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Abstract

In this paper, the geometric Lagrange interpolation of four points by planar cubic
Pythagorean-hodograph (PH) curves is studied. It is shown that such an interpola-
tory curve exists provided that the data polygon, formed by the interpolation points,
is convex, and satisfies an additional restriction on its angles. The approximation
order is 4. This gives rise to a conjecture that a PH curve of degree n can, under
some natural restrictions on data points, interpolate up to n + 1 points.

Key words: planar curve, PH curve, geometric interpolation, Lagrange
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1 Introduction

Pythagorean-hodograph planar curves (PH curves) were introduced in [1].
They form an important class of planar parametric polynomial curves for
which the arc-length can be computed exactly and their offsets are rational
curves. This makes them very useful in many practical applications, e.g. in
CAD/CAM systems, robotics, animation, NC machining, etc. The PH curves
have attracted a lot of attention of researchers in the last two decades. Many
results on the Hermite type interpolation by PH curves have been obtained
(see [2], [3], [4], [5], [6], e.g.), but it seems that there are no results on the
Lagrange type interpolation. Hermite type interpolation methods are very
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useful in computer aided geometric design (CAGD) since polynomial pieces
can be easily smoothly joined. On the other hand, in practical applications it
is often difficult to obtain information about derivatives. If a PH curve has to
be evaluated online, where all the data are not available in advance, one has to
be able to compute the values on the curve efficiently using only information
on the position of already known interpolated points. In this case a Lagrange
type interpolation by PH curves similar to Aitken interpolation is needed.
Of course there is a serious drawback that usually one can not put piecewise
polynomial Lagrange interpolants together to form a smooth spline curve.

Formally, a PH curve is defined as follows. Suppose that ppppppppp : [a, b] → R
2,

ppppppppp(t) := (x(t), y(t))T , where x and y are polynomials of degree ≤ n, is a planar
polynomial curve. Then ppppppppp is said to have a Pythagorean hodograph if and only
if

x′(t)2 + y′(t)2 = σ(t)2, ∀t ∈ [a, b],

for some polynomial σ. It is well known ([1]) that a PH curve of degree n
has n + 3 degrees of freedom, i.e., n− 1 less than a general planar parametric
polynomial curve of the same degree. Thus it is expected that it can interpolate
at most ⌊(n+3)/2⌋ points in the plane. But this is true only if the interpolation
parameters are prescribed in advance. If one considers so called geometric

interpolation (see [7], [8], [9], e.g.), where the interpolation parameters are
supposed to be unknown, a larger number of points might be interpolated by
a PH curve of the same degree n.

Suppose that we want to interpolate k points TTTTTTTTT j ∈ R
2, j = 0, 1, . . . , k − 1, by

a PH geometric interpolant ppppppppp of degree n. Since a linear reparameterization
does not affect the degree of ppppppppp and preserves the PH property, we can assume
that t0 := 0 < t1 < t2 < · · · < tk−2 < tk−1 := 1. A PH curve ppppppppp has n + 3
degrees of freedom and k−2 new ones are provided by unknown interpolation
parameters tj . Since 2 k interpolation conditions ppppppppp(tj) = TTTTTTTTT j , j = 0, 1, . . . , k−1,
have to be fulfilled, the following conjecture is right at hand.

Conjecture 1 A planar PH curve of degree n can interpolate up to n + 1
points.

A similar conjecture for general planar parametric curves has been stated
in [10], namely, that a planar polynomial parametric curve of degree n can
interpolate 2n data - much more than n + 1 as in the standard case. The
conjecture has not been confirmed for general degree n yet, since the problem
turned out to be very hard. But it holds true for curves of small degrees n ≤ 5
(see [9] and the references therein).

For the geometric Lagrange interpolation by PH curves it is expected that
some reasonable conditions on the geometry of data points have to be added
(similarly as in the conjecture for general curves) and it is also quite clear that
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the conjecture on PH curves might be even harder to prove than the one for
general curves. Thus it is reasonable to study some particular cases first. In
this paper, we will consider the Lagrange interpolation by cubic PH curves,
the case quite frequently encountered in practical applications. We will show,
that a planar cubic PH curve can interpolate 4 data points under some natural
restrictions.

The paper is organized as follows. In Section 2 a detailed explanation of the
interpolation problem is given together with the derivation of nonlinear equa-
tions that have to be studied. Section 3 provides the main result of the paper.
Since the proofs of the main theorems require several steps, they are given as
a separate section. In the last section, some numerical examples are outlined,
which confirm the results of the paper.

2 Interpolation problem

Let us start with the notation first. Throughout the paper uuuuuuuuu · vvvvvvvvv denotes the
standard scalar product, uuuuuuuuu × vvvvvvvvv is the standard planar vector product, and
‖ · ‖ is the Euclidean norm. Further, let ∠(uuuuuuuuu, vvvvvvvvv) denote the angle between the
vectors uuuuuuuuu and vvvvvvvvv, ∆(.)i := (.)i+1 − (.)i, and

Q(ϕ) :=







cos ϕ − sin ϕ

sin ϕ cos ϕ







be the rotation matrix.

Let us introduce the setup. Suppose that an ordered set of points TTTTTTTTT j , j =
0, 1, 2, 3, in the plane is given, where TTTTTTTTT j 6= TTTTTTTTT j+1, j = 0, 1, 2. A cubic PH curve
ppppppppp, which interpolates the given data, needs to be found. Since the number
of degrees of freedom of a PH cubic is known to be 6 ([1]), the points TTTTTTTTT j

in general can not be interpolated by a PH cubic at the prescribed values of
interpolation parameters. Thus one has to interpolate them in a geometric
sense. Let

t0 := 0 < t1 < t2 < t3 := 1 (1)

be a sequence of parameters, where t1 and t2 are unknown. The PH curve ppppppppp
has to satisfy the interpolation conditions

ppppppppp(tj) = TTTTTTTTT j, j = 0, 1, 2, 3. (2)

It turns out that it is prosperous to consider the interpolant ppppppppp in the Bézier
form,

ppppppppp(t) =
3
∑

i=0

bbbbbbbbbiB
3
i (t), (3)
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where bbbbbbbbbi are the Bézier control points of the curve and

B3
i (t) =

(

3

i

)

ti (1 − t)3−i, i = 0, 1, 2, 3,

are the Bernstein polynomials of degree 3. Due to the boundary control points
interpolation property, bbbbbbbbb0 = TTTTTTTTT 0 and bbbbbbbbb3 = TTTTTTTTT 3. In order to determine the inter-
polant, the unknown control points bbbbbbbbb1 and bbbbbbbbb2 as well as the parameters t1 and
t2, have to be found.

The interpolation conditions (2) for j = 1, 2, imply the equations

bbbbbbbbb1 B3
1(tj) + bbbbbbbbb2 B3

2(tj) = TTTTTTTTT j − bbbbbbbbb0 B3
0(tj) − bbbbbbbbb3 B3

3(tj) =: cccccccccj, j = 1, 2,

which can be written as a linear system for bbbbbbbbb1 and bbbbbbbbb2,

B bbbbbbbbb = ccccccccc, (4)

where

B =







B3
1(t1) B3

2(t1)

B3
1(t2) B3

2(t2)





 , bbbbbbbbb =







bbbbbbbbbT
1

bbbbbbbbbT
2





 , ccccccccc =







cccccccccT
1

cccccccccT
2





 .

Since

det B = 9 t1 t2 (1 − t1)(1 − t2)(t2 − t1),

the linear system (4) has a unique solution for any set of parameters (1). A
straightforward computation reveals that ∆bbbbbbbbbi := ∆bbbbbbbbbi(t1, t2), i = 0, 1, 2, can be
written as

∆bbbbbbbbb0 :=
t1 + t2 + t1t2

3t1t2
∆TTTTTTTTT 0 −

t1 (t22 + (1 − t1) (1 + t2))

3 (1 − t1) (t2 − t1) t2
∆TTTTTTTTT 1

+
t1t2

3 (1 − t1) (1 − t2)
∆TTTTTTTTT 2,

∆bbbbbbbbb1 := −1 − t1t2
3t1t2

∆TTTTTTTTT 0 +
t2t

2
1 + (t22 + t2 + 1) (1 − t1)

3 (1 − t1) (t2 − t1) t2
∆TTTTTTTTT 1 (5)

− t1 (1 − t2) + t2
3 (1 − t1) (1 − t2)

∆TTTTTTTTT 2,

∆bbbbbbbbb2 :=
(1 − t1) (1 − t2)

3t1t2
∆TTTTTTTTT 0 −

(1 − t2)
(

(1 − t1)
2 + (2 − t1) t2

)

3 (1 − t1) (t2 − t1) t2
∆TTTTTTTTT 1

+
t1 (t2 − 2) − 2t2 + 3

3 (1 − t1) (1 − t2)
∆TTTTTTTTT 2.

But (2) are not the only equations which have to be considered. One has to
assure that ppppppppp is also a PH curve. There are several equivalent characterizations
of cubic PH curves, but usually the complex representation is the most suitable
one. Thus if control points bbbbbbbbbi are considered as complex numbers (using the
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standard representation of planar vectors as complex numbers) then by [11],
a cubic parametric curve is a PH curve if and only if

(∆bbbbbbbbb1)
2 − ∆bbbbbbbbb0 ∆bbbbbbbbb2 = 0. (6)

This is a complex equation for two scalar unknowns t1 and t2. Note that (6) is
equivalent to well-known conditions on Bézier control polygon of a PH curve,

namely ‖∆bbbbbbbbb1‖ =
√

‖∆bbbbbbbbb0‖ ‖∆bbbbbbbbb2‖ and θ1 = θ2 (see Fig. 1). Note also that the

T0

T1 T2

T3b0

b1 b2

b3

Θ1 Θ2

Fig. 1. A cubic PH Lagrange interpolant together with its control polygon and the
data polygon.

use of the complex-valued approach does not overcome the problem of solving
a nonlinear system of equations for t1 and t2. This makes geometric Lagrange
type interpolation methods much more complicated than Hermite type ones.

The equation (6) is rational in t1 and t2. Taking its real and imaginary part
leads to a system of two real rational equations

eeeeeeeee(t1, t2) := eeeeeeeee (t1, t2; T ) = (ei(t1, t2; T ))2
i=1 = 000000000, (7)

where

e1(t1, t2; T ) := ∆b2
1,x − ∆b2

1,y − ∆b0,x∆b2,x + ∆b0,y∆b2,y,

e2(t1, t2; T ) := 2∆b1,x∆b1,y − ∆b0,x∆b2,y − ∆b0,y∆b2,x,

and ∆bbbbbbbbbi := (∆bi,x, ∆bi,y)
T . Note that T := (TTTTTTTTT j)

3
j=0 refers to the fact that the

system depends on data points TTTTTTTTT j , j = 0, 1, 2, 3. It is easy to see that the
denominators in (7) vanish only for t1 = 0, 1, t2 = 0, 1 and t1 = t2, thus the
system can be transformed to the system of two polynomial equations, each
of them of total degree 8. Applying the straightforward approach using the
Gröbner basis or resultants on the obtained polynomial system seems hopeless.
Thus an in-depth analysis is needed.
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3 Cubic PH Lagrange interpolation

Some quick numerical experiments show that more than one solution of the
interpolation problem might exist. This is a common fact observed already
in the Hermite case. Since some of the solutions are clearly not acceptable in
CAGD (having loops, e.g.), some kind of shape preserving will be required.
The following definition gives a description of an appropriate interpolating
cubic PH curve.

Definition 2 A cubic Bézier PH curve (3) which interpolates data points TTTTTTTTT j,

j = 0, 1, 2, 3, in a geometric sense is admissible curve if

(∆bbbbbbbbbi×∆bbbbbbbbbi+1) (∆TTTTTTTTT i×∆TTTTTTTTT i+1) > 0, i = 0, 1.

Accordingly, the solution of the nonlinear system (7) is an admissible solution

if the unknowns lie in

D :=
{

(t1, t2) ∈ R
2 | 0 < t1 < t2 < 1},

and the resulting curve is admissible.

Observe that the above definition excludes those configurations of data points
for which ∆TTTTTTTTT i×∆TTTTTTTTT i+1 = 0, i = 0 or i = 1. But in this case at least three of
them must lie on a straight line. If all of them are collinear, the interpolating
PH curve must be a straight line. If three consecutive data points are collinear,
then either the resulting cubic PH interpolant forms a loop since cubic PH
curves do not have any inflection points (see [1], e.g.), or the data polygon has
a fold. Both cases should be excluded in practical applications. Thus we can
assume that three consecutive data points are not collinear.

Note further that the non-convex data points TTTTTTTTT j , j = 0, 1, 2, 3,

(∆TTTTTTTTT 0×∆TTTTTTTTT 1) (∆TTTTTTTTT 1×∆TTTTTTTTT 2) < 0,

can not be interpolated by an admissible cubic PH curve. As a consequence
we shall concentrate only on those configurations for which

(∆TTTTTTTTT 0×∆TTTTTTTTT 1) (∆TTTTTTTTT 1×∆TTTTTTTTT 2) > 0.

It can still happen that an admissible curve forms a loop, e.g., if the data
polygon has a self intersection (see Fig 4).

We are now ready to state the main results of the paper.

Theorem 3 Suppose that the data points TTTTTTTTT j, j = 0, 1, 2, 3, satisfy

(∆TTTTTTTTT 0×∆TTTTTTTTT 1) (∆TTTTTTTTT 1×∆TTTTTTTTT 2) > 0 and γ1(T ) + γ2(T ) < 4π/3,
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where

γ1(T ) := ∠(∆TTTTTTTTT 0, ∆TTTTTTTTT 1), γ2(T ) := ∠(∆TTTTTTTTT 1, ∆TTTTTTTTT 2).

Then an admissible cubic PH curve ppppppppp, which satisfies (2), exists.

The following theorem extends the asymptotic approximation order obtained
in [4] to the Lagrange case. In comparison to [7] it is lower by 2 as expected
since two degrees of freedom are used by the PH condition. However, the same
order as in the function case is still achieved.

Theorem 4 Let the data points be sampled from a smooth regular convex

curve

fffffffff : [−h, h] → R
2.

One can find h0 > 0 such that for all h ≤ h0 there exists an admissible cubic

PH curve ppppppppp which satisfies (2). The approximation order is four.

Theorem 3 provides us with a sufficient condition on the existence of admissible
cubic PH curves. If the angle restriction is violated, the number of admissible
solutions is even, in most cases zero. Consider the following example. Let the
data points be chosen as

TTTTTTTTT 0 = (0, 0)T , TTTTTTTTT 1 =
(

−1,
1

4

)T

, TTTTTTTTT 2 =
(

−1

2
,−1

)T

, (8)

TTTTTTTTT 3 = TTTTTTTTT 2 + 10 Q (ξ0 + ξ)
∆TTTTTTTTT 1

‖∆TTTTTTTTT 1‖
, ξ0 :=

4π

3
− γ1(T ),

where ξ is a free parameter. Now, the assumptions of Theorem 3 hold for
every −ξ0 < ξ < 0, and as one can check, the interpolation problem has a
unique admissible solution. But for ξ > 0 the angle restriction is violated.
Two admissible solutions exist for 0 < ξ < ξ̃, ξ̃ := 0.0220188 π, that turn
into one at ξ = ξ̃. But, for ξ > ξ̃ no (admissible) solutions were found. Fig. 2
shows the admissible PH curves for ξ = −0.02π, 0.02π, 0.022π, 0.022018π. In
the first case there is a unique interpolant, and there are two of them for the
other cases.

Since the proofs of Theorem 3 and Theorem 4 take several steps, they will be
given as a separate section.
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T0
T1

T2

T3

T0
T1

T2

T3

T0
T1

T2

T3

T0
T1

T2

T3

Fig. 2. Admissible PH curves for data (8) with ξ = −0.02π and ξ = 0.02π (top left
and right), ξ = 0.022π and ξ = 0.022018π (bottom left and right).

4 Proofs of theorems

Without loosing generality we may assume throughout the paper that TTTTTTTTT 0 is
at the origin, and

∆TTTTTTTTT i×∆TTTTTTTTT i+1 > 0, i = 0, 1.

If this is not the case, a simple transformation of data points leads to a desired
configuration. To prove that an interpolating cubic PH curve exists is clearly
equivalent to show that a nonlinear system of equations (7) has an admissible
solution. In order to prove this, consider the following particular problem first.
Let the data points

UUUUUUUUU0 =







0

0





 , UUUUUUUUU 1 =







7
27

−2
3





 , UUUUUUUUU 2 =







20
27

−2
3





 , UUUUUUUUU3 =







1

0







be given (see Fig. 1). Consider the system of nonlinear equations eeeeeeeee(t1, t2; U) =
000000000, given by (7), where U := (UUUUUUUUU j)

3
j=0. Since coefficients are rational numbers

now, one is able to compute the Gröbner basis of the corresponding equivalent
polynomial system (obtained from (7) by simply multiplying each equation
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by their common denominator) exactly. The first Gröbner basis polynomial,
obtained by an elimination of t2, has a precisely one solution in [0, 1], i.e.,

t1 = 1
3
. Since a similar result can be obtained for t2, the pair

{

1
3
, 2

3

}

is the
only solution satisfying 0 < t1 < t2 < 1. It is easy to verify that in this
case the control points of the resulting interpolating Bézier curve satisfy the
admissibility condition. Thus this is the only admissible solution (see Fig. 1).

The fact that a particular set of data points U admits an odd number (in
this case precisely one) of admissible solutions will now be carried over to the
general case of data points T by a homotopy. Since a rotation of data does
not affect the solution we can assume that

∆TTTTTTTTT 0

‖∆TTTTTTTTT 0‖
=

∆UUUUUUUUU 0

‖∆UUUUUUUUU 0‖
.

However, the angle restriction in Theorem 3 requires that a homotopy is chosen
carefully. Namely, let HHHHHHHHH : D × [0, 1] → R

2 be defined by

HHHHHHHHH(t1, t2, λ) := eeeeeeeee(t1, t2; W (λ)),

where data W (λ) := (WWWWWWWWW j(λ))3
j=0 are determined by angles ∠(WWWWWWWWW i−1(λ), WWWWWWWWW i(λ))

and norms ‖∆WWWWWWWWW i(λ)‖. More precisely, with

γi(λ) := γi(W (λ)) = (1 − λ) γi(T ) + λ γi(U), i = 1, 2,

and

Li(λ) := (1 − λ)‖∆TTTTTTTTT i‖ + λ‖∆UUUUUUUUU i‖, i = 0, 1, 2,

the data WWWWWWWWW i(λ) reads

WWWWWWWWW 0(λ) := TTTTTTTTT 0,

WWWWWWWWW 1(λ) := TTTTTTTTT 0 + L0(λ)
∆TTTTTTTTT 0

‖∆TTTTTTTTT 0‖
,

WWWWWWWWW 2(λ) := WWWWWWWWW 1(λ) + L1(λ)Q(γ1(λ))
∆TTTTTTTTT 0

‖∆TTTTTTTTT 0‖
,

WWWWWWWWW 3(λ) := WWWWWWWWW 2(λ) + L2(λ)Q(γ2(λ))
∆WWWWWWWWW 1(λ)

‖∆WWWWWWWWW 1(λ)‖ .

This homotopy clearly transforms the general data T to the particular data U
preserving the original upper bound on the angles, 4π/3. Fig. 3 demonstrates
how general data are connected to the particular data by the described homo-
topy for two examples of data points.

The following lemma reveals that there are no admissible solutions near the
boundary.
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T0=U0

T1

T2

T3

U1 U2

U3

T0=U0

T1

T2

T3

U1 U2

U3

Fig. 3. Homotopy connecting general and particular data.

Lemma 5 Suppose that the assumptions of Theorem 3 hold. Then the system

(7) can not have an admissible solution close to the boundary ∂D.

PROOF. Since the data points WWWWWWWWW i(λ) by the construction of the homotopy
for any λ ∈ [0, 1] satisfy the assumption of the theorem, we need to prove the
assertion for the points TTTTTTTTT i only. The boundary ∂D contains t1 = 0, t1 = t2
and t2 = 1, thus we have to consider a couple of particular cases.

There are six possible approaches to the boundary ∂D to be excluded as a
solution of the system (7). From

‖eeeeeeeee (ε, t2) ‖2 =
(t22 − t2 + 1) 2

81t42
‖∆TTTTTTTTT 0‖4 1

ε4
+ O

(

1

ε3

)

,

‖eeeeeeeee (t1, 1 − ε) ‖2 =
(t21 − t1 + 1) 2

81 (1 − t1)
4 ‖∆TTTTTTTTT 2‖4 1

ε4
+ O

(

1

ε3

)

, (9)

‖eeeeeeeee (t1, t1 + ε) ‖2 =
(t21 − t1 + 1) 2

81(1 − t1)4t41
‖∆TTTTTTTTT 1‖4 1

ε4
+ O

(

1

ε3

)

,

it follows that a single ti can not approach the boundary since ∆TTTTTTTTT i should not
vanish. However, (9) eliminates also the possibility that both unknowns tend
to the boundary, but not at the same rate. So, with some constant τ > 0, we
only have to consider expansions

‖eeeeeeeee (ε, ε(1 + τ)) ‖2 =
1

81τ 4(τ + 1)4
‖ − τ∆TTTTTTTTT 0 + ∆TTTTTTTTT 1‖4 1

ε8
+ O

(

1

ε7

)

,

‖eeeeeeeee (1 − ε(1 + τ), 1 − ε) ‖2 =
1

81τ 4(τ + 1)4
‖∆TTTTTTTTT 1 − τ∆TTTTTTTTT 2‖4 1

ε8
+ O

(

1

ε7

)

.
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Quite clearly, the leading terms can not vanish since ∆TTTTTTTTT i and ∆TTTTTTTTT i+1 are not
collinear. As to the last possibility, the system (7) expands as

eeeeeeeee (ε, 1 − ε τ) =
1

9τ 2
ẽeeeeeeee (τ)

1

ε2
+ O

(

1

ε

)

.

The resultant R ( ẽeeeeeeee, τ) of polynomials ẽeeeeeeee simplifies to

R ( ẽeeeeeeee, τ) = (∆TTTTTTTTT 0×∆TTTTTTTTT 2)
2
(

4 (∆TTTTTTTTT 0 · ∆TTTTTTTTT 2)
2 − ‖∆TTTTTTTTT 0‖2‖∆TTTTTTTTT 2‖2

)

, (10)

and it remains to verify that this term can’t vanish. If ∆TTTTTTTTT 0×∆TTTTTTTTT 2 = 0, then
∆TTTTTTTTT 0 and ∆TTTTTTTTT 2 must be collinear. Further, if the second factor in (10) is equal to
0, then cos2 (∠(∆TTTTTTTTT 0, ∆TTTTTTTTT 2)) = 1

4
. This gives the range of angles γ1(T )+γ2(T ) ∈

{

0, 1
3
π, 2

3
π, π, 4

3
π, 5

3
π
}

that has to be considered. The assumptions of lemma

shrink the set of angles to γ1(T ) + γ2(T ) ∈
{

1
3
π, 2

3
π, π

}

. Suppose that ϕ is one

of these angles, and let Q(ϕ) be the rotation matrix that brings ∆TTTTTTTTT 0 to the
direction of ∆TTTTTTTTT 2,

Q(ϕ)∆TTTTTTTTT 0 = ω∆TTTTTTTTT 2, ω :=
‖∆TTTTTTTTT 0‖
‖∆TTTTTTTTT 2‖

> 0.

Then

‖eeeeeeeee (ε, 1 − ε τ) ‖2 =
1

81τ 4
g(ϕ) ‖∆TTTTTTTTT 2‖4 1

ε4
+ O

(

1

ε3

)

, (11)

with

g(ϕ) :=
(

τ 4ω4 + τ 2ω2 + 2τω
(

τ 2ω2 cos ϕ + τω cos 2ϕ + cos ϕ
)

+ 1
)

.

However, the expansion (11) can not vanish at 1
3
π and π since

g
(

1

3
π
)

= (τω + 1)2(τ 2ω2 − τω + 1) > 0, g (π) = (τ 2ω2 − τω + 1)2 > 0.

Finally, if γ1(T ) + γ2(T ) = 2
3
π, the leading term in (11) may vanish, but the

solution that crosses the boundary ∂D is not the admissible one since the
vector product

∆bbbbbbbbb0×∆bbbbbbbbb1 = − ω

6
√

3 τ
‖∆TTTTTTTTT 2‖2 1

ε2
+ O

(

1

ε

)

is supposed to be positive. The proof, that there is no admissible solution close
to the boundary ∂D, is complete.

A very well known fact about homotopy invariants (see [12], e.g.) states that
the Brouwer’s degree of HHHHHHHHH is invariant as soon as the homotopy is nonzero at
the boundary ∂D for any λ ∈ [0, 1]. The map HHHHHHHHH is formally not defined on ∂D,
but by Lemma 5, HHHHHHHHH is nonzero close to ∂D, so it is nonzero on the boundary of
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some compact set E ⊂ D and the same conclusion follows. Now, since the par-
ticular system of nonlinear equations eeeeeeeee(t1, t2; U) = 000000000 has a precisely one simple
solution, the Brouwer’s degree of HHHHHHHHH(t1, t2, 1) is ±1. Thus the Brouwer’s degree
of HHHHHHHHH(t1, t2, 0) = eeeeeeeee(t1, t2; T ) must be odd too. Then the system eeeeeeeee(t1, t2; T ) has
at least one admissible solution and the proof of Theorem 3 is concluded.

It is important to note that the previous analysis reveals the possibility of an
another solution of the problem, which is not admissible by definition. This is
not surprising, since we know that extraneous PH curves, which interpolate
the same data set, exist also in the Hermite type interpolation and various
approaches are known to avoid them (see [13], e.g.).

Let us conclude this section by the proof of Theorem 4. Suppose that the curve
f : [−h, h] → R

2 is smooth regular and convex as required. Without loosing
generality we may assume that it is parameterized by the first component,
and fffffffff(0) = (0, 0)T , fffffffff ′(0) = (1, 0)T . Thus fffffffff expands at 0 as

fffffffff(s) =







s
c2

2
s2 +

c3

6
s3 +

c4

24
s4 + O

(

s5
)





 ,

where c2 > 0 since fffffffff is assumed to be convex. Further, let the data points be
sampled as

TTTTTTTTT i = fffffffff ( (2ηi − 1) h ) , i = 0, 1, 2, 3, (12)

where
0 = η0 < η1 < η2 < η3 = 1.

Let us introduce new unknowns zi by a guess

ti = ηi + (1 − ηi) ηi zi h, i = 1, 2 .

The equations (7) expand as

4

3 (η2 − η1)
h3 (z1 − z2) + O

(

h4
)

= 0,

8c2

9 (η2 − η1)
((3η1 + η2 − 2) z1 − (η1 + 3η2 − 2) z2)h4

− 8

9
h4c3 + O

(

h5
)

= 0.

This reveals the unknowns zi as

z1 = − c3

2c2
+ O (h) , z2 = − c3

2c2
+ O (h) ,

which shows that the system (7) has an asymptotic solution

ti = ηi −
c3

2c2
(1 − ηi) ηi h + O

(

h2
)

, i = 1, 2.
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Let us insert this solution and the data points (12) in (5). The expansions
simplify to

∆bbbbbbbbbi =







2

3

0





 h + O
(

h2
)

, i = 0, 1, 2,

and higher order terms give

∆2bbbbbbbbbi =











− c3

3c2

2

3
c2











h2 + O
(

h3
)

, i = 0, 1, ∆3bbbbbbbbb0 =











c2
3

c2
2

−2

3
c3











h3 + O
(

h4
)

.

So the convex hull property implies that the interpolating Bézier curve satisfies
ppppppppp′ = (2 h, 0)T +O(h2), ppppppppp(r) = O (hr), r = 2, 3, for all h small enough. But then
ppppppppp could be reparameterized by the first component t = (ppppppppp)−1

1 (s) on s ∈ [−h, h],
and the derivatives of the reparameterized curve stay bounded for all h small
enough as in [7]. Since then fffffffff and ppppppppp agree at ηi, i = 1, 2, 3, 4, the approximation
order O (h4) follows.

5 Numerical examples

In this section some numerical examples will be given which confirm the ob-
tained results. Take the data points

TTTTTTTTT 0 = (0, 0)T , TTTTTTTTT 1 =
(

0,−1

3

)T

, TTTTTTTTT 2 =
(

ξ,− 1

20
ξ − 1

3

)T

, TTTTTTTTT 3 = (1, 0)T ,

(13)
where ξ is a free parameter (Fig. 4). Consider the following six choices of the
parameter ξ,

ξ = −1

7
, −1

8
,

1

10
,

2

3
, 1,

7

4
. (14)

The system of nonlinear equations (7) will be solved by the continuation
method. For the second case in (14), the system of nonlinear equations (7)
has two admissible solutions. According to Theorem 3, γ1(T )+ γ2(T ) > 4π/3.
For ξ = 1/10, the system (7) has two solutions, but one of them has an un-
desirable loop (the solution is not admissible). Here γ1(T ) + γ2(T ) < 2π/3.
If we choose the parameter ξ such that γ1(T ) + γ2(T ) ∈ (2π/3, 4π/3) (next
two cases in (14)), one of the solutions disappears. This is to be expected
according to the proof of Theorem 3. For the first and the last case in (14),
γ1(T ) + γ2(T ) > 4π/3, but here no cubic PH interpolant exists. This fact can
also be confirmed by computing the Gröbner basis of the equivalent polyno-
mial system obtained from (7).
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T0

T1
T2

T3

T0

T1 T2

T3

T0

T1
T2

T3

T0

T1
T2

T3

Fig. 4. Different choices of the parameter ξ imply different number of cubic PH
interpolants for the data (13) and (14).
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