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Abstract

The purpose of this paper is to provide sufficient geometric conditions that imply
the existence of a cubic parametric polynomial curve which interpolates six points
in the plane. The conditions turn out to be quite simple and depend only on certain
determinants derived from the data points.
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1 Introduction

The geometric interpolation was introduced in [1] as a Hermite cubic interpo-
lation of two points, tangent directions and curvatures. It was shown that a
planar convex curve can be approximated up to the sixth order accuracy. High
approximation order is one of the reasons for the further work on the subject.
The other is the fact that interpolating curve depends on geometric quantities
(data points, tangent directions, curvatures, etc.) which are independent of
parameterization. This places the geometric interpolation among important
tools in the CAGD applications.

The geometric schemes include nonlinear equations, so the questions like exist-
ence of solution and efficient implementation have to be considered. That
makes geometric schemes somewhat difficult to handle. The analysis is mainly
done in an asymptotic way, i.e., the data are assumed to be sampled dense
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enough from a smooth curve ([1], [2], [3], [4], [5], [6], [7]). Beside some special
cases, like the interpolation of conic sections or of circular arcs ([8], [9], [10],
[11], [12], [13]), there are only few results concerning geometric conditions that
ensure the existence of the interpolant.

The interpolation by a parametric parabola at four distinct planar points
was studied in [14], where the conditions were established through geometric
arguments. In [15] the algebraic approach was applied, and results were ex-
tended to all possible cases (Taylor, Hermite, Lagrange). Perhaps the most
general results can be found in [16], where the necessary and sufficient geo-
metric conditions for the simplest nontrivial geometric interpolation schemes
in all dimensions, i.e., the interpolation of n + 2 distinct points in Rn by a
polynomial curve of degree ≤ n are outlined.

In this paper, the Lagrange interpolation at six points in R2 by a cubic poly-
nomial curve is studied and simple sufficient geometric conditions that ensure
the existence of the interpolant are given. The problem is stated as follows.
Let

TTTTTTTTT 0, TTTTTTTTT 1, . . . , TTTTTTTTT 5 ∈ R2, TTTTTTTTT i 6= TTTTTTTTT i+1,

be a given sequence of data points. Find a cubic parametric curve

PPPPPPPPP 3 : [0, 1] → R2,

that interpolates these points at some values ti ordered as

0 =: t0 < t1 < · · · < t5 := 1. (1)

The admissible parameters ti can be viewed as components of a point in the
open simplex

D :=
{
ttttttttt := (ti)

5
i=0 ; 0 =: t0 < t1 < · · · < t5 := 1

}
,

with the boundary ∂D where at least two different ti coincide. The nonlinear
part of the problem is to determine the parameters ttttttttt ∈ D that satisfy

PPPPPPPPP 3(ti) = TTTTTTTTT i, i = 0, 1, . . . , 5. (2)

Once the parameters ti are determined, it is straightforward to obtain coeffi-
cients of PPPPPPPPP 3 using any standard interpolation scheme componentwise.

As a motivation, let us compare the cubic geometric scheme with a componen-
twise quintic interpolation, where a parameterization is chosen in advance as
the uniform, and the chord length parameterization. The cubic curve (black)
clearly does the job much better than its quintic counterparts as one can ob-
serve in Fig. 1. The shape of the geometric interpolatory curve is as one would
require for the given data points, without any visible extraneous inflections.
Also, the computational effort to compute this six cubic interpolants turns out
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to be negligible. The Newton method with equidistant starting values ti = i
5

converges within a machine precision accuracy in eight iterations on average.
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Fig. 1. A geometric cubic interpolant (black) and a quintic polynomial interpolating
curves with uniform (grey) and chord length parameterization (dashed).

There is perhaps a simple explanation to the fact that the cubic geometric in-
terpolatory curves are superior. An approximate curvature, with denominator
neglected, is a parabola

det
(
ṖPPPPPPPP 3, P̈PPPPPPPP 3

)
,

so the rate of change of the curvature is approximately linear what pleases
most the human eye.

2 The main results

The key role in this paper is played by the matrix of data differences,

∆TTTTTTTTT :=
(
∆TTTTTTTTT i

)4

i=0
∈ R2×5,
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where ∆TTTTTTTTT i := TTTTTTTTT i+1 − TTTTTTTTT i, and by the signs and ratios of its minors

Di,j := det
(
∆TTTTTTTTT i, ∆TTTTTTTTT j

)
.

These are the volumes of parallelograms spanned by the vectors ∆TTTTTTTTT i, ∆TTTTTTTTT j.
Let us define

λ1 :=
D0,1

D1,2

, λ2 :=
D0,2

D1,2

, λ3 :=
D2,4

D2,3

, λ4 :=
D3,4

D2,3

, δ :=
D1,3

D1,2

, µ :=
D2,3

D1,2

,

γ1 :=
λ2(1 + λ2)

λ1(1 + λ2) +
√

λ1(1 + λ2)(λ1 + λ2)
,

γ2 :=
λ3(1 + λ3)

λ4(1 + λ3) +
√

λ4(1 + λ3)(λ3 + λ4)
.

Note that the data points with a convex control polygon, as in the first three
figures of Fig. 1, have µ > 0 and λi > 0, i = 1, 2, 3, 4. The control polygons
of the data points in the last three figures of Fig. 1 change from convexity
to concavity at ∆TTTTTTTTT 2. Such data have λi > 0 and µ < 0. We will restrict our
study to these two types of data. Let us define λλλλλλλλλ := (λi)

4
i=1, and the functions

ϑ1 (λλλλλλλλλ, µ) :=
2µ− γ1 +

√
γ2

1 + 4µ(1 + γ1)

2γ1

,

ϑ2 (λλλλλλλλλ, µ) :=
2− µγ2 +

√
µ2γ2

2 + 4µ(1 + γ2)

2γ2

,

ϑ3 (λλλλλλλλλ, µ) :=
λ1µ

λ2

+
λ4

λ3

+
µ

λ2

√
λ1(λ1 + λ2)

1 + λ2

,

ϑ4 (λλλλλλλλλ, µ) :=
λ1µ

λ2

+
λ4

λ3

+
1

λ3

√
λ4(λ3 + λ4)

1 + λ3

,

that will be used in boundary relations between the constants, that ensure the
existence of the solution. The main results of the paper are the following.

Theorem 1 Suppose that D1,2D2,3 6= 0 and the data are convex, i.e., µ > 0
and λi > 0, i = 1, 2, 3, 4. If either ϑ` are equal, ϑ1 (λλλλλλλλλ, µ) = ϑ2 (λλλλλλλλλ, µ), or one of
the following conditions is met,

δ < min
`=1,2

{ϑ` (λλλλλλλλλ, µ)} or δ > max
`=1,2

{ϑ` (λλλλλλλλλ, µ)} ,

in case they are not equal then the interpolating curve PPPPPPPPP 3 that satisfies (2)
exists.

Theorem 2 Suppose that D1,2D2,3 6= 0, and the data imply an inflection
point, i.e., µ < 0 and λi > 0 for all i. If

δ ∈ (ϑ3(λλλλλλλλλ, µ), ϑ4(λλλλλλλλλ, µ)) ,
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then the interpolating curve PPPPPPPPP 3 that satisfies (2) exists.

Theorem 1 and Theorem 2 provide only sufficient conditions for the existence
of a cubic geometric interpolant. But the next conclusion excludes most of the
data that do not satisfy this two theorems.

Theorem 3 The cases where the solution of the interpolation problem (2)
does not exist are summarized in the Table 1.

D1,2D2,3 6= 0 D1,2D2,3 = 0

µ > 0 µ < 0

λ2 ≤ 0, λ3 ≤ 0 λ2 ≤ 0 D1,2 = 0, D2,3 = 0

δ ≤ 0, λ1 ≤ 0 λ3 ≤ 0 D1,2 = 0, λ3 ≤ 0

δ ≤ 0, λ4 ≤ 0 λ1 ≤ 0, δ ≤ 0 D2,3 = 0, λ2 ≤ 0

λ1 ≤ 0, λ3 ≤ 0 , λ4 ≥ 0 λ4 ≤ 0, δ ≥ 0 D1,2 = 0, D0,1D2,3 ≥ 0

λ2 ≤ 0, λ4 ≤ 0, λ1 ≥ 0 D2,3 = 0, D1,2D3,4 ≥ 0
Table 1

Some possibilities are not covered by Theorem 1, Theorem 2 or Theorem 3.
As an example, consider the points

TTTTTTTTT 0 =



−20− ζ

3


 , TTTTTTTTT 1 =



−10

1


 , TTTTTTTTT 2 =



−5

0


 , (3)

TTTTTTTTT 3 =




5

0


 , TTTTTTTTT 4 =




10

1


 , TTTTTTTTT 5 =




20 + ζ

3


 , ζ > 0,

with λ1 = λ4 = − ζ
10

, λ2 = λ3 = 2, δ = µ = 1. Note that neither the
requirements of Theorem 1, Theorem 2 nor of Theorem 3 are met. Now, the
data (3) admit two solutions for ζ ∈ (0, ζ0], where ζ0 := 2.95373852 (Fig. 2).
For ζ = ζ0 both of the solutions coincide with a cusp, but for ζ > ζ0 no
solution can be found.

The examples in Fig. 1 all satisfy the conditions of Theorem 1 or of Theorem 2.
Let us look at two of them more precisely. In the first one δ < ϑ1 (λλλλλλλλλ, µ). Fig. 3
(left) shows how the positions of points change as δ approaches ϑ1 (λλλλλλλλλ, µ). For
δ ∈ [ϑ1 (λλλλλλλλλ, µ) , ϑ2 (λλλλλλλλλ, µ)] no proper solution exists. Similarly, Fig. 3 (right)
shows the displacement of points as δ changes from ϑ3 (λλλλλλλλλ, µ) to ϑ4 (λλλλλλλλλ, µ) for
the last example of Fig. 1. For δ < ϑ3 (λλλλλλλλλ, µ) or δ > ϑ4 (λλλλλλλλλ, µ) two solutions ttttttttt ∈ D
were found and the problem similar as in the example above has happened.
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Fig. 2. Four cubic geometric interpolants at the points (3), with ζ = 2, 2.5, 2.8, ζ0.
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Fig. 3. The change of point positions as δ approaches ϑ1 (λλλλλλλλλ, µ) (left), and as δ
changes from ϑ3 (λλλλλλλλλ, µ) to ϑ4 (λλλλλλλλλ, µ) (right).

The requirements of Theorem 1 and Theorem 2 are quite simple, but the proof
will take several steps. In Section 3 the system (2) will be transformed to a
form more suitable for further analysis. In Section 4 it will be proved that
any solution of (2) satisfying (1) cannot have the parameters ti arbitrary close
to the boundary ∂D. A proof that the obtained nonlinear system has an odd
number of solutions for particular data will be given in Section 5. Section 6 will
extend this fact to the general case by a convex homotopy and the Brouwer’s
degree argument.

3 The equations

The divided difference [t`, t`+1, . . . , t`+4], applied to the system (2), maps any
PPPPPPPPP 3 to zero. Let

ω`(t) := (t− t`)(t− t`+1) . . . (t− t`+4), ω̇`(t) =
d

dt
ω`(t), ` = 0, 1.
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Since ti are assumed to be distinct, one can express the divided difference in
terms of ω̇`(ti). The nonlinear part of the system (2), that should determine
the unknowns t1, t2, t3, t4 thus becomes

`+4∑

i=`

1

ω̇`(ti)
TTTTTTTTT i = 000000000, ` = 0, 1. (4)

The equations (4) were derived as necessary conditions for the existence of
the solution of the interpolation problem (2), but they are sufficient too. A
quintic polynomial curve PPPPPPPPP 5 that solves the interpolation problem

PPPPPPPPP 5(ti) = TTTTTTTTT i, i = 0, 1, . . . , 5, (5)

at distinct ti is determined uniquely. But if ttttttttt ∈ D satisfies (4), one may apply
[t`, t`+1, . . . , t`+4], ` = 0, 1 to both sides of (5). The right hand side vanishes,
so should the left one. This reveals that the quintic polynomial curve PPPPPPPPP 5 in
this case is actually a cubic one, the unique solution of (2). But

[t`, t`+1, . . . , t`+4]1 =
`+4∑

i=`

1

ω̇`(ti)
= 0, ` = 0, 1, (6)

and the system (4) can be rewritten as

(
TTTTTTTTT i − TTTTTTTTT 0

)4

i=1

(
1

ω̇0(tj)

)4

j=1

= 000000000,
(
TTTTTTTTT 5 − TTTTTTTTT 5−i

)4

i=1

(
1

ω̇1(t5−j)

)4

j=1

= 000000000,

or, after inserting




1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 1







1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1




= Id

between the two factors, and using (6), as

(
∆TTTTTTTTT i

)`+3

i=`
σσσσσσσσσ` = 000000000, σσσσσσσσσ` :=




`+j∑

i=`

1

ω̇`(ti)




3

j=0

, ` = 0, 1.

From now on let us assume that D`+1,`+2 6= 0, ` = 0, 1, as required in Theo-

rem 1 and Theorem 2. The kernel of the matrix
(
∆TTTTTTTTT i

)`+3

i=`
is therefore two-

dimensional, spanned by

(
1, − D`,`+2

D`+1,`+2
,

D`,`+1

D`+1,`+2
, 0

)T

,
(
0, −D`+2,`+3

D`+1,`+2
,

D`+1,`+3

D`+1,`+2
, −1

)T

.
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Since σσσσσσσσσ` must be in the kernel,

σσσσσσσσσ` = a`




1

− D`,`+2

D`+1,`+2

D`,`+1

D`+1,`+2

0




+ b`




0

−D`+2,`+3

D`+1,`+2

D`+1,`+3

D`+1,`+2

−1




, ` = 0, 1, (7)

for some a` and b`. After elimination of a` and b`,

a` =
1

ω̇`(t`)
, b` =

1

ω̇`(t`+4)
, ` = 0, 1,

and the use of (6), the equations (7) become

1

ω̇0(t0)
(1 + λ2) +

1

ω̇0(t1)
+

1

ω̇0(t4)
µ = 0, (8)

1

ω̇0(t0)
λ1 +

1

ω̇0(t3)
+

1

ω̇0(t4)
(1 + δ) = 0, (9)

1

ω̇1(t1)

(
1 +

δ

µ

)
+

1

ω̇1(t2)
+

1

ω̇1(t5)
λ4 = 0, (10)

1

ω̇1(t1)

1

µ
+

1

ω̇1(t4)
+

1

ω̇1(t5)
(1 + λ3) = 0. (11)

The system (8)–(11) is clearly equivalent to (4) since only nonsingular linear
transformations were applied.

It will now be shown, that under certain restrictions the solutions ttttttttt ∈ D must
stay aside from the boundary ∂D. The theorem is stated as follows.

Theorem 4 Suppose that the requirements of Theorem 1 or of Theorem 2 are
met. Then the system (8) - (11) cannot have a solution arbitrary close to the
boundary ∂D.

The proof of Theorem 4 is quite technical, and will be given as the next section.

4 Proof of Theorem 4

In order to prove Theorem 4 one has to show that

∆ti := ti+1 − ti ≥ const > 0, i = 0, 1, . . . , 4.

Here and throughout the rest of the paper, the term ’const’ will stand for an
arbitrary positive constant. Suppose that at least two parameters approach,
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i.e, ∆ti → 0 for some i. There is enough to consider the following four possi-
bilities:

Case 1: ∆t0 ≥ const > 0, ∆t4 ≥ const > 0,
Case 2: ∆t0 ≥ const > 0, ∆t4 → 0,
Case 3: ∆t0 → 0, ∆t4 ≥ const > 0,
Case 4: ∆t0 → 0, ∆t4 → 0.

In order to proceed, the following lemmas are needed.

Lemma 5 Suppose that ∆ti → 0, i = 0, 3, and ∆t2 ≥ const > 0. Then

ω̇0(t0)

ω̇0(t4)
→ −λ1

δ
.

Similarly, ∆ti → 0, i = 1, 4, and ∆t2 ≥ const > 0 imply

ω̇1(t5)

ω̇1(t1)
→ −µλ4

δ
.

PROOF. Consider the first assertion. From

1

t3 − ti
=

1

t4 − ti

(
1 +

∆t3
∆t2 + (t2 − ti)

)
,

one obtains

1

ω̇0(t3)
= − 1

ω̇0(t4)

(
1 + ∆t3

2∑

i=0

1

∆t2 + (t2 − ti)
+O

(
∆t23

))
.

Thus the expression

1

ω̇0(t3)
+

1

ω̇0(t4)
=

2∏

i=0

1

∆t2 + ∆t3 + (t2 − ti)

(
−

2∑

i=0

1

∆t2 + (t2 − ti)
+O (∆t3)

)

stays bounded. Since ω̇0(t0) → 0, the equation (9) gives

ω̇0(t0)

ω̇0(t4)
= −1

δ

(
λ1 + ω̇0(t0)

(
1

ω̇0(t3)
+

1

ω̇0(t4)

))
→ −λ1

δ
.

The second assertion follows similarly.

Lemma 6 Suppose that µ > 0. Then ∆ti → 0, i = 0, 1, 2, 3, implies δ > 0
and δ → ϑ1 (λλλλλλλλλ, µ). Similarly, from ∆ti → 0, i = 1, 2, 3, 4, it follows δ > 0 and
δ → ϑ2 (λλλλλλλλλ, µ).
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PROOF. Let us prove the first assertion only. The proof of the second one
is similar. After rewriting the equations (8) - (11) in a polynomial form, the
last two equations simplify to

δ∆t2 (∆t2 + ∆t3)− µ∆t1 (∆t1 + 2∆t2 + ∆t3) + h. o. t. = 0,

−µ∆t1 (∆t1 + ∆t2) + ∆t3 (∆t2 + ∆t3) + h. o. t. = 0,

where ’h. o. t.’ stands for higher order terms that are small compared to the
terms left in the expressions. Since ∆ti > 0, it is clear that δ > 0. Moreover, by
solving the first part of these two equations on ∆t2, ∆t3, the only admissible
relation is

∆t2 =
µ

δ

(
1 +

√
δ + µ

µ(1 + δ)

)
∆t1 =: c2∆t1, ∆t3 = µ

√
δ + µ

µ(1 + δ)
∆t1.

After substituting this into the remaining equations, we obtain

∆t20 + (2 + c2)∆t0∆t1 − λ2(1 + c2)∆t21 + h. o. t. = 0,

−∆t0(∆t0 + ∆t1) + λ1c2(1 + c2)∆t21 + h. o. t. = 0.

Then, by the Gröbner basis one obtains an equivalent system

(1 + c2)∆t21
(
c2
2λ1(1− λ1) + 2c2λ1(1 + λ2)− λ2(1 + λ2)

)
+ h. o. t. = 0,

−(1 + c2)∆t1 (∆t0 + (c2λ1 − λ2)∆t1) + h. o. t. = 0,

−∆t0(∆t0 + ∆t1) + c2(1 + c2)λ1∆t21 + h. o. t. = 0.

Only particular constants will admit the solution of this system for small
positive ∆ti. Since c2 > 0, a straightforward computation shows that the
solution exists only if c2 → γ1. Since λ1, λ2 > 0, it is easy to verify that
γ1 > 0. Therefrom by solving c2 = γ1 on δ, one obtains δ → ϑ1 (λλλλλλλλλ, µ), where
ϑ1 (λλλλλλλλλ, µ) > 0 as can easily be checked.

Remark 7 Note that if ϑ1 (λλλλλλλλλ, µ) = ϑ2 (λλλλλλλλλ, µ), the parameters ti, i = 1, 2, 3, 4,
cannot approach t0 and t5 at the same time.

Lemma 8 Suppose that µ < 0. Then ∆ti → 0, i = 0, 1, 2, 4, implies δ →
ϑ3 (λλλλλλλλλ, µ), and similarly, ∆ti → 0, i = 0, 2, 3, 4, implies δ → ϑ4 (λλλλλλλλλ, µ).

PROOF. Let us prove the second statement. After rewriting the equations
(8) - (11) in a polynomial form, the last two equations simplify to

λ4∆t2 (∆t2 + ∆t3)−∆t4 (∆t3 + ∆t4) + h. o. t. = 0,

λ3∆t3 (∆t2 + ∆t3)−∆t4 (∆t2 + 2∆t3 + ∆t4) + h. o. t. = 0.
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By solving the main part of these two equations on ∆t2, ∆t3, the only admis-
sible relation is given as

∆t2 =

√
1 + λ3

λ4(λ3 + λ4)
∆t4 =: c2∆t4,

∆t3 =
1

λ3


1 +

√
λ4(1 + λ3)

λ3 + λ4


 ∆t4 =: c3∆t4.

After substituting these expressions into the remaining equations, we obtain

µ∆t0 + c3(c2 + c3)λ2∆t24 + h. o. t. = 0,

(c2δ − c3)∆t0 + c2c3(c2 + c3)λ1∆t24 + h. o. t. = 0.

Again, with the help of the Gröbner basis, the equivalent system reads as

c3(c2 + c3)∆t24 (c2 (λ2δ − λ1µ)− c3λ2) + h. o. t. = 0,

µ∆t0 + c3(c2 + c3)λ2∆t24 + h. o. t. = 0,

(c2δ − c3)∆t0 + c2c3(c2 + c3)λ1∆t24 + h. o. t. = 0.

Since c2 > 0, c3 > 0, it is easy to verify that this system will have a solution
for small ∆ti only if δ → ϑ4 (λλλλλλλλλ, µ). The first statement is proved in a similar
way.

Now to the proof of Theorem 4. Note that

sign (ω̇`(ti)) = (−1)`+i, i = `, ` + 1, . . . , ` + 4.

Also, from the equations (8) - (11) it is straightforward to derive a useful
relation

ω̇0(t2)

ω̇0(t3)

ω̇1(t3)

ω̇1(t2)
=

1 + δ + λ1
ω̇0(t4)

ω̇0(t0)

δ + µ + (λ1 + λ2)
ω̇0(t4)

ω̇0(t0)

1 + δ
µ

+ λ4
ω̇1(t1)

ω̇1(t5)
1 + δ

µ
+ (λ3 + λ4)

ω̇1(t1)

ω̇1(t5)

. (12)

Case 1: In this case ω̇0(t0) ≥ const > 0, ω̇1(t5) ≥ const > 0. From the
equations (8) - (11) it is straightforward to see that ∆t1 → 0 or ∆t2 → 0
implies ∆t3 → 0. Consequently

ω̇0(t4)

t4 − t1
= (1−∆t4) (∆t2 + ∆t3) ∆t3 → 0.

From (8) and (11) it is easy to derive

t4 − t1
ω̇0(t4)

=
1 + λ2

µ

∆t0∆t4
ω̇0(t0)

+ (1 + λ3)
(1−∆t0)∆t4

ω̇1(t5)
.
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Since the right hand side is bounded, but the left one is not, we have a con-
tradiction that excludes the case 1.
Case 2: In this case ω̇0(t0) ≥ const > 0, and ω̇1(t5) → 0. Suppose first that
∆t2 ≥ const > 0. The equation (10) then implies ∆t1 → 0. But then, (8)
implies ∆t3 → 0, and further

ω̇0(t4) = (1−∆t4) (∆t1 + ∆t2 + ∆t3) (∆t2 + ∆t3) ∆t3 → 0.

Moreover, the equation (9) yields

− δ = 1 + λ1
ω̇0(t4)

ω̇0(t0)
+

ω̇0(t4)

ω̇0(t3)
= 1 +

ω̇0(t4)

ω̇0(t0)
−

2∏

i=0

(
1 +

∆t3
∆t2 + (t2 − ti)

)
→ 0.

Now, by Lemma 5 and the use of relation (12) one obtains

ω̇0(t4)

ω̇0(t0)
→ 0,

ω̇1(t1)

ω̇1(t5)
→ 0,

ω̇0(t2)

ω̇0(t3)

ω̇1(t3)

ω̇1(t2)
→ 1.

However, on the other hand,

ω̇0(t2)

ω̇0(t3)

ω̇1(t3)

ω̇1(t2)
=

∆t0 + ∆t1
∆t0 + ∆t1 + ∆t2

∆t3 + ∆t4
∆t2 + ∆t3 + ∆t4

→ 0,

a contradiction. Therefore ∆t2 → 0. But then the equations (8) and (9) imply
∆t1 → 0, ∆t3 → 0, µ > 0, and Lemma 6 excludes the second case. The third
case is a mirror view of the second one, and needs not to be proved.
Case 4: Here ω̇0(t0), ω̇1(t5) → 0. Suppose again for a moment that ∆t2 ≥
const > 0. The equations (9) and (10) then imply ∆t1 → 0 and ∆t3 → 0. So,
by Lemma 5,

ω̇0(t0)

ω̇0(t4)
→ −λ1

δ
,

ω̇1(t5)

ω̇1(t1)
→ −µλ4

δ
.

Therefrom by using the relation (12) we obtain

ω̇0(t2)ω̇1(t3)

ω̇1(t2)ω̇0(t3)
→ λ1

λ1µ− λ2δ

λ4µ

λ4 − λ3δ
6= 0,

but on the other hand

ω̇0(t2)

ω̇0(t3)

ω̇1(t3)

ω̇1(t2)
=

∆t0 + ∆t1
∆t0 + ∆t1 + ∆t2

∆t3 + ∆t4
∆t2 + ∆t3 + ∆t4

→ 0.

Therefore ∆t2 → 0. Suppose now that ∆t1 ≥ const > 0. The equation (8)
gives

ω̇0(t4) = − µ ω̇0(t0)

1 + λ2 +
ω̇0(t0)

ω̇0(t1)

= − µ ω̇0(t0)

1 + λ2 −
4∏

i=2

(
1 +

∆t0
ti − t2 + ∆t1

) → 0,

12



so ∆t3 → 0, and µ < 0. But by Lemma 8 this cannot happen. Similarly one
can prove that ∆t3 ≥ const > 0 implies ∆t1 → 0, and µ < 0. But, again by
Lemma 8, this cannot happen either, which excludes the case 4, and therefore
completes the proof of Theorem 4.

5 Particular case

Let us now consider the system (8) - (11) for particular data points

TTTTTTTTT ∗
0 =




1− 2c

2


 , TTTTTTTTT ∗

1 =



−1− c

1


 , TTTTTTTTT ∗

2 =



−1

0


 , (13)

TTTTTTTTT ∗
3 =




1

0


 , TTTTTTTTT ∗

4 =




1 + c

(−1)s


 , TTTTTTTTT ∗

5 =



−1 + 2c

2(−1)s


 , s = 0, 1,

where s determines whether µ∗ is positive or negative, and c = 0 or c = 6 as
will be needed in the proof of Theorem 1. It is straightforward to compute

λλλλλλλλλ∗ = 111111111, δ∗ =
1

2
(1 + (−1)s) c, µ∗ = (−1)s.

The number of all admissible solutions, i.e., solutions ttttttttt ∈ D, is given in the
next theorem.

Theorem 9 Suppose the data points TTTTTTTTT ` are given by (13) with c = 0 or
c = 6. The number of admissible solutions ttttttttt ∈ D, counted with multiplicity,
is odd. More precisely, the symmetric solution that satisfies ∆t0 = ∆t4, and
∆t1 = ∆t3, is unique. The number of the other solutions is even.

PROOF. The system (8) - (11) for the data points (13) simplifies to

2

ω̇0(t0)
+

1

ω̇0(t1)
+ (−1)s 1

ω̇0(t4)
= 0,

1

ω̇0(t0)
+

1

ω̇0(t3)
+

(
1 +

c

2
+ (−1)s c

2

)
1

ω̇0(t4)
= 0, (14)

2

ω̇1(t5)
+

1

ω̇1(t4)
+ (−1)s 1

ω̇1(t1)
= 0,

1

ω̇1(t5)
+

1

ω̇1(t2)
+

(
1 +

c

2
+ (−1)s c

2

)
1

ω̇1(t1)
= 0.

13



If there exists an admissible nonsymmetric solution ttttttttt = (ti)
5
i=0 , then

(1− t5−i)
5
i=0 is also an admissible solution, since

ω̇0(1− t5−i) = ω̇1(t5−i), i = 0, . . . , 4, ω̇1(1− t5−i) = ω̇0(t5−i), i = 1, . . . , 5.

Therefore the number of solutions, that are not symmetric, must be even. Let
us examine the symmetric solutions now. It is easy to see that the first and the
last two equations in (14) are then identical, and one is left with two equations

2t3(t3 − 1) (3t4 − 2 + (−1)s(1− t4))− 4t4(2t4 − 1)(t4 − 1)

t3t4(t3 − 1)(t4 − 1)(t3 − t4)(t3 + t4 − 1)(2t4 − 1)
= 0,

2t4(t3 − t4)(2t3 + 2t4 − 3)− c(t3 − 1)(t4 − 1)(2t3 − 1) (1 + (−1)s)

t4(2t3 − 1)(t3 − 1)(t4 − 1)(2t4 − 1)(t3 − t4)(t3 + t4 − 1)
= 0,

for two unknowns ordered as 1
2

< t3 < t4 < 1. This yields a polynomial system
that can be solved analytically. The admissible solution is unique (Table 2).

s = 0, c = 0 s = 0, c = 6 s = 1, c ∈ R
t3

1
2

(
3−√3

)
1
44

(
21− 9

√
3 +

√
300 + 38

√
3
)

3
5

t4
√

3
2

1
44

(
36 + 5

√
3−

√
243− 112

√
3
)

9
10

Table 2
The admissible symmetric solution of the system (13).

The proof of Theorem 9 is completed.

6 Proofs of Theorem 1, Theorem 2 and Theorem 3

In order to prove Theorem 1 and Theorem 2 one must show that the nonlinear
system (8) - (11) has at least one solution ttttttttt ∈ D. The convex homotopy will
help us carry the conclusions from the particular to the general case.

Let us multiply (10) and (11) by µ and denote the obtained system (8) - (11)
by FFFFFFFFF (ttttttttt; λλλλλλλλλ, δ, µ) = 000000000. Now, FFFFFFFFF can be split as FFFFFFFFF (.; λλλλλλλλλ, δ, µ) = FFFFFFFFF 1(.; λλλλλλλλλ, µ) + δFFFFFFFFF 2,
where

FFFFFFFFF 1(.; λλλλλλλλλ, µ) := FFFFFFFFF (.; λλλλλλλλλ, 0, µ), FFFFFFFFF 2 := FFFFFFFFF (.; λλλλλλλλλ, 1, µ)− FFFFFFFFF 1(.; λλλλλλλλλ, µ).

The general data will be denoted by (λλλλλλλλλ, δ, µ), and the particular data (13),
where s is chosen so that sign(µ∗) = sign(µ), by (λλλλλλλλλ∗, δ∗, µ∗). The homotopy is
now defined as

HHHHHHHHH(ttttttttt; α) := (1− α)FFFFFFFFF 1(ttttttttt; λλλλλλλλλ
∗, µ∗) + αFFFFFFFFF 1(ttttttttt; λλλλλλλλλ, µ) + ϕ(α, δ∗, δ)FFFFFFFFF 2(ttttttttt),
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where ϕ(.; δ∗, δ) : [0, 1] → R, satisfies ϕ(0; δ∗, δ) = δ∗, ϕ(1; δ∗, δ) = δ. More-
over, let

λλλλλλλλλ(α) := (1− α)λλλλλλλλλ∗ + αλλλλλλλλλ, δ(α) := ϕ(α, δ∗, δ), µ(α) := (1− α)µ∗ + αµ.

Then

λi(α) ≥ min
α∈[0,1]

((1− α)λ∗i + αλi) ≥ min {λ∗i , λi} ≥ const > 0,

|µ(α)| ≥ min
α∈[0,1]

|(1− α)µ∗ + αµ| ≥ min {|µ∗|, |µ|} ≥ const > 0.

Consider the case µ > 0 as in Theorem 1 first. Note that ϑ1(λλλλλλλλλ
∗, µ∗) =

ϑ2(λλλλλλλλλ
∗, µ∗) = 4. If δ < min

`=1,2
{ϑ` (λλλλλλλλλ, µ)} let us choose c = δ∗ = 0. It is then

clear, that there exists a piecewise linear function ϕ(α, δ∗, δ), such that

ϕ(α, δ∗, δ) < min
`=1,2

{ϑ` (λλλλλλλλλ(α), µ(α))} , α ∈ [0, 1].

Similarly we can do for δ > max
`=1,2

{ϑ` (λλλλλλλλλ, µ)} by choosing c = δ∗ = 6. In the

case when µ < 0, as in Theorem 2, we have

ϑ3 (λλλλλλλλλ∗, µ∗) = −1 < δ∗ = 0 < ϑ4 (λλλλλλλλλ∗, µ∗) = 1.

Since µ(α) < 0, it is straightforward to see that ϑ3 (λλλλλλλλλ(α), µ(α)) and ϑ4 (λλλλλλλλλ(α), µ(α))
cannot intersect for α ∈ [0, 1]. Thus there obviously exists a piecewise linear
function ϕ(α, δ∗, δ), such that

ϑ3 (λλλλλλλλλ(α), µ(α)) < ϕ(α, δ∗, δ) < ϑ4 (λλλλλλλλλ(α), µ(α)), α ∈ [0, 1].

Therefore HHHHHHHHH(ttttttttt, α) = 000000000 meets the requirements of Theorem 4 for any α ∈ [0, 1].
As a consequence, a set of solutions

S := {ttttttttt ∈ D; HHHHHHHHH(ttttttttt, α) = 000000000}

lies aside from the boundary ∂D. More precisely, one can find a compact set
K ⊂ D, such that

S ⊂ K ⊂ D, S ∩ ∂K = ∅.
Thus the map HHHHHHHHH does not vanish at the boundary ∂K, and the Brouwer’s
degree ([17]) of HHHHHHHHH on K is invariant for all α ∈ [0, 1]. But by Theorem 9,
it is odd for the particular map FFFFFFFFF (.; λλλλλλλλλ∗, δ∗, µ∗). Therefore FFFFFFFFF (.; λλλλλλλλλ, δ, µ) = 000000000
must have at least one admissible solution and Theorem 1 and Theorem 2 are
proved.

Let us now prove Theorem 3. Since the geometric interpolation is independent
of the affine transformations of data points, one can choose the coordinate
system so that one axis is in a direction of ∆TTTTTTTTT 1, ∆TTTTTTTTT 2 or ∆TTTTTTTTT 3. It is then

15



straightforward to verify that the conditions of Theorem 3 imply that the
other component of the interpolating curve as a cubic polynomial should have
four zeros, what is a contradiction. The proof for the case µ > 0, λ2 ≤ 0, and

x

y

T0

T1

T2 T3

T4

T5

DT2

0 t1 t2 t3 t4 1

Fig. 4. The data points with µ > 0, λ2 ≤ 0, λ4 ≤ 0 (left), and the y - component of
PPPPPPPPP 3 (right).

λ4 ≤ 0, is sketched in Fig. 4. The other cases follow by the same approach.
This completes the proof of Theorem 3.
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[1] C. de Boor, K. Höllig, M. Sabin, High accuracy geometric Hermite interpolation,
Comput. Aided Geom. Design 4 (4) (1987) 269–278.
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