIGUurE 12. PH interpolating splines together with corresponding
curvatures. Gray points are additional points determined by the
preprocessing algorithm.

FIGURE 13. Cubic G? PH spline (black) and standard cubic C?
spline (gray) together with the corresponding curvatures.



10.

11.

12.

13.

14.

15.

INTERPOLATION BY G? CUBIC PH SPLINES 21

REFERENCES

. Gudrun Albrecht and Rida T. Farouki, Construction of C? Pythagorean-hodograph inter-

polating splines by the homotopy method, Adv. Comput. Math. 5 (1996), no. 4, 417-442.
MR MR1414289 (97k:65033)

. Carl de Boor, A practical guide to splines, revised ed., Applied Mathematical Sciences, vol. 27,

Springer-Verlag, New York, 2001. MR MR1900298 (2003{:41001)

. Rida T. Farouki, The conformal map z — z2 of the hodograph plane, Comput. Aided Geom.

Design 11 (1994), no. 4, 363-390. MR MR1287495 (95{:65034)

, Pythagorean-hodograph curves, Handbook of computer aided geometric design,
North-Holland, Amsterdam, 2002, pp. 405-427. MR MR1928550

, Pythagorean-hodograph curves: algebra and geometry inseparable, Geometry and
Computing, vol. 1, Springer, Berlin, 2008. MR MR2365013 (2008k:65027)

. Rida T. Farouki, Carla Manni, and Alessandra Sestini, Shape-preserving interpolation by G*

and G? PH quintic splines, IMA J. Numer. Anal. 23 (2003), no. 2, 175-195. MR MR1974222
(2004¢:65011)

. Rida T. Farouki and C. Andrew Neff, Hermite interpolation by Pythagorean hodograph quin-

tics, Math. Comp. 64 (1995), no. 212, 1589-1609. MR MR1308452 (95m:65025)

. Rida T. Farouki and Takis Sakkalis, Pythagorean hodographs, IBM J. Res. Develop. 34 (1990),

no. 5, 736-752. MR MR1084084 (92a:65063)

. Yu Yu Feng and Jernej Kozak, On G? continuous cubic spline interpolation, BIT 37 (1997),

no. 2, 312-332. MR MR1450963 (98c:65014)

Gasper Jakli¢, Jernej Kozak, Marjeta Krajnc, Vito Vitrih, and Emil Zagar, Geometric La-
grange interpolation by planar cubic Pythagorean-hodograph curves, Comput. Aided Geom.
Design 25 (2008), no. 9, 720-728. MR MR2468201

Bert Jiittler, Hermite interpolation by Pythagorean hodograph curves of degree seven, Math.
Comp. 70 (2001), no. 235, 1089-1111 (electronic). MR MR1826577 (2002c:65027)

Dereck S. Meek and D. J. Walton, Geometric Hermite interpolation with Tschirnhausen
cubics, J. Comput. Appl. Math. 81 (1997), no. 2, 299-309. MR MR1459031 (98b:65011)

, Hermite interpolation with Tschirnhausen cubic spirals, Comput. Aided Geom. De-
sign 14 (1997), no. 7, 619-635. MR MR1467315 (98d:65020)

Francesca Pelosi, Maria Lucia Sampoli, Rida T. Farouki, and Carla Manni, A control polygon
scheme for design of planar C?> PH quintic spline curves, Comput. Aided Geom. Design 24
(2007), no. 1, 28-52. MR MR2286365

Zbynék Sir and Bert Jiittler, Fuclidean and Minkowski Pythagorean hodograph curves over
planar cubics, Comput. Aided Geom. Design 22 (2005), no. 8, 753-770. MR MR2173576
(2006i:65021)

FMF, UNIVERSITY OF LJUBLJANA, AND PINT, UNIVERSITY OF PRIMORSKA
Current address: Jadranska 19, 1000 Ljubljana, Slovenia
E-mail address: gasper.jaklic@fmf.uni-1j.si

FMF AnD IMFM, UNIVERSITY OF LJUBLJANA
Current address: Jadranska 19, 1000 Ljubljana, Slovenia
E-mail address: jernej.kozak@fmf.uni-1j.si

IMFM, UNIVERSITY OF LJUBLJANA
Current address: Jadranska 19, 1000 Ljubljana, Slovenia
E-mail address: marjetka.krajnc@fmf.uni-1j.si

PINT, UNIVERSITY OF PRIMORSKA
Current address: Muzejski trg 2, 6000 Koper, Slovenia
E-mail address: vito.vitrihQupr.si

FMF AnD IMFM, UNIVERSITY OF LJUBLJANA
Current address: Jadranska 19, 1000 Ljubljana, Slovenia
E-mail address: emil.zagar@fmf.uni-1j.si



