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Abstract.

In this paper, geometric interpolation by G1 cubic spline is studied. A wide class
of sufficient conditions that admit a G1 cubic spline interpolant is determined. In
particular, convex data as well as data with inflection points are included. The existence
requirements are based upon geometric properties of data entirely, and can be easily
verified in advance. The algorithm that carries out the verification is added.
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1 Introduction.

Geometric interpolation schemes, introduced in [1], are becoming more and
more important practical tool in the approximation of curves and surfaces. Per-
haps the main reason could be found in the fact that such interpolants please the
human eye more than usual linear counterparts. This is clearly a consequence
of the basic principle of the geometric interpolation: free parameters of a para-
metric interpolant are determined by geometric conditions only. An interpolant
should pass through a point, should have a prescribed tangent or normal direc-
tion, a curvature, etc. But, no additional artificial conditions are imposed on it
such as at which parameter values the interpolation conditions should be met.
Since no free parameters are used ineffectively, geometric interpolation often re-
sults in higher approximation order than one would expect from the functional
case.

But geometric schemes involve a nonlinear part, and the questions like the
existence and the efficient implementation require a more subtle analysis. Most
of results obtained are based upon the asymptotic analysis, and only a few papers
examine geometric conditions on given data ([7], [5], [4]). For an excellent recent
overview of planar Hermite geometric interpolation the reader is referred to [2].

However, results offered by the asymptotic analysis are not always adequate
in practical applications. If one is merely looking for an interpolant of a nice
shape, suppositions like ”if data points are sampled dense enough” are not very
encouraging. Therefore robust algorithms should be based upon conditions that
ensure the existence in advance if only possible. But in geometric interpolation,
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this can be achieved very rarely. In this paper, we show that it can be done in
the planar G1 cubic spline interpolation. The interpolating problem concerned
is the following. Let

(1.1) TTTTTTTTT i ∈ R2, i = 0, 1, 2, . . . , 3m, TTTTTTTTT i 6= TTTTTTTTT i+1,

be a given sequence of data points. Find a cubic G1 spline curve PPPPPPPPP : [a, b] → R2

with breakpoints
a := u0 < u1 < · · · < um := b

that interpolates the data TTTTTTTTT i in the prescribed order so that PPPPPPPPP (u`) = TTTTTTTTT 3`. Let
ddddddddd3`, ‖ddddddddd3`‖2 = 1, denote the tangent directions of the spline curve PPPPPPPPP at u`. A
piecewise representation

PPPPPPPPP `
(
t`

)
:= PPPPPPPPP (u)


[u`−1,u`]

, t` :=
u− u`−1

∆u`−1
∈ [0, 1], ` = 1, 2, . . . , m,

rewrites the interpolation problem as follows: find cubic polynomials PPPPPPPPP ` such
that

PPPPPPPPP `
(
t`i

)
= TTTTTTTTT 3(`−1)+i, i = 0, . . . , 3,

d

dt`
PPPPPPPPP `(0) = α`

0ddddddddd3(`−1),
d

dt`
PPPPPPPPP `(1) = α`

3ddddddddd3`,
` = 1, 2, . . . , m,(1.2)

where the unknown parameters t`1, t
`
2, α`

0, α
`
3 must satisfy

(1.3) 0 =: t`0 < t`1 < t`2 < t`3 := 1, α`
0 > 0, α`

3 > 0, ` = 1, 2, . . . , m.

Here, ∆ denotes the forward finite difference. Note that α`
i are chosen as local

derivatives lengths rather than global in order to simplify the notation of further
discussion. The tangent directions ddddddddd3`, ` = 1, 2, . . . , m − 1, have clearly not
been prescribed by the data (1.1) yet. However, they may be known as data or
given as an approximation, perhaps as interactive shape parameters, or implicitly
prescribed by the requirement that PPPPPPPPP is G2 too. In the latter case, ddddddddd0 and ddddddddd3m

would be known, and the following m− 1 equations

1(
α`

3

)2 det
(
3 (TTTTTTTTT 3` − TTTTTTTTT 3`−3)− α`

0ddddddddd3`−3, ddddddddd3`

)
=

1
(
α`+1

0

)2 det
(
ddddddddd3`, 3 (TTTTTTTTT 3`+3 − TTTTTTTTT 3`)− α`+1

3 ddddddddd3`+3

)
,

` = 1, 2, . . . , m− 1,(1.4)

added. But, in general, the problem (1.2) and (1.3) need not to have a solution.
So it is quite possible that the curve PPPPPPPPP could not interpolate all the prescribed
data. For this reason we split the interpolation problem (1.2) and (1.3) into two
steps. At the first and the main step, we determine the region for (ddddddddd`)

m
`=1 that

admits a solution of (1.2). The second step is left to the user, but with clear
bounds on ddddddddd3`. Some suggestions how to choose tangent directions are given in
Section 4.
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Figure 1.1: The directions for tangents (gray area) that imply the existence of a G1

spline PPPPPPPPP for convex data.

As expected, it is not possible to break apart sufficient conditions that admit
a solution to a local level. However, if the data are convex, we are able to
determine possible angles that ddddddddd3` is allowed to take by the local data only. To
be precise, at a point TTTTTTTTT 3` the angle between ∆TTTTTTTTT 3`−1 and ∆TTTTTTTTT 3` gives a range
for ddddddddd3` that is further split into at most three subangles. This partition depends
only on data TTTTTTTTT 3`−3, TTTTTTTTT 3`−2, . . . , TTTTTTTTT 3`+3. All that is left is to connect particular
subangles in an allowable global choice by taking into account certain simple
additional relations between subangles at different breakpoints. This is carried
out by a straightforward backtracking algorithm. Figure 1.1 shows three such
possible choices (grayed). But if the data imply an inflexion point, the answer
is not so obvious, and is left to Section 4, as well as the precise explanation of
the convex case.

The outline of the paper is the following. In Section 2 a polynomial case is
considered and geometric conditions that imply the existence of the interpolant
are derived. Section 3 is devoted to a quite technical proof of two main theorems
of Section 2. In Section 4 the results are carried over to G1 cubic spline curves,
and the conclusions are presented as an algorithm.

2 Polynomial case.

The first step to the G1 spline construction is a single polynomial case. So,
m = 1, and PPPPPPPPP 1 = PPPPPPPPP . Further, let us shorten the notation by

ddddddddd0 := ddddddddd1
0, ddddddddd3 := ddddddddd1

3, t1 := t11, t2 := t12, α0 := α1
0, α3 := α1

3.

The nonlinear part of the interpolation problem (1.2) is to compute the admis-
sible parameters (t1, t2, α0, α3) ∈ D, where by (1.3)

D := {(t1, t2); 0 =: t0 < t1 < t2 < t3 := 1} × {(α0, α3); α0 > 0, α3 > 0} ,

is an open set with the boundary ∂D, determined by ti = ti+1 for at least
one i ∈ {0, 1, 2}, α0 = 0 or α3 = 0. Once this parameters are determined,
the coefficients of PPPPPPPPP are obtained by using any standard interpolation scheme
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componentwise. A similar problem was studied in [5], but as it turned out the
results can not be simply generalized.

To reduce the interpolation problem (1.2) to the nonlinear system for unknown
(t1, t2, α0, α3) only, divided differences that map polynomials of degree ≤ 3 to
zero are applied to (1.2). Therefore,

[t0, t0, t1, t2, t3]PPPPPPPPP = 000000000 =
α0

ω̇(t0)
ddddddddd0 +

3∑

j=1




3∑

i=j

1
ω̇(ti)

1
ti − t0


 ∆TTTTTTTTT j−1,(2.1)

[t0, t1, t2, t3, t3]PPPPPPPPP = 000000000 =
α3

ω̇(t3)
ddddddddd3 +

2∑

j=0

(
j∑

i=0

1
ω̇(ti)

1
t3 − ti

)
∆TTTTTTTTT j ,(2.2)

where

ω(t) :=
3∏

i=0

(t− ti).

Further, with linear functionals det (·, ∆TTTTTTTTT 0), det (·,∆TTTTTTTTT 1) applied to (2.1), and
det (·, ∆TTTTTTTTT 1), det (·, ∆TTTTTTTTT 2) applied to (2.2) one obtains

α0

ω̇(t0)
det (ddddddddd0,∆TTTTTTTTT k) +

3∑

j=1




3∑

i=j

1
ω̇(ti)

1
ti − t0


det (∆TTTTTTTTT j−1, ∆TTTTTTTTT k) = 0,

α3

ω̇(t3)
det (ddddddddd3,∆TTTTTTTTT k+1) +

2∑

j=0

(
j∑

i=0

1
ω̇(ti)

1
t3 − ti

)
det (∆TTTTTTTTT j , ∆TTTTTTTTT k+1) = 0,

k = 0, 1.

Let us recall that t0 = 0 and t3 = 1. After eliminating α0 from the first and α3

from the last equation, the system transforms to

1
t21(1− t1)

− 1
t22(1− t2)

(1 + µ1) +
t2 − t1

(1− t1)(1− t2)

(
1 + µ1(1 + λ1)− λ1

λ2

)
= 0,

1
t2(1− t2)2

− 1
t1(1− t1)2

(1 + µ2) +
t2 − t1
t1t2

(
1 + µ2(1 + λ2)− λ2

λ1

)
= 0,(2.3)

and

α0 = δ1
t1t2

t2 − t1

(
1

t22(1− t2)
− t2 − t1

(1− t1)(1− t2)
(1 + λ1)

)
,(2.4)

α3 = δ2
(1− t1)(1− t2)

t2 − t1

(
1

t1(1− t1)2
− t2 − t1

t1t2
(1 + λ2)

)
,(2.5)
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where the new constants introduced are defined more generally as

Di,j := det (∆TTTTTTTTT i, ∆TTTTTTTTT j),

λ2`−1 :=
D3`−3,3`−1

D3`−3,3`−2
, λ2` :=

D3`−3,3`−1

D3`−2,3`−1
,

µ2`−1 :=
det (ddddddddd3`−3, ∆TTTTTTTTT 3`−2)
det (ddddddddd3`−3, ∆TTTTTTTTT 3`−3)

, µ2` :=
det (∆TTTTTTTTT 3`−2, ddddddddd3`)
det (∆TTTTTTTTT 3`−1, ddddddddd3`)

,

δ2`−1 :=
D3`−3,3`−2

det (ddddddddd3`−3, ∆TTTTTTTTT 3`−3)
, δ2` :=

D3`−2,3`−1

det (∆TTTTTTTTT 3`−1, ddddddddd3`)
.

(2.6)

They have a clear geometric meaning, for example, Di,j is the volume of a
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Figure 2.1: The signs of λ1, λ2 depending on the position of TTTTTTTTT 3 (left), and the signs of
µ1, δ1 depending on the tangent direction ddddddddd0 (right).

parallelogram spanned by vectors ∆TTTTTTTTT i, ∆TTTTTTTTT j and the other constants are the
ratios of such volumes. Fig 2.1 illustrates the sign change in λ1 and λ2 (µ1 and
δ1) as TTTTTTTTT 3 (tangent direction ddddddddd0) changes. Note also that λ2`−1, λ2` depend on
data points TTTTTTTTT i only. Further, for the future use, we add the following observation.

Remark 2.1. The constants µ2`−1, µ2`, and sign δ2`−1, sign δ2` do not depend
on the length of tangents involved.

In order to make the analysis bearable some restrictions on the data must be
made. Namely, λk > 0, µk > 0 and δk > 0, k = 1, 2, will be assumed for the
convex data and λ1 · λ2 < 0, δk > 0 for the data that imply an inflection point.
Since the individual pieces will be composed in a spline curve, these assumptions
are very natural as one can see from Fig 2.1.

It is straightforward to compute the solution of the system (2.3) in a closed
form by using Gröbner basis or resultants. But not all the solutions will satisfy
0 < t1 < t2 < 1. Even if this is true, the solution may not produce positive
α0 and α3. This means that we are dealing with a problem that is only partly
algebraic. The following lemmas reveal the possibility that PPPPPPPPP ′ vanishes at the
boundary.

Lemma 2.1. Suppose that λ1 > 0. There exists a unique solution of the system
(2.3) and (2.4) such that 0 < t1 < t2 < 1 and α0 = 0 if and only if λ2 > 0 and
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µ2 = φ2(λ1, λ2), where

φ2(λ1, λ2) :=
λ2

1− t̃1

t̃22
− λ1

t̃1

(1− t̃2)2

λ2
1− t̃2

t̃21
− λ1

t̃2

(1− t̃1)2

− 1,

and
(
t̃1, t̃2

)
is the unique solution of the system

(2.7)
1− t1

t22(t2 − t1)
= 1 + λ1,

1− t2
t21(t2 − t1)

=
λ1

λ2
(1 + λ2) , 0 < t1 < t2 < 1.

Lemma 2.2. Suppose that λ1 > 0. There exists a unique solution of the system
(2.3) and (2.5) such that 0 < t1 < t2 < 1 and α3 = 0 if and only if λ2 > 0 and
µ1 = φ1(λ1, λ2), where

φ1(λ1, λ2) :=
λ1

t̃2

(1− t̃1)2
− λ2

1− t̃2

t̃21

λ1
t̃1

(1− t̃2)2
− λ2

1− t̃1

t̃22

− 1,

and
(
t̃1, t̃2

)
is the unique solution of the system

t2
(1− t1)2(t2 − t1)

= 1 + λ2,
t1

(1− t2)2(t2 − t1)
=

λ2

λ1
(1 + λ1) , 0 < t1 < t2 < 1.

Proof. Let us prove Lemma 2.1. The proof of Lemma 2.2 is similar and will
be omitted. When α0 = 0 the equations (2.3) and (2.4) simplify to (2.7) and

µ2 =
λ2

1− t1
t22

− λ1
t1

(1− t2)2

λ2
1− t2

t21
− λ1

t2
(1− t1)2

− 1.

From the first equation in (2.7), one obtains

t1(t2) =
(1 + λ1)t32 − 1
(1 + λ1)t22 − 1

.

Since λ1 > 0, function t1(t2) has only one real zero t2 =
1

3
√

1 + λ1

and one

positive real pole t2 =
1√

1 + λ1

, where

0 <
1√

1 + λ1

<
1

3
√

1 + λ1

< 1.
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Moreover, t1(0) = t1(1) = 1, t1(t2) = t2 iff t2 = 1, and t1(t2) is monotonically
increasing. Namely,

d

dt2
t1(t2) =

(1 + λ1)t2(2− 3t2 + (1 + λ1)t32)
((1 + λ1)t22 − 1)2

> 0, t2 ∈ (0, 1].

The condition 0 < t1(t2) < t2 < 1 is thus fulfilled iff t2 ∈
(

1
3
√

1 + λ1

, 1
)

. By

substituting t1(t2) into the second equation in (2.7) it simplifies to

(t2 − 1)g(t2) = 0, g(t2) := λ2 − λ1(1 + λ2)((1 + λ1)t32 − 1)2

((1 + λ1)t22 − 1)3
.

Now,

g

(
1

3
√

1 + λ1

)
= λ2, g(1) = −1,

and the sign of the derivative

d

dt2
g(t2) =

6λ1(1 + λ1)(1 + λ2)t2(t2 − 1)((1 + λ1)t32 − 1)
((1 + λ1)t22 − 1)4

is equal to the sign of 1 + λ2 for t2 ∈
(

1
3
√

1 + λ1

, 1
)

. Therefore a unique

t̃2 ∈
(

1
3
√

1 + λ1

, 1
)

that solves g(t̃2) = 0 exists iff λ2 > 0. Then
(
t̃1, t̃2

)
:=

(
t1(t̃2), t̃2

)
is the unique solution of the system (2.7), which concludes the proof.

Let us now define two additional functions that will play a major role in the
formulation of main results, namely

φ3(λ1, λ2, µ1) :=
λ2µ1

λ1(λ2µ1 − 1−√1 + µ1)
,

φ4(λ1, λ2, µ1) :=
λ2µ1(λ2µ1(1 + 2λ1)− 2λ1)

λ2
1(λ2µ1 − 1)2

.

The next lemma collects some of their properties that can easily be verified.
Lemma 2.3. Suppose that λ1 > 0, λ2 < 0 and µ1 > 0. Then φ3(λ1, λ2, .) and

φ4(λ1, λ2, .) are monotonically increasing functions of µ1,

lim
µ1→∞

φ3(λ1, λ2, µ1) =
1
λ1

, lim
µ1→∞

φ4(λ1, λ2, µ1) =
1 + 2λ1

λ2
1

,

and φ3(λ1, λ2, .) < φ4(λ1, λ2, .). Moreover φ3(λ1, λ2, µ1) = µ2 if and only if
φ4(λ2, λ1, µ2) = µ1, and φ4(λ1, λ2, µ1) = µ2 if and only if φ3(λ2, λ1, µ2) = µ1.
The following results now give sufficient conditions on data points and tangent
directions that imply the existence of the interpolant PPPPPPPPP . The first claim covers
convex data, and the second one covers data with an inflection point.
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Theorem 2.4. Suppose that the data ddddddddd0, TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3, ddddddddd3 satisfy

λk > 0, δk > 0, µk > 0, k = 1, 2.

If
0 < µ1 < φ1(λ1, λ2) and 0 < µ2 < φ2(λ1, λ2),

or
µ1 > φ1(λ1, λ2) and µ2 > φ2(λ1, λ2),

then the interpolating curve PPPPPPPPP that satisfies (1.2) exists.
Theorem 2.5. Suppose that the data ddddddddd0, TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3, ddddddddd3 satisfy

λ1 > 0, λ2 < 0, δ1 > 0 and δ2 > 0.

If µ1 > 0 and
φ3(λ1, λ2, µ1) < µ2 < φ4(λ1, λ2, µ1),

then the interpolating curve PPPPPPPPP that satisfies (1.2) exists.
Remark 2.2. The symmetry of equations (2.3)-(2.5) implies that Theorem

2.5 holds also if the role of λ1, λ2, and µ1, µ2 is reversed.
The proof of these two theorems is given as the next section.

3 Proof of Theorem 2.4 and Theorem 2.5

In order to prove Theorems 2.4 and 2.5, one must show that the nonlinear sys-
tem (2.3)–(2.5) has at least one solution (t1, t2, α0, α3) ∈ D. The proof consists
of three steps to be confirmed:

1. For particular data, the system (2.3)–(2.5) has an odd number of admissible
solutions.

2. Theorem 2.4 and Theorem 2.5 imply that the system (2.3)–(2.5) cannot
have a solution arbitrary close to the boundary ∂D.

3. The homotopy can carry the conclusions from the particular to the general
case.

Step 1.
Let the data points be chosen as

TTTTTTTTT 0 =
(−4
−4

)
, TTTTTTTTT 1 =

(
0
0

)
, TTTTTTTTT 2 =

(
4
0

)
, TTTTTTTTT 3 =

(
9 + (−1)s

(−1)s4

)
, s ∈ {0, 1},

where s = 1 corresponds to the convex case and s = 0 to the other one. Further,
let the tangent directions be chosen as

data 1: ddddddddd0 =
(

2
3

)
, d3 =

(
2
−3

)
, s = 1,
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data 2: ddddddddd0 =
(−2

2

)
, d3 =

(−2
−2

)
, s = 1,

data 3: ddddddddd0 =
(−2

2

)
, d3 =

(−1
2

)
, s = 0.

Table 3.1 shows the values of the constants (2.6) and Table 3.2 gives the corre-

Table 3.1: The constants for the particular data.

λ1 λ2 µ1 µ2 δ1 δ2

data 1 2 2 3 3 1 1

data 2 2 2 1
2

1
2 1 1

data 3 1
2 − 1

2
1
2

1
2 1 1

sponding admissible solutions in D. Since φ1(λ1, λ2) = φ2(λ1, λ2) = 2.80828 for
data 1 and data 2, and

φ3(λ1, λ2, µ1) = 10− 4
√

6 < µ2 =
1
2

< φ4(λ1, λ2, µ1) =
24
25

for data 3, the suppositions of theorems are fulfilled. Note that the number of
admissible solutions is odd in all cases.

Table 3.2: The admissible solutions for the particular data.

t1 t2 α0 α3 multiplicity

data 1 1
3

2
3

3
2

3
2 3

data 2 1
3 (3−√3)

√
3

3 3(1 +
√

3) 3(1 +
√

3) 1

data 3 0.450047 0.583425 12.1642 12.1828 1

Step 2.
Theorem 3.1. Suppose that the assumptions of Theorem 2.4 or Theorem 2.5

are met. Then the system (2.3)–(2.5) cannot have a solution arbitrary close to
the boundary ∂D.

Proof. Since by Lemma 2.1 and Lemma 2.2 no solution can have α0 or α3

arbitrary close to zero, it remains to show that

∆ti := ti+1 − ti ≥ const > 0, i = 0, 1, 2.

Here and throughout the rest of the paper, the term ’const’ will stand for an
arbitrary positive constant. Note that ∆ti > 0,

∑2
i=0 ∆ti = 1. To show that

∆ti → 0 cannot happen, the following possibilities need to be disproved:
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1. ∆t0,∆t2 ≥ const > 0, and ∆t1 → 0,

2. ∆t0 → 0, ∆t2 → 0,

3. ∆t0 ≥ const > 0, ∆t2 → 0:
(a) ∆t1 ≥ const > 0, (b) ∆t1 → 0,

4. ∆t0 → 0, ∆t2 ≥ const > 0:
(a) ∆t1 ≥ const > 0, (b) ∆t1 → 0.

Let us examine each possibility more precisely. Further, let us assume that the
equations (2.3) are rewritten in a polynomial form in all four cases.
Case 1. The equations (2.3) simplify to

−λ2µ1∆t20∆t2(∆t0 + ∆t2)2 +O(∆t1) = 0,

λ1µ2∆t0∆t22(∆t0 + ∆t2)2 +O(∆t1) = 0.

and clearly can not have a solution if ∆t1 → 0.
Case 2. In this case, the equations (2.3) simplify to

λ2∆t2 + λ1∆t20(λ2µ1 − 1) + h.o.t. = 0,

−λ1∆t0 + λ2∆t22(1− λ1µ2) + h.o.t. = 0,

where ’h.o.t.’ stands for higher order terms that are small in comparison to the
terms left in expressions. If one determines ∆t2 from the first equation, and
substitutes it in the second one, the equation reads

−∆t0λ1 + h.o.t. = 0.

This implies λ1 = 0, and this case is not possible either.
Case 3. From the second equation (2.3) it follows immediately that case (a)
cannot happen. Therefore only (b), ∆t1 → 0, ∆t2 → 0, has to be considered.
The equations (2.3) in this case simplify to

λ1∆t1(λ2µ1 − 1)− λ2µ1∆t2 + h.o.t. = 0,

−λ1(∆t21 + 2∆t1∆t2 − µ2∆t22) + h.o.t. = 0.

The solution of the dominant part reads

∆t1 =
λ2µ1

λ1(λ2µ1 − 1)
∆t2, µ2 = φ4(λ1, λ2, µ1).

But ∆t1 > 0 and ∆t2 > 0, which implies

λ1 > 0, λ2 > 0 =⇒ µ1 < 0 or µ1 >
1
λ2

,

λ1 > 0, λ2 < 0 =⇒ µ1 > 0 or µ1 <
1
λ2

.
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Further, the equations (2.4)–(2.5) reduce to

α0 = −δ1
λ2

1(λ2µ1 − 1)
λ2µ1(λ2µ1 + λ1(λ2µ1 − 1))

1
∆t22

+O
(

1
∆t2

)
,

α3 = δ2
λ2

1(λ2µ1 − 1)2

λ2µ1(λ2µ1 + λ1(λ2µ1 − 1))
1

∆t2
+O (1) .

Therefore the parameters α0 and α3 are strictly positive if

λ2µ1 < 0 or sign(λ2)
λ1

λ2 + λ1λ2
< sign(λ2)µ1 < sign(λ2)

1
λ2

,

and the case ∆t1 → 0, ∆t2 → 0 can happen only if

(3.1) λ2µ1 < 0 and µ2 = φ4(λ1, λ2, µ1),

which disproves case 3. Note that by Lemma 2.3 the condition (3.1) is equivalent
to

0 < µ2 <
1 + 2λ1

λ2
1

and µ1 = φ3(λ2, λ1, µ2).

Case 4. From the first equation in (2.3) it is clear that case (a) is not possible.
Therefore only ∆t0 → 0, ∆t1 → 0 need to be considered, and the equations (2.3)
simplify to

λ2(−µ1∆t20 + 2∆t0∆t1 + ∆t21) + h.o.t. = 0,

λ1µ2∆t0 − λ2∆t1(λ1µ2 − 1) + h.o.t. = 0.

The solution of the main part is

∆t1 =
λ1µ2

λ2(λ1µ2 − 1)
∆t0, µ1 = φ4(λ2, λ1, µ2).

Since ∆t0 > 0 and ∆t1 > 0, one concludes

λ1 > 0, λ2 > 0 =⇒ µ2 < 0 or µ2 >
1
λ1

,

λ1 > 0, λ2 < 0 =⇒ 0 < µ2 <
1
λ1

.

Moreover, the equations (2.4)–(2.5) simplify to

α0 = δ1
λ2

2(λ1µ2 − 1)2

λ1µ2(λ1µ2 + λ2(λ1µ2 − 1))
1

∆t0
+O (1) ,

α3 = −δ2
λ2

2(λ1µ2 − 1)
λ1µ2(λ1µ2 + λ2(λ1µ2 − 1))

1
∆t20

+O
(

1
∆t0

)
.

For λ1 > 0 and λ2 > 0 the parameters α0 and α3 are strictly positive if

µ2 < 0 or
λ2

λ1 + λ1λ2
< µ2 <

1
λ1

.



12 J. KOZAK AND M. KRAJNC

Similarly for λ1 > 0 and λ2 < 0 the parameters α0 and α3 are strictly positive if

0 < µ2 <
1
λ1

or
(

µ2 <
λ2

λ1 + λ1λ2
and − 1 < λ2 < 0

)
.

Now by using Lemma 2.3 one concludes that ∆t0 → 0, ∆t1 → 0 can happen for
the convex data if

µ2 < 0 and µ1 = φ4(λ2, λ1, µ2), or equivalently

0 < µ1 <
1 + 2λ2

λ2
2

and µ2 = φ3(λ1, λ2, µ1),

and similarly for λ1 > 0 and λ2 < 0 if

0 < µ2 <
1
λ1

and µ1 = φ4(λ2, λ1, µ2), or equivalently

µ1 > 0 and µ2 = φ3(λ1, λ2, µ1).

That excludes case 4 and therefore concludes the proof of the theorem.

Step 3.
A homotopy will now help us to carry the conclusions from the particular case
outlined in Table 3.1 to the general one. Let us rewrite the system (2.3)–(2.5)
as

(3.2) FFFFFFFFF (ttttttttt, ααααααααα; λλλλλλλλλ, δδδδδδδδδ, µ1, µ2) = 000000000,

where
ttttttttt = (t1, t2), ααααααααα = (α1, α2), λλλλλλλλλ = (λ1, λ2), δδδδδδδδδ = (δ1, δ2).

Further, let (λλλλλλλλλ, δδδδδδδδδ, µ1, µ2) stand for general data, and (λλλλλλλλλ∗, δδδδδδδδδ∗, µ∗1, µ
∗
2) for the par-

ticular case. A homotopy is chosen as

HHHHHHHHH(ttttttttt, ααααααααα; ζ) := FFFFFFFFF (ttttttttt, ααααααααα; λλλλλλλλλ(ζ), δδδδδδδδδ(ζ), ϕ1(ζ;µ∗1, µ1), ϕ2(ζ; µ∗2, µ2)) ,

where

λλλλλλλλλ(ζ) := (1− ζ)λλλλλλλλλ∗ + ζλλλλλλλλλ, δδδδδδδδδ(ζ) := (1− ζ)δδδδδδδδδ∗ + ζδδδδδδδδδ, µk(ζ) := ϕk(ζ;µ∗k, µk),

and ϕk(.; µ∗k, µk) : [0, 1] → R satisfies ϕk(0; µ∗k, µk) = µ∗k, ϕk(1; µ∗k, µk) = µk for
k = 1, 2. It is clear that

|λk(ζ)| ≥ min
ζ∈[0,1]

{|(1− ζ)λ∗k + ζλk|} ≥ min {|λ∗k|, |λk|} ≥ const > 0,

|δk(ζ)| ≥ min
ζ∈[0,1]

{|(1− ζ)δ∗k + ζδk|} ≥ min {|δ∗k|, |δk|} ≥ const > 0.

Consider Theorem 2.4 first. For the first possibility 0 < µk < φk(λ1, λ2), data 2
are appropriate since they satisfy 0 < µ∗k < φk(λ∗1, λ

∗
2) too. It is then clear, that

there exists a continuous piecewise linear function ϕk(ζ, µ∗k, µk), such that

0 < ϕk(ζ, µ∗k, µk) < φk(λ1(ζ), λ2(ζ)), ζ ∈ [0, 1], k = 1, 2.
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A similar conclusion follows for µk > φk(λ1, λ2), with the use of data 1.
In case of Theorem 2.5 where λ1 > 0, λ2 < 0, we choose data 3 that satisfy

the required suppositions. By Lemma 2.3 functions

φ3(λ1(ζ), λ2(ζ), µ1(ζ)) < φ4(λ1(ζ), λ2(ζ), µ1(ζ))

cannot intersect for any ζ ∈ [0, 1]. If one defines

µ1(ζ) = ϕ1(ζ, µ∗1, µ1) = (1− ζ)µ∗1 + ζµ1,

then there obviously exists a continuous piecewise linear function ϕ2(ζ, µ∗2, µ2),
such that

φ3(λ1(ζ), λ2(ζ), µ1(ζ)) < ϕ2(ζ; µ∗2, µ2) < φ4(λ1(ζ), λ2(ζ), µ1(ζ)), ζ ∈ [0, 1].

Therefore HHHHHHHHH(ttttttttt, ααααααααα; ζ) = 000000000 meets the requirements of Theorem 3.1 for any ζ ∈
[0, 1]. As a consequence, a set of solutions

S := {(ttttttttt, ααααααααα) ∈ D; HHHHHHHHH(ttttttttt, ααααααααα; ζ) = 000000000, ζ ∈ [0, 1]}

lies aside from the boundary ∂D. More precisely, one can find a compact set
K ⊂ D, such that

S ⊂ K ⊂ D, S ∩ ∂K = ∅.
Therefore the map HHHHHHHHH does not vanish at the boundary ∂K, and a Brouwer’s
degree ([6]) of HHHHHHHHH on K is invariant for all ζ ∈ [0, 1]. But since it is odd for
the particular map FFFFFFFFF (·, ·;λλλλλλλλλ∗, δδδδδδδδδ∗, µ∗1, µ∗2), equations FFFFFFFFF (ttttttttt, ααααααααα; λλλλλλλλλ, δδδδδδδδδ, µ1, µ2) = 000000000 must
have at least one admissible solution and Theorem 2.4 and Theorem 2.5 are
proved.

Theorem 2.4 and Theorem 2.5 give only sufficient conditions that cover most
often met practical cases. Additional ones can be found in Table 3.3.

Table 3.3: The conditions that imply the existence of the interpolating curve PPPPPPPPP too.

δ1 > 0 µ1 ≤ 0 φ4(λ1, λ2, µ1) < µ2 < φ2(λ1, λ2)
δ2 > 0 0 < µ1 ≤ 1+2λ2

λ2
2

φ3(λ1, λ2, µ1) < µ2 ≤ 0
λ1 > 0 δ1 < 0 µ1 > 1

λ2
φ4(λ1, λ2, µ1) < µ2 < φ2(λ1, λ2)

λ2 > 0 δ2 > 0 µ1 ≤ 1
λ2

φ2(λ1, λ2) < µ2

δ1 > 0 µ2 > 1
λ1

φ4(λ2, λ1, µ2) < µ1 < φ1(λ1, λ2)
δ2 < 0 µ2 ≤ 1

λ1
φ1(λ1, λ2) < µ1

λ1 < 0 δ1 > 0 µ1 ≥ 0 φ3(λ1, λ2, µ1) < µ2

λ2 < 0 δ2 > 0 1
λ2

< µ1 ≤ 0 φ4(λ1, λ2, µ1) < µ2
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4 The G1 spline curve

We tackle now the G1 cubic spline interpolation as introduced in Section 1,
with tangent directions in (1.2) considered to be unknown. Each tangent direc-
tion ddddddddd3` depends on one parameter only. If vectors ∆TTTTTTTTT 3`−1 and ∆TTTTTTTTT 3` are not
collinear, i.e., D3`−1,3` 6= 0, we may express them as

ddddddddd0 := ddddddddd0(ξ0) := (ξ0 − 1)∆TTTTTTTTT 1 + ξ0∆TTTTTTTTT 0,

ddddddddd3` := ddddddddd3`(ξ`) := σ3`(1− ξ`)∆TTTTTTTTT 3`−1 + σ3`−1ξ`∆TTTTTTTTT 3`,

ddddddddd3m := dddddddddm(ξm) := (1− ξm)∆TTTTTTTTT 3m−1 − ξm∆TTTTTTTTT 3m−2,

` = 1, . . . , m− 1,(4.1)

with

σk := sign
(

Dk−1,k

Dk,k+1

)
.

The tangents introduced in (4.1) are not normalized, but by Remark 2.1 this is
not important. Further, the definition (4.1) implies that some constants defined
in (2.6) become explicit functions of ξ`. In particular,

δ2`−1 = δ2`−1(ξ`−1) =
1

1− ξ`−1

∣∣∣∣
D3`−3,3`−2

D3`−4,3`−3

∣∣∣∣, ` = 2, 3, . . . , m,

δ2` = δ2`(ξ`) =
1
ξ`

∣∣∣∣
D3`−2,3`−1

D3`−1,3`

∣∣∣∣, ` = 1, 2, . . . , m− 1,(4.2)

δ1 = δ1(ξ0) =
1

1− ξ0
, δ2m = δ2m(ξm) =

1
ξm

,

shows that a requirement δ2`(ξ`) > 0, δ2`+1(ξ`) > 0 pins down ξ` to (0, 1) as can
be seen in Figure 4.1. The constants µ2`−1, µ2` turn out as

T3 k-2

T3 k-1

T3 k

T3 k+1

T3 k+2

d3 kHΞkL

T3 k-2

T3 k-1 T3 k

T3 k+1

T3 k+2

d3 kHΞkL

T3 k-2

T3 k-1 T3 k

T3 k+1

T3 k+2

d3 kHΞkL

T3 k-2

T3 k-1 T3 k

T3 k+1 T3 k+2

d3 kHΞkL

Figure 4.1: The tangent directions ddddddddd3k(ξk) for ξk ∈ (0, 1) (gray area).
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µ2`−1 = µ2`−1(ξ`−1) = σ3`−4ξ`−1δ2`−1(ξ`−1) +
D3`−4,3`−2

D3`−4,3`−3
, ` = 2, 3, . . . , m,

µ2` = µ2`(ξ`) = σ3` (1− ξ`) δ2`(ξ`) +
D3`−2,3`

D3`−1,3`
, ` = 1, 2, . . . , m− 1,(4.3)

µ1 = µ1(ξ0) =
ξ0

1− ξ0
, µ2m = µ2m(ξm) =

1− ξm

ξm
.

In view of Theorem 2.4 or Theorem 2.5 it is necessary to determine for which
ξ` ∈ (0, 1) the functions µ2` and µ2`+1 are both positive. Let us recall the
notation f (I) := {f(x); x ∈ I}, f−1 (I) := {x; f(x) ∈ I}. Then

I0 := µ−1
1 ((0,∞)) ∩ (0, 1) = (0, 1),

I` := µ−1
2` ((0,∞)) ∩ µ−1

2`+1 ((0,∞)) ∩ (0, 1), ` = 1, 2, . . . , m− 1,

Im := µ−1
2m ((0,∞)) ∩ (0, 1) = (0, 1),

are the required subintervals, with I` 6= ∅ still to be assured. Let us restrict
ourselves to the interval (0, 1) only. It is easy to see that µ2` and µ2`+1 are both
monotone as functions of ξ`. Moreover,

lim
ξ↓0

µ2`(ξ`) = σ3`∞, µ2`(1) =
D3`−2,3`

D3`−1,3`
,

µ2`+1(0) =
D3`−1,3`+1

D3`−1,3`
, lim

ξ↑1
µ2`+1(ξ`) = σ3`−1∞.

Therefrom it is easy to see that µ−1
2` ((0,∞)) ∩ (0, 1) = ∅ iff

σ3` = −1, D3`−2,3`D3`−1,3` ≤ 0,(4.4)

and µ−1
2`+1 ((0,∞)) ∩ (0, 1) = ∅ iff

σ3`−1 = −1, D3`−1,3`+1D3`−1,3` ≤ 0.(4.5)

Now, if conditions (4.4) and (4.5) are not fulfilled, each of the above intervals is
nonempty, but that does not imply the intersection to be nonempty too. In this
case it is easy to check that µ−1

2` ((0,∞))∩µ−1
2`+1 ((0,∞))∩ (0, 1) = ∅ if and only

if

D3`−2,3`−1D3`,3`+1 > 0, D3`−2,3`D3`−1,3`+1 > 0,(4.6)

D3`−2,3`D3`,3`+1 < 0, σ3` µ−1
2` (0) ≤ σ3` µ−1

2`+1(0).

Let us summarize this discussion in the following theorem.
Theorem 4.1. Suppose that data points (1.1) satisfy

λ2`−1 > 0, λ2` > 0 or λ2`−1λ2` < 0, ` = 1, 2, . . . , m,

D3`−1,3` 6= 0, ` = 1, 2, . . . ,m− 1,
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and additionally none of the relations (4.4), (4.5) or (4.6) is fulfilled. Further,
let the tangents be given by (4.1), and the rest of the constants determined by
(4.2) and (4.3). Then for every ξ` ∈ I`, ` = 0, 1, . . . , m, the suppositions of
either Theorem 2.4 or Theorem 2.5 are fulfilled on `-th segment. Further, the
algorithm ForwardSweep determines the admissible intervals for parameters ξ`.

Only the algorithm is left to be constructed. We choose it to be a simple back-
tracking procedure that traverses the data (1.1) in a forward sweep TTTTTTTTT 0 → TTTTTTTTT 3m

and determines an intermediate result

Ξ` ⊂ I`, ` = 0, 1, . . . , m,

in such a way that for any ξ` ∈ Ξ` there exists a choice

ξi ∈ Ξi, i = 0, 1, . . . , `− 1,

such that (ξ0, ξ1, . . . , ξ`) is admissible as far as data TTTTTTTTT i, i = 0, 1, . . . , 3`, are
concerned. A backward sweep TTTTTTTTT 3m → TTTTTTTTT 0 shrinks the temporary Ξ`, ` = m −
1,m− 2, . . . , 0 so that for any ξ` ∈ Ξ` there exists a choice

ξi ∈ Ξi, i = 0, 1, . . . , `− 1, ` + 1, . . . , m,

such that (ξ0, ξ1, . . . , ξm) is admissible for all data. The induction step Ξ`−1 →

T3 l-3

T3 l-2

T3 l-1

T3 l

T3 l-4

T3 l+1

T3 l-3

T3 l-2 T3 l-1
T3 l

T3 l-4

T3 l+1

Figure 4.2: Induction step: λ2`−1 > 0, λ2` > 0 (left), and λ2`−1λ2` < 0 (right).

Ξ` or Ξ`−1 → Ξ` has two forms (Fig. 4.2), based upon Theorem 2.4 and Theo-
rem 2.5 respectfully. The case λ2`−1 > 0 and λ2` > 0 is easy to handle since the
restrictions on tangent directions depend only on data points, more precisely on

φ1,`−1 := φ1(λ2`−1, λ2`), φ2,` := φ2(λ2`−1, λ2`), ` = 1, 2, . . . , m.

The case λ2`−1λ2` < 0 is more complex since the existence conditions connect
left and right tangent direction. For this reason, we introduce two additional
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maps, R1,` (I), R2,` (I), where I is an open or closed interval with endpoints a
and b. For λ2`−1 > 0 and λ2` < 0 the definition reads

R1,` (I) := R1,` (I;λ2`−1, λ2`)

:=

{
∅; b ≤ 0 ∨ I = ∅,
(φ3 (λ2`−1, λ2`, (a)+) , φ4 (λ2`−1, λ2`, b)) ; b > 0,

R2,` (I) := R2,` (I;λ2`−1, λ2`)

:=





∅; b ≤ 0 ∨ a ≥ 1+2λ2`−1

λ2
2`−1

∨ I = ∅,
(φ3 (λ2`, λ2`−1, (a)+) , φ4 (λ2`, λ2`−1, b)) ; b < 1

λ2`−1
,

(φ3 (λ2`, λ2`−1, (a)+) ,∞) ; b ≥ 1
λ2`−1

,

and for λ2`−1 < 0, λ2` > 0 is given as

R1,` (I) := R2,` (I; λ2`, λ2`−1) ,

R2,` (I) := R1,` (I; λ2`, λ2`−1) .

Recall Theorem 2.5 and Lemma 2.3. The meaning of R1,` and R2,` is the fol-
lowing. Suppose that µ2`−1, µ2` are confined to intervals, i.e., µ2`−1 ∈ (a1, b1)
and µ2` ∈ (a2, b2). Then for every µ2`−1 ∈ (a1, b1) ∩ R2,` ((a2, b2)) there
exists at least one admissible µ2` ∈ (a2, b2). Equivalently, for every µ2` ∈

a1 b1

Μ1
a2

b2

Μ2

Φ3HΛ1,Λ2, Μ1L

Φ4HΛ1,Λ2, Μ1L

1 + 2 Λ1
����������������������
HΛ1L

2

1
��������
Λ1

Figure 4.3: Geometric interpretation of R1,` and R2,` for ` = 1. Every point (µ1, µ2)
in the gray area is admissible.

(a2, b2)∩R1,` ((a1, b1)) there is at least one admissible µ2`−1 ∈ (a1, b1) (Fig. 4.3).
Now, we can write the algorithm that should be called as

1. solution := ∅;
2. Ξ := (I0);
3. ForwardSweep(m, Ξ, 1, solution);

procedure ForwardSweep(m, Ξ, `, solution)
1. S := ForwardSplit(Ξ, `);
2. for i = 1, i ≤ length(S), i = i + 1
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3. Ξ` := Si;
4. if ` = m then BackwardSweep(m, Ξ, `, solution);
5. else ForwardSweep(m, Ξ, ` + 1, solution);

procedure BackwardSweep(m, Ξ, `, solution)
1. Ξ`−1 := BackwardSplit(Ξ, `);
2. if Ξ`−1 6= ∅
3. if ` = 1 then solution := solution ∪ {Ξ};
4. else BackwardSweep(m, Ξ, `− 1, solution);

procedure ForwardSplit(Ξ, `)
1. S := ∅; I := µ2`−1(Ξ`−1); J := ∅;
2. if λ2`−1 > 0 and λ2` > 0 then
3. if I ≤ φ1,`−1 then J := {(0, φ2,`)};
4. else if I ≥ φ1,`−1 then J := { (φ2,`,∞) };
5. else J := { (0, φ2,`), (φ2,`,∞) };
6. else if λ2`−1 · λ2` < 0 then
7. J := {R1,` (I;λ2`−1, λ2`)};
8. for i = 1, i ≤ length(J ), i = i + 1
9. if I := µ−1

2` (Ji) ∩ I` 6= ∅ then S = S ∪ {I};
10. Return S

procedure BackwardSplit(Ξ, `)
1. I := µ2`(Ξ`); J := ∅;
2. if λ2`−1 > 0 and λ2` > 0 then
3. if I ≤ φ2,` then J := (0, φ1,`−1);
4. if I ≥ φ2,` then J := (φ1,`−1,∞);
5. else if λ2`−1 · λ2` < 0 then
6. J := R2,` (I;λ2`−1, λ2`);
7. Return µ−1

2`−1(J ) ∩ Ξ`−1;

The result of the algorithm ForwardSweep is a set called solution. It may be
empty, if no admissible directions were found. If not, the elements of solution are
vectors Ξ = (Ξ`)

m
`=0, where each Ξ gives at least one admissible set of parameters

ξ` ∈ Ξ`, ` = 0, 1, . . . ,m. A brief look at Theorem 2.4 reveals that the result in
the convex case is much stronger.

Corollary 4.2. Suppose that the assumptions of Theorem 4.1 hold. Let

λ2`−1 > 0, λ2` > 0, ` = 1, 2, . . . , m,

and let Ξ be a vector of intervals, returned by ForwardSweep. Any choice of
parameters

(ξ0, ξ1, . . . , ξm) , ξ` ∈ Ξ`,

is admissible.
Even in the general case, there is a natural way to generate admissible choices,

based upon the following consequence.
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Corollary 4.3. Suppose that the assumptions of Theorem 4.1 hold. Let
Ξ be a vector of intervals, returned by ForwardSweep. For any r, 0 ≤ r ≤
m, and any chosen ξr ∈ Ξr, one can find at least one admissible selection
(ξ0, . . . , ξr−1, ξr, ξr+1, . . . , ξm), ξ` ∈ Ξ`.

Let us now pick r, 1 ≤ r ≤ m−1, and choose ξr ∈ Ξr. This means that Ξr has
been in Ξ replaced by [ξr, ξr]. Corollary 4.3 for this new Ξ does not necessarily
hold. But a call

BackwardSweep(r,Ξ, r, solution)

shrinks properly the intervals Ξr−1, Ξr−2, . . . , Ξ0, and so does the mirror image
of BackwardSweep on the intervals Ξr+1,Ξr+2, . . . , Ξm. This brings the property
of vector Ξ, described in Corollary 4.3, to each of its parts (Ξ`)

r
`=0 and (Ξ`)

m
`=r.

So the whole step can be repeated on both parts separately. This divide et
impera procedure can be repeated until we are left with an admissible solution.
It adds at most a factor O(m) to the complexity of ForwardSweep.

Once the bounds Ξ have been determined, one has to choose the actual tan-
gent directions. If ddddddddd3` are prescribed, Corollary 4.2 or the algorithm based upon
Corollary 4.3 determines if the interpolation problem (1.2) and (1.3) has a solu-
tion. The same approach would work if the directions are approximated as

ddddddddd3` = ddddddddd3`

(
γ`ξ`

+ (1− γ`) ξ`

)
, Ξ` =

(
ξ

`
, ξ`

)
or Ξ` =

[
ξ

`
, ξ`

]
,

where γ` may be determined by some local approximation scheme from the data
(1.1) or simply chosen as a constant. Also, with the help of Ξ, one may look
for a G2 spline curve with ddddddddd3` determined implicitly as a solution of the system
(1.4).

Let us conclude the paper with some numerical evidence. Fig 4.4 (a)–(b) shows
a comparison between G2 (dashed) and G1 spline curve with tangent directions
prescribed by γ` = 1

2 (light gray, dark gray), a choice that yields two solutions.
Further, Fig 4.4 (c)–(d) shows G2 (dashed) and G1 spline curve, with directions
determined by local quadratic interpolating polynomials based upon uniform
(dark gray) and chord length parameterization (light gray). For the data in
Fig 4.5 the G2 spline curve can not be found, and interpolating polynomials
based on uniform parameterization do not give admissible tangent directions, as
can easily be checked. The difference between G1 curve with γ` = 1

2 (dark gray)
and quadratic chord length approximation is very small as expected.
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(a) (b)

(c) (d)

Figure 4.4: A comparison between G1 (gray) and G2 spline curves (dashed).

Figure 4.5: The comparison between G1 spline curves at differently chosen tangent
directions.
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