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Abstract

In the paper, the geometric Lagrange interpolation by quadratic parametric patches
is considered. The freedom of parameterization is used to raise the number of in-
terpolated points from the usual 6 up to 10, i.e., the number of points commonly
interpolated by a cubic patch. At least asymptotically, the existence of a quadratic
geometric interpolant is confirmed for data taken on a parametric surface with lo-
cally nonzero Gaussian curvature and interpolation points based upon a three-pencil
lattice. Also, the asymptotic approximation order 4 is established.
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1 Introduction

Interpolation by polynomial parametric patches is one of the fundamental
problems in CAGD. For a given set of three-dimensional data points one has
to find a parametric polynomial patch passing through them. Parameterization
of the patch is important, since it is well known that the choice of parameters
affects not only the shape of the interpolating patch but also its approximat-
ing properties. Moreover, in the multivariate case it is essential that a chosen
parameter set is unisolvent, since this leads to a correct interpolation problem,
which can be solved componentwise by any standard interpolation technique,
such as Newton, Lagrange, . . . .
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But one can also leave the interpolating parameters unknown, which leads to
so called geometric (or parametric) interpolation. This is a well known topic in
polynomial curve interpolation, but only a few results have been obtained for
surfaces. Recently, Mørken ([1]) carried over the idea of the geometric interpo-
lation from the curve to the surface case by considering geometric interpolation
schemes of the Taylor type, and, in detail, the parametric quadratic interpola-
tion at a point. His approach goes back to the earlier joint work with Scherer
([2]) on the curve interpolation. It is based upon the freedom of choosing the
reparameterization of the interpolated curve or surface. This helps to reduce
the degree of the Taylor interpolating parametric surface, and to achieve higher
asymptotic approximation order, i.e., four in the quadratic case.

However, a higher approximation order is not the only advantage of the geo-
metric interpolation. As observed in the curve case (see [3], e.g.), a geometric
polynomial interpolant could do much better as far as the shape is concerned
than its ordinary higher degree counterpart, constructed by the component-
wise interpolation. So it is worthwhile to extend the results, obtained in [1], to
Lagrange interpolation, the case perhaps most often encountered in practical
computations.

In this paper a special case will be studied. Suppose that data points TTTTTTTTTα ∈ R3

are interpolated by a quadratic parametric patch ppppppppp2, where, more generally, a
patch pppppppppn of total degree ≤ n is given as

pppppppppn : Ω ⊂ R2 → R3, uuuuuuuuu 7→ pppppppppn(uuuuuuuuu).

The components of pppppppppn belong to Π2
n, the space of bivariate polynomials of

total degree ≤ n. The domain Ω contains the usual triangular domain ∆ ⊂ Ω
of a Bézier triangular patch, but is assumed to be as large as needed.

The power of the geometric interpolation is implied by the fact that a patch
is allowed to pass through points TTTTTTTTTα at the parameter values it chooses. Since
a linear transformation of the domain Ω preserves the degree of the patch, at
least three points TTTTTTTTTα should be interpolated at prescribed parameter values.
For simplicity we shall assume that these three points will be interpolated at
the vertices of ∆ ⊂ Ω. For a correct interpolation problem it is well known (see
[4], e.g.) that a parametric polynomial patch pppppppppn can, in general, interpolate at
most (

n + 2

2

)
= dim Π2

n (1)

points TTTTTTTTTα at given parameter values. In fact, this case makes the interpolation
problem linear. But encouraged by the curve case, one is tempted to keep n
as low as possible and increase the number of interpolated points as much as
possible, with interpolating parameters not known in advance. In this way a
lower degree patch would replace the higher degree one, but with the same
approximation order. Of course, the price paid is nonlinearity.
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Suppose that the number of points, which will be interpolated at known pa-
rameter values, is k+3 (3 points are always interpolated at prescribed param-
eter values) and let m denote the total number of interpolated points. By (1)
it is clear that

k ≤
(
n + 2

2

)
− 3.

A simple counting reveals that the number of nonlinear equations, arising from
interpolation, is 3 m, and the number of unknowns involved is

3

(
n + 2

2

)
+ 2 (m− (k + 3)).

The first term in the above expression counts unknown coefficients of the com-
ponents of the patch, and the second one the number of unknown parameter
values at which data points are interpolated. Note that the interpolation at
a point with free parameter values imposes only one scalar constraint. Quite
clearly, the only hope that the solution might exist in general is that the num-
ber of equations is smaller or equal to the number of unknowns. Thus the
following conjecture can be stated.

Conjecture 1 A polynomial parametric patch of degree n can, in general,
interpolate at most

3

(
n + 2

2

)
− 2 k − 6, (2)

points, where

k + 3 ≤
(
n + 2

2

)

is the number of points interpolated at the prescribed parameter values.

Table 1 gives the optimal number (i.e., the number arising from the conjecture
where the upper bound (2) is achieved) of points interpolated by a quadratic
and a cubic patch for all possible values of k.

Table 1
The optimal number of points (m) possibly interpolated by a polynomial patch of
degree n, where k + 3 points are interpolated at known parameter values.

n 2 3

k 0 1 2 3 0 1 2 3 4 5 6 7

m 12 10 8 6 24 22 20 18 16 14 12 10

A similar conjecture has been proposed for interpolation by parametric poly-
nomial curves (see [5]). As it has turned out, the only promising way of proving
it is the asymptotic analysis which requires some additional information on
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interpolated points (convexity of sampling function e.g.). Even in this case
only partial results have been obtained. Since it might be even worse for the
surfaces, the asymptotic analysis for the first nontrivial case, i.e., quadratic
interpolation, will be considered here.

The existence and the approximation order will be studied by the asymptotic
approach. However, assumptions not only on the smoothness of the underlying
surface but also on the parameter positions at which data are sampled must
be made. Three-pencil lattices ([8]) will be used since they allow some flexi-
bility in positions of the data points and determine the interpolating points
by only a few degrees of freedom. A particular subset of these configurations
are the principal lattices, most often used in practical computations. Thus
the interpolating parameters will represent a unisolvent set for the space Π2

3

independently of the domain magnitude.

The outline of the paper is as follows. In the next section the main result of the
paper is presented. In Section 3 the equations that determine the interpolating
patch are derived. Section 4 introduces three-pencil lattices and provides their
algebraic definition. In Section 5 the asymptotic analysis is carried out and
Section 6 completes the proof of the main theorem. The last section illustrates
the results of the paper with numerical examples.

2 The main result

Unfortunately, as already observed in [1], the number of free parameters intro-
duced by the interpolation at unknown parameter values and dim Π2

n do not
match so nicely as in the curve case. As an example, take the quadratic case,
n = 2. Table 1 shows that a quadratic polynomial patch might interpolate 12
points. But

dim Π2
3 = 10 < 12 < dim Π2

4 = 15,

and the interpolant ppppppppp2 at 12 points will obviously replace a polynomial inter-
polant of minimal degree ([6],[7]), lying in a space between Π2

3 and Π2
4. Such an

implicit joining of two additional Newton basic polynomials to Π2
3 will increase

the precision in particular directions only, and will not raise the asymptotic
approximation order in general. If the data are not of a particular nature that
requires such an approach, it seems better to stick to Π2

3 only, and to interpo-
late some additional points at prescribed parameter values uuuuuuuuu ∈ ∆. The only
useful choice is given by the second column of Table 1 for n = 2, namely not
only the points, corresponding to the vertices of the triangle ∆, but also one
additional point is interpolated at the prescribed parameter values.

The main result of the paper can be summarized in the following theorem.
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Theorem 2 Suppose that S is a smooth surface having a nonzero Gaussian
curvature in a vicinity of a point TTTTTTTTT ∈ S, with an (injective) regular parameteri-
zation sssssssss : ∆ ⊂ R2 → R3, defined on a triangular domain ∆. Let 0 < h ≤ 1,
and

∆h :=
{

h
(
x− sssssssss−1 (TTTTTTTTT )

)
+ sssssssss−1 (TTTTTTTTT ) , x ∈ ∆

}
.

Then there is h0 > 0 such that for all h, 0 < h ≤ h0, the quadratic patch
that interpolates sssssssss at data points given by a three-pencil lattice on ∆h, ex-
ists and depends on the parameters determining the lattice. The asymptotic
approximation order is optimal, i.e., 4.

3 Nonlinear equations in the quadratic case

The choice of the second column for n = 2 in Table 1 as a basis for the
interpolation problem will now be studied in detail. In order to shorten the
notation, the standard multiindex notation will be used. If α = (α1, α2) ∈ N2

0

is a multiindex and xxxxxxxxx = (x1, x2)
T ∈ R2, then

|α| :=
2∑

i=1

αi, xxxxxxxxxα := xα1
1 xα2

2 , Dα :=
∂α1

∂xα1
1

∂α2

∂xα2
2

.

Let

In := {(0, 0), (1, 0), (0, 1), . . . , (1, n− 1), (0, n)} ⊂ N2
0

denote the ordered set of multiindices of degree ≤ n in N2
0 in a grevlex (i.e.,

the graded reverse lexicographical term) order. Further, let

{
TTTTTTTTTα ∈ R3, α ∈ I3

}
(3)

be a given set of distinct points and ppppppppp2 : Ω → R3 a quadratic parametric
polynomial patch that should interpolate data points (3) at some values uuuuuuuuuα ∈
Ω, i.e.,

ppppppppp2(uuuuuuuuuα) = TTTTTTTTTα, α ∈ I3. (4)

Since four interpolation parameters are supposed to be prescribed in advance,
we may choose them as uuuuuuuuuα, α ∈ I3, |α| = 3. Note that (4) is a nonlinear
system of 30 equations for 30 unknowns, the coefficients of ppppppppp2 and the unknown
parameters uuuuuuuuuα, |α| ≤ 2.

The first step is to reduce equations (4) to a nonlinear system for the unknown
parameters uuuuuuuuuα only. Once they are determined, the coefficients of the para-
metric polynomial patch ppppppppp2 are derived as a solution of the system of linear
equations

ppppppppp2(uuuuuuuuuα) = TTTTTTTTTα, α ∈ J ⊂ I3, |J | = 6,
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with U2 := {uuuuuuuuuα, α ∈ J } an arbitrary unisolvent subset of {uuuuuuuuuα, α ∈ I3}. Thus

ppppppppp2(uuuuuuuuu) =
∑

α∈J
`α,2(uuuuuuuuu; U2) TTTTTTTTTα, (5)

where `α,2(.; U2) are the Lagrange fundamental polynomials of total degree≤ 2
on the set of points U2. In order to do the reduction, take a cubic parametric
polynomial patch ppppppppp3,

ppppppppp3(uuuuuuuuu) =
∑

α∈I3

aaaaaaaaaα uuuuuuuuuα.

Suppose that U3 := {uuuuuuuuuα, α ∈ I3} is a unisolvent subset of R2. Then the
interpolation problem

ppppppppp3(uuuuuuuuuα) = TTTTTTTTTα, α ∈ I3, (6)

has a unique solution. If the coefficients aaaaaaaaaα satisfy

aaaaaaaaaα = 000000000, |α| = 3, (7)

ppppppppp3 is reduced to a quadratic patch ppppppppp2. So (7) are the equations that will
determine the unknown uuuuuuuuuα. Let A := [aaaaaaaaaα]α∈I3 ∈ R3×10 and T := [TTTTTTTTTα]α∈I3 ∈
R3×10. The equations (6) can be written as

M(U3) AT = T T ,

where
M(U3) :=

[
uuuuuuuuuβ

α

]
α, β∈I3

is a Vandermonde matrix. Since U3 is unisolvent, det M(U3) 6= 0, and by the
Cramer’s rule the equations (7) can be rewritten as

∑

β∈I3

(−1)pos(α)+pos(β) Mβ,α(U3) TTTTTTTTTβ = 000000000, |α| = 3, (8)

where Mβ,α(U3) denotes the minor of M(U3) with the row pos(β) and the
column pos(α) omitted. Here and through the rest of the paper pos(α) denotes
the position of α in the ordered set I3. The system (8) for the unknown
parameters uuuuuuuuuα, |α| ≤ 2, is the required reduction of the original nonlinear
one, given by (4).

Although a significant reduction has been made, the system is still nonlin-
ear and difficult to analyse in general. The asymptotic analysis will be used
instead.

4 Three-pencil lattices

Three-pencil lattices (Fig. 1) are often encountered geometric configurations
that provide unisolvent sets of interpolation parameters ([8]). They represent
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a particular subset of generalized principal lattices ([9]). Pencil is a set of

Fig. 1. A three-pencil lattice with three finite centers (left) and with 2 centers at
the ideal line (right).

lines intersecting at one point (center of the pencil) or a set of parallel lines
(center is at the ideal line). The latter case defines principal lattices. Here
three-pencil lattices will be three-pencil lattices of order 3, defined as a set of
10 points, generated by 3 pencils of 4 lines each. Every point of the lattice
is an intersection of three lines, one from each pencil (Fig. 1). Three-pencil
lattices are uniquely determined by 3 lines and 3 center points ([8]).

The asymptotic analysis will require an explicit representation of lattice points,
i.e., domain parameters of the interpolation data. For this purpose, let us use
barycentric coordinates w.r.t. the vertices of a triangle in R2 (Fig. 2). Then
PPPPPPPPP (3,0) = (1, 0, 0)T , PPPPPPPPP (2,1) = (0, 1, 0)T , PPPPPPPPP (1,2) = (0, 0, 1)T . It is obvious that all

Fig. 2. A three-pencil lattice with barycentric coordinates {PPPPPPPPPα, |α| ≤ 3}.

the corner points of ∆ must belong to the lattice. Let

qqqqqqqqqpos(α),pos(β)(λ) := (1− λ) PPPPPPPPPα + λPPPPPPPPPβ, α,β ∈ I3,
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denote a line through the vertices PPPPPPPPPα and PPPPPPPPPβ. The edges of the given triangle
lie on the lines qqqqqqqqq8,7, qqqqqqqqq9,8 and qqqqqqqqq7,9, respectively. Therefore the vertices on those
lines can be written as

PPPPPPPPP (0,0) = qqqqqqqqq8,7(τ1), PPPPPPPPP (1,0) = qqqqqqqqq8,7(τ2), PPPPPPPPP (0,1) = qqqqqqqqq9,8(τ3),

PPPPPPPPP (2,0) = qqqqqqqqq9,8(τ4), PPPPPPPPP (1,1) = qqqqqqqqq7,9(τ5), PPPPPPPPP (0,2) = qqqqqqqqq7,9(τ6),

where
0 < τ2 < τ1 < 1, 0 < τ4 < τ3 < 1, 0 < τ6 < τ5 < 1 (9)

are unknown parameters. Let the remaining point PPPPPPPPP (0,3) be

PPPPPPPPP (0,3) = (ξ1, ξ2, ξ3)
T , ξi ∈ (0, 1), ξ1 + ξ2 + ξ3 = 1.

If the parameters η1 and η2 are defined as

η1 :=
ξ1

ξ2

, η2 :=
ξ2

ξ3

, (10)

then

PPPPPPPPP (0,3) =

(
η1η2

1 + (1 + η1)η2

,
η2

1 + (1 + η1)η2

,
1

1 + (1 + η1)η2

)T

.

Centers

CCCCCCCCC1 = qqqqqqqqq8,7

(
µ8,7

1− τ5 − τ4

)
, CCCCCCCCC2 = qqqqqqqqq9,8

(
µ9,8

1− τ1 − τ6

)
, CCCCCCCCC3 = qqqqqqqqq7,9

(
µ7,9

1− τ3 − τ2

)
,

where µ8,7, µ9,8, µ7,9 are unknown parameters too, are also on the lines on
which the edges of the triangle lie (Fig. 2). Observe that

qqqqqqqqq5,4 ∩ qqqqqqqqq6,3 = {CCCCCCCCC1}, qqqqqqqqq2,5 ∩ qqqqqqqqq1,6 = {CCCCCCCCC2}, qqqqqqqqq3,2 ∩ qqqqqqqqq4,1 = {CCCCCCCCC3}

determine 6 scalar equations. Furthermore, the lines qqqqqqqqq4,1, qqqqqqqqq2,5 and qqqqqqqqq6,3 intersect
at the vertex PPPPPPPPP (0,3), which gives additional 4 scalar equations. This describes
the system of 10 equations for 11 unknowns τi, i = 1, 2, . . . , 6, µ8,7, µ9,8, µ7,9

and η1, η2, which determines the three-pencil lattice. Let ω := τ6. By a proper
sequence of elementary linear eliminations the solution can be expressed by
three independent parameters ω, η1, η2 as

τ1 =
(ω − 1)η1

ω − 1 + η1(ω − 1 + ωη2)
, τ2 =

ωη2
1η2

1− ω + ωη2
1η2

,

τ3 =
(ω − 1)η2

ω − 1 + η2(ω − 1 + ωη1)
, τ4 =

ωη1η
2
2

1− ω + ωη1η2
2

, (11)

τ5 =
ω − 1

ω − 1 + η1η2(ω − 1 + ωη1η2)
.

From (9) and (10), the parameters ω, η1, and η2 must satisfy 0 < ω < 1,
η1 > 0, and η2 > 0. But the inequality τ6 < τ5 < 1 and (11) imply that

8



ω < 1
1+η1η2

must be satisfied too. So the conditions

η1 > 0, η2 > 0, 0 < ω <
1

1 + η1η2

(12)

are necessary. On the other hand, it is straightforward to verify that the rela-
tions (12) together with (11) imply all the inequalities (9). Let us summarize
the results in the following lemma.

Lemma 3 Let ∆ be a given triangle. A three-pencil lattice of ten distinct
points in ∆ is uniquely determined by three parameters ω, η1, and η2 iff they
satisfy (12).

As an immediate consequence of Lemma 3 one can give the barycentric coor-
dinates of a three-pencil lattice in a matrix P := [PPPPPPPPPα]α∈I3

∈ R3×10 as

P =




τ1 τ2 0 0 1− τ5 1− τ6 1 0 0 ξ1

1− τ1 1− τ2 τ3 τ4 0 0 0 1 0 ξ2

0 0 1− τ3 1− τ4 τ5 τ6 0 0 1 ξ3




.

(13)

Note that the centers {CCCCCCCCCi, i = 1, 2, 3}, and the inner vertices on the triangle
edges {PPPPPPPPPα, α ∈ I2}, together with the adjoined lines form the Pappus’ con-
figuration. The construction of three-pencil lattices ([8]) depends heavily on
the Pappus’ theorem ([10]).

From now on we will consider unisolvent interpolation parameters, generated
by a three-pencil lattice on a domain triangle. Since affine transformations
preserve barycentric coordinates, the analysis carried through depends only
on the domain triangle vertices. The interpolation parameters depend on ω, η1

and η2. Note that similar analysis could be carried out for a three-pencil
lattice on

(
n+2

2

)
points. From the construction of three-pencil lattices ([8]) it

follows that, in general, a three-pencil lattice on a given triangle depends on
3 parameters only.

5 Asymptotic analysis of the quadratic case

Suppose that a surface S, a point TTTTTTTTT ∈ S, and a parameterization sssssssss are as
required in Theorem 2. Without loss of generality we can assume that ∆ is a
triangle defined by the vertices (0, 0)T , (1, 0)T , (0, 1)T , and sssssssss−1 (TTTTTTTTT ) = (0, 0)T .
Therefore ∆h = h ∆. It is well known ([10]) that for h small enough S can be
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locally parameterized on ∆h by a particular regular parameterization

sssssssss : ∆h ⊂ R2 → R3, xxxxxxxxx 7→ sssssssss(xxxxxxxxx) = (xxxxxxxxx, f(xxxxxxxxx))T , sssssssss(000000000) = 000000000, (14)

such that

f(xxxxxxxxx) =
1

2
xxxxxxxxxT K xxxxxxxxx +O(xxxxxxxxxα), |α| = 3. (15)

Here K := diag(κ1, κ2), where κ1 and κ2 are nonzero principal curvatures of
S at TTTTTTTTT . Now, let the data points be sampled as

TTTTTTTTTα = sssssssss(hxxxxxxxxxα), α ∈ I3, (16)

where X3 := {xxxxxxxxxα, α ∈ I3} is a unisolvent subset of R2 given by the three-
pencil lattice on ∆. Since four parameters {xxxxxxxxxα, |α| = 3} need to be fixed, let
us choose them as the vertices of ∆ and the interior vertex (Fig. 3). The trian-

Fig. 3. A set of interpolating parameters in a triangular domain ∆. Black circles
indicate the prescribed parameter values.

gle ∆ is based upon the vertices (0, 0)T , (1, 0)T , (0, 1)T , thus the interpolating
parameters xxxxxxxxxα are determined as

[xxxxxxxxxα]α∈I3
=



0 0 1

0 1 0


 P, (17)

with P given by (13). From (15) and (16) one obtains

TTTTTTTTTα = sssssssss(hxxxxxxxxxα) = Dh




xxxxxxxxxα

1
2
xxxxxxxxxT

α K xxxxxxxxxα +O(h)


 , Dh := diag

(
h, h, h2

)
.

Since the parameters uuuuuuuuuα = xxxxxxxxxα, |α| = 3, are prescribed, one has to show that
the system (8) has a real solution {uuuuuuuuuα, |α| ≤ 2} for h small enough. In order
to make the nonlinear system (8) well defined as h → 0, equations (8) need to
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be scaled by D−1
h . The system becomes FFFFFFFFF (U3, X3, h, α) = 000000000, |α| = 3, where

FFFFFFFFF (U3, X3, h, α) := D−1
h

∑

β∈I3

(−1)pos(α)+pos(β) Mβ,α(U3) TTTTTTTTTβ.

The limit solution at h = 0 is

uuuuuuuuu∗α = xxxxxxxxxα, |α| ≤ 2. (18)

Namely,

lim
h→0

FFFFFFFFF (U3, X3, h, α) =

∑

β∈I3

(−1)pos(α)+pos(β) Mβ,α(X3)
(
xxxxxxxxxβ,

1

2
xxxxxxxxxT

β K xxxxxxxxxβ

)T

= 000000000, |α| = 3.

The last equality holds since the points
{(

xxxxxxxxxβ, 1
2
xxxxxxxxxT

β K xxxxxxxxxβ

)
, β ∈ I3

}
are taken

from a quadratic patch and the cubic terms must be zero. In order to apply
the Implicit Function theorem, one has to study the Jacobian. This turns
out to be not so straightforward. Since by (18) only the unknown differ-
ences uuuuuuuuuα − xxxxxxxxxα, α ∈ I2, as functions of h need to be studied, it will be
simpler to exchange the role of the parameters and the unknowns, i.e., let
uuuuuuuuuα be given parameters and xxxxxxxxxα the unknowns. Let the unknowns be ordered
as {xxxxxxxxx(1,0)

α , α ∈ I2}, followed by {xxxxxxxxx(0,1)
α , α ∈ I2}, and J be the Jacobian of

FFFFFFFFF (U3, X3, h, α), |α| = 3, at the limit solution (18). It is straightforward to
verify that

J =



C 0 C1

0 C C2




T

, C :=
[
(−1)pos(α)+pos(β)Mβ,α(X3)

]
α∈I2, β∈I3, |β|=3

,

and
C1 := κ1 C diag

(
xxxxxxxxx(1,0)

α

)
α∈I2

, C2 := κ2 C diag
(
xxxxxxxxx(0,1)

α

)
α∈I2

.

Let us recall (17). The structure of J leads to

det J = κ1 κ2 r(ω, η1, η2, κ1, κ2),

where r is a rational function of its variables. One can extract common rational
factors in the rows and the columns of J to diagonal matrices D1, D2, and
determine the determinants of the factors J = D1

(
D−1

1 JD−1
2

)
D2 separately.

It is straightforward to compute

det
(
D−1

1 JD−1
2

)
= κ1 κ2 η3

1η
2
2

(
η1η2 + η2 + 1

)3

×
(
ωη1η

2
2 − ω + 1

)2 (
ωη1η2 + ωη2 + ω − η2 − 1

)2

×
(
(ω − 1)2 + (ω − 1)ωη1η2 + ω2η2

1η
2
2

)6
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by using a Computer Algebra system’s symbolic facilities. This gives the func-
tion r as

r(ω, η1, η2, κ1, κ2) = 16 κ1 κ2
Q1

Q2

,

where

Q1 = η71
1 η82

2 ω30 (ω − 1)60 (ω + ωη1η2 − 1)30

×
(
(ω − 1)2 + (ω − 1)ωη1η2 + ω2η2

1η
2
2

)30
,

Q2 =
(
(1− ω + ωη2

1η2)(1− ω + ωη1η
2
2)

)30

×
(
ω − 1 + η1(−1 + ω + ωη2)

)30(
ω − 1 + η2(−1 + ω + ωη1)

)30

×
(
1 + (1 + η1)η2

)33(
ω − 1 + η1η2(ω − 1 + ωη1η2)

)30
.

Note that the terms in Q2 are the powers of denominators of the parameters
(17). Moreover, for real η1, η2, ω, the expression Q1 is equal to zero iff

η1 = 0 or η2 = 0 or ω = 0 or ω = 1 or ω =
1

1 + η1η2

,

which, by Lemma 3, are not allowed for three-pencil lattices. Therefore

det J 6= 0, (19)

and the first part of Theorem 2 follows. The next section will conclude the
proof of Theorem 2 by confirming the optimal approximation order.

6 Approximation order

Methods of geometric interpolation are of particular interest since they provide
interpolants with high approximation order. The main problem with paramet-
ric objects is, of course, how to measure the distance in a proper way. Here the
fact that a parametric surface sssssssss given by (14) and (15) is actually a function
on ∆h, will be used. Thus the estimate known for the functional case can be
applied ([11],[12]). Let q ∈ Π2

3(∆h) denote the polynomial interpolant of total
degree ≤ 3, that interpolates sssssssss at 10 points, i.e.,

q(hxxxxxxxxxα) = f(hxαxαxαxαxαxαxαxαxα), α ∈ I3.

Recall X3 = {xxxxxxxxxα, α ∈ I3} and let Xh
3 := hX3. Let `α,3

(
.; Xh

3

)
∈ Π2

3(∆h), α ∈
I3, be the Lagrange fundamental polynomials of total degree ≤ 3 on Xh

3 ,
kkkkkkkkkα(xxxxxxxxx) := xxxxxxxxx−hxxxxxxxxxα and DDDDDDDDD := (D(1,0), D(0,1))T . Then the Ciarlet’s error formula
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([11],[12]) for f ∈ C4(∆h) reads

f − q =
1

4!

∑

α∈I3

`α,3

(
.; Xh

3

) ((
kkkkkkkkkT

α(.) DDDDDDDDD
)4

f
)

(.− cα kkkkkkkkkα(.)) , (20)

where cα ∈ (0, 1). Note that xxxxxxxxx− cα kkkkkkkkkα(xxxxxxxxx) ∈ ∆h for any xxxxxxxxx ∈ ∆h, α ∈ I3. Since
∆h = h ∆, ‖kkkkkkkkkα‖ = O(h). The Lagrange fundamental polynomials are given
by

`α,3

(
xxxxxxxxx; Xh

3

)
=

det Mα

(
[xxxxxxxxxβ]β∈I3 ; X

h
3

)

det M
(
Xh

3

) , (21)

where Mα

(
[xxxxxxxxxβ]β∈I3 ; X

h
3

)
denotes the matrix M

(
Xh

3

)
with its row correspond-

ing to α replaced by [xxxxxxxxxβ]β∈I3 . Since `α,3

(
.; Xh

3

)
= `α,3

(
1
h
.; 1

h
Xh

3

)
, the La-

grange polynomials are obviously bounded on ∆h as h → 0. Now, to show that
the error formula (20) implies the approximation order 4, only the bounded-
ness of the derivatives Dαf , |α| ≤ 4, has to be proved.

Unfortunately the formula (20) cannot be directly applied to our interpolating
polynomial ppppppppp2 described by (4), since ppppppppp2 is not defined on ∆h. A regular
reparameterization ϕ : ∆h → Ω which parameterizes ppppppppp2 = (p21, p22, p23)

T to
ppppppppp2 ◦ ϕ : ∆h → R3, such that ppppppppp2(ϕ(xxxxxxxxx)) = (xxxxxxxxx, p23(ϕ(xxxxxxxxx)))T , must first be found.
Then

‖f − q + q − p23 ◦ ϕ‖ ≤ ‖f − q‖+ ‖p23 ◦ ϕ− q‖,
and the Ciarlet’s formula can be used for both terms. Since f is smooth,
‖f−q‖ = O(h4). To bound the second term, the boundedness of the derivatives
Dαp23(ϕ(xxxxxxxxx)), |α| ≤ 4, has to be proved.

By (18) and (19) the interpolating abscissae hxxxxxxxxxα, α ∈ I3, are necessarily of
the form

hxxxxxxxxxα = huuuuuuuuuα +O(h2). (22)

Some basic properties of Lagrange polynomials, (5), (15) and (16) imply

ppppppppp2(uuuuuuuuu) =
∑

α∈J
`α,2(uuuuuuuuu; U2) TTTTTTTTTα =

∑

α∈J
`α,2(uuuuuuuuu; U2) (h xxxxxxxxxα, f(hxxxxxxxxxα))T

=
∑

α∈J
`α,2(uuuuuuuuu; U2) (huuuuuuuuuα +O(h2),O(h2))T = (huuuuuuuuu +O(h2),O(h2))T .

Let us choose now the reparameterization ϕ as ϕ :=
(
(p21, p22)

T
)−1

. Then by
the Implicit Function theorem

ϕ : ∆h → Ω, xxxxxxxxx 7→ ϕ(xxxxxxxxx) =
1

h
xxxxxxxxx + h

∑

|α|≥2

dddddddddα(h) xxxxxxxxxα, dddddddddα(h) = O(1), (23)

and

ppppppppp2(ϕ(xxxxxxxxx)) = (xxxxxxxxx, p23(ϕ(xxxxxxxxx)))T .

13



Moreover

det (DDDDDDDDDϕ) (xxxxxxxxx) =
1

h2
+O(1) > 0,

thus ϕ is a regular reparameterization. The following lemma concludes the
proof of Theorem 2.

Lemma 4 Partial derivatives Dα (p23 ◦ ϕ), |α| ≤ 4, are bounded on ∆h as
h → 0.

PROOF. Take any xxxxxxxxx ∈ ∆h. By (5) and (14)–(16)

p23(ϕ(xxxxxxxxx)) =
∑

α∈J
`α,2(ϕ(xxxxxxxxx); U2) f(hxxxxxxxxxα)

=
1

2

∑

α∈J
`α,2 (ϕ(xxxxxxxxx); U2)

(
h2 xxxxxxxxxT

α K xxxxxxxxxα +O(h3)
)
.

But (22) implies

h2 xxxxxxxxxT
α K xxxxxxxxxα +O(h3) = h2 uuuuuuuuuT

α K uuuuuuuuuα +O(h3),

and further, since ϕ(xxxxxxxxx) = uuuuuuuuu,

∑

α∈J
`α,2 (ϕ(xxxxxxxxx); U2)

(
h2 xxxxxxxxxT

α K xxxxxxxxxα +O(h3)
)

=

∑

α∈J
`α,2 (uuuuuuuuu; U2)

(
h2 uuuuuuuuuT

α K uuuuuuuuuα +O(h3)
)

=

h2 uuuuuuuuuT Kuuuuuuuuu +
∑

α∈J
`α,2 (ϕ(xxxxxxxxx); U2)O(h3) =

xxxxxxxxxT Kxxxxxxxxx +
∑

α∈J
`α,2 (ϕ(xxxxxxxxx); U2)O(h3) +O(h3).

Now, by (23),

∑

α∈J
`α,2 (ϕ(xxxxxxxxx); U2)O(h3) =

∑

α∈J
`α,2

(
1

h
xxxxxxxxx +O(h); U2

)
O(h3).

It remains to prove that the derivatives

Dα
(
`α,2

(
1

h
xxxxxxxxx +O(h); U2

)
O(h3)

)
, |α| ≤ 4,

are bounded. Since `α,2(.; U2) can be defined similarly as `α,3

(
.; Xh

3

)
in (21),

it is easy to see that the denominators of the terms in `α,2(
1
h

xxxxxxxxx+O(h); U2) are
O(h2). This implies

`α,2

(
1

h
xxxxxxxxx +O(h); U2

)
O(h3) = h g(xxxxxxxxx) +O(h2),

where g is a smooth function and the proof of the lemma is complete.
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7 Examples

Let us illustrate the results by two numerical examples. First, let us consider

Fig. 4. The quadratic geometric interpolant and the approximated part of the sphere
(left) and the interpolant on the sphere (right).

an approximation of a part of the unit sphere over the domain triangle based
upon the points

(0, 0)T ,
(

1

2
, 0

)T

,
(
0,

1

2

)T

.

The interpolation points
(
u, v,

√
1− u2 − v2

)T
are sampled from the sphere

at parameter values

(0, 0)T ,
(

1

6
, 0

)T

,
(

1

3
, 0

)T

,
(

1

2
, 0

)T

,
(
0,

1

6

)T

,

(
1

6
,
1

6

)T

,
(

1

3
,
1

6

)T

,
(
0,

1

3

)T

,
(

1

6
,
1

3

)T

,
(
0,

1

2

)T

,

determined by a principal lattice. In Table 2 the approximation error, mea-
sured as a radial distance, and numerical approximation order are presented
as the domain triangle, defined by

(0, 0)T ,
(

1

2
h, 0

)T

,
(
0,

1

2
h

)T

,

shrinks. The quadratic geometric interpolant and the sphere for h = 1 are
shown in Fig. 4. The differences between the interpolant (top) and the ap-
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proximated sphere patch (bottom) are almost indistinguishable (Fig. 4, left,
and Table 2).

As the second example, consider an approximation of the surface

(u, v, exp(u) + exp(v)− u− v − 1)T

over the same domain triangle and at the same prescribed parameter values
as in the previous example. The error (Table 2) is given as a radial distance,
i.e., the distance between surfaces on the rays from the origin (0, 0, 0)T .

Table 2
The error in geometric interpolation.

h Approximation error Decay exponent

Sph. Exp. Sph. Exp.

1 5.10989× 10−4 1.64540× 10−4 — —
9
10 3.16648× 10−4 1.02523× 10−4 -4.54 -4.49
8
10 1.88103× 10−4 6.07809× 10−5 -4.42 -4.44
7
10 1.05643× 10−4 3.38710× 10−5 -4.32 -4.38
6
10 5.49874× 10−5 1.74568× 10−5 -4.24 -4.30
5
10 2.57269× 10−5 8.06412× 10−6 -4.17 -4.24
4
10 1.02831× 10−5 3.17273× 10−6 -4.11 -4.18
3
10 3.19296× 10−6 9.67434× 10−7 -4.07 -4.13
2
10 6.22342× 10−7 1.84838× 10−7 -4.03 -4.08
1
10 3.85875× 10−8 1.12178× 10−8 -4.01 -4.04
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