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Abstract

In this paper, geometric interpolation of certain circle-like curves by parametric
polynomial curves is studied. It is shown that such an interpolating curve of de-
gree n achieves the optimal approximation order 2n, the fact already known for
particular small values of n. Furthermore, numerical experiments suggest that the
error decreases exponentially with growing n.
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1 Introduction

In [1] the problem of geometric interpolation of planar data by parametric
polynomial curves has been revisited. In particular, the conjecture that a para-
metric polynomial curve of degree ≤ n can interpolate 2n given points in R2

has been confirmed for n ≤ 5 under certain natural restrictions. Furthermore,
the optimal asymptotic approximation order 2n has been confirmed provided
the interpolating polynomial curve exists. But its existence for general n has
been an open challenge for quite a while since the pioneering work on geometric
interpolation has appeared ([2]).

Among planar parametric curves special attention has always been given to
circular arcs, probably the most important geometric objects in practice. There
are several papers dealing with good approximation of circular segments with
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radial error as the parametric distance. In [3] the authors study existence of
the cubic Bézier Hermite type interpolant which is sixth-order accurate, and
in [4] a similar problem with various boundary conditions is presented. In [5],
the problem of approximation of circle segments by quadratic Bézier curves
is considered. Probably the most general results on Hermite type polynomial
approximation of conic sections by parametric polynomial curves of odd de-
gree are given in [6] and [7]. Several new special types of Hermite interpolation
schemes are also given in [8] and [9]. All these results include odd degree inter-
polating curves as a rule and do not extend to Lagrange type of interpolation
directly.

In this paper, we establish the existence of an interpolating curve of Lagrange
type for general n, provided the data are sampled from a smooth curve suf-
ficiently close to a circular arc. More precisely, let us assume that AAAAAAAAA is a
circular arc of an arclength h > 0. Since the term circle-like necessarily in-
volves a comparison of two curves, the arclength parametric representation
AAAAAAAAA : [0, h] 7→ R2 is perhaps the most convenient tool. Suppose that a convex
curve fffffffff ≈ AAAAAAAAA is parameterized by the same parameter as AAAAAAAAA. The curve fffffffff will
be called circle-like, if it agrees twice with AAAAAAAAA at 0, has the curvature of the
same sign at 0 as well, i.e.,

fffffffff(0) = AAAAAAAAA(0), fffffffff ′(0) = AAAAAAAAA′(0), det
(
fffffffff ′(0), fffffffff ′′(0)

)
det

(
AAAAAAAAA′(0),AAAAAAAAA′′(0)

)
> 0, (1)

and its smooth correction ggggggggg := fffffffff −AAAAAAAAA expands as

ggggggggg(s) =
1

2!
ggggggggg′′ (0) s2 +

1

3!
ggggggggg(3) (0) s3 + . . . (2)

In order to make a distinction among the circle-like curves, we introduce a
constant M ,

max
2 ≤ r ≤ 2n−1

∥∥∥ggggggggg(r)(0)
∥∥∥∞ ≤ M, (3)

that bounds the magnitudes of derivatives at 0. For any particular M , the
corresponding set of circle-like curves will be denoted by FM .

As a motivation, let us consider the following numerical example. Let

fffffffff(t) = exp(t/4)




sin t

1− cos t


 , t ∈

[
0,

π

2

]
, (4)

be a particular exponential spiral, geometrically interpolated by polynomial
parametric curves of degrees n = 6 and n = 7, respectively, at 2 n points
obtained by the equidistant splitting of the parameter interval. The curve (4)
is clearly a circle-like one. Fig. 1 (left) shows the curve (4) and the circular arc,
and Table 1 gives numerical evidence of the approximation error measured as
a parametric distance between the curve (4) and its geometric interpolant.
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Fig. 1. The exponential spiral (4) and the circular arc (left) and their curvatures
(right).

Table 1
The error of geometric interpolation of the exponential spiral (4).

Interval Approximation error Decay exponent

n = 6 n = 7 n = 6 n = 7
[
0, π

2

]
1.7783× 10−11 2.4704× 10−13 — —

[
0, 7π

16

]
2.9789× 10−11 3.6024× 10−14 3.86 - 14.42

[
0, 6π

16

]
4.3754× 10−12 3.9342× 10−15 - 12.44 - 14.37

[
0, 5π

16

]
4.5808× 10−13 2.8953× 10−16 - 12.38 - 14.31

[
0, 4π

16

]
2.9377× 10−14 2.4957× 10−18 - 12.31 - 21.30

[
0, 3π

16

]
8.6811× 10−16 4.4201× 10−20 - 12.24 - 14.02

[
0, 2π

16

]
6.2403× 10−18 6.5502× 10−22 - 12.17 - 10.39

[
0, π

16

]
1.4208× 10−21 3.7763× 10−26 - 12.10 - 14.08

A simple error analysis indicates that the asymptotic approximation order is
O(h2n), at least for n = 6, 7, and suggests the following claim.

Theorem 1 Let AAAAAAAAA : [0, h] 7→ R2 be a circular arc, parameterized by the arc-
length. There exist positive constants M and h0 with h0 ≤ h, such that for
any h1 ≤ h0, any circle-like curve fffffffff = AAAAAAAAA + ggggggggg ∈ FM can be geometrically
interpolated by a polynomial parametric curve of degree ≤ n at 2n distinct
points fffffffff (si) , si ∈ [0, h1]. The asymptotic approximation order is optimal, i.e.,
equal to 2n.

The proof of Theorem 1 is based upon [1] and two simple, but not quite obvi-
ous, observations. The first is the fact that one can always find two nonconstant
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polynomials xn, yn ∈ R[t] of degree ≤ n such that

x2
n(t) + y2

n(t) = 1 + t2n, xn(0) = 0, (5)

and the second is stated in Theorem 3. Let

zn(t) := x2
n(t) + y2

n(t)−
(
1 + t2n

)
. (6)

The relation (5) can also be considered as a system of nonlinear equations for
the coefficients of the polynomials

xn(t) =
n∑

j=1

αj tj, yn(t) =
n∑

j=0

βj tj, (7)

i.e.,
dj

dtj
zn(t)

∣∣∣
t=0

= 0, j = 0, 1, . . . , 2n. (8)

The importance of equation (5) has already been noted in [10] considering a
slightly different approximation problem, and the existence of a solution has
been established for odd n. However, equation (5) has at least one real solution
for all n ∈ N. It is based upon a particular rational parameterization of the
circle,

1

1− 2 c t + t2




2
√

1− c2 t (1− c t)

1− 2 c t + (2 c2 − 1) t2


 , c ∈ [0, 1), t ∈ (−∞,∞). (9)

The polynomials (7) depend heavily on the degree n of the interpolating curve,
and throughout the paper it will be assumed that the integers n, k, and r are
related as

n = 2k (2 r − 1), k ≥ 0, r ≥ 1. (10)
Each k determines a family of polynomials that satisfy (5), and k = 0 is a
very particular case. In addition, the coefficients of the polynomials xn and
yn can be given in closed form with the help of Chebyshev polynomials of the
first and the second kind, Tn and Un.

Theorem 2 Suppose that n, k, and r satisfy (10), and let the constants ck, sk

be given as
ck := cos

(
π

2k+1

)
, sk := sin

(
π

2k+1

)
. (11)

Further, suppose that qi are polynomials of degree ≤ 2, defined as

q0(t) := q0(t; k) := 1− 2 ck t + t2,

q1(t) := q1(t; k) := 2 sk t (1− ck t) , (12)
q2(t) := q2(t; k) := 1− 2 ck t + (2 c2

k − 1) t2.
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Then, the functions xn and yn, defined by



xn(t)

yn(t)


 :=

1

q0(t)




1 (−1)r tn

−(−1)r tn 1







q1(t)

q2(t)


 , (13)

are polynomials of degree ≤ n that satisfy (5). Furthermore, their coefficients
are given as

αj =2 sk cos
(
(j − 1)

π

2k+1

)
= 2 sk Tj−1(ck), j = 1, 2, . . . , n− 1, (14)

αn =2 sk cos
(
(n− 1)

π

2k+1

)
+ (−1)r = 2 sk Tn−1(ck) + (−1)r, (15)

and

β0 = 1, β1 = 0, (16)

βj = −2 sk sin
(
(j − 1)

π

2k+1

)
= −2 s2

k Uj−2(ck), j = 2, 3, . . . , n. (17)

Theorem 2 actually proves the optimal approximation order for the circular
arcs as studied in [10]. But Theorem 1 extends the conclusion to Lagrange
interpolation of circular arcs and of the circle-like curves of degree n. The sim-
plest way to confirm this is to prove that the Jacobian of the system of equa-
tions (8) with respect to the variables αj, βj at values provided by Theorem 2
is nonsingular, and to apply the Implicit Function Theorem. A surprisingly
simple closed form of the determinant of the Jacobian that confirms this fact
is given in the next theorem.

Theorem 3 With n, k, and r as in (10), and αj, βj given by Theorem 2, the
determinant of the Jacobian of the system (8) is

det J = (−1)nr+1 22n+1 n2 s2
k.

The asymptotic conclusion of Theorem 1 seems to be rather pessimistic since
the parameter interval is supposed to be small. As an impetus, consider the
approximation of a complete circle. A quick numerical test in Table 2 shows
that the circle 


sin s

cos s


 , s ∈ [−π, π], (18)

can be geometrically interpolated at points corresponding to the parameter
values

−π +
2π

2n− 1
`, ` = 0, 1, . . . , 2n− 1,

by a polynomial curve of small degree n quite accurately. The error seems to
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Table 2
The error of geometric interpolation of the circle measured as radial distance.

n Approximation error τ n Approximation error τ

3 2.85951× 10−1 — 10 7.28389× 10−11 -1.21

4 2.32476× 10−2 -1.11 11 1.14441× 10−12 -1.24

5 2.08441× 10−3 -0.96 12 1.49890× 10−14 -1.26

6 1.22589× 10−4 -1.05 13 1.66223× 10−16 -1.28

7 5.09328× 10−6 -1.11 14 1.58128× 10−18 -1.29

8 1.57805× 10−7 -1.15 15 1.30483× 10−20 -1.30

9 3.79252× 10−9 -1.19 16 9.42975× 10−23 -1.31

decrease exponentially with n, like O(nτn), τ ≈ −1.30. Fig. 2 shows that the
curvatures of geometric interpolants are close to 1 (the curvature of the circle).
As can be seen from Table 3, they approach 1 with raising n.
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Fig. 2. The curvatures of geometric interpolants of the complete circle for n = 5, 6.

Table 3
Maximal deviation from 1 of the curvatures κn of degree n geometric interpolants
of the complete circle.

n 3 4 5 6 7 8

‖1− κn‖∞,[0,1] 1.59739 0.48393 0.12798 0.01569 0.00110 0.00005

The outline of the paper is as follows. In Section 2 the geometric interpolation
problem is precisely defined. Section 3 provides the system of nonlinear equa-
tions that has to be studied. The last section gives the proofs of theorems,
listed in the introduction.
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2 Interpolation problem

Let us recall the geometric interpolation problem in its simplest, Lagrange
form. Suppose that a sequence of 2n points TTTTTTTTT 0, TTTTTTTTT 1, . . . , TTTTTTTTT 2n−1, TTTTTTTTT j 6= TTTTTTTTT j+1, in
the plane R2 is given. Find a parametric polynomial curve

PPPPPPPPP n : [0, 1] → R2

of degree ≤ n that interpolates the given points at some values t` ∈ [0, 1] in
an increasing order, i.e.,

PPPPPPPPP n(tj) = TTTTTTTTT j, j = 0, 1, . . . , 2n− 1. (19)

One can assume t0 := 0 and t2n−1 := 1, but the remaining parameters

ttttttttt := (t`)
2n−2
`=1

are unknown, ordered as

t0 = 0 < t1 < · · · < t2n−2 < t2n−1 = 1. (20)

The system of equations (19) should determine the unknown PPPPPPPPP n as well as the
parameters ttttttttt. But the two tasks can be separated as in [1] and the nonlinear
system for the unknown parameters written as

n+j∑

`=j−1

1
n+j∏

m=j−1
m6=`

(t` − tm)

· TTTTTTTTT ` = 0, j = 1, 2, . . . , n− 1. (21)

Once the parameters (20) are determined, it is straightforward to obtain the
polynomial curve PPPPPPPPP n. One only has to take any n + 1 distinct interpolat-
ing conditions in (19), and apply any standard interpolation scheme to PPPPPPPPP n

componentwise.

Here, the data points TTTTTTTTT j are sampled from a smooth circle-like curve fffffffff =
AAAAAAAAA+ ggggggggg : [0, h] → R2. Since affine transformations of data points do not change
the equations (21), one can place the origin of a coordinate system at fffffffff (0) =
AAAAAAAAA (0), and choose AAAAAAAAA to be the unit circle, centered at (0, 1)T . Thus AAAAAAAAA(t) :=
(sin t, 1− cos t)T . But then the expansion (2) implies fffffffff ′ (0) = AAAAAAAAA′ (0) = (1, 0)T .
Therefore, for h small enough, fffffffff = (fi)

2
i=1 can be reparameterized as

fffffffff(s) :=




s

u(s)


 :=




s

α(s) + γ(s)


 , (22)
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where
α(s) := 1−

√
1− s2

is a circular arc, parameterized by the first component, and

γ(s) = f2

(
f−1

1 (s)
)
− α(s) =

γ′′ (0)

2!
s2 +

γ(3) (0)

3!
s3 + . . . . (23)

The coefficients γ(i) (0) in (23) are polynomials in the components of ggggggggg(r) (0),
but with the constant term equal to 0. Indeed, if ν(s) := f−1

1 (s) − arcsin s,
then obviously ν(0) = 0, ν ′(0) = 0, since

f−1
1 (0) = 0,

d

ds
f−1

1 (s)
∣∣∣∣
s=0

=
1

f ′1(0)
= 1.

Thus we obtain

γ(s) = 1− cos(f−1
1 (s)) + g2(f

−1
1 (s))− α(s)

=
√

1− s2 (1− cos (ν(s))) + s sin (ν(s)) + g2(f
−1
1 (s))

=
1

2!
g′′2(0)s2 +

(
1

2!
(1 + g′′2(0)) ν ′′(0) +

1

3!
g

(3)
2 (0)

)
s3 + . . . ,

and the claim will be confirmed if ν(i)(0) are polynomials in g
(r)
1 (0) without

the constant term. This fact could be formally verified by an application of
Faa di Bruno’s formula to the implicit definition of ν, i.e., f1 (ν(s) + arcsin s)−
s = 0 and the induction, but the following expansion is even more convincing,

0 = f1 (ν(s) + arcsin s)− s =
1

2!
(g′′1(0) + ν ′′(0)) s2

+
1

3!

(
g

(3)
1 (0) + 3g′′1(0)ν ′′(0) + ν(3)(0)

)
s3 + . . .

So one can find a bound c(M),

|γ(i) (0) | ≤ c(M), i = 2, 3, . . . , 2n− 1,

depending only on M that was introduced in (3). This bound can be chosen
as a nondecreasing continuous function of M , starting with c(0) = 0, since
ggggggggg ≡ 000000000 implies γ = 0. This proves the following lemma.

Lemma 4 With a proper choice of M , a circle-like curve fffffffff ∈ FM has the
correction γ and its derivatives arbitrary small.

Now, since fffffffff is of the form (22), the expansion (23) and assumptions (1) imply

u(0) = u′(0) = 0, u′′(0) > 0.

With this assumption, a careful, but technically quite tedious analysis carried
out in [1] shows that the asymptotic existence of the solution of the interpo-
lation problem (19) in general is equivalent to a fact that a certain system of
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nonlinear equations

Cn+j(aaaaaaaaa) +O(h) = 0, j = 1, 2, . . . , n− 1, (24)

has a real solution aaaaaaaaa := (a`)
n−1
`=1 for all h small enough.

3 Nonlinear equations

For circle-like curves (22), the functions Cn+j ([1], Thm. 4.5) simplify to

Cn+j(aaaaaaaaa) :=
1

(n + j)!

dn+j

dtn+j

(
α

(
t +

n−1∑

`=1

a` t`+1

)
+ γ

(
t +

n−1∑

`=1

a` t`+1

))∣∣∣∣∣
t=0

.

Further discussion will prove that the system

1

(n + j)!

dn+j

dtn+j

(
α

(
t +

n−1∑

`=1

a` t`+1

))∣∣∣∣∣
t=0

= 0, j = 1, 2, . . . , n− 1, (25)

has a real solution and the Jacobian at that solution is nonsingular. So the
Implicit Function Theorem implies the existence of constant c(M) for M small
enough such that the equations

Cn+j(aaaaaaaaa) = 0, j = 1, 2, . . . , n− 1,

for circle-like curves that satisfy (3) for this particular M also have a real
solution with a nonsingular Jacobian, by Lemma 4. But then, again by the
Implicit Function Theorem, the system (24) has a real solution for h small
enough too, and Theorem 1 is confirmed.

We are thus left to show the existence of the solution of (25) and to prove the
nonsingularity of the Jacobian. The expansion

1− α

(
t +

n−1∑

`=1

a` t`+1

)
=

√√√√√1−
(
t +

n−1∑

`=1

a` t`+1

)2

=: 1 +
∞∑

`=1

b` t` (26)

yields (
t +

n−1∑

`=1

a` t`+1

)2

+

(
1 +

∞∑

`=1

b` t`
)2

= 1. (27)

Since the equations (25) for h → 0 are equivalent to the fact that the expansion
(26) does not contain the powers n + 1, n + 2, . . . , 2n − 1, the relation (27)
implies

(
t +

n−1∑

`=1

a` t`+1

)2

+

(
1 +

n∑

`=1

b` t`
)2

= 1 + (a2
n−1 + b2

n) t2n. (28)
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One is now left with 2n− 1 equations for 2n− 1 unknowns aaaaaaaaa and bbbbbbbbb := (b`)
n
`=1.

Once aaaaaaaaa is obtained, linear relations determine bbbbbbbbb and vice-versa.

Let
α1 :=

1
2n

√
a2

n−1 + b2
n

.

The regular reparameterization t → α1 · t, and new variables

αj := (α1)
j aj−1, j = 2, 3, . . . , n,

β0 := 1, βj := (α1)
j bj, j = 1, 2, . . . , n,

simplify (28) to the relation (5), familiar from the introduction. Therefore, the
system (25) in the limit as h → 0 is equivalent to the system (8).

4 Proofs

From the previous discussion it is obvious that it suffices to prove Theorem 2
and Theorem 3 only. Theorem 1 then follows as a corollary. Consider the proof
of Theorem 2 first. Equation (13) yields

xn(t) =
q1(t) + (−1)r tn q2(t)

q0(t)
, yn(t) =

q2(t)− (−1)r tn q1(t)

q0(t)
, (29)

where qi, i = 0, 1, 2, are defined by (12). In order to verify that the function
xn is actually a polynomial of the form (7), by (29) it is sufficient to check
that

q0(t)
n∑

j=1

αj tj = α1 t + (α2 − 2 ck α1) t2 +
n∑

j=3

(αj − 2 ck αj−1 + αj−2) tj

+ (−2 ck αn + αn−1) tn+1 + αn tn+2 = q1(t) + (−1)r tn q2(t).

A comparison of the coefficients implies the linear recurrence

α1 = 2sk, α2 = ck α1, αj − 2 ck αj−1 + αj−2 = 0, j = 3, 4, . . . n− 1, (30)

with additional conditions

αn − 2 ck αn−1 + αn−2 =(−1)r,

2 ck αn − αn−1 =(−1)r 2 ck, (31)
αn =(−1)r (2 c2

k − 1).

A straightforward calculation confirms that (14) and (15) give a solution of
(30) and (31). The proof for the function yn is similar and will be omitted.
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Since by Theorem 2 the function (6) vanishes identically, the limit solution of
the system of equations (24) is obtained. The existence of a real solution is
verified if the Jacobian at the limit solution is nonsingular. From

∂

∂αj

zn(t) =
∂

∂αj

x2
n(t) = 2 tj xn(t), j = 1, 2, . . . , n,

∂

∂βj

zn(t) =
∂

∂βj

y2
n(t) = 2 tj yn(t), j = 0, 1, . . . , n,

it is straightforward to compute the Jacobian J := 2 D, where

D :=




0 · · · · · · · · · 0 β0 0 · · · · · · 0 0

0 0 · · · · · · 0 β1 β0 0
... 0

α1 0
. . . ...

... β1 β0
. . . ...

...

α2 α1
. . . . . . ...

...
... β1

. . . 0
...

... α2
. . . 0 0

...
...

... . . . β0 0
...

... . . . α1 0 βn
...

... . . . β1 β0

αn
... α2 α1 0 βn

...
... β1

0 αn
... α2

... 0 βn
...

...
... 0

. . . ...
...

...
... 0

. . . ...
...

...
... . . . αn

...
...

...
... . . . βn

...

0 0 · · · 0 αn 0 0 0 · · · 0 βn




.

Unfortunately, obtaining the explicit formula for det D is not an easy task,
since its entries are given by (14)–(17). But the columns of D are simply the
shifts of the coefficients of xn and yn, which leads to the following observation.
If

u0 := 0, u1, u2, . . . , u2n ∈ C
are 2n + 1 pairwise distinct values, and

V (u0, u1, . . . , u2n) :=
(
u`−1

j−1

)2n+1

j,`=1

is the corresponding Vandermonde matrix, then the rows of the product V D
are given by

uj xn(uj), u2
j xn(uj), . . . , un

j xn(uj), yn(uj), uj yn(uj), . . . , un
j yn(uj), (32)

where j = 0, 1, . . . , 2 n. Now (5) suggests how to choose uj, i.e., to define uj

as 2 n different solutions of the equation

t2 n + 1 = 0. (33)
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Then (5) implies xn(uj) = ±i yn(uj). Here, and throughout the rest of the
paper, i will denote the imaginary unit, i.e., i2 = −1. If

uj := exp
(
(−1)r i π

2 n
(4 j − 3)

)
, j = 1, 2 . . . , n, j 6= j0,

uj0 := exp
(

i π

2 n
(2 r − 1)

)
,

un+j := u−1
j , j = 1, 2, . . . , n,

where

j0 =





2n−r+2
2

, r even,
r+1
2

, r odd,

then

yn(uj) = −i xn(uj), j = 1, 2, . . . , n,

yn(uj) = i xn(uj), j = n + 1, n + 2, . . . , 2 n, (34)

as can easily be verified. Recall that u0 = 0, yn(0) = 1, and use (32) and (34)
to see that

det(V D) = in
2 n∏

j=1

xn(uj) det C,

where

C :=




0 0 · · · 0 1 0 · · · 0

u1 u2
1 · · · un

1 −1 −u1 · · · −un
1

...
... · · · ...

...
... · · · ...

un u2
n · · · un

n −1 −un · · · −un
n

un+1 u2
n+1 · · · un

n+1 1 un+1 · · · un
n+1

un+2 u2
n+2 · · · un

n+2 1 un+2 · · · un
n+2

...
... · · · ...

...
... · · · ...

u2 n u2
2 n · · · un

2 n 1 u2 n · · · un
2 n




.

Since J = 2D,

det J = 22 n+1 in
2 n∏

j=1

xn(uj)
det C

det V
. (35)

Lemma 5 If sk is given by (11), then

2 n∏

j=1

xn(uj) = n4 s4
k.
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PROOF. Some straightforward computation and (29) yield

xn(uj)xn(un+j) =
sin2

(
π
4 n

((−1)r(4 j − 3) + 2 r − 1)
)

sin2
(

π
4 n

((−1)r(4 j − 3)− 2 r + 1)
) , j = 1, 2, . . . , n, j 6= j0,

and, by L’Hôspital rule,

xn(uj0) xn(un+j0) = n2 s2
k. (36)

The formulae (see [11], e.g.)

n∏

j=1

sin
(

π

2n
(2j − 2m− 1)

)
=

(−1)m

2n−1
, m ∈ Z,

n∏

j=1
j 6=m

sin
(

π

2n
(2j − 2m)

)
=

(−1)m+1n

2n−1
, 1 ≤ m ≤ n,

imply
2n∏

j=1
j 6=j0, n+j0

xn(uj) = n2 s2
k,

which, together with (36), completes the proof of the lemma.

Lemma 6 The quotient of determinants in (35) is

det C

det V
=

(−1)n r+1

in n2 s2
k

.

PROOF. The determinant of C can be reduced to

det C = (−1)n
2 n∏

j=1

uj det




V1 −V1

V2 V2


 ,

where V1 := V (u1, u2, . . . , un) and V2 := V (un+1, un+2, . . . , u2 n) are the corre-
sponding Vandermonde matrices. Since uj are the roots of (33),

∏2 n
j=1 uj = 1.

Further, a simple columnwise reduction implies that

det C = (−1)n 2n det V1 det V2,

which finally gives

det C

det V
= (−1)n 2n 1∏n

`=1

∏n
j=1(un+` − uj)

.

13



If

p1 :=
n∏

`=1
` 6=j0

n∏

j=1
j 6=j0

(un+` − uj),

p2 := (un+j0 − uj0)
n∏

j=1
j 6=j0

(un+j0 − uj)
n∏

`=1
` 6=j0

(un+` − uj0),

then obviously
n∏

`=1

n∏

j=1

(un+` − uj) = p1 p2.

A straightforward computation yields

p1 = (−1)n r in+1 2n−1 sk,

p2 = (−1)n n2 2 i sk,

thus
det C

det V
=

(−1)n r+1

in n2 s2
k

.

Lemma 6 and (35) confirm the result of Theorem 3 which concludes this
section.
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