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Abstract

In the thesis the geometric interpolation by planar parametric polynomial curves is
considered. In the introduction general geometric interpolation schemes, their properties
and advantages are outlined, and main results about these schemes are presented. The
Lagrange problem of interpolating 2n points in the plane by a polynomial curve of degree
n is considered in detail. Since the problem is nonlinear, the question of the existence
of the solution is very difficult. In Chapter 2, sufficient geometric conditions that ensure
the existence of the cubic curve that interpolates six points in the plane are given.
The conditions turn out to be quite simple and depend only on certain determinants
derived from data points. The results cover convex and nonconvex data. In the next
chapter the geometric interpolation by cubic G* spline curves is considered. Sufficient
geometric conditions are derived that admit the existence of a G* spline curve, where on
each polynomial segment four points and two tangent directions are interpolated. An
algorithm that determines the areas for tangent directions, such that the existence of
the spline is guaranteed, is presented. In Chapter 4 the Hermite geometric interpolation
by cubic polynomial curves is studied. Again, sufficient geometric conditions are derived
that cover most of the cases. From the analysis of geometric interpolation by cubic
curves it is clear that it would be impossible to consider the problem for a general degree
without some further assumptions. In Chapter 5 the asymptotic approach is applied,
which means that the data are sampled from a smooth convex curve f : [0, h] — R? with
h small enough. For a general degree n a special nonlinear system of equations is derived
and it is proven that in the case that it has at least one real solution the approximation
order is optimal, i.e., 2n. The existence of the solution of this system is proven for n <5
for general curves. For a general degree n the existence of the solution is established for
a special class of functions, so called circle-like curves. Tools used in the analysis are
resultants, Grobner basis and Brouwer’s mapping degree. Their definitions and main
properties are given in the last chapter.

Key-words: geometric interpolation, polynomial curve, spline curve, geometric conti-
nuity, existence of the solution, parametric distance, asymptotic analysis, approximation

order, CAGD.

Math. Subj. Class. (2000): 65D05, 65D07, 65D10, 65D17.






Povzetek

V disertaciji je obravnavana geometrijska interpolacija z ravninskimi parametri¢nimi
polinomskimi krivuljami. V uvodu so predstavljene splosne geometrijske interpolacijske
sheme, njihove glavne lastnosti in prednosti. Podani so najpomembnejsi rezultati s tega
podrocja. Podrobno je predstavljen Lagrangeev problem interpolacije 2n ravninskih tock
s polinomsko krivuljo stopnje n. Ker je problem nelinearen, je vpraSanje o obstoju resitve
precej tezko. V drugem poglavju so izpeljani geometrijski pogoji, ki zagotavljajo obstoj
kubicne interpolacijske krivulje, ki interpolira Sest tock v ravnini. Pogoji so preprosto
preverljivi in odvisni le od geometrije danih tock. Rezultati pokrijejo tako konveksne
kot nekonveksne podatke. V naslednjem poglavju je obravnavan problem geometrijske
interpolacije s kubi¢nimi G* zlepki. Izpeljani so zadostni pogoji za obstoj G zlepka, kjer
so na vsakem odseku interpolirane stiri tocke in dve smeri tangent. Dodan je algoritem,
s katerim dolo¢imo obmocja za smeri tangent, da je obstoj zlepka zagotovljen. V cetrtem
poglavju je obravnavana Hermitova interpolacija s kubi¢nimi polinomskimi krivuljami in
G zlepki. Izpeljani so geometrijski pogoji, ki zagotavljajo obstoj interpolanta, ki pokri-
jejo vecino primerov. Iz analize problema interpolacije s kubi¢nimi polinomi se vidi, da
je v splosnem problem nemogoce obravnavati brez kaksnih dodatnih predpostavk. V
petem poglavju je uporabljen asimptoti¢ni pristop, kar pomeni, da so podatki vzeti iz
gladke konveksne krivulje f : [0, h] — R?, kjer je h dovolj majhen. Za poljubno stopnjo
n je izpeljan poseben sistem nelinearnih enacb in dokazano je, da je v primeru, ko ima
ta sistem vsaj eno realno resitev, red aproksimacije optimalen, to je 2n. Obstoj resitve
tega sistema je za poljubne krivulje dokazan za stopnje n < 5. Za poljubne stopnje poli-
nomov pa je obstoj resitve dokazan za poseben razred krivulj, tako imenovane krivulje
blizu kroznice. V dokazih so uporabljene rezultante, Grobnerjeve baze in Brouwerjeva
stopnja. Njihove definicije in glavne lastnosti so podane v zadnjem poglavju.

Kljuéne besede: geometrijska interpolacija, polinomska krivulja, krivulja zlepkov,
geometrijska zveznost, obstoj resitve, parametricna razdalja, asimptoticna analiza, red
aproksimacije, CAGD.

Math. Subj. Class. (2000): 65D05, 65D07, 65D10, 65D17.

vil






Contents

1 Introduction 1
2 Geometric interpolation by cubic polynomials 9
2.1 Themainresults . . . . . . . . . . e 9
2.2 Theequations . . . . . . . . . 13
2.3 Proof of Theorem 2.4 . . . . . . . . . . . o 14
2.4 A particular case . . .. ... 18
2.5 Proofs of main theorems . . . . . . . . . ... .. 20
2.6 Examples . . . . .. 21
3 Geometric interpolation by cubic G splines 25
3.1 Interpolation problem . . . . . . . . . . ... ... ... ... 25
3.2 Polynomial case . . . . . . . . ... 27
3.3 Proof of Theorem 3.6 and Theorem 3.7 . . . . . . . . ... .. ... ... 32
3.4 The G'splinecurve . . . . . . . . . ... ... 38
3.5 Examples . . . .. 48
4 Hermite geometric interpolation by cubic G! splines 55
4.1 Interpolation problem . . . . . . . .. ... ... 55
4.2 Single segment case . . . . . ..o 58
4.3 Relations, implying the solution to approach the boundary . . . . . . .. 60
4.4 Main theorems . . . . . . . . L 64
4.5 Proofs of main theorems . . . . . . . . ... ... L 66
4.6 Approximation order . . . . .. ... 70
5 Asymptotic analysis 75
5.1 Asymptotic approach . . . . . . .. ... 75
5.2 Nonlinear system . . . . . . . . . ... 76
5.3 System of equations in asymptotic form . . . . . .. ... 7
54 Thecasen=4. . . . . . . . e 83
55 Thecasen=>5. . . . . . . . 87
6 Circle-like curves 93
6.1 Circle-like curves . . . . . . . . e 93
6.2 Interpolation problem . . . . . . . . ... oo 94
6.3 The mainresults . . . . . . . . . . . 97

X



6.4 Proofs . . . . . 101

6.5 Approximation of circular arcs . . . . . . . ... 105
Resultants, Grobner basis and Brouwer’s degree 109
7.1 Resultants . . . . . . . . 109
7.2 Grobner basis . . . . ... 110
7.3 Brouwer’s mapping degree . . . . . .. ..o 111
Bibliography 113
Index 117
Razsirjeni povzetek 119



Chapter 1

Introduction

The geometric interpolation by parametric polynomial curves has received considerable
attention since it was introduced in [4], where a Hermite cubic interpolation of two points,
tangent directions and curvatures is studied. It was shown that under some natural re-
strictions a planar convex curve can be approximated up to the sixth order accuracy.
High approximation order is one of the reasons for a further work on the subject. The
other is the fact that geometric interpolants in many cases please the human eye more
than their usual standard counterparts. The underlying basic concept of geometric inter-
polation is to consider the curve itself independent of its actual parameterization. The
interpolating curve depends only on geometric quantities such as data points, tangent
directions, curvatures, etc. This makes the geometric interpolant a valuable tool in the
computer aided geometric design. No additional artificial conditions are imposed on the
curve such as at which parameter values the interpolation conditions should be met.
Since no free parameters are used ineffectively, geometric interpolation often results in
higher approximation order than one would expect from the functional case.

But, unfortunately, geometric interpolating schemes involve a nonlinear part. This
drawback makes it hard to analyse the existence of the interpolating curve and to estab-
lish the approximation order. Numerical computations have to be done with some care
too, usually by the continuation method ([2]). Thus it is quite clear why the analysis
of geometric interpolation schemes is usually based upon the assumption that data are
sampled densely enough from a smooth curve, and the asymptotic analysis is applied.

Commonly, a curve is not approximated by a single polynomial or rational curve,
but by a geometric spline, i.e., a finite number of consecutive segments, joining at the
breakpoints with an appropriate order of geometric continuity. Two curves join with
G continuity if they meet at a common join point, with G! continuity if they share a
common tangent direction at the join point, and with G? continuity if additionally the
signed curvature at the join point is continuous. In general, geometric continuity can be
defined in the following way:.

DEFINITION 1.1. Two parametric curves
fl : [toatl] - Rd) f2 : [807 Sl] - Rd)
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join with a geometric continuity of order k or shortly with G*-continuity if the end point
of fy coincides with the starting point of fo, f1(t1) = f(s0), and there exists a reqular
reparameterization ¢ : [to, t1] — [So, 1] such that

djfl _ dj(f20¢) .
dti (t) _T(t) ., j=0,1,... k.

t=t1 t=t1

In order to study the approximation order in parametric case we need to know how to
measure the distance between parametric objects. Since objects are usually considered
as sets of points the well known Hausdorff distance dy is one of the possible metrics. It
is defined in the following way.

DEFINITION 1.2. Let X and Y be two subsets of a metric space M. The Hausdorff
distance dy(X,Y) is defined by

dy(X,Y) := max { sup in)f/ d(x,y), sup in)f( d(z,y) } ,

rEX Y€ yey €
where d(x,y) is a metric on M.

But unfortunately, it is difficult to compute the Hausdorff distance in practice. As

its upper bound the so called parametric distance dp has been proposed by Lyche and
Mogrken ([34]).

DEFINITION 1.3. Let f, and f, be two parametric curves defined on intervals I and
15, respectively. The parametric distance between f, and f, is defined by

dist(f,, fo) :== igf [fioo—fil = i%frtfé%;( [f1(e(t) = F2),

where ¢ : Io — Iy is a regular reparameterization, i.e., ¢' # 0 on I5.

Let us now summarize some of the well known results on geometric interpolation.
In [4], C. de Boor, K. Héllig, and M. Sabin introduce the concept of geometric conti-
nuity. They study the approximation of a curve f : R — R? by planar piecewise cubic
polynomials. Data points, tangent directions and curvatures of f at given nodes t; are
interpolated. The authors show that for h := sup, || f(t;11) — f(¢;)|| sufficiently small an
interpolant which approximates f at the surprisingly high order h® exists, except when
the curvature of f vanishes. Then the approximation order is locally reduced to h?.
They also show that the interpolant need not be unique.

In [22], K. Héllig and J. Koch make the following conjecture.

CONJECTURE 1.4. Under appropriate generic assumptions, a polynomial curve of
degree n can interpolate
n—1
m=n-+1+ { J

d—1

points on a smooth curve f € R%. This interpolant approzimates f with order m as the
distance of interpolation points tends to zero.




They give a proof of this conjecture for planar quadratic polynomial and spline curves
and describe a simple construction of curvature continuous quadratic splines from control
polygons. In [21], the same two authors consider the approximation of space curves by
cubic splines and prove that a smooth space curve can be approximated by a cubic
polynomial with fifth-order accuracy at any point where the curvature and torsion do
not vanish. They describe a natural generalization of the standard Hermite interpolation
which achieves the optimal approximation order 5 for degree 3. In addition to the position
and the tangent direction at the endpoints, a third point within the parameter interval
is interpolated.

In [37], K. Mgrken and K. Scherer establish a general framework for geometric in-
terpolation methods for parametric curves that includes interpolation methods in all
dimensions. Questions of solvability and stability are considered. As a special case of
the general result, they prove that four points on a planar curve can be interpolated
by a quadratic with fourth-order accuracy, if the points are sufficiently close to a point
with a nonvanishing curvature. They also prove that six points on a planar curve can
be interpolated by a cubic with sixth-order accuracy, provided the points are sufficiently
close to a point where the curvature does not have a double zero. In space it turns out
that five points sufficiently close to a point with nonvanishing torsion can be interpolated
by a cubic, with fifth-order accuracy. The case of quartic curves in the plane is studied
by K. Scherer in [45] and [46].

In [34], T. Lyche and K. Mgrken define a metric on the set of parametric curves
(see Definition 1.3). They give a definition of approximation rate for parametric ap-
proximation schemes in terms of this metric, and present a simple family of odd degree
parametric polynomial approximations to circle segments with the approximation order
twice the degree of the polynomial.

Degen ([7]) extends the work of C. de Boor, K. Hollig, and M. Sabin ([4]). He
shows, by using rational cubics, that it is possible to have third-order contact at the
endpoints, which raises the approximation order to eight. Analysing the solvability
conditions for third-order contact by rational cubics he establishes that purely geometric
properties of the given curve determine whether the desired approximant exists. In
[8] Degen introduces the notion of geometric contact elements and designs a unified
theory of geometric Hermite interpolation for parametric curves. He predicts the order of
approximation to be 2n for a polynomial curve and 3n — 1 for a rational curve of degree
n. In his recent work [9] Degen presents an excellent overview of the developments
of geometric Hermite approximation theory for planar curves. A general method to
solve these problems is presented. Geometric interpretations, examples and a detailed
discussion of the case of degree n = 4 with one contact point is given.

In [38], Rababah describes a Taylor polynomial interpolation for space curves which
yields the order (n+ 1) + [Q”dtll] for a curve in R, where n is the degree of the approx-
imating polynomial curve. The cubic case is studied with examples. He extends these
results to the piecewise polynomial curve interpolation in [39].

An important contribution to the subject is given by J. Kozak, Y. Y. Feng and
E. Zagar ([16], [15], [14], [26], [27], [28], [47]). In [16] the interpolation by G? continuous
Bézier spline curves in R? is outlined. Each segment of the spline curve interpolates
r interior and two boundary points. A general approach is followed in detail for the
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case d = 3, n = 3, r = 1. For the single component case, the optimal approximation
order is proved, and asymptotic existence established. In [15] the interpolation by G*
continuous planar cubic Bézier spline curves is studied. The interpolation is based only
on the underlying curve points and the end tangent directions. On each polynomial
segment four points and two tangent directions are interpolated. The authors show the
existence of the interpolant in asymptotic sense and prove that the approximation order
is optimal. In [47], E. Zagar considers an interpolation by G? spline curves of degree d
in R? that interpolate d points on each segment. He shows that if the data points are
sampled regularly and are sufficiently dense, then the interpolant exists. The optimal
approximation order d + 2 is achieved.

Results on rational and polynomial geometric interpolation by R. Schaback can be
found in [40], [41], [44], [42], and [43].

Most of the mentioned results are obtained by the asymptotic approach. However,
results offered by the asymptotic analysis are not always adequate in practical applica-
tions. If one is merely looking for an interpolant of a nice shape, suppositions like 7if data
points are sampled dense enough” are not very encouraging. Therefore robust algorithms
should be based upon conditions that ensure the existence in advance if possible at all.
But in geometric interpolation, this can be rarely achieved. Beside some special cases,
like the interpolation of a circle ([34] [10], [19] [35], [17], [18], [11], [12]), there are only
few results concerning geometric conditions for the existence of the interpolant. The
interpolation by a parametric parabola at four distinct planar points is studied in [33],
where the conditions are established through geometric arguments. In [36] the algebraic
approach is applied, and results are extended to all possible cases (Taylor, Hermite, La-
grange). The interpolation of an arbitrary number of points in a plane with composite
G? quadratic curves is studied in [41], [14], [26], where sufficient conditions for solvabil-
ity and the uniqueness of the solution are derived. Perhaps the most general results
are given by J. Kozak and E. Zagar in [27], where necessary and sufficient geometric
conditions for the simplest nontrivial geometric interpolation schemes in all dimensions,
i.e., the interpolation of d + 2 distinct points in R? by a polynomial curve of degree < d,
are outlined.

In this thesis the study of geometric interpolation is restricted to the planar case
d = 2. Planar schemes are probably the most important in practice, and the gap
between the parametric and the functional case is the largest. Namely, Conjecture 1.4
states that 2n planar points can be interpolated by a polynomial curve of degree n, and
the approximation order 2n can be achieved, while in the functional case a polynomial
of degree n can interpolate only n + 1 points with the approximation order n + 1.

The Lagrange interpolation problem considered is the following. For 2n given data
points

To,Ti,....,Ton1 €R?, Ty # Ty, (1.1)
find a parametric polynomial curve
P, : [to,tan—1]) — R®
of degree < n that interpolates these points at some values ¢; in an increasing order,

tg <t <+ <top_o <top_q. (12)




Since a linear transformation of the parameter preserves the degree of a parametric
polynomial curve, one can assume %y := 0 and %9, 1 := 1, but the remaining parameters

t=(t)7°

are unknown. The admissible parameters t; can be viewed as components of a point in
the open simplex

Dn = {(tl)122;2’ O:tO <t1 < "'<t2n72 <t2n71 = 1}7
with the boundary 0D,, where at least two different t; coincide. The system of equations
P.,t)=T;, i=0,1,...,2n—1, (1.3)

should determine the unknown P,, as well as the parameters t. Once the parameters are
determined it is straightforward to obtain the coefficients of the polynomial curve P,,.
One only has to take any n + 1 distinct interpolating conditions in (1.3), and apply any
standard interpolation scheme like Newton or Lagrange componentwise.

Since the system (1.3) is nonlinear, it is usually difficult to prove the existence of a
solution. Also, a solution does not necessary exist. As a simple example take four points
(n = 2) with a nonconvex data polygon. Since each component of the interpolating Py
is a parabola and since a parabola cannot have more than two zeros it is clear that the
interpolant can not exist. But for this case very nice necessary and sufficient conditions
for the existence are given in [27]. Namely, the interpolant P, exists if and only if
determinants

det (AT(), ATl), det (AT(), ATQ), det (ATl, ATQ),

where AT; := T, — T;, are of the same sign.

As a motivation to geometric interpolation schemes let us consider some numerical
examples. First, let us compare the cubic geometric scheme with a componentwise
quintic interpolation, where a parameterization is chosen in advance as the uniform,

to=0, liy1=10+1,
and the chord length parameterization,
to=0, tip1=1t+|Tip1—T.

The cubic curve (black) clearly does the job much better than its quintic counterparts
as one can observe in Figure 1.1. The shape of the geometric interpolation curve is as
one would require for the given data points, without any visible extraneous inflections.
Also, the computational effort to compute these six cubic interpolants turns out to be
negligible. The Newton method with equidistant starting values ¢; = % converges within
a machine precision accuracy in eight iterations on average. There is perhaps a simple
explanation of the fact that the cubic geometric interpolation curves are superior. An

approximate curvature, with denominator neglected, is a parabola

det (Pg, pg),
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Figure 1.1: A geometric cubic interpolant (black) and quintic polynomial interpolating
curves with uniform (grey) and chord length parameterization (dashed).

so the rate of change of the curvature is approximately linear what pleases most the
human eye.
As a next example let us approximate a particular logaritmic spiral

o= (2. e [-£:).

by geometric interpolants of degrees n = 3,4,5,6. The data points are obtained from
(1.4) by the equidistant splitting of the parameter domain. Table 1.1 numerically sug-
gests that the approximation order is 2n, where the error is measured as the parametric
distance between the curve and its interpolants.

The outline of the thesis is the following. In Chapter 2 the geometric conditions
that imply the existence of a cubic geometric interpolant that interpolates six points in
the plane are presented. The conditions depend only on certain determinants of data
points and are very simple to verify. The results cover both the convex and nonconvex




Interval Approximation error Decay exponent
n=3 n=4 n=3| n=4
[—2.2] | 22662 x 1072 | 1.6485 x 10—° | — —
[—27,57] | 8.0154 x 1072 | 3.6922x 10* | 570 | 8.21
[—4z,42] | 2.1793 x 1073 | 5.8837 x 107° | 5.84 8.23
[—32,32] | 3.9573 x 107* | 5.5716 x 10~° | 5.93 8.19
[—25,22] | 3.4941 x 107° | 2.0533 x 107 | 5.99 8.14
[—Z.Z] | 5.4085 x 1077 | 7.5616 x 107 | 6.01 8.09
n=>= n==06 n=5| n=06
[—2.2] [ 5.0251 x 107° | 1.7288 x 107 | — —
(-3, 5] | 7.7733 x 107¢ | 2.3347 x 107 | 10.24 | 10.98
[—4z,42] | 7.7842 x 1077 | 2.1547 x 107° | 10.31 | 10.68
[—32,32] | 4.0522 x 1078 | 8.1861 x 10~'! | 10.27 | 11.37
[—22,22] | 6.4814 x 1071 | 6.6848 x 107" | 10.20 | 11.86
[—Z, =] | 5.8338 x 107*% | 1.6306 x 1071¢ | 10.12 | 12.00

Table 1.1: The error and approximation order in interpolation of the logaritmic spiral
(1.4) by geometric interpolants.

data. Chapter 3 extends the results to geometric interpolation by cubic G*' splines.
Geometric conditions that imply the existence of a spline are derived, where on each
segment four points and two tangent directions are interpolated. The conditions again
depend only on positions of data. The algorithm that carries out the verification is added.
In the next chapter Hermite interpolation of three points and three tangent directions is
considered. Geometric conditions for the existence of the interpolant are given and the
optimal approximation order is confirmed. In Chapter 5 the asymptotic analysis is done
for all degrees n. This means that the data are sampled from a smooth convex curve
f 110, h] — R?, with h small enough. The Conjecture 1.4 is proven for degree n < 5. For
a general n, a special nonlinear system of equations is derived and it is proven that in
the case when this system has one real solution, the approximation order is optimal, i.e.,
2n. The proof of the existence of a real solution is very difficult. In the proof for degree
n = 5 the theory of resultants, Grobner basis, varieties and ideals is used. Chapter 6 is
a continuation of the previous one, where the conjecture is proven for a special class of
functions, so called circle-like curves, for general degrees of polynomials.

The results of this thesis are published in the following papers: [29], [30], [31], [23],
[24], and [25].







Chapter 2

Geometric interpolation by cubic
polynomials

In this chapter the Lagrange interpolation of six points in R? by a cubic polynomial
curve is studied. Namely, the interpolation problem introduced in the first chapter is
here considered for n = 3 and simple sufficient geometric conditions that ensure the
existence of the interpolant are given. The conditions turn out to be quite simple and
depend only on certain determinants derived from the data points.

2.1. The main results

The conditions that imply the nonlinear system
Py(t,)=T;, i=0,1,...,5, (2.1)
to have at least one admissible solution, i.e.,
D=ty <ty <---<ts:=1, (2.2)
will be determined here. The key role is played by the matrix of data differences,
(ATZ-)?:O € R¥,
and by the signs and ratios of its minors

Di,j = det (ATZ, AT]) (23)
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These are the volumes of parallelograms spanned by the vectors AT';, AT';. Let us define

Dy, Dy Dy 4 D34 D3 Dy 3
A= —=, A= —=, Agi=——, N\ji=——, §:=—=, ===
YT D T D T Doy T Dag D, " D,
- Ao(1 4 Ag)
1 -— )
M1+ X2) + VA (14 X)) (A + A2)
As(1 4 A3)
Ve

TN )+ V(F e) O )

Note that the data points with a convex control polygon, as in the first three figures of
Figure 1.1, have p > 0 and \; > 0, ¢ = 1,2,3,4. The control polygons of data points
in the last three figures of Figure 1.1 change from convexity to concavity at AT5. Such
data have \; > 0 and g < 0. We will restrict our study to these two types of data.
Geometric interpretation of \;, 4 and p is shown in Figure 2.1.

Convex data Nonconvex data

Figure 2.1: Geometric interpretation of A;, 6 and p for convex and nonconvex data.

Further let us define A := (\;)?_,, and the functions

_2u—mt VR A+ )

191 (Aa ) 271 )
2 — e + V1293 + 4p(1l + 7o)

192 ()\ ) — Hy2 2 1% Y2
) 272 )

/\1,u )\4 1% )\1(/\1 + /\2)

Oy (A )=S0 24 B JAA T )
3( 7:U/> )\2 _'_ )\3 + )\2 1 + )\2 )
/\1,u )\4 1 )\4(/\3 + /\4)

Og (A )=S0 2 — [T 2
4( 7:U/> )\2 _'_ )\3 + )\3 1 + )\3 bl

that will be used in boundary relations between the constants, that ensure the existence
of the solution. The main results are the following.




2.1 The main results 11

THEOREM 2.1. Suppose that Dy 2Dy 3 # 0 and the data are convez, i.e., pp > 0 and
N >0,1=1,23,4. If either ¥4 (A, u) = V2 (A, 1), or one of the following conditions is
met,

0 <min{dp (A p)} or d>max{d (A )},
then the cubic interpolating curve Ps that satisfies (2.1) ezists.

THEOREM 2.2. Suppose that Dy sD,3 # 0, and the data imply an inflection point,
e, < 0and X\, >0,i=1,2,3,4. If

5 € (V3(A, p), da(A, ),

then the cubic interpolating curve Py that satisfies (2.1) exists.

Theorem 2.1 and Theorem 2.2 provide only sufficient conditions for the existence of
a cubic geometric interpolant. But the next conclusion excludes most of the data that
do not satisfy these two theorems.

THEOREM 2.3. The cases where the solution of the interpolation problem (2.1) does
not exist are summarized in Table 2.1.

Di2Dy3 # 0 Dy3Dy3=0
w>0 n<0
/\QSO,)\;;SO AQSO DLQZO, D273:0
5§0,/\1§0 AgSO D172:O,/\3§O
0<0,24<0 M <0,0<0 Dy3 =0, <0
M<0, <0, 20 M<0,0>0|D12=0,Dp1Ds35>0
A <0, A <0,A >0 D3 =0, Di2D34 >0

Table 2.1: The cases where the solution of the interpolation problem (2.1) does not exist.

Some possibilities are not covered by Theorem 2.1, Theorem 2.2 or Theorem 2.3. As
an example, consider the points

(%) () () e
() ) om0 e

with A\ = A\ = —1%, Ao = A3 = 2,0 = pu = 1. Note that neither the requirements of
Theorem 2.1, Theorem 2.2 nor of Theorem 2.3 are met. Now, the data (2.4) admit two
solutions for £ € (0,&], where & := 2.95373852 (Figure 2.2). For £ = &, both of the
solutions coincide with a cusp, but for £ > &, no solution can be found.

The examples in Figure 1.1 all satisfy the conditions of Theorem 2.1 or of Theorem 2.2.
Let us look at two of them more precisely. In the first one § < 9y (A, ). Figure 2.3

(left) shows how the positions of points change as § approaches ¥y (A, ). For § €
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Figure 2.2: Four cubic geometric interpolants at points (2.4), with £ = 2, 2.5, 2.8, &,

(01 (A, @) , P9 (A, )] no proper solution exists. Similarly, Figure 2.3 (right) shows the
displacement of points as ¢ changes from 3 (A, 1) to ¥4 (A, ) for the last example of
Figure 1.1. For § < 93 (A, p) or 6 > 94 (A, ) two solutions ¢ € D3 were found and the

problem similar as in the example above has happened.

Ts T2

Figure 2.3: The change of point positions as § approaches ¥ (A, ) (left), and as §
changes from U3 (A, 1) to 94 (A, p) (right).

The requirements of Theorem 2.1 and Theorem 2.2 are quite simple, but the proof
takes several steps. First, the system (2.1) is transformed into a form more suitable for
further analysis. Then it is proved that any solution of (2.1) satisfying (2.2) cannot have
the parameters t; arbitrary close to the boundary dD3. For particular data it is proved
that the nonlinear system has an odd number of solutions and then this fact is extended

to a general case by a convex homotopy and Brouwer’s degree argument.
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2.2. The equations

First let us split (2.1) into the nonlinear system for unknown parameters only. The
divided difference [ty, toy1, ..., triq], applied to the system (2.1), maps any P3 to zero.
Let

. d S
wigt) = (=)t —tivr) - (E=t-0)(E = ty), wiy(t) = Zwiy(t), i<j. (25)
Since t; are assumed to be distinct, one can express the divided difference in terms of
We4(ti). The nonlinear part of the system (2.1), that should determine the unknowns
t1, 19,3, t4 thus becomes

l+4 1
> ———T:=0, (=0,1, (2.6)
— We,era(ti)

The equations (2.6) were derived as necessary conditions for the existence of the solution
of the interpolation problem (2.1), but they are sufficient too. A quintic polynomial
curve p; that solves the interpolation problem

p5(tz) :Tz> 1 :0,1,,5, (27)

at distinct ¢; is determined uniquely. But if ¢ € Dj satisfies (2.6), one may apply
[te,tos1, - tera], £ = 0,1, to both sides of (2.7). The right hand side vanishes, so should
the left hand one. This reveals that the quintic polynomial curve p; in this case is
actually a cubic one, the unique solution of (2.1). But

044 .
totoins b1 =S ———0, (=01, 2.8
[te, togr 044] ; et (2.8)

and the system (2.6) can be rewritten as

(T; — To)" ( ! )4 =0, (T5-Ts.), ( 1 )4 =0
‘ 0)i=1 \ G 4(t;) j=1 - i T s (ts) j=1 o
or, after inserting
1 -1 0 O 1 1 1 1
01 -1 0 o 1 1 11| 1d
00 1 —1)f0 0 1 1]
00 0 1 0 0 0 1

0+j 3
043 1
(ATi)i:g o,=0, o,:= (Z W) | 0, (=0,1.
i j=
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From now on let us assume that Dy 49 # 0, £ =0, 1, as required in Theorem 2.1 and

Theorem 2.2. The kernel of the matrix (ATi)f:j is therefore two-dimensional, spanned
by

Dyy10427  Degroq2’ Dyy1,e427  Degroq2’

T T
D D D D
<1’ 0,042 0,041 O) ’ <O, _ Pe+2,043 041,043 _1) )

Since o, must be in the kernel,

1 0
_ D2 _Deyoeys
_ Dyi1,42 Dyi1,042 _
O-E - aﬁ De,[+1 + bﬁ D[+1,[+3 9 E - 0’ ]‘7 (2'9)
Dyyq,042 Dyyq,042
0 —1

for some a, and b,. After the elimination of a, and by,

1 1
Gy = ——, > bfz-ia Ezo7la
We,e+4(te) Weea(tera)
and the use of (2.8), the equations (2.9) become
1 1 1
, 14+ Xo) + = : ~0, 2.10
w0,4(t0)( 2) woa(t1) w0,4(754)u (2.10)
1 1 1
A+ + - 14+6)=0, 2.11
Wo.4(to) ! wWoa(ts)  woalts) ( ) ( )
1 ) 1 1
, 1+ — ) +- + - Ay =0, 2.12
wi 5(t1) ( M) Ws(ts)  Gsts) ™ (212)
1 1 1 1
— 4+ + (14 A3) = 0. (2.13)

wis(t) o wis(ts)  wis(ts)

The system (2.10)—(2.13) is clearly equivalent to (2.6) since only nonsingular linear trans-
formations were applied.

It will now be shown, that under certain restrictions the solutions ¢t € D3 must stay
aside from the boundary dD3. The theorem is stated as follows.

THEOREM 2.4. Suppose that the requirements of Theorem 2.1 or of Theorem 2.2
are met. Then the system (2.10) - (2.13) cannot have a solution arbitrary close to the
boundary 0Ds.

The proof of Theorem 2.4 is quite technical, and will be given as the next subsection.

2.3. Proof of Theorem 2.4

In order to prove Theorem 2.4 one has to show that
At; =ty —t; >const >0, i=0,1,...,4.

Here and throughout the rest of the thesis, the term 'const” will stand for an arbitrary
positive constant. Suppose that at least two parameters approach, i.e., At; — 0 for some
1. It is enough to consider the following four possibilities:
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Case 1: Aty > const > 0, Aty > const > 0,
Case 2: Aty > const > 0, Aty — 0,
Case 3: Aty — 0, Aty > const > 0,
Case 4: Atqg — 0, Aty — 0.
In order to proceed, the following lemmas are needed.
LEMMA 2.5. Suppose that At; — 0, i = 0,3, and Aty > const > 0. Then

Wo,a(to) . _ﬁ
w074(t4) 1) '

Similarly, At; — 0, i = 1,4, and Aty > const > 0 imply

wis(ls) B
@1’5(751) ) '

Proof. Consider the first assertion. From

1 1 Ats
= 1+ 7
ts—t;  ty—t Aty + (ta — ;)

one obtains

2
1 1 1
: — 1+ At E + O (A2 |.
wo.4(t3) Wo,4(ta) ( ’ — Aty + (t2 — t;) ( 3)>

Thus the expression

1 1 1
+ +O (At
Wou(ts)  wou(ts) H Aty + Atg + (ty — t;) ( Z Aty + (s — 1, ) ( 3))

stays bounded. Since wg4(tg) — 0, the equation (2.11) gives

wo.4(to) 1 ( . ( 1 1 ) ) A\
. . - — = A —l_ W, t " —|'— - _— ——
Wo.4(t4) s\ oalfo) wWoalts)  woalts) o

The second assertion follows similarly. O

LEMMA 2.6. Suppose that yp > 0. Then At; — 0, i = 0,1,2,3, implies § > 0 and
d — V1 (A, p). Similarly, from At; — 0, i =1,2,3,4, it follows 6 >0 and 6 — U5 (X, ).

Proof. Let us prove the first assertion only. The proof of the second one is similar.
After rewriting the equations (2.10) - (2.13) in a polynomial form, the last two equations
simplify to

ALy (Aty + Ats) — pAty (Aty + 2At + Atg) + h.o.t. = 0,
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where ’h.o.t.” stands for higher order terms that are small compared to the terms left
in the expressions. Since At; > 0, it is clear that 6 > 0. Moreover, by solving the first
part of these two equations on At,, Ats, the only admissible relation is

1 0+ [ 0+ p
Aty == |1+ | ———= | Aty =: cAly, Aty = ——— Aty.
2 5( M(1+5)> 1 =1 C2Aly 3= H 1(1+90) 1

After substituting this into the remaining equations, we obtain

At + (2 + o) AtgAty — Xo(1 4 ¢2) A + h.o.t. =0,
—Ato(AtO -+ Atl) -+ )\162(1 -+ Cz)At% -+ h.o.t. = 0.

Then, by the Grobner basis one obtains an equivalent system

(1 -+ Cz)At% (C%)\l(l — )\1) —+ 262)\1(1 -+ )\2) — )\2(1 —+ )\2)) —+ h.o.t. = 0,

—(1 + Cg)Atl (Ato + (Cg)\l - )\Q)Atl) -+ h.o.t. = 0,

—Ato(Ato —+ Atl) —+ Cg(l -+ Cz))\lAt% —+ h.o.t. = 0.
Only particular constants will admit the solution of this system for small positive At;.
Since ¢y > 0, a straightforward computation shows that the solution exists only if co —

~v1. Since A1, Ag > 0, it is easy to verify that 7, > 0. Therefrom by solving ¢y = 7 for 4,
one obtains § — vy (A, 1), where J; (A, ) > 0 as can easily be checked. O

REMARK 2.7. Note that if U1 (A, p) = 02(A, 1), the parameters t;, i = 1,2,3,4,
cannot approach to and ts at the same time.

LEMMA 2.8. Suppose that 1 < 0. Then At; — 0, 1 =0,1,2,4, implies 6 — 93 (A, ),
and similarly, At; — 0, i =0,2,3,4, implies § — 04 (A, p).

Proof. Let us prove the second statement. After rewriting the equations (2.10) - (2.13)
in a polynomial form, the last two equations simplify to

VVANZ: (Atz -+ Atg) — Aty (Atg -+ At4) +h.o. t. = 0,

By solving the main part of these two equations for At,, Ats, the only admissible relation

is given as
| 14+ X3
Aty = | | ————Aly =: oAt
2 s+ ) 4 CoAly,

1 1
Aty = L (14 2alEA)

Aty =: caAty.
A3 A+ M\ 478k

After substituting these expressions into the remaining equations, we obtain

/LAtO -+ 03(62 -+ Cg))\zAti +h.o.t. = 0,
(025 - Cg)AtO -+ 0203(02 + Cg))\lAti + h.o.t. = 0.
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Again, with the help of the Grobner basis, the equivalent system reads as

cs(cy + c3) A2 (e (Agd — A jt) — e3Ag) +hoo.t. =0,
/LAtO + 03(62 + Cg))\zAti +h.o.t. = 0,
(cad — c3)Atg + cacs(ca + c3) M At +h.o.t. = 0.

Since ¢o > 0, c¢3 > 0, it is easy to verify that this system will have a solution for small
At; only if 6 — ¥4 (A, p). The first statement is proved in a similar way. !

Now to the proof of Theorem 2.4. Note that
sign (Weera(t;)) = (1) i=00+1,... 044

Also, from the equations (2.10) - (2.13) it is straightforward to derive a useful relation

, , 1+5+)\1w°4(t) 1+2 +>\w15(t)
Woulta) wis(ts) Wo 4(to) wi5(ts)
voalts) onolt) Soals) 140 ey 2
Wo,4(t3) W1 5(12 0,4\04 1,5
) ) O+ pu+ M+ A —— + (A3 + A
it 2>Wo4(750) Iz ( 4)w15(t5)

Case 1: In this case wo4(tg) > const > 0, wy5(t5) > const > 0. From the equations
(2.10) - (2.13) it is straightforward to see that At; — 0 or Aty — 0 implies Aty — 0.
Consequently
wo4(ts)
by — 1

From (2.10) and (2.13) it is easy to derive

== (1 - At4) (Atg + Atg) Atg — 0.

ta — 11 o 1+ )\2 AtoAt4
Wo,a(ta) o woulto)

(1 — Atg)At,

Wi 5(ts5)

+ (1 +A3)

Since the right hand side is bounded, but the left hand one is not, we have a contradiction
that excludes the case 1.

Case 2: In this case wy4(ty) > const > 0, and wy 5(t5) — 0. Suppose first that Aty >
const > 0. The equation (2.12) then implies At; — 0. But then, (2.10) implies Atz — 0,
and further

woa(ts) = (1 — Aty) (Aty + Aty + Aty) (Aty + Ats) Aty — 0.

Moreover, the equation (2.11) yields

2

wou(ts) — woa(ts) wo a( ( Aty )
—0=14+\— + — = — 0.
1w074(t0) w074(t3) a)o 4 H Atz + tQ —1; )

1=

Now, by Lemma 2.5 and the use of relation (2.14) one obtains

— 1.

Wo.4(ts) =0 W 5(t1) 0 Wo.a(t2) w1 5(t3)
wo,a(to) T owis(ts) T woults) wis(te)
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However, on the other hand,

d)074 (tg) d)175 (tg) Ato + Atl Atg + At4

= —
Woults)wis(ta)  Atg+ Aty + Aty Aty + Aty + Aty ’

which is a contradiction. Therefore Aty — 0. But then the equations (2.10) and (2.11)
imply At; — 0, At — 0, p > 0, and Lemma 2.6 excludes the second case. The third
case is a mirror view of the second one, and needs not to be proved.

Case 4: Here wg4(ty), wi5(t5) — 0. Suppose again for a moment that Aty > const > 0.
The equations (2.11) and (2.12) then imply A¢; — 0 and At; — 0. So, by Lemma 2.5,

wo,a(to) . A wi,5(t5) . [

@0’4(754) 0’ d)175(t1) J
Therefrom by using the relation (2.14) we obtain
wo,4(t2)wr5(t3) A Aaft £0

N
(,«')1’5(752)0:)0’4(753) Alj,L — )\25 )\4 — )\3(5
but on the other hand

d)074(t2) d)175 (tg) _ Ato + Atl Atg + At4 -
(i)074 (tg) w175 (tg) Ato + Atl + Atz Atg + Atg + At4

Therefore Aty — 0. Suppose now that At; > const > 0. The equation (2.10) gives

Doalty) = —— woalto) f woa(to) S0
| L Soallo) I (1 L A ) |

2 . - _——

wOA(tl) 2 i=2 tz‘ — tg + Atl

so Atz — 0, and p < 0. But by Lemma 2.8 this cannot happen. Similarly one can prove
that Atg > const > 0 implies At; — 0, and p < 0. But, again by Lemma 2.8, this

cannot happen either, which excludes the case 4, and therefore completes the proof of
Theorem 2.4.

2.4. A particular case

Let us now consider the system (2.10) - (2.13) for particular data points
" 1—2c " —1—c " -1
p () (7). me(d). o1

« (1 « (14c «  [(—1+2c B
T3 - (O) ’ T4 - ((_1)5) ) T5 - <2<_1)s> ) S = 07 1a

where s determines whether p* is positive or negative, and ¢ = 0 or ¢ = 6 as will be
needed in the proof of Theorem 2.1 (see Figure 2.4). It is straightforward to compute

1
N=1 6 =1+ (=))e pt= (1)

The number of all admissible solutions, i.e., solutions ¢ € Ds, is given in the next theorem.
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To Ts To Ts To
T
T, Ty T 4
T T3
Ty
T T3 Ty T3 Ts
s=0,c=1 s=0,c=6 s=1,c=1

Figure 2.4: Particular data points (2.15).

THEOREM 2.9. Suppose the data points Ty are given by (2.15) with ¢ =0 or ¢ = 6.
The number of admissible solutions t € Ds, counted with multiplicity, is odd. More
precisely, the symmetric solution that satisfies Aty = Aty and Aty = Ats, is unique.
The number of the other solutions is even.

Proof. System (2.10) - (2.13) for data points (2.15) simplifies to

2 1 h—
woalto)  woa(ty) Wo.4(t4) ’
1 1 c c 1
: 4o +(1+—+—18—>, ~0, 2.16
woa(to)  woalts) 2 (=1) 2/ Woa(ty) (2.16)
HRR S D -
wip(ts)  wis(ta) Wi 5(t1) ’
1 1 c c 1
: + - +(1+—+—18—>, —0.
w15(ts)  wips(te) 2 (=1) 2/ W 5(th)

If there exists an admissible nonsymmetric solution (t;)7_, , then (1 —t5_;)?_, is also an
admissible solution, since

d}074(1 — t5—i) = d)175(t5_i), = O, 1, cey 4, d}175(1 — t5—i) = d)074(t5_i), 7= ]_, 2, cey 5.

Therefore the number of solutions, that are not symmetric, must be even. Let us examine
the symmetric solutions now. It is easy to see that the first and the last two equations
in (2.16) are then identical, and one is left with two equations

sty — 1) (3ts — 2+ (—1)°(1 — t)) — 4t4(2ts — 1)(ts — 1)
tata(ts — 1)(ts — 1) (t5 — tg)(ts + tg — 1)(2t4 — 1)

2y (ts — t4)(2ts + 2ts — 3) — ety — 1)(ts — 1)(2t; — 1) (1 + (—1)*)
ta(2ts — 1)(ts — 1)(ta — 1)(2ts — 1)(t3 — ta)(ts + s — 1)

=0,

=0,

for two unknowns ordered as % < t3 <ty < 1. This yields a polynomial system that can
be solved analytically. The admissible solution is unique (Table 2.2) and it is shown in
Figure 2.5. The proof of Theorem 2.9 is completed. O
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s=0,c=0 s=0,c=6 s=1,ceR
ty| 1(3-v3) | & (21-9v3+ /300 + 38V3)
ty v & (364 5v3 - 213 - 112V3)

Table 2.2: The admissible symmetric solutions of the system (2.15).

To Ts To Ts To
Ty Ta Ta 4 .
T T3
4
T T3

Ty T3 Ts

Sl | oves

s=0,c=1 s=0,c=06 s=1,c=1

Figure 2.5: Interpolating cubic curves for particular data points (2.15).

2.5. Proofs of main theorems

In order to prove Theorem 2.1 and Theorem 2.2 one must show that the nonlinear system
(2.10) - (2.13) has at least one solution ¢t € D3. The convex homotopy and Brouwer’s
degree argument (see Chapter 7) will help us carry the conclusions from a particular to

the general case.
Let us multiply (2.12) and (2.13) by p and denote the obtained system (2.10) - (2.13)
by F(t; X, 6, 1) = 0. Now, F can be split as F(-; X, 0, 1) = F1(+; A, ) + dF5, where

Fl(.;A7ILL> = F(.;)‘707u)7 F2 = F('ﬂ)‘7 17:”) - Fl(.7A7ILL>

A general data will be denoted by (A, 9, 1), and the particular data (2.15), where s is
chosen so that sign(u*) = sign(p), by (A", 6*, ©*). The homotopy is now defined as

H(t;¢) == (1= QOF (& A", p") + CF1(; A, 1) + q(C, 67, 6) Fa(8),
where ¢(+;6%,0) : [0, 1] — R, satisfies ¢(0;*,0) = ¢*, ¢(1;0%,0) = §. Moreover, let
AQ) =1 =X +CA, 6(Q) :=q(C,6%,6), p(C):=1—u" +Cp.

Then
Xi(C) > Cm[g)rh (1 = QA+ ¢N) = min {\], \;} > const > 0,
€lo,
(] = Join, (1= Qp™ + Cul = min {|p"], [} = const > 0.

Consider the case > 0 as in Theorem 2.1 first. Note that 1 (X", u*) = ¥o(A*, u*) = 4.
If § < g{l%% {9 (A, 1)} let us choose ¢ = §* = 0. It is then clear, that there exists a

piecewise linear function ¢(¢, 0%, ), such that

0(¢.5°,0) < min (9 (MO p(C} . € € 0.1]
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Similarly we can do for 6 > max {¥¢ (A, 1)} by choosing ¢ = ¢* = 6. In the case when

1 < 0, as in Theorem 2.2, we have
YA, u" ) ==-1<d"=0<d (A, ") =1.

Since u(¢) < 0, it is straightforward to see that ¥5 (A((), 1(¢)) and 94 (A(C), u(¢)) can not
intersect for ¢ € [0, 1]. Thus there obviously exists a piecewise linear function ¢(¢, §*,0),
such that

U3 (A(C), u(€)) < q(¢,07,0) < Va (A(C), u(C)), ¢ €10, 1].

Therefore H(t, () = 0 meets the requirements of Theorem 2.4 for any ¢ € [0, 1]. As
a consequence, a set of solutions

Vi={teDy H(t() =0}

lies aside from the boundary dD3;. More precisely, one can find a compact set K C Ds,
such that
VCKCDy, VNOK =10.

Thus the map H does not vanish at the boundary 0K, and Brouwer’s degree of H on
K is invariant for all ¢ € [0,1]. But by Theorem 2.9, it is odd for the particular map
F(; X", 6%, u*). Therefore F(t; A, 0, 1) = 0 must have at least one admissible solution
and Theorem 2.1 and Theorem 2.2 are proved.

Let us now prove Theorem 2.3. Since the geometric interpolation is independent of
affine transformations of data points, one can choose the coordinate system so that one
axis is in the direction of ATy, AT or AT'3. It is then straightforward to verify that the
conditions of Theorem 2.3 imply that the other component of the interpolating curve as
a cubic polynomial should have four zeros, which is a contradiction. The proof for the

To

Figure 2.6: The data points with p > 0, Ay <0, Ay <0 (left), and the y - component of
P; (right).

case (1 >0, Ay <0, and Ay <0, is sketched in Figure 2.6. The other cases follow by the
same approach. This completes the proof of Theorem 2.3.
2.6. Examples

Let us conclude this chapter with a few numerical examples. The easiest way to com-
pute the solution of the system (2.10)—(2.13) is by using the Newton method. But its
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convergence depends on the chosen starting value. By choosing a different starting value
a different solution may be computed, and some of the solutions may not be obtained
this way. Even numerically, it is not an easy task to get all the admissible solutions.
One way to do it is by computing the Grobner basis. But for our system this was impos-
sible to do in a real time even on very efficient computers. All the admissible solutions
can be computed by the continuation method ([2]). Another tool that can be used are
resultants (see Chapter 7). Let us describe how one can use them for finding all the
admissible solutions. Denote the equations (2.10)—(2.13) rewritten in a polynomial form
by q(t) = (¢;(t))i;. The idea is to eliminate the variables one after another until we
are left with only one polynomial equation for one unknown. Namely, to eliminate the
variable t, compute the resultants

r1(t1, t2,t3) := Res(q1, ¢2; ta),
ro(t1,ta, t3) := Res(qs, qu; ta),
r3(t1, ta, t3) == Res(q1, qa; ta).

Polynomials 7y, 72, 3 may contain extraneous factors like (¢; —t;), that do not produce
the admissible solution. Exclude these factors and denote the remaining polynomials by
s1, S9 and s3. Further, eliminate the variable t3,

r4(t1,t2) := Res(sy, s3;t3),
T5(t1, tg) = Res(sz, S35 tg)

Again exclude the extraneous factors and denote the polynomials by s, and s5. Finally
compute

r6(t1) := Res(s4, s5;t2)

to eliminate the variable t5. Solve the equation 74(t;) = 0 and select only the solutions
that satisfy 0 < ¢t; < 1. Now, insert each of the solution ¢; into r, and 75 and solve
r4(t1,t2) = 0, r5(t1,t2) = 0 on t5. Again select only those solutions that satisfy 0 < ¢; <
to < 1. Further, insert each pair of the solutions (¢, t5) into r; and solve r;(ty, t5,t3) = 0,
1 =1,2,3, on t3. Keep only the solutions that satisfy 0 < ¢; < t5 < t3 < 1. Finally,
insert each such pair (ty,%s,t3) into ¢;, solve g;(t1, 2, t3,t4) = 0, i = 1,2,3,4, and keep
the admissible solutions. Finally check if the computed (¢;)i_; really is the solution of
the system (2.10)—(2.13), since some redundant solutions may be produced.

Let us use the described method to compute all the admissible solutions of the next
two interpolation problems. First the data points are given as

() ne(@) me() e
() nel) ()

It is straightforward to compute
9 8 3 5

Alzga
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and
V1 (A, 1) = 5.45835, g (A, ) = 7.72150.

Since § < Y1 and § < 15, the conditions of Theorem 2.1 are fulfilled. By computing
resultants r;, ¢ = 1,2,...,6, one can see that the final polynomial r¢ is of degree 111.
Furthermore, there is only one admissible solution

t1 =0.179372, t, =0.418313, 3 =0.611056, ¢, = 0.953539.

As the second example the points are chosen as

R R ) B
() Q) ()

12 A1 a2 2 9
- - “Top YT T MT T

Now,

and
U3 (A, p) = —0.883441, 4 (A, 1) = 0.390352,

so that the conditions of Theorem 2.2 are met. The polynomial rg is of degree 111 and
the admissible solution is again unique, i.e.,

t1 =0.113433, t, =0.418394, 3= 0.665168, t, = 0.878749.

Interpolating curves are shown in Figure 2.7.

Figure 2.7: Geometric interpolants for data (2.17) (left) and (2.18) (right).







Chapter 3

Geometric interpolation by cubic G!
splines

In the previous chapter the Lagrange geometric interpolation of six points by a cubic
polynomial curve is studied. Here the results are extended to an interpolation of four
points and two tangent directions. Moreover, the geometric interpolation by a cubic G*
spline is considered. A wide class of sufficient conditions that admit a cubic G* spline
interpolant is determined. In particular, convex data as well as data with inflection
point are included. The existence requirements are based upon geometric properties of
data entirely, and can easily be verified in advance. An algorithm that carries out the
verification is added.

3.1. Interpolation problem

The interpolation problem concerned is the following. Let
T, cR?* i=0,1,2,....3m, T;#Ti, (3.1)

be a given sequence of data points. Find a cubic G' spline curve S : [a,b] — R? with
breakpoints
a:=Uy < U < -+ <Up:=Db

that interpolates the data T'; in the prescribed order so that S(uy) = T3, Let dsy,

dzlls = 1, denote the tangent directions of the spline curve S at u,. A piecewise
g
representation
C(4l ¢, U U o
P (t") := S(u) | g b N €0,1], ¢=1,2,...,m,

rewrites the interpolation problem as follows: find cubic polynomials P’ such that

P@ (tf) :T3(€—1)+ia 2.2071’""37
d d (=1,2,....,m, (3.2)
WPZ(O) = Ozédg(g_l), sz(l) = Ozgdgg,
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where the unknown parameters t{,t5, af, af must satisfy

0=ty <t <th<ti:=1 a)>0, af>0 (=12...,m. (3.3)

Note that of are chosen as local derivative lengths rather than global in order to simplify
the notation for further discussion.

The tangent directions ds;, £ = 1,2,...,m — 1, have clearly not been prescribed by
the data (3.1) yet. However, they may be known as data or given as an approximation,
perhaps as interactive shape parameters, or implicitly prescribed by the requirement
that S is G2 too. In the latter case, dy and ds,, would be known, and the following m — 1
equations

1

( 5)2 det (3 (T3f - T3£—3) - a€d3€—3> d3£) =

agl f:1’27"'777’L_]-7 (34)
( g+1)2 det (d3€7 3 (T3€+3 - T3€) - Oé§+1d3g+3)7

o)

added (see [13]). But, in general, the problem (3.2) and (3.3) need not have a solution.
So it is quite possible that the curve S could not interpolate all the prescribed data. For
this reason the interpolation problem (3.2) and (3.3) is split into two steps. At the first
and the main step, the region for (dy),-, that admits a solution of (3.2) is determined.
The second step is left to the user, but with clear bounds on ds,. Some suggestions on
how to choose the tangent directions are given in Subsection 3.4.

An example of a cubic G' spline that interpolates the prescribed data points and
tangent directions is given in Figure 3.1.

Tg do Ti5 s

Figure 3.1: Interpolating G spline for given data points and given tangent directions.

As expected, it is not possible to break apart sufficient conditions that admit a
solution to a local level. However, if the data are convex, we are able to determine the
allowed angles for ds, by the local data only. To be precise, at a point T3, the angle
between AT, and AT, gives a range for ds, that is further split into at most three
subangles. This partition depends only on data T's; 3, T3, o, ..., T3.3. All that is left
is to connect particular subangles in an allowable global choice by taking into account
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certain simple additional relations between subangles at different breakpoints. This is
carried out by a straightforward backtracking algorithm. Figure 3.2 shows three such
possible choices (gray). But if the data imply an inflexion point, the answer is not so
obvious, and is left to Subsection 3.4, as well as a precise explanation of the convex case.

Figure 3.2: The directions for tangents (gray area) that imply the existence of a G*
spline S for convex data.

The outline of this chapter is the following. In Subsection 3.2 a polynomial case
is considered and geometric conditions that imply the existence of the interpolant are
derived. Subsection 3.3 is devoted to a proof of two main theorems of Subsection 3.2. In
Subsection 3.4 the results are carried over to G cubic spline curves, and the conclusions
are presented as an algorithm.

3.2. Polynomial case

The first step to the G spline construction is a single polynomial case. So, m = 1 and
let P := P'. Further, let us shorten the notation by

— gl Al 1 ol sl R

The nonlinear part of the interpolation problem (3.2) is to compute the admissible pa-
rameters (t1,ta, ap, az) € U, where by (3.3)

Uu:= {(tl,tg), 0=ty <t; <ty <t3y:= 1} X {(04070[3); ag > 0, ag > O},

is an open set with the boundary oU, determined by t; = ;1 for at least one i € {0, 1,2},
ag = 0 or a3 = 0. Once these parameters are determined, the coefficients of P are
obtained by using any standard interpolation scheme componentwise.

To reduce the interpolation problem (3.2) to the nonlinear system for unknowns
(t1,t2, g, av3) only, divided differences that map polynomials of degree < 3 to zero are
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applied to (3.2). Therefore,

1
[to, to, b1, ta, t3|P = 0 = o to al0 + Z (Z E to) AT; ., (3.5)

j:l wo,3(
1
to, t1, 19, t3,63|P =0= —————d E AT 3.6
[0, 1,062,103, 3] w03t3 3+J — (; 0.3 Z) 3_tl> 7’ ( )

where wy 3 is defined by (2.5). Further, with linear functionals det (-, ATY), det (-, AT)
applied to (3.5), and det (-, ATYy), det (-, AT') applied to (3.6) one obtains

3 3 1 .
=1 (; wo,3(t:) ti — t0> et (AT, k) ,

det (do, AT) +

J

2 J
1 1
B det (dy, ATsr) + > (Z . ) det (AT;, ATy 1) = 0

w03(t0)
k=01,

wo,3(ts) wos(ti) t3 —t;
(3.7)
Let us recall that ¢ty = 0 and t3 = 1. After eliminating «q from the first and a3 from the
last equation, the system transforms to
1 1 to — ty
— 1+ +

Bl 20—t M AT )

A2

1 1 to — 11
tQ(]. — t2)2 tl(l — t1)2( + M2) + t1t2 ( + /'L2( + 2) Al) 07 (3 8)

A
<1+u1(1+/\) Al) =0,

and

1 to — 11
o0 =0 (t%(l o —m T Al)) ’ (3.9

(=t (1 —ty) 1 —
g = 52 t2 — tl tl(]_ — t1)2 t1t2 (1 + )\2) s (310)

where the new constants are defined more generally as

Mgy = D33301 Mg = D3y 330 L
- Dsy_330—2’ D3y o301
. det (d3r—3, AT3_5) . det (AT3_5, d3) (3.11)
HRA1 T et (d3r—3, AT3_3)’ H2L et (AT3-1,d30)’ .
S D3p3302 D3 2301
20—1 -—

;o 09 = :
det (dso—3, AT'3_3) # det (ATsp 1, dyr)

and D; ; is defined by (2.3). Note that the definition of the constants \;, y;, and ¢; in
this chapter is different from the one in Chapter 2. The constants again have a clear
geometric meaning, for example, D; ; is the volume of a parallelogram spanned by vectors
AT;, AT; and the other constants are the ratios of such volumes. Figure 3.3 illustrates
the sign change in \; and Ay (pq and 6;) as T3 (tangent direction dy) changes. Note also
that Aoy_1, Aoy depend on data points T'; only. Further, for the future use, we add the
following observation.
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A -[2
A1<0 y -
12>0 / /X1>0
T, Ts 4 _A_ZS Q
)t1>0
)L2>0
To T3

Figure 3.3: The signs of Aj, Ay in dependence of the position of T'3 (left), and the signs
of 11, d1 in dependence of the tangent direction dy (right).

REMARK 3.1. The constants pios_1, fioe, and sign dop_1,sign dop do not depend on the
length of tangents involved.

REMARK 3.2. The system of equations (3.7) could also be derived from Chapter 2
(eq. (2.6)) by replacing Ty, Ty with Ty + (t1 — to)odo, Ts — (t5 — ta)asds accordingly,
and passing to the limits t1 — to and ty — t5 as well as renumbering the remaining
points T; and parameters t;, © = 0,2,3,5, by 0,1,2,3. Some of the properties of the
nonlinear system (3.7) are thus inherited from Chapter 2 (eq. (2.10)- (2.13)), but not
all. In particular, the requirement c; > 0 has to be considered thoroughly.

In order to make the analysis bearable some restrictions on the data must be made.
Namely, A\, > 0, pp > 0 and 9, > 0, £ = 1,2, will be assumed for the convex data and
A1+ Ay < 0, & > 0 for the data that imply an inflection point. Since the individual pieces
will be composed in a spline curve, these assumptions are very natural as one can see
from Figure 3.3.

It is straightforward to compute the solution of the system (3.8) in a closed form by
using Grobner basis or resultants. But not all of the solutions will satisfy 0 < t; < t5 < 1.
Even if this is true, the solution may not produce positive ag and «z. This means that
we are dealing with a problem that is only partially algebraic. The following lemmas
reveal the possibility that P’ vanishes at t =0 or t = 1, i.e., ap = 0 or a3 = 0.

LEMMA 3.3. Suppose that Ay > 0. There exists a unique solution of the system (3.8)
and (3.9) such that 0 < t; <ty <1 and o = 0 if and only if Ay > 0 and py = ¢p2(A1, \2),
where

1—t t
Ao LI !

2 -ty
P2(A1, A2) = 2 ( = 2) —1,

\ 1 —1 \ to

2T T Al
t2 (1—1)?

and (t~1, 7?2) 18 the unique solution of the system
1—t 1—t A
L 14N, =2 14N, O<ti<ty<l (3.12)

Bty —t1) Ao
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LEMMA 3.4. Suppose that \y > 0. There exists a unique solution of the system
(3.8) and (3.10) such that 0 < t; < ta < 1 and az = 0 if and only if Ao > 0 and

pr = G1(A1, A2) i= @a( Ao, A1),

Proof. Let us prove Lemma 3.3. The proof of Lemma 3.4 is similar and will be omitted.
When oy = 0 the equations (3.8) and (3.9) simplify to (3.12) and
11—t t1

S W
8 -ty

S W
2 Y1 —t)?

From the first equation in (3.12), one obtains

4+ -1
fltz) = T+ -1

Since \; > 0, the function t;(¢3) has only one real zero ty = and one positive

1
real pole to = ——, where

1+ X\

714+ )\

1 1
< <
VIFN O V14+N

Moreover, t1(0) = t1(1) = 1, t1(ty) = to iff t5 = 1, and #;(¢2) is monotonically increasing.
Namely,

0< 1.

d (14 M\)ta(2 = 3ta + (14 A)t3)

ary 1) = (T+ )2 —1)2

>0, ty€(0,1].

The condition 0 < ¢4 () < ty < 1 is thus fulfilled iff ¢, € ( 1>. By substituting

1
T+ N
t1(t2) into the second equation in (3.12) it simplifies to
_ A1+ A)((1+ )\1)15‘3 — 1)2

(L+ )13 —1)3 ’

(t2 = 1)g(t2) =0, g(t2) == Ay
Now,

g (\3/%/\1) =X, g(1)=-1,

and the sign of the derivative

d L) = 6A1(1 4+ M) (1 4+ Ao)ta(te — 1)( 1+)\1)t§’— 1)
a7\ = (T A2 — 1)

is equal to the sign of 145 for ¢y € ( . Therefore a unique £, € (

1 1
— 1 ——1
. V1i+N ~)~ o VI+M )
that solves g(ty) = 0 exists iff Ay > 0. Then (tl,tg) = (tl(tg), tg) is the unique solution
of the system (3.12), which concludes the proof. O
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Let us now define two additional functions that will play a major role in the formulation
of main results, namely

A
B3( A1, Agy ) = 2/

M(Agpn =1 =T+ )’
)\2,&1()\2/,61(1 -+ 2)\1) — 2)\1)
)‘%(Azul - 1)2 .

The next lemma collects some of their properties that can easily be verified.

Ga( A1, Agy ) =

LEMMA 3.5. Suppose that Ay > 0, Ay < 0 and p; > 0. Then ¢3(A, A2,*) and
d4(A1, Ao, +) are monotonically increasing functions of py,

. 1 . 142\
lim ¢3(/\1>/\2>M1) =1 lim ¢4(/\1,)\2,M1) = -

p1—00 )\1 ’ U1 —00 )\% ’

and ¢3(A1, Az, +) < da(A1, Ao, +). Moreover ¢3(Ar, Mg, p11) = pig if and only if ds(Az, A1, pt2) =
f1, and ¢4()\1, )\2a/i1) = g if and only if ¢3(>\2, )\b/iz) = H1-

The following results now give sufficient conditions on data points and tangent directions
that imply the existence of the interpolant P. The first assertion covers convex data,
and the second one covers data with an inflection point.

THEOREM 3.6. Suppose that the data do, Ty, T+, T2, T3,ds satisfy
A >0, 0 >0, i >0, k=1,2.
If
0< 1 < ¢1()\1, )\2) and 0 < Mo < gbg()\l, /\2),

or
pr > d1(A, A2) and  pg > ga(Ar, M),

then a cubic interpolating curve P that satisfies (3.2) exists.

THEOREM 3.7. Suppose that the data do, Ty, T+, T2, T3, ds satisfy
)\1>0, /\2<0, 51>0 and 52>O.

If 1y > 0 and
P3(A1s Ao,y p1) < pro < Pa(A1, A, fi1),

then a cubic interpolating curve P that satisfies (3.2) exists.

REMARK 3.8. The symmetry of equations (3.8)-(3.10) implies that Theorem 3.7 holds
also if the role of A1, Aa, and py, po 1s reversed.

A geometric interpretation of Theorem 3.6 is shown in Figure 3.4. For any chosen
tangent direction d; in light (dark) gray area and any chosen tangent direction dj in light
(dark) gray area the interpolating polynomial curve exists. For geometric interpretation
of Theorem 3.7 see Figure 3.5. Choosing the direction dy defines the gray area where
the direction d3 must lie so that the existence of the interpolating polynomial curve is
guaranteed by Theorem 3.7.
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T2
________ $2(A1,A2)= 2
To 777 —a
$1(A1,A2)= pa
Figure 3.4: Geometric interpretation of Theorem 3.6.
$3(A1,A2, H1)= p2 Pa1,A2, p1)= pi2
Figure 3.5: Geometric interpretation of Theorem 3.7.
3.3. Proof of Theorem 3.6 and Theorem 3.7

The key part of the proof is the following observation.

LEMMA 3.9. Suppose that the assumptions of Theorem 3.6 or Theorem 3.7 are met.
Then the system (3.8)~(3.10) cannot have a solution arbitrary close to the boundary OU.

Proof. Since by Lemma 3.3 and Lemma 3.4 no solution can have aq or a3 arbitrary close
to zero, it remains to show that

At;:=t;,1 —t; > const >0, i=0,1,2.

Note that At; > 0, Z?:o At; = 1. To show that At; — 0 cannot happen, the following
possibilities need to be disproved:
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1. Aty, Aty > const > 0, and At; — 0,
2. Ato - 0, Atg - 0,

3. Aty > const > 0, Aty — 0:
(a) Aty > const >0, (b) Aty — 0,

4. Atg — 0, Aty > const > 0:
(a) Aty > const >0, (b) At; — 0.

Let us examine each possibility more precisely. Further, let us assume that the equations
(3.8) are rewritten in a polynomial form in all four cases.

Case 1. The equations (3.8) simplify to

_)\2M1At(Q)At2(AtO + AtQ)Q + O(Atl)
AlugAtoAtg(Ato -+ Atg)Q -+ O(Atl)

0,
0,

and clearly can not have a solution if At; — 0.

Case 2. In this case, the equations (3.8) simplify to

)\2At2 + AlAtg(/\Q,U/l - 1) + h.o.t. = 0,
—/\1At0 + )\QAtg(l - /\LLLQ) -+ h.o.t. = 0,
where ’h.o.t.” again stands for higher order terms that are small in comparison to the

terms left in expressions. If one determines At from the first equation, and substitutes
it in the second one, the equation reads

—Ato); + h.o.t. = 0.

This implies A; = 0, and this case is not possible either.

Case 3. From the second equation (3.8) it follows immediately that the case (a) cannot
happen. Therefore only (b), At; — 0, Aty — 0, has to be considered. The equations
(3.8) in this case simplify to

AlAtl()\zlLLl — 1) — )\g,ulAtg -+ h.o.t. = 0,
M (A2 2AL Aty — s At2) + hoot. = 0.

The solution of the dominant part reads

Aafiy
/\1 ()\2/11 — ].)

But At; > 0 and Aty > 0, which implies

Aty = Aty pio = @a(A1, Ao, ).

1
)\1>O,)\2>O:>/L1<O or ,Ul>)\_7
2

1
)\1>O,)\2<O:>/L1>O or /,Ll<)\—.
2
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Further, the equations (3.9)—(3.10) reduce to

)\2()\2/11 — 1) 1 ( 1 )
ap = —0 ! +0(—,
0 1)\2”1()\2/,61 -+ )\1()\2,&1 — 1)) At% Atg
N2 (Agpg — 1)2 1
043:52 1( 241 ) —|—O(1)

Aoptr (Agpin + A1 (Aap — 1)) Aty

Therefore the parameters o and ag are strictly positive if

1
< sign(Ag) i < sign(Ag)—,

: At
)\2,&1 <0 or Slgn()\g)m )\2

and the case At; — 0, Aty — 0 can happen only if

Aopiy <0 and  py = @a( A1, A2, 1), (3.13)
which disproves case 3. Note that by Lemma 3.5 the condition (3.13) is equivalent to

142\

0< o < —5—
Al

and  py = ¢3(/\2> /\1>M2)-

Case 4. From the first equation in (3.8) it is clear that case (a) is not possible. Therefore
only Aty — 0, At; — 0 need to be considered, and the equations (3.8) simplify to

o= A3 + 2At Aty + At2) + h.ot. = 0,
)\1M2At0 — )\QAtl()\lj,Lg - ].) + h.o.t. = 0.

The solution of the main part is

/\1,u2
/\2()\1#2 — ].)

Since Aty > 0 and At; > 0, one concludes

Aty = Aty,  p11 = Pa(Aa, M1, o).

1
M>0, >0 = pu <0 or ps > —

A
1
AM>0,0<0=0 <u2<)\—.
1
Moreover, the equations (3.9)—(3.10) simplify to
)\2()\1,u2 — 1)2 1
ag =0 2 +0(1),
0 ! Aiptz(A1pie + Aa(Arpe — 1)) Aty 1)
)\2()\1M2 — ].) 1 < 1 >
ag = —0 2 +0|— .
3 2/\1/12()\1/12 + /\2(/\1,[112 — 1)) At% Ato
For Ay > 0 and Ay > 0 the parameters oy and ag are strictly positive if
<0 2y
or —— —.
2 M A PN
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Similarly for \; > 0 and Ay < 0 the parameters oy and ag are strictly positive if

1 A
0<py<— or Lo < and —1< X N<0].

2
A A1+ Ao

Now by using Lemma 3.5 one concludes that Aty — 0, At; — 0 can happen for the
convex data if

po <0 and  pg = ¢g(Ae, A1, o), or equivalently

and  po = ¢3(A1, A, 1),

+ 2X9
0<p < —=5—
/’Ll )\%
and similarly for A\; > 0 and X\, < 0 if

1
0<pp < )\— and g1 = ¢4(Ag, A\, p2), or equivalently
1

p1 >0 and  po = d3(A1, Ao, i1).

That excludes the case 4 and therefore concludes the proof of the theorem.
O

REMARK 3.10. Lemma 3.9 can also be proved by passing to the limit mentioned
by Remark 3.2 in the discussion in Chapter 2 (Subsection 2.3). One can check that
only two possible cases At; — 0 are to be considered. The first one, Aty — 0 and

1 (1 +4/1

Aty — 0, implies M s < 0 and \y —» — + i +/\ )
M2 2/

¢3(A1, Aoy pu1). Similarly, the second one, Aty — 0 and Aty — 0, implies \Aa < 0

Mo 1+ VT

/\2,u1 H2
follows now from Lemma 3.3 and Lemma 3.4.

or equivalently ps —

too, and \y — or equivalently po — ¢4(A1, Ao, p1). The assertion

A standard degree type argument will now conclude the proofs. Let us first show that
the number of admissible solutions for the particular data that satisfy the conditions of
the theorems is odd. The data points are chosen as

ne(C) m () ne () me (). e

where s = 1 corresponds to the convex case and s = 0 to the other one. Further, the
tangent directions are chosen as

data 1: do = (2,3)7, dy=(2,-3)7, s=1,
data 2: do = (-2,2)7, d3=(-2,-2)7, s=1,

data 3: dy = (—=2,2)7, dy=(-1,2)7, s=0.
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M| Aa | pr | p2 | 01 | 02
datal| 2 2 31311414
data 2| 2 | 2 % % 111
data3 | 5 | =53 |35 |1]1

Table 3.1: The constants for the particular data.

tl tQ (&%) (0% multlpllclty
data 1 % % % % 3
data2 | 13—v3)| %2 |301+v3) |31+ V3) 1
data 3 | 0.450047 | 0.583425 | 12.1642 12.1828 1

Table 3.2: The admissible solutions for the particular data.

Table 3.1 shows the values of the constants (3.11) and Table 3.2 gives the corresponding
admissible solutions in . The interpolating polynomial curves are shown in Figure 3.6.

Since ¢1(A1, A2) = ¢2(A1, A2) = 2.80828 for data 1 and data 2, and

1 24
@3(A1; Az, ) = 10 — W6 < P2 =75 < a1, Ao,y ) = %5

for data 3, the assumptions of theorems are fulfilled.

A homotopy will now help us carry the conclusions from the particular case outlined
in Table 3.1 to a general one. Let us rewrite the system (3.8)-(3.10) as

F(t,a; X, 0, p, pe) =0, (3.14)

where

t= (t17t2)7 a = (0[1,0[2), )‘: ()\17)\2)7 6: (51752)'

Further, let (A, 9, i1, o) stand for general data, and (A", 8%, uj, p3) for the particular
case. A homotopy is chosen as

H(t,a;¢) == F (t,a; A((),6(¢), q1(C5 175 f11)5 G2 (G5 a3, p2)) 5

where

AQ) =0 =X+, 8(¢) =1 =)0+, m(C) == (G g, px),

and qx(+; uy, k) = [0, 1] — R is a continuous function that satisfies

@05 gy pie) = gy @e(1s gy p) = i, kB =1,2.
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Ty T T T, Ts

TO T3 To T3

To

data 1 data 2 data 3

Figure 3.6: Interpolating polynomial curves for the particular data.

It is clear that

(O] 2 min {1(1 = QAL+ Chel} = min {|Ag.[Aul} = const >0,

|0k(C)] = Juin {I(1 =€) + C|} = min {[05], [0x]} = const > 0.

Consider Theorem 3.6 first. For the first possibility 0 < pup < ¢r(A1, A2), data 2 are
appropriate since they satisfy 0 < p; < ¢r(A], A5) too. It is then clear, that there exists
a continuous piecewise linear function qx (¢, pf, pr), such that

0< Qk(€7ﬂz7uk) < ¢k()‘1(€)7 /\2(€))> C € [07 1]7 k= 1’ 2.

A similar conclusion follows for p > ¢r (A1, A2), with the use of data 1.
In case of Theorem 3.7 where A\; > 0, Ay < 0, we choose data 3 that satisfy the
required suppositions. By Lemma 3.5 functions

P3(A1(C); A2(€), 11(C)) < Da(Ar(C), Aa(C), pa(C))

cannot intersect for any ¢ € [0, 1]. If one defines

p1(C) = qui (¢, p, 1) = (1 — Q)i + Cpaa,

then there obviously exists a continuous piecewise linear function g9 (¢, 5, p2), such that

¢3(/\1(€)7 /\2(§)>:U’1(C)) < QQ(C;MSMU'Q) < ¢4(/\1(€)7 /\2(€)>:U’1(€))7 C € [07 1]’

Therefore H(t, a; () = 0 meets the requirements of Theorem 2.4 for any ¢ € [0,1]. As a
consequence, a set of solutions

V={t,a)clU; Ht a;¢)=0, (c€]0,1]}

lies aside from the boundary OU. More precisely, one can find a compact set K C U,
such that
VcKcu, VNoK =0.

Therefore the map H does not vanish at the boundary 0K, and Brouwer’s degree of
H on K is invariant for all ( € [0,1]. But since it is odd for the particular map
F(-, s X", 8%, p3, u3), equations F(t, a; A, 6, pu1, 12) = 0 must have at least one admissible
solution and Theorem 3.6 and Theorem 3.7 are proved.

Theorem 3.6 and Theorem 3.7 give only sufficient conditions that cover most often
met practical cases. Additional ones can be found in Table 3.3.
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01>0 <0 Ga(A1; A2, 1) < pra < @a(Ar, o)
52>O O<M1S% ¢3(A1,)\2,M1)<M2§0
A >0]6<0 H1 > %2 Ga( A1, Aoy 1) < pra < Pa( A1, A2)
Ay >0 52>0 MIS% ¢2(A1,A2)<M2
51 >0 o > % ¢4()\2,)\1,M2) < < ¢1()\1,)\2)
9y <0 M2§% H1( A1, A2) <
AM<0]6>0 p1 =0 B3( A1, Ao, ) < pao
Ay <0 52>0 )\%<,u1§0 ¢4()\1,/\2,,u1)<u2

Table 3.3: Conditions that imply the existence of an interpolating curve P too.

3.4. The G' spline curve

We tackle now the G*' cubic spline interpolation as introduced at the beginning of this
chapter, with tangent directions in (3.2) considered to be unknown. Each tangent direc-
tion ds, depends on one parameter only. If vectors AT'3,_; and ATz, are not collinear,
i.e., D31 30 # 0, we may express the tangent directions as

dy := do(&o) := (§o — 1)AT'y + §AT,
dsp = dse(&) = 030(1 = &) AT 31 + 03015 ATs, (=1,....,m—1, (3.15)
ds,, = dm(fm) = (1 - fm)AT3m—1 — EmAT s, o,

o 1= sign <Dk_1’k)
k= .
Dy k1

The tangents introduced in (3.15) are not normalized, but by Remark 3.1 this is not
important. Further, the definition (3.15) implies that some constants defined in (3.11)
become explicit functions of &. In particular,

with

1 D3y 3302
Oop_1 = Oop_1(&r_1) = ’ , 0=2.3,...,m,
2e-1 = Oaen (o) 1—&-1 | Dyp—a30-3
1 | D3p—230-1
Gop = Gop(€4) = — | 2222310 19 m— 1, (3.16)
& | Dse—13¢
1 1

show that requirements do0(&y) > 0, dop41(&) > 0 pins down & to (0,1) as can be seen in
Figure 3.7. The constants pgp_1, pioe turn out as

Dav—s 50—
proe—1 = for—1(§e—1) = 030-480—1020-1(§e—1) + %7 t=2,3,...,m,
3¢0—4,3(—3
Day_
o = piae(€0) = om0 (1= &) doe(€0) + Fr—rs (=1,2,..om =1, (3.17)
30—1,3¢
§0 1- fm

p = (&) = 757 2m = flam(§m) = .
0

1— Em
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Taki2

Tak-2

Tak-2

Figure 3.7: The tangent directions dsj (&) for & € (0,1) (gray area).

In view of Theorem 3.6 or Theorem 3.7 it is necessary to determine for which & € (0, 1)
the functions g and e 1 are both positive. Let us recall the notation

F@) = {fa); w €T}, [fHT):={x; f(z) €T}
Then
To = py ' ((0,00)) N (0,1) = (0,1),
Zo = pgg ((0,00)) Mgy ((0,00)) N (0,1), £=1,2,...,m—1,
Lo = Ham ((0,00)) N (0,1) = (0, 1),
are the required subintervals, with Z, # () still to be assured. Let us restrict the study

to the interval (0,1) only. It is easy to see that po, and pger; are both monotone as
functions of &. Moreover,

Dsp_9 3¢
lim =0 00, 1) = J
5110 ,u%(&) 3¢ " ,u%( ) D3€—1,3€7

D3y 130

—1,30+1 .

Doy lim pa2¢41(§e) = 0301 - 00.
30—1,3¢ &N

pr2e11(0) =
Therefrom it is easy to see that uy,' ((0,00)) N (0,1) = @ iff
o3¢ = —1, Dsp_93/D3p_13;, <0, (3.18)
and 415, ((0,00)) N (0,1) = 0 iff

o3r-1=—1, Dsp_13041D30-130 < 0. (3.19)
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Now, if conditions (3.18) and (3.19) are not fulfilled, each of the above intervals is
nonempty, but that does not imply that the intersection is nonempty too. In this case
it is easy to check that py," ((0,00)) N oty ((0,00)) N (0,1) = 0 if and only if

D3g_930-1D3¢3041 >0,  Dsp230D30 13041 >0, (3.20)
D3_930D3¢3041 <0, 03¢ 113y (0) < 03¢ 131 (0).

Let us summarize this discussion in the following theorem.

THEOREM 3.11. Suppose that data points (3.1) satisfy

Aop1 >0, Aog >0 or Aoy <0, £=1,2,...,m,
D3Z*1,3Z7£07 621,2,...,771—1,

and in addition none of the relations (3.18), (3.19) or (3.20) is fulfilled. Further, let
the tangents be given by (3.15), and the rest of the constants determined by (3.16) and
(3.17). Then for every & € Zy, £ = 0,1,...,m, the suppositions of either Theorem 3.6
or Theorem 3.7 are fulfilled on the (-th segment. Further, the algorithm ForwardSweep
determines the admissible intervals for parameters &,.

Only the algorithm is left to be constructed. We choose it to be a simple backtracking
procedure that traverses the data (3.1) in a forward sweep Ty — T3, and determines
an intermediate result

Egcz—g, €:0,1,...,m,

in such a way that for any &, € =, there exists a choice
giEEi, ’L':O,l,...,g—l,

such that (&, &1,...,&) is admissible as far as data T;, i = 0, 1,..., 3¢, are concerned.
A backward sweep T's,,, — T shrinks the temporary =,, { =m —1,m—2,...,0, so that
for any & € =, there exists a choice

fiEEia i:O,l,...,f—l,E—i—l,...,m,

such that (£o,&1,...,&y,) is admissible for all data. The induction step Z,1 — Z,
or Zy_1 — Zy has two forms (Figure 3.8), based upon Theorem 3.6 and Theorem 3.7
respectively. The case Ayp—1 > 0 and Ay > 0 is easy to handle since the restrictions on
tangent directions depend only on data points, more precisely on

D101 = 01(Aae—1,A2e), Do = Pa(Aar1, Aae), £=1,2,...,m.

The case \yy_1A9p < 0 is more complex since the existence conditions connect left and
right tangent direction. For this reason, we introduce two additional maps, R1,(Z) and
Ra.(Z), where 7 is an open or closed interval with endpoints @ and b. For Ay > 0
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Figure 3.8: Induction step: Agr—1 > 0, Ay > 0 (left), and Ayp_1 Aoy < 0 (right).

and Ay, < 0 the definition reads

Rie () :=Rae (L5 Aar—1, M)
0 b<0 Vv I=10,
. (63 (A2e—1, Aag, (a)4) , da (A2e—1, Aag, 0)) 5 b >0,

Rop (1) :=Rap (L5 Aar—1, M)

0: b<0Vax gt v =4,
= 9 (#3 (A2es Aae—1, (@) 1) s (Aae, Age—1,0)) 5 b < A;_l’
(¢35 (A2e, Aar—1, (a)4) ,00); b= )\21}—1’

and for Aoy < 0, A\yy > 0 is given as

Rae (1) :==Rap (15 Aag, Aap—1)
RQ,Z (I) = Rl,é ([; Ao, )\2571) .

Recall Theorem 3.7 and Lemma 3.5. The meaning of R, and Ry is the following. Sup-
pose that pias_1, foe are confined to intervals, i.e., pos—1 € (aq,b1) and gy € (az, by). Then
for every pos—1 € (a1,b1)NRay ((ag, b)) there exists at least one admissible gy € (az, ba).
Equivalently, for every ps € (a2,b2) N Ry ((a1,b1)) there is at least one admissible
for—1 € (ag,by) (Figure 3.9). Now, we can write the algorithm that should be called as

1. solution := (;
2. =Z:=(Iy);
3. ForwardSweep(m, =, 1, solution);

procedure ForwardSweep(m, =, ¢, solution)
1.V := ForwardSplit(=, ¢);
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M2
1+21
by e R —
__________________ (A2

1
%__/__?35%1;"3'_“?___/_41_
o

Figure 3.9: Geometric interpretation of Ry, and Roy for £ = 1. Every point (f1, p2) in

the gray area is admissible.

2. fori=1,7<length(V),i=1i+1

3. ==V
4. if ¢ = m then BackwardSweep(m, =, ¢, solution);
5. else ForwardSweep(m, =, ¢ + 1, solution);

procedure BackwardSweep(m, =, ¢, solution)

1. Z,.; := BackwardSplit(=, ¢);

2. if=Z,#0

3. if ¢ =1 then solution := solution U {Z};
4. else BackwardSweep(m, =, ¢ — 1, solution);

procedure ForwardSplit(=, ¢)

L V=0,7:= poe—1(Ze—1); T = 0;

2 if Ay—1 > 0 and My > 0 then

3 if Z < ¢14-1 then J := {(0, ¢a24)};

4. else if Z > ¢y 41 then J = { (¢24, ) };
5. else J :={(0, ¢24), (¢2,,00) };

6. else if Ayy_1 - Aoy < 0 then

7 T = {Rie(Z; Aae—1, X20) };

8. fori=1,i<length(J),i=1i+1

9 if 7 := py/ (J)NZy# 0 then V =V U{Z};
10. return V

procedure BackwardSplit(=Z, ¢)
T = pge(Ze); I = 0;
if Aoy_1 > 0 and My > 0 then
if 7 < ¢90 then J := (0, ¢1,0-1);
if 7 > ¢op then J := (¢1,-1,00);
else if Aar—1 - Ay < 0 then
T = Rap (Z; Aar—1, Aae);
return 1, (J)NZq;

No Ot e
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The result of the algorithm ForwardSweep is a set called solution. It may be empty,
if no admissible directions were found. If not, the elements of solution are vectors = =
(Z¢)y—y, where each = gives at least one admissible set of parameters § € Z, { =
0,1,...,m. A brief look at Theorem 3.6 reveals that the result in the convex case is

much stronger.

COROLLARY 3.12. Suppose that the assumptions of Theorem 3.11 hold. Let
Aop1>0, Aoy >0, (=1,2,...,m,

and let = be a vector of intervals returned by ForwardSweep. Any choice of parameters

(§07§17"'7§m)7 556557

18 admissible.

Even in the general case, there is a natural way to generate admissible choices, based
upon the following consequence.

COROLLARY 3.13. Suppose that the assumptions of Theorem 3.11 hold. Let = be a
vector of intervals, returned by ForwardSweep. For any v, 0 < r < m, and any chosen
& € 2., one can find at least one admissible selection (o, ..., &—1,&&t1y - Em),

f@ € =.

Let us now look at a graphical interpretation of the algorithm for convex and non-
convex data. In Figure 3.10 ForwardSweep for convex data is shown. Gray areas
show tangent directions that correspond to intervals for &,. If the direction such that
¢i(Aar—1,Ao¢) = H2e—o4; is in the interval obtained from the previous step the solution
branches out into two parts. The part of the solution that is further considered corre-
sponds to dark gray areas and the part of the solution that is excluded in BackwardSweep
corresponds to light gray areas. The final result of the algorithm for these data are five
different sets of intervals for &, shown in Figure 3.11. In Figure 3.12 ForwardSweep and
BackwardSweep for nonconvex data are shown. In BackwardSweep gray areas for tangent
directions are reduced to smaller ones in order to satisfy the result of the Corollary 3.13.
The final result is shown in Figure 3.13.
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Step 1:

Step 2:

Figure 3.10:

$2(A2k-1,120)= M2k

$1(A2k-1,A200= Hok-1

Graphical interpretation of the algorithm for convex data.
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Figure 3.11: All possible sets of intervals for &, obtained by the algorithm.
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ForwardSweep:

step 1: step 2:

Te
BackwardSweep:

step 5: step 6:

T6 T6

Figure 3.12: Graphical interpretation of the algorithm for nonconvex data.
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Figure 3.13: The result of the algorithm for nonconvex data.

Once the bounds = have been determined, one has to choose the actual tangent
directions. Let us pick one vector = € solution. Then choose r, 0 < r < m, and choose
&, € Z,. This means that =, has been in = replaced by [¢,,,|. Corollary 3.13 for this
new = does not necessarily hold. But a call

BackwardSweep(r, =, r, solution)

properly shrinks the intervals =,_1, =, 5, ..., =9, and so does the mirror image of Back-
wardSweep on the intervals =, 1, =,.,90,...,=Z,. This brings the property of vector =,
described in Corollary 3.13, to each of its parts (Z),_, and (Z),-,. So the whole step
can be repeated on both parts separately. This divide and conquer procedure can be
repeated until we are left with the admissible selection. It adds at most a factor O(m)
to the complexity of ForwardSweep. The algorithm is the following.

V:=1(0,0,...,0);
procedure DivideAndConquer(=, m, V)
1. choose r, 0 <7 <m, choose ¢, € =;;

2. V.= 57";

3. Z.=[6,6], = =0, 28 =

4. BackwardSweep(r, (Z¢,Z1,...,Z,), r, ZL);

5. BackwardSweep(m — r, (S, St - -+, =), m — 1, Z8);

6. DivideAndConquer(ZZ, r, (Vo, Vi, ..., V}));

7. DivideAndConquer(Reverse(Z%), m —r, (V,, Vi1, ..., Vin));

Vector V' is an admissible selection. Most often 7 is chosen as

m m

r = {—J, r= [—-‘, r=0 or r=m.
2 2

This procedure can also be used to check if the interpolation problem (3.2) and (3.3) has

a solution when the actual tangent directions are prescribed in advance. Then in each

step it only needs to be checked if the prescribed &, is in =,. There are many ways for

choosing tangent directions (choosing &, € =,). One can approximate them as

dy =dy (36, + (1= ), Z=(6.&) or 2.=[¢.&].
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where v, can simply be chosen as a constant or determined by some local approximation
scheme from the data (3.1). Namely, interpolating polynomials with respect to certain
parameterization like chord length or uniform may determine the directions in the fol-
lowing way. Let p, denote the interpolating polynomial through points T's,_;, ..., T's,_1,
Ts., Ts11,...,T51; at some chosen parameter values

Up—js -+« o5 UBr—1, UBry USp41s -+ -5 UBrtj-

Then ~, can be determined so that ds, is the derivative of p, at ug.. But it can happen
that v,.{ + (1 —,)¢&, falls out of the interval =,. If that happens «, must be chosen
in some other way, and in that case the admissible selection may depend on the r we
choose in the DivideAndConguer procedure.

Also, with the help of Z, one may look for a G? spline curve with ds, determined
implicitly as a solution of the system (3.4).

3.5. Examples

Let us conclude this chapter with some numerical examples. As the first example let the
data points be given as

To=(7,-24)", T,=(20,-18)", T,=(24,—6)", Ts5=(17,4)",

T,= (49", Ts;=(-159", Te¢=(-23,17)", T;=(-24,29)",

Ty = (—13,40)", To=(8,43)", Tio=(24,37)", T =(28,28)",

T =(38,25)", Ti3=(51,29)", Tu=(56,37)", Ti=(70,42)",

T = (83,39)", Tz =(91,25)", Ti5=(88,11)".

Further, let the first and the last tangent direction be prescribed as

| . | .
dy = —— (18,=2)7, dyg = —— (=13, -7)" .
0= oum 182 dis= el )

Algorithm ForwardSweep returns the set solution with two admissible vectors of intervals

solution = {Z, 2%},

=L .= {]0.625698,0.625698], (0.295393, 0.893511), (0, 0.634404), (0.355009, 0.987411),
(0,1),(0.00770851, 0.684009), [0.403509, 0.403509] }

=2 .= {]0.625698, 0.625698], (0.295393, 0.806989), (0.634404, 1), (0, 0.355009)
(0.0656466, 1), (0.00770851, 0.684009), [0.403509, 0.403509] }.

By the DivideAndConquer procedure where r is chosen as L%J and &, as the middle
value of the interval =, the admissible selection reads

o = 0.625698, & = 0.594452, & =0.317202, & = 0.67121, (3.21)
£4=0.500024, & =0.40432, & = 0.403500,
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for the vector =! and
€ = 625698, & = 0551191, & = 0.817202, & = 0.177505,  (3.22)
€, = 0.546479, & — 0.398809, & — 0.403500,

for the vector Z2. As described in the previous subsection the parameters & may also be
determined by some local approximation scheme. Table 3.4 shows selections obtained by
using interpolating polynomials of degrees 2, 4,6 based upon uniform and chord length
parameterization. Note that all selections are admissible. The best choice would prob-

uniform parameterization

‘ chord length parameterization ‘

‘ degree 2 ‘ degree 4 ‘ degree 6 ‘ degree 2 ‘ degree 4 ‘ degree 6 ‘

&o | 0.625698 | 0.625698 | 0.625698 | 0.625698 | 0.625698 | 0.625698
& 0.5 0.50634 | 0.480129 | 0.434402 | 0.483794 | 0.494794
&9 0.5 0.527159 | 0.563559 | 0.468864 | 0.466898 | 0.468311
&3 0.5 0.525746 | 0.524849 | 0.606469 | 0.531615 | 0.395345
&4 0.5 0.515385 | 0.518351 | 0.370748 | 0.398726 | 0.404478
&s 0.5 0.432277 | 0.414843 | 0.553885 | 0.55851 | 0.591284
&6 | 0.403509 | 0.403509 | 0.403509 | 0.403509 | 0.403509 | 0.403509

Table 3.4: Admissible selections determined by interpolating polynomials based upon
uniform and chord length parameterization.

ably be to compute the parameters so that the spline is not only G' but also G?. By
solving the system (3.4) one obtains
& = 0.625698,
&, = 0.38032,

& = 0.496926,
&5 = 0.646376,

& = 0.539584,
€6 = 0.403509.

€5 = 0.448597,

Figure 3.14 shows the comparison between the G? spline (dashed) and G! splines with
tangent directions given by (3.21) (light gray) and (3.22) (dark gray). One can check
that the difference between G splines obtained by interpolating polynomials of different
degrees with the same parameterization (uniform or chord length) is almost impercep-
tible. A comparison between G? spline (dashed) and G spline with tangent directions
obtained by quadratic interpolating polynomials is shown in Figure 3.15.

For the next example let the data points be given as

To = (—45,—14)", T, =(=36,—11)", T, =(—28,—14)",

T3 = (—18,-15)", T,=(-9,—-11)", Ts=(-4,-1)",
Ts=(9,3)", Tr=(21,00", Ts=(27,-8)", Ty=(37,-15)",
Ty = (48,—15)", Tu = (63,-10)", T = (65,-1)",
and the first and the last tangent direction prescribed as
1 T 1 T
dy=—=1(6,5)", dis=——(-5,8) .
0 \/6_1< ) 12 \/@( )
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Figure 3.14: A comparison between G? (dashed) and G' spline curves with tangent
directions given by (3.21) (light gray) and (3.22) (dark gray).

Figure 3.15: A comparison between G? (dashed) and G (gray) spline curves with tangent
directions obtained by quadratic interpolating polynomials based upon uniform (left) and
chord length (right) parameterization.

Algorithm ForwardSweep now returns the set with one admissible vector of intervals

= = {[0.682353, 0.682353], (0.187934, 0.976309), (0, 1),
(0.11408,0.908464), [0.296117, 0.296117]}.

By DivideAndConquer procedure with r chosen as L%J and &, as the middle value of the
interval =, the admissible selection reads

& = 0.682353, & =0.534038, & =0.5, & =0.541808, &, =0.296117. (3.23)

Selections obtained by using interpolating polynomials of degrees 2,4, 6 based upon uni-
form and chord length parameterization are shown in Table 3.5. Again all the selections
are admissible. By choosing

& = 0.682353, & = 0.410077, & =0.61075, &3 = 0.74838, &4 = 0.296117,

one obtains a G? spline. Figure 3.16 shows the comparison between G? spline (dashed)
and G spline (gray) with tangent directions given by (3.23). A comparison between G*
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‘ uniform parameterization

‘ chord length parameterization ‘

degree 2

degree 4

degree 6

degree 2

degree 4

degree 6

§o

0.682353

0.682353

0.682353

0.682353

0.682353

0.682353

&

0.5

0.423453

0.391853

0.510101

0.463167

0.468158

&2

0.5

0.51706

0.533981

0.547337

0.544507

0.557311

€3

0.5

0.454741,

0.451198

0.551852

0.542437

0.57377

€4

0.296117

0.296117

0.296117

0.296117

0.296117

0.296117

Table 3.5: Admissible selections determined by interpolating polynomials based upon
uniform and chord length parameterization.

Figure 3.16: A comparison between G? (dashed) and G* (gray) spline curves with tangent
directions given by (3.23).

spline (dashed) and G* spline with tangent directions obtained by quadratic interpolating
polynomials is shown in Figure 3.17.

For the last example the data points are chosen as

To=(—44,-12)", T, =(-42,-4)", T, =(-37,4)",

Ty =(—28,11)", T,=(-17,100", T5=(-11,2)",
To=(—2,—-4", T,=(1,-1)", Ts=@11,7", Ty=(19,12)",
Ty = (31,100, Ty =(37,3)", Tw=(40,-7)",

and the first and the last tangent direction prescribed as

dy = L (2,-10)".

dy = (0,1)", VT
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Figure 3.17: A comparison between G? (dashed) and G (gray) spline curves with tangent
directions obtained by quadratic interpolating polynomials based upon uniform (left) and
chord length parameterization.

Algorithm ForwardSweep again returns the set with one admissible vector of intervals

= .= {[0.714286, 0.714286], (0.247924, 1), (0.10384, 0.9800461),
(0.463815, 1), [0.178571,0.178571]},

and DivideAndConquer procedure gives the admissible selection

€0 =0.714286, & =0.623962, & =0.541943, & = 0.731908, &, = 0.178571.

(3.24)

Admissible selections obtained by interpolating polynomials of degrees 2, 4, 6 based upon

degree 2 | degree 4 | degree 6
&o | 0.714286 | 0.714286 | 0.714286
&1 0.5 0.47043 | 0.456363
& 0.5 0.485632 | 0.489807
&3 0.5 0.494949 | 0.509434
&4 | 0.178571 | 0.178571 | 0.178571

Table 3.6: Admissible selections determined by interpolating polynomials based upon
uniform parameterization.

uniform parameterization are given in Table 3.6. But interpolating polynomials based on
chord length parameterization do not give admissible tangent directions. Furthermore, a
G? spline curve can not be found. A comparison between the G spline curve with tangent
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directions given by (3.24) and the G' spline curve with tangent directions obtained by
quadratic interpolating polynomials based upon uniform parameterization is shown in
Figure 3.18.

Figure 3.18: The G* spline curve with tangent directions given by (3.24) (black) and the
G spline curve with tangent directions obtained by quadratic interpolating polynomials
based upon uniform parameterization (gray).







Chapter 4

Hermite geometric interpolation by
cubic G! splines

In this chapter Hermite geometric interpolation by planar cubic G! splines is studied.
Three data points and three tangent directions are interpolated per each polynomial
segment. Sufficient conditions for the existence of such G! spline are determined that
cover most of the cases encountered in practical applications. The existence requirements
are based only upon geometric properties of data and can easily be verified in advance.
The optimal approximation order six is confirmed, too.

4.1. Interpolation problem

The problem considered is the following. Suppose that 2m + 1 points and tangent
directions

Tz’ ERz, dz ERQ, TZ'7£TZ'+1, ”le2:1, i:O,l,...,Qm,

are given. Find a cubic G' spline curve S : [0,1] — R? with prescribed breakpoints

(t2:)i%0,
0=ty <ty < -+ <tlopo1 <tloy: =1,

that interpolates the data points T'; and tangent directions d; at parameters t;,

1
St)=T;, ——8(t;)=d;, i=0,1,...,2m, 4.1

where (f; 1), are the unknowns. Note that (4.1) makes sense even if S’ jumps at
the breakpoint t5; since the tangent direction is continuous. This interpolation scheme
is quite clearly local. Namely, the change of one point or one tangent direction affects
only those segments that the point or the direction belongs to. So all the analysis and
estimations can be done locally.
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For a motivation, let us consider some numerical examples. First, suppose that the
data are sampled from an exponential and logarithmic spiral

Fu(t) = exp (%) (COSt) L te0,3n],  fo(t) :=log(1+1) (g?;f) , t€0,4n],

sint

at equidistantly chosen parameters in the parameter domain. In Figure 4.1 interpolating
G! spline curves composed of five segments, i.e., m = 5, are shown for each curve f, and
f5. The parametric error estimates between f,, f, and their interpolants are

dist (S, f,) = 0.007915, dist (S, f,) = 0.051094.

Considering a single segment case, Table 4.1 numerically suggests that the approxima-

Figure 4.1: The interpolating G' spline curves S for data obtained from curves f; (left)
and f, (right).

tion order, measured in the parametric distance, is optimal, i.e., 6. However, the data

d2 dom-2

Tam-2

Figure 4.2: Cubic G spline curves S for given data points and tangent directions.

do not need to be sampled from smooth curves only, they can be provided in some other
way, maybe given by the user for design purposes, obtained from some other application,
etc. The data do not need to be convex either. Figure 4.2 shows some more examples
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Interval Approximation error Decay exponent
fi f fr f
[0,7] [33754x1072[22251 x 101 | / /
0,9] ]1.6644 x 1072 [ 1.0817 x 10°' | 6.71 | 6.85
[0,%2] [ 7.6630 x 1072 | 5.1067 x 10~ | 6.59 | 6.37
0, 2] 132233 x1073[22485x 1072 | 649 | 6.14
0,%2] 11.2017 x 1073 [ 8.8151 x 107% | 6.40 | 6.07
0,22] [3.7917 x 107* [ 28939 x 107* | 6.33 | 6.11
[0,75] 19.3807 x 107 | 7.2252 x 10" | 6.26 | 6.22
0,32] [ 15773 x 1077 [ 1.4194x 10* | 620 | 6.39

Table 4.1: The errors between curves f, and f, and their polynomial geometric inter-
polants.

and, as one can see, the spline follows the shape of the data quite nicely.

The next two theorems give the main results of this chapter.

THEOREM 4.1. Suppose that 2m + 1 points and tangent directions
Ti GRQ, dl ERz, Ti#TiJrl, ”dz”g = 1, ’i:O,l,...,Qm,

are given. If on each segment [top_o,tag], £ = 1,2,...,m, one of the sufficient conditions
prescribed by Theorem 4.10, 4.11, 4.13 or 4.15 is fulfilled, then a cubic G* spline curve
S that satisfies (4.1) exists.

THEOREM 4.2. Suppose that the data are sampled from a smooth convex reqular
parametric curve f : [a,b] — R? at parameter values s;, a = 89 < 81 < -+ < Sop, = b,
1

Ti: Si), di:,ilsi, i:,,...,m,
T &=t 0 1=

and let h := max{As; : i =1,2,...,2m — 1}. Then one can find constants hg > 0 and
C > 0 such that for allh, 0 < h < hg, a cubic G' spline curve S that satisfies (4.1) exists,
and approximates f with the optimal approximation order siz, i.e., dist(f,S) < C hS.

The outline of this chapter is as follows. In Subsection 4.2 a system of equations
is derived for a single segment case. The next subsection provides the conditions that
imply the solution to attain the values that are not allowed. These results together
with the number of solutions for some particular data lead to the existence theorems
of Subsection 4.4. They are proved in Subsection 4.5 by the help of convex homotopy
and Brouwer’s degree argument. The last subsection deals with asymptotic analysis and
contains the proof of Theorem 4.2.
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4.2. Single segment case

Since the G interpolation scheme (4.1) is local, all the properties can be determined
from the simplest case m = 1. So from now on to the end of this chapter we assume
m = 1. For m =1 let the spline S be denoted by P. The equations (4.1) simplify to

with 0 := ty < t; < ty := 1. One is thus left with twelve equations for eight unknown
coefficients of P, and four unknown parameters 1, ag, aq, and as.

REMARK 4.3. If the tangent directions are not normalized that does not effect the
existence of the solution of (4.2). Only the magnitudes of a;, i = 0, 1,2, change.

The first step is to separate the unknown coefficients from the rest of the unknowns.
For any t1, ag, a1 and o there exists a unique polynomial p; of degree < 5 that solves
the interpolation problem (4.2). But this p; will be of degree three, i.e., p; = P, iff the
coefficients at powers 4 and 5 are zero. This is true iff

[to, to, t1, t1, ta]ps = 0, [to, 11, t1, t2, ta]ps = 0, (4.3)

which gives the system of four equations for four unknowns t;, ag, a1, as, that must lie
in an open set

U = {tl, 0<t; < ]_} X {(04070[170[2); Q; > 0, 1= 0, ]_,2}

Establishing these parameters is the only nonlinear part of the problem. The coefficients
of P are then obtained by using any standard interpolation scheme componentwise.
Since tg = 0 and ty = 1 the equations (4.3) simplify to

Qp (03] (2+t1)
20 q d, — ATy — —— AT, =0 4.4
t% 0 + (1 — tl)t% 1 t:{) 0 (1 _ tl)g 1 ) ( )
(o7} Qg 1 (tl — 3)
d, + dy — ATy + 2" AT, — 0.
1-t)t  (1-t)? &0 -t

To simplify the analysis it will be assumed from now on that the points Ty, T'; and T’y
are not collinear. Using det (-, AT) and det (-, AT) on (4.4) one obtains

Q) aq 1
=9 det (dy, ATy) — ————— det (ATy, dy) + det (AT, AT,) = 0,
% Gt (dg, AT,) + — " det (dy, AT) — 201 o (AT, ATY) = 0,
15} (1 _tl)tl tzl))
(4.5)
% det (AT(), d1> -+ % det (AT(), dg) + L_g)?’ det (AT(), ATl) = O,
(1—t)t (1—t) (1—1t)

aq

(0] 1
Y et (dy, AT) — — 22 det (AT, dy) — — det (AT, AT;) = 0.
-7 (di, AT) 10— 0) (AT, dy) 7 (AT, AT)
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Let us define the constants that are determined by the data as

~det (do, AT)) _det (AT, d,)
YT det (ATo, AT,) 727 det (AT, AT,)’

e det (dy, AT) \ det (AT, ds)
57 det (AT, AT,) “*7 det (ATo, AT,)’

 det (dy, ATY) _ det (AT, dy)

M= et (ATo, AT, 1?7 det (AT, ATY)

(4.6)

Their signs have a nice geometric interpretation as one can see in Figure 4.3. Note
again that the definition of the constants A; and p; differs from that in Chapter 2 and
Chapter 3. With these constants, the equations (4.5) become

\
o N A3>0 , ’
<0 7 2,>0
A3<0 )Lg>0

‘ 12< 0 /(

ATy

N A1<0 A4<0 /(
S <0 H2<0 7
A1<0 A1>0 As>0 7 A4<0

#1<0 H2<0 = >0
//)L1>0\\ //)L4>0\\
7 m<0 >0y

Figure 4.3: Geometric interpretation of signs of the constants \; and p;.

F<t17 a) = F(th o )‘7 M1, ,u2) = (E(tla a))?zl = 07

where
Ftha)=n20 a1
1\, . 1t% Qt% (1—t1) (1—t1)2 )
o aq (2+11)
Kt a) = pup— + A — =0, 4.7
2(1 ) ,ult% 3t%(1—t1) t:f ( )
(6%) (03] (3 — t1>
Fy(ty, @) = iy + Ao - =0,
(1—1t1) (1—t)%t, (1—1t)°
1
F4(t1, a) = /\4 a2 - A e + = =

3
(1—1t1) (1—1)"t
Here @ := ()%, A := (\;)?_;. Moreover, if

/\1)\3 -+ )\2/111 7& O, )\2)\4 + /\3,u2 7é 0, (48)
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equations (4.7) can be rewritten as
g — (13 — 3t +2) Ay — 33
(tl — ].)2 tl ()\1)\3 + AQ/Jl)’
Cmti (=342 N

- : 4.9
! (tr = 1) t1 (M A3 + Agpn) o
= =B N = (= 1)
(i — 1) 83 (Moda + Agpta)
and 5 5 3 2
B4 (13 — 3t 4+ 2) A t—1 ty — 3) tiA
ity + (83 — 3t +2) A pe(t — 1) + (4 3)14:0, (4.10)

A1A3 + Aafig Aoy + Azfin
The only nonlinear part that remains is (4.10) which is a cubic equation for ¢; that can
easily be solved numerically. Since the unknowns must lie in ¢, the next lemma follows
directly from equations (4.7).

LEMMA 4.4. A cubic polynomial curve P that satisfies (4.2) does not exist in any of
the following cases:
1. )\QSO and )\120, 2. )\3§0 and )\420,
3. A3 <0 and py <0, 4. Mo <0 and py <0.
As can be seen in Figure 4.3 cases where one of \; is equal to zero are very exceptional
and for the sake of simplicity it will be assumed from now on that \; # 0, i =1,2,3,4.
The first step to the existence of P is to find the relations between the data that force

the solution of (4.7) to approach the boundary oU/. This analysis is given in the next
subsection.

4.3. Relations, implying the solution to approach
the boundary

If the solution (1, &) touches the boundary OU, it attains the values that are not allowed.
As it turns out this implies certain relations between data that could be used to avoid
the parameter choices that are not admissible. The next two lemmas reveal the relations
for t; — 0, 1.

LEMMA 4.5. Suppose that \; # 0, i = 1,2,3,4. Parameter t, tends to zero if

() 2X1 A2\
— =
K2 P2(A; H1 Nofil — Mg
and My > 0, and one of the three following conditions hold:
AL AA
A3 >0, A\ >0, —13<,u1 13, or
A2 A2
A
A3 >0, A\ <0, 13<,u1, or
A2
A
A3 <0, A\<0, — ! 3<M1-

A2
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Under these conditions Aga(A, 1) < 0.
LEMMA 4.6. Suppose that \; # 0, i = 1,2,3,4. Parameter t; tends to one if

O\ 12) 201 A3\
— =
e Aspiz — AoAy’
and A3\y > 0, and one of the three following conditions hold:
Ao\ A2
AL >0, A >0, —24<,u2 24, or
A3 Az
A2\
AL <0, A >0, 24<,u2, or
A3
Ao\
)\1<O, )\2<O, e 2.
A3

Under these conditions Ayp1(A, p2) < 0.

Proof. From the symmetry between \;, \s_;, i = 1,2, and pq, po, and the symmetry in
equations (4.7) it is enough to prove Lemma 4.5 only. If \jA3 + Aguy = 0, the first two
equations in (4.7) become

_—t%"—(l—tl)&l)\g )\3 _t1+2_0
(1—1t1)* M\ (1—t)* Ny 1] '

)

Therefore it is clear that ¢; cannot approach zero or one. The same is true when
XAy + Agpe = 0. Thus let us assume that conditions (4.8) hold. Equation (4.10) can be

rewritten as
2\ 2

A1A3 + Mgty e A3fho
and t; — 0 implies gy — @o(A, p1). Moreover,

+ O(tl) - 0,

. 2/\2 . 2)\1
lim (tag) = —————,  lim (fo) = —————
t11£n>0( 10[0) /\1)\3 -+ )\2/11’ t11£n>0( lal) /\1)\3 -+ )\2,[1117
A
- 20, = —— "2
t111£n>0 (tlc@) n )\2)\4 + /\3,[112 .

It is now easy to check that a is positive iff the conditions in the lemma are fulfilled,
and further that Ao (A, p1) < 0, which completes the proof. O

The relations implied by a; = 0 are given in the next lemma.
LEMMA 4.7. Parameter ag =0 if \; > 0 fori=2,3,4, and s = 1y(A), where

T()\Q, /\3)2(3 — 27—(A27 Ag))
(1 —7(A2, A3))2(1 + 27( N2, A3))

wQ(A) = )\4 > 0,

and T(Ag, A3) is defined as a unique solution t, of the problem

1 # 1 (1-t)2+t)
ti:idg, Ag) = ——L — — — =0, 0<t<l1. 4.11
g( 15 A2, 3) )\21_t1 )\3 tl ) 1 ( )
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Similarly, parameter ag =0 if \; > 0 fori=1,2,3, and uy = Y1 (A), where

7(A3, A2)%(3 — 27(X3, \2))

(1= 70w, )20+ 270 g))

wl (A) = )\1
Moreover, parameter a; =0 if Ay < 0, Ay <0, g > 0 and

" (B3 —=7(=A1, 1)) (=1, 1)?
(1= 7(=A1, )’

Proof. First let us prove that for Ay > 0 and A3 > 0, the equation (4.11) has a unique
solution. Since

fo = P3( A1, Ay, 1) = — > 0.

. . 1 . . 1
Erl%g(tl; A2, Az) = —sign (A_a) 00 = —00, grgllg(tls A2, Az) = sign (A—Q) - 00 = 00,
(4.12)
Ii (t1; Ao, A3) = si L1 lim g(t1; Ao, A\g) = —si L
tli@oog 1; A2, A3) = 8181 N s 00, tlljnoog 1; A2, A3) = —SIgn N s o0,

there exists at least one ¢; € (0,1) that solves (4.11). It is straightforward to compute
that when Ay = A3 the solution is unique, i.e., 7(Ay, A\3) := 2/3. Now, for Ay # A3 the
only possible solutions are

~ )\2()\3—)\2)—0%

tl - 1
()\3 - )\2)0-5

(13— X)) + (=1 £iV/3)os

i = 1 , 414
! 2()\2 — )\3)0‘§ ( )

(4.13)

Y

where

o = )\2()\3 - )\2) ()\2 - )\3 + )\3()\3 - )\2)) .

For A3 > \g it is clear that o is a real number, so solutions (4.14) are complex, thus
(4.13) is a unique admissible solution and 7(Xa, A3) := £;. For A3 < A, the function g
has three real zeros, but it follows from (4.12) that only one of them is in (0, 1), namely
T()\Q, )\3) = £1+.

Let us now analyse the case oy = 0. From the first and the third equation in (4.7)
one obtains

t3 1 3—2t
Aoy = —1 = — 4.15
20¢] 1 — tl’ 2 o (1 _ t1)7 ( )
and from the remaining equations
1—t)(24+1t 1—t)(1 42t
doay = EZ0EFE) -y QWA 2) (4.16)

ty 2

Therefore it follows that the system (4.15)—(4.16) has an admissible solution a; > 0,
ag > 0and t; € (0,1) iff Ay > 0, A3 > 0, \y > 0 and ps = 12(A). The proof for the case
as = 0 is symmetric to this one and it will be omitted.
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Suppose now that «; = 0. It is clear from (4.7) that neither A; nor A4 can be equal
to zero. From the first and the last equation in (4.7) one obtains

tt (b — 1)
p=——7—, Qg=——g——
AT Ve W
The remaining two equations then simplify to
 th+2 J151 3—1 2

=0, - = 0. 4.17
t? (tl — 1)2 )\1 (tl — ].)3 t%)\4 ( )

Since the solution must be in U, it is clear that \; < 0, Ay < 0, g1 > 0 and py >
1

0. Multiplying the first equation in (4.17) by —>(1 — ¢;) the equation rewrites to
1

1
g(t1; =M1, 1) = 0. Since —A; > 0 and pq > 0 there exists a unique 7(—Ay, p1) € (0,1)
that solves it. From (4.17) it then follows that

pa >0, g =P3(A1, Ay, 1), or equivalently  po >0, 1 = Ya(Ar, Ay, p2),
where 14 (A1, Ay, pt) := 13(Ag, A1, po). This completes the proof. O

The following properties of functions ¢; and v; will be needed.
LEMMA 4.8. If A > 0 then

A AL A2
A0 o < 22— (W) < =22 (4.18)
AQ )\2 A3
Ao Ao A A
S8 < B2 — (A ) < 2222 (4.19)
Az Az A2
Also, if X <0, then
ALA Ao
1 > — = = oA, 1) < — =, (4.20)
)\2 )\3
A2 A AL A
Mo > — 2 — (pl(A,/ig) < — ! 3. (421)
)\3 /\2

Furthermore, for Ay > 0, Ay > 0, A3 < 0 and Ay < 0 the following implication holds:

A1 A3 A2y PYY.VEER) NP VIR YOV
— — A . 4.22
> A2 - A3 < ealdpm) < Az - H1 = A3 (4.22)
LEMMA 4.9. For A > 0 functions 1; are bounded from below as
A A2\
B (N and 2L < y(N). (4.23)
A2 A3
Moreover, for A < 0
Pa(A) < Y3(A1, Ag, 1) and  p1(X) < ha(Ar, Ay, p2), (4.24)
2X1 A3 + A\
R Y Y] (4.25)
3H1
2M1 A3 + A2\
and g >0, > 2 41 Madajh = 1) <. (4.26)

Az
The proofs of Lemma 4.8 and Lemma 4.9 are elementary, but very technical. They

can easily be done by using a Computer Algebra system’s symbolic facilities, thus they
will be omitted.
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4.4. Main theorems

In this subsection sufficient conditions that imply the existence of a cubic geometric
interpolant P that satisfies (4.2) will be given. There are sixteen possibilities for the
signs of \; as shown in Table 4.2. Lemma 4.4 shows that for the last seven options
a solution of (4.7) does not exist. Other possibilities are considered in the following
theorems.

sign(M) |+ |+ | — |+ | —|—|—|—-]|—-
sign(Ag) [+ |+ |+ |+ | — |+ |+ ]|—|—
sign(Ag) |+ |+ |+ | = |+ |+ | —|+]|—
sign(A\g) |+ | — |+ | —|+|—-|—-|—-]| -

Table 4.2: Sixteen possibilities for the signs of A;.

THEOREM 4.10. Suppose that the data T;, d;, 1 = 0, 1,2, satisfy det (AT, AT4) # 0
and A > 0. If one of the listed cases

1. 1 > 77Z)1(A) and o > wg()\),

2. Ai—f < pa < 1(A) and py < a(A),

3. 224 < iy < y(A) and py < i(X),

A3
Jo =20 < < A0 and pa(X, ) < pp < Ua(R),

9. —/\i—i‘l < H2 < )‘i—i“‘ and @1 (A, p2) < p1 < 1(A),

holds, then the cubic interpolating curve P that satisfies (4.2) exists.

THEOREM 4.11. Suppose that the data T';, d;, i = 0,1, 2, satisfy det (ATy, AT;) # 0,
AN>0,i=1,23, and A\, < 0. If

p1 > Yi(A)  and  py > @(A, 1), or
A3
Ao

< <P1(A) and  py < @a(A, p),

then the cubic interpolating curve P that satisfies (4.2) exists.

REMARK 4.12. The case Ay < 0 and A\; > 0, © = 2,3,4, is symmetric to the one
considered in Theorem 4.11. The result is the following. If

pa > Pa(A) and  py > o1(A, p2), or
Aoy
A3

< pg < Pa(A) and  py < 1(A, pa2),

then the cubic interpolating curve P that satisfies (4.2) exists.
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THEOREM 4.13. Suppose that the data T;, d;, 1 = 0, 1,2, satisfy det (AT, AT;) # 0
and)\1>0, )\2>O, )\3<O, A < 0. [f

AMA A2 20 A
—E5 <y and oa(A ) < pp < S0 4 5
A2 A3 241

then the cubic interpolating curve P that satisfies (4.2) exists.

REMARK 4.14. The case where A\ < 0, Ay < 0, A3 > 0, \y > 0 is symmetric to the
one considered in Theorem 4.13, and the result is the following. If

Aoy
A3

A 2012
A3 ~AM

<z and  o1(A p2) < pr < 3 ,
2 M2

then the cubic interpolating curve P that satisfies (4.2) exists.

THEOREM 4.15. Suppose that the data T;, d;, i = 0,1, 2, satisfy det (AT, AT;) # 0
and \y < 0, \y <0, py > 0. If one of the following cases holds,

1. A >0, A3>0, po>1s3(A, A\, 1),

2. %<0, A3>0, 0<py <A iy > ahg(A\, My, pia),

3. x>0, A3<0, 0<pg <24 iy > ahy(A, Ay, pia),

4. A2 <0, A3<0, pg> _)\;_:\3’ V2, 1) < pg < P3(A1, Ag, 1),

INPYSVED N
5. A2 <0, A3<0, 0<py < —’\2‘3, ! 3,\‘;:12 L < g < P3( A1, Mgy ),

then the cubic interpolating curve P that satisfies (4.2) exists.

REMARK 4.16. The constants X, p, and g change if lengths of d; change, but all
the relations in Theorems 4.10—4.15 remain the same.

These theorems provide us with sufficient conditions that imply the existence of the
interpolating polynomial. If none of these conditions is fulfilled the number of solutions
is even, in most cases zero. Let us take for example Theorem 4.10 and choose data so
that \; = 1,7 =1,2,3,4, and (u1,p2) = (3,1), (2,3), (0,£3), (£3,0), (—=3,£3). In all
of these examples the data do not satisfy any of the conditions of Theorem 4.10, and
since the solutions can be computed analytically, one can easily check that there is no
solution in Y.

Proofs of these theorems will be made in two steps and will be given as the next
subsection. First the existence of the solution will be proved for the particular data. In
the second step conclusions will be carried from the particular case to a general one by
a homotopy and Brouwer’s degree argument.
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4.5. Proofs of main theorems

Step 1: Particular cases

Let the points be chosen as
To=(-1,-1)", T,=1(0,00", Ty=(1,-1)7, (4.27)

and the tangent directions given in Table 4.3. Tables 4.4 and 4.5 show the constants for
this data, and Table 4.6 gives the admissible solutions (¢;, @) € U. Note that there is a
unique admissible solution in all the cases (Figure 4.4).

do d, d,
data 1 (3,5)1 (2,0)" (3,—5)T
data 2 (1,3)" (2,0)T (1,-3)T
data 3 | (=0.5,1.5)T | (2,0)7 | (=0.5,—1.5)7
data 4 (3,5)7 (2,0) (5, —3)"
data 5 (1,3)F (2,0)" (=7,9)7
data 6 (2,4)T (0,-2)T (1, 1)T
data 7 (7,5)T (2,0)T (7,—5)"
data 8 | (1.8,—-0.2)T | (0,2)7 | (41,-39)7
data 9 (3,17 (—2,0) (3,—1)T
data 10 | (1.5, —-0.5)7 | (=2,0)" | (11,-9)7

data | A | Ao | Az | Ay | | po
1L [ 1] 1 ]1]1]4]4
2 |11 ] 1]1]2]2
31111334
4 11 ]1]-1]4]14
5 |11 ]1]-1]2]-8
6 |1 |1 ]-1]-1]3]0
7 |-1] 1|1 ]-1]6]6
8 |-1]-1] 1 [-1]08]40
9 |-1|-1]-1]-1]2]2
10 |-1|—-1[-1[-1]05] 10

Table 4.4: The constants for the particular data.

Step 2: Homotopy

In order to prove Theorems 4.10, 4.11, 4.13 and 4.15 one must show that the system
(4.7) has a solution (¢;,«@) € U. The conclusions for the particular data outlined in
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data | ¥1(A) | ¥a(A) | p1(A p2) | 02(A ) | ¥3(A, )
1 [28571 ] 2.8571 / / /
2 | 2.8571 | 2.8571 / / /
3 | 2857128571 —4 —4 /
4 ]28571 / / —2 /
5 128571 / / —2 /
6 |/ / 2 -3 /
7 / / / / 4.1724
8 / / / / 36.2152
9 / / 2 2 12.96
10 / / 2 / 63.1769

Table 4.5: The constants for the particular data.

data t Qp aq Qo
1 T 1 £ 1
2 5 10 5
5 1 1 7 1
2 3 6 3
3 1 3 11 3
2 3 6 3
4 10.3624 | 1.2392 | 0.9961 | 0.3470
5 0.1902 | 3.8203 | 3.1384 | 1.6290
6 0.4462 | 3.0658 | 2.0574 | 6.1521
7 0.5 0.8 0.1 0.8
8 0.6860 | 4.8270 | 0.0169 | 0.1849
9 0.5 4 1.5 4
10 | 0.7620 | 13.2434 | 0.7134 | 1.0338

Table 4.6: The admissible solutions for the particular data.

Table 4.5 will be carried to the general case by the use of the homotopy and Brouwer’s
degree argument. Let the general data be denoted by (A, p1, pe) and the particular one
by (A%, ui, p3). A homotopy is defined as

H(t,a;C) == F (t1, a; A(C), p1(¢), p2(Q))

where
AQ) =1 =N+ A Q) = q(Cpi, i), 1=12
and ¢; := q;(+; u;, pi) : [0,1] — R will be chosen later on as continuous piecewise linear

functions that satisfy ¢;(0; u;, i) = w7, ¢i(1; s, ;) = pi. The idea of the proof is to
connect particular and general data so that a set of solutions

Vi=A{(t1(¢),a(Q)) e Us  H(t:((), 2(¢);¢) =0, ¢ €[0,1]}

stays away from the boundary oU. If this can be done, one can find a compact set
K C U, such that
VcKcU, VNoK =4. (4.28)
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Therefore the map H does not vanish at the boundary 0K, and Brouwer’s degree of H on
K is invariant for all ¢ € [0, 1]. But since it is odd for the particular map F'(-, ; X*, uf, p3),
equations F(t1, a; A, 1, pi2) = 0 must have at least one admissible solution.

One is now left to show how to choose ¢; and ¢y, and to prove that (4.28) holds.
Namely, it must be shown that solutions of H(#1(¢), @(¢); () = 0 satisty

t1(¢) > const > 0, 1—1t(¢)>const >0, «;(¢)>const >0, i=0,1,2, (4.29)
for all ¢ € [0, 1]. The inequality

|IAi(Q)] > min}{|(1 — ON 4 CN| = min {|Af], | \i|} > const > 0

¢elo,1

will be fulfilled, and the results of Lemma 4.5, Lemma 4.6 and Lemma 4.7 will be the
main tool in the proof of all four theorems. Each of them will be analysed separately.

Theorem 4.10: There are five cases to be considered. Choosing data 1, 2 or 3 as
particular data yields A(¢) > 0, and thus «;(¢) cannot approach zero, i.e., a;(() >
const > 0 for all ¢ € [0,1]. In the first case where p; > ¥;(X), i = 1,2, choose data 1 as
the particular data. Since uf > ¢;(A*) and 1; does not depend on p;, there obviously

exists ¢;, such that
1i(Q) > ¥i(A(C)), C€[0,1], i=12

Therefore a(¢) and az(¢) cannot approach zero for any ¢ € [0, 1], and by (4.23) the
parameter ¢;(¢) cannot approach zero or one either.

A A

Suppose now that 2= < iy < 11 (A) and 15 < ¥5(A) (case 2) and choose data 2. There
2

clearly exists go that satisfies u2(¢) < 12(A(C)) for every ¢ € [0, 1]. Moreover, from (4.23)

it follows that % < 1(A(Q)), so one can find ¢; such that
2
MOMQ)
o) <O <ni@Q), ce.]

Now, it is clear that ag(C), ae(C),t1(¢) > const > 0 for all { € [0, 1]. Moreover, by (4.19)
the parameter ¢;(¢) cannot approach 1 either which completes the proof. The case 3 is
symmetric to the second one and will be omitted.

Consider now the case 4 and choose data 3 that satisfy

_ AT ATA3
A3 A3

*

<pp <

and (A7, 1) < p1z < ha(A7).

There obviously exists ¢; such that

MOMQ
WO

Since by (4.18) and (4.23)

A1(€)As(¢)

0 ¢ €0,1].

m(¢) <

_2QM(6) _ A (G)M(C)

Pa(A(C), 1 (€)) < A3(Q) A3(¢)

< 1/12()\(0), C € [07 1]7
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there exists g, that satisfies ¢>(A(C), () < 2(€) < $a(M(Q). Thus ap(C), H(C) >
const > 0. Further, by (4.19) and (4.23), as(¢), 1 — t;(¢) > const > 0, and (4.29) holds.

The case 5 is symmetric to the case 4 and will be omitted. This completes the proof of
Theorem 4.10.

Theorem 4.11: Particular data must be chosen so that \;({) > 0, i = 1,2,3, and
A4(€) < 0. It is then clear that there exists a constant "const’ such that «;({) > const > 0,
i =0,1, and 1 — #;(¢) > const > 0, no matter how we define ¢; and ¢,. By (4.23),

% < 1(A(C€)). Now, for the first case choose data 4, define ¢; so that py(¢) >
2
1(A(C)), and then choose such gy that ps(¢) > wa(A(C), u1(€)), ¢ € [0,1]. In the second

case choose data 5, define ¢; so that

A1 (O)As(6)
A2(C)

and choose such g¢o that us(¢) < @a(A((), 11(¢)). Now, (4.29) obviously holds and
Theorem 4.11 is proved.

Theorem 4.13: Let us choose data 6 as the particular data. Since A;(¢) > 0, A\2(¢) > 0,

A3(¢) < 0 and A\y(¢) < 0 it is clear from Lemma 4.7 that «;({) > const > 0, i =0, 1,2,

A (OAs(0)
A2(¢)

< M1(C) < @Z)l()‘(C))’ g € [0’ 1]a

for ¢ € [0,1]. Let ¢; be chosen in such a way that — < p1(Q) for ¢ € [0, 1].

By using (4.22) one can find ¢y that satisfies

~ A (OA(Q) >\2(C)>\4(C)+2)\1(C)>\4(C) _ A2(Q)A(C)
A3(€) A3(€) 11 (¢) As(C)

Therefore ¢;(¢) cannot approach zero for any ¢ € [0,1]. Now, it can easily be proved
that 111(¢) > @1 (A(C), n1(€)), thus the parameter t;({) cannot approach 1 either and the
proof is completed.

Theorem 4.15: Particular data must be chosen so that A\;(¢) < 0 and A\4(¢) < 0. Then
it is clear that «;(¢) > const > 0, i = 0,2, for all ¢ € [0,1]. In the case 1 choose
data 7. It is clear that t1({) cannot approach zero or one. The only problem could be if
a1(¢) would go to zero. But for ¢;(¢; pf, 1) = (1 — Q)ui + Cua, and go chosen so that

p2(C) > ¥3(A1(C), Aa((), 1(¢)), this cannot happen. N
In the second case choose data 8 and define ¢; so that 0 < u1(¢) < 71()?)(5(0
2

1—t1(¢), t1(¢) > const > 0 for all ¢ € [0, 1]. Choosing ¢ as in the previous case completes
the proof. The next case is symmetric to this one and will be omitted.

< pa(A(C), 11(€)) < pa2(C) <

. Now,

In the case 4 choose data 9 and ¢; so that u(¢) > —%. Now, by (4.20) and
(4.24), :
a0, 1(€)) < =228 and (M) 1 (0) < aMOM(O, (O

So there exists go such that ©o(A((), 11(¢)) < p2(¢) < ¥3(A1(C), Aa(C), 11(¢)), and thus
t1(¢),a1(¢) > const > 0 for ¢ € [0,1]. The parameter t;(¢) can approach 1 only for
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pa(C) > —%{\5@, but in this case, by (4.21), v1(A(C), ua2(C)) < _%’ .
1 —t1(¢) > const > 0 for ¢ € [0, 1].
_M(OAs()

For the last case choose data 10 and ¢; so that 0 < u1(¢) < . Moreover, by

A (C)
(4.25), g2 can be chosen so that

221 (€)A3(€)A4(€) + A2(G)As(G)pa (€)
As(¢)pa(C)

It is clear that ¢;(¢) > const > 0 and «4(¢) > const > 0 for ¢ € [0,1]. But, by (4.26),
11(€) > p1(A(C), 2(€)), so 1 — t1(¢) > const > 0 too and the proof is completed.

< p2(C) < P3(Ai(€), Aa(€), pa(€))-

4.6. Approximation order

In this subsection Theorem 4.2 will be proved. Recall the notation declared there. One
needs to show that there exists hg > 0 small enough and a constant C' > 0, so that for
every h = m?XASg, 0 < h < hy, a G' spline exists as well as

dist(f, 5) = dist (£, 8oy = inf max | £(1) = S(O(0)] < O1°, (4.30)

where 6 : [a,b] — [0,1] is a regular reparameterization. Since

dist(f, S) < max {dist(f,S); (=1,2,...,m},

S90-2,52¢))
it is enough to analyse the polynomial case m = 1 only. Again, for m = 1 let the spline
S be denoted by P. Without losing generality, one can assume a = 0, f(0) = (0,0)7,
F(0) = (1,0). Further, let h be redefined as h := sy — sq. For h small enough, f can
be parameterized by the first component,

S 1 " 2 1 3 3 4 "
£6)= (i)« 96 =300 + P05+ O (1), /0) 0,

Moreover, let n; := s;/h, i = 0,1,2. By Remark 4.3 the tangent directions can be
redefined as d; = hf'(hn;), i = 0,1,2. Since f is convex, det (T, T1) # 0 and constants
(4.6) are well defined. It is straightforward to compute

_l=m

T i
A = + O(h), M= + O(h), A3= + O(h),
' I—m () ? IL—m () ’ T ()

and the nonlinear system (4.7) becomes

5 1
F(tl,a;)\,1+—,1+

ol m) +O(h) =0, (4.31)
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m m l—m 1—mn
L—m’1=m" m = m
the limit h = 0 is t; = m, oy = 1, 2 = 0,1,2. But unfortunately, the Jacobian at the
limit solution is singular, and one can not make use of the Implicit Function Theorem.
To show that the solution exists also for all A small enough Theorem 4.1 will be used.
There obviously exists such hg that A > 0 for all 0 < h < hg. With some elementary
mathematics one can prove that the inequalities

where X :=

It is easy to check that the solution at

1+ L su(), 1+

M ’ L—m > 92

hold. Furthermore, .

thus hgy can be chosen so small that p; > 1;(X), 7 = 1,2, forall 0 < h < hy. The existence
of the solution is now guaranteed by Theorem 4.10 (case 1), which also shows that this
is probably the most important existence result. The first part of Theorem 4.2 is thus
proved.

From the previous analysis one can conclude only that the solution is of the form
t1=m+0O(h) and a; = 14+0O(h), i = 0,1,2. But to prove that the approximation order
is optimal, a more precise expansion is needed. It is enough to study only the unknown
difference t; — n; as a function of h. So we may assume from now on that ¢; is given and
m is unknown. Let us introduce new unknowns € = (&)L, by

pi =t1+h&t(t — 1),
d d
Oéi:1+hfla(t(t_1)) +h2§z‘+2a(t(t—t1)(t_1)) , 1=0,1,2.

t=t; t=t;

Since 0 < t; < 1, the change of variables (u1, ag, aq, ) — & is one to one. Now, the
system (4.3) can be rewritten in an equivalent form, with divided differences replaced
by their linear combinations, i.e.,

[to, to, t1, 11, 2] P =0, [to, to, t1,t1, 2, t2] P = 0. (4.32)
The first and the third equation read
§3— &2 I (1 —t1)& — &+ t1&a 3

- Y - 07
tq t1(1—t)
therefore a solution exists iff &, = &3 = &. The remaining two equations then expand as
1
o1 (12 (67 +26) y"(0) + &y(0)) +y(0)) + O (h) = 0, (4.33)

120 (60y'(0)€7 + 20 (662" (0) + y'(0)) & + 602y (0) + 4 (0)) + O (h) =

Since the first equation in (4.33) is linear in &, and y”(0) # 0, the system can be reduced
to a cubic equation

y"(0) 5 y(‘”() y@(0)  2y®(0)? y®(0)  y®(0)yW(0) B
e (N ) e (e ) O =0
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which always has at least one real solution &;. Therefore, by a backward substitution,
(4.32) has a real solution £ for all h small enough, and the solution satisfies £, = &3 = &,.
So, if we define
p(t;€) =t + h&t(t — 1) + h* &t (t — )t - 1),
then
_:U'(tz‘;é.)a Q; :,U/,(tz‘;g)a 1=0,1,2, M(O;f) =0, M(l;g) =L

Let us now estimate the error ||P o6 — f|| for some regular reparameterization 6 that
satisfies

(Po®)(s;) = f(si), (Po0) (si)=f(si), i=0,1,2. (4.34)
Now,

[Pob— fl| <[|Pob—pl+I[p—fl

where p denotes a polynomial of degree < 5 that satisfies p(s;) = f(s:), p'(s:) = f'(s:),
i =0,1,2. Since f is smooth, it follows from Newton’s formula that ||p — f|| = O (h°),
but ||P o 6§ — p|| = O (h®) if the derivatives of Pof up to order six are bounded as h — 0.
The interpolant P = (Py, P,)" can be given as

2 L1 Ty,-T,
P(t) = Lio()T; + t - ; S
( ) Z 72( ) wo,z( ) (; wo,z(ti) ty — 1, wo,g(tz)

1=0

=P (t’ (tO’ TO)) (tlﬁ Tl)) (tQa T27 O[ng)) ;

S t—t

where £, 5(t) =

are the Lagrange basis polynomials, and wy > is defined by

(2.5). More preéi:sg7f;i o
Py(t) =P (& (Lo, hi(to; €)), (tr, ha(ty; €)), (tz,/w(tz,ﬁ) hii!(t2;€))) = hyu(t; €),
Py(t) =P (t; (to, y(hulto; €))), (1, y(hpu(ts; §))), (b2, y(hualte; €)), hyd' (t2; €)y' (hualtz; €)))

1
=P (t; (to, 5"(0) )Rt + O (h?) (tl, "(0)h*t] + O (h3)) (4.35)

3

<t2, %y”(())hzt% + O (R) ,y"(0)h*t; + O (hg))) = %y"(O)th2 +h? Z ci(h)t,

i=0
where ¢;(h) = O(1). If we define § := P!, then the conditions (4.34) are clearly fulfilled,
and 0 is a regular reparameterization since

Pi(0) = hu(0;€) =0, Pi(1) =hu(l;€) =h, Pi(t)=ht+0O(h%).

As already observed in [4], to show that the derivatives of Pyo P, " are bounded as h — 0
it suffices to see that P/(t) = ch+ O (h?), ¢ # 0, and

PP =0 (), i=1,2, k=2.3,...,6.

7

But, this follows directly from (4.35). Therefore the relation (4.30) holds and the proof
is completed.




4.6 Approximation order 73

Tl dl T1 dl Tl dl
d0 do dO
To T, To T, To T2
d2 d2 d2
data 1 data 2 data 3
Ty dy
T, d
1 1 Tl
dO dg
To T, dy
do dO
T T. dy
’ : d2 To T
data 4 data 5 data 6
Tl dl T dl dl Tl
1
To do T2 To T d
dp T, do 2
d
To dO 2
data 7 data 8 data 9
dg Ty
T,
TO dO d2
data 10

Figure 4.4: Cubic Hermite geometric interpolants for particular data points defined by
(4.27) and tangent directions given in Table 4.3.







Chapter 5

Asymptotic analysis

From the cubic case considered in Chapter 2 one can conclude that in general the non-
linear system of equations (1.3) is impossible to analyse without some additional re-
strictions. In this chapter the asymptotic approach is applied which means that the
data points are sampled from a smooth regular convex planar parametric curve. The
conjecture that a parametric polynomial curve of degree < n can interpolate 2n given
points in R? is confirmed for n < 5. This conclusion also implies the optimal asymptotic
approximation order. More generally, the optimal order 2n can be achieved as soon as
the interpolating curve exists.

5.1. Asymptotic approach

Recall the interpolation problem (1.3) introduced in Chapter 1. Let us assume that the
points T’y are sampled from a smooth regular convex planar parametric curve

f:[0,h] — R

The length of the parameter interval h is supposed to be small enough so that a local
expansion of f around 0 can be applied. Since affine transformations of the points T

do not change the solution ¢ of (1.3) one can assume f(0) = (8) and f'(0) = ((1)), and

parameterize f by the first component

where y expands as

1 1 _ . n
y(a) = 30 00 + P (0 + -+ ey N0+ O (5.1)
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The curve is assumed to be convex, which implies y”(0) > 0. The values of f at small
values of h will be considered, therefore the coordinate system needs an appropriate
scaling which is done by the matrix

) 1 2
Dh = dlag (E, W) .

Now let Ty be the points on the curve f, taken at different parameter values in [0, h].
Then for some 7y,

No = 0< m<:-<MNMopog < MNop—-1:= 1, (52)
the data points are chosen as Ty = Dy, f(n,h). Their expansion in h is
Te
Ti= |~ 0=0,1,....2n — 1. 5.3
14 chhk 2775 ’ y L y 4T ( )
k=2

Here, the constants ¢, depend on y, but not on 7, or h, i.e.,

2 yW(0)
= — k=23,...
Ck k! y,,(()) ) )’

5.2. Nonlinear system

The system of equations (1.3) should determine the unknown P,, as well as the param-
eters t € D,,. But the two tasks can be separated if one can provide enough linearly
independent functionals, depending on ¢ only, that map P,, to zero. Divided differences,
based upon > n + 2 values, are a natural choice. Let us apply the divided differences

[tjflatja"'athrj]a j:1,2,...,n—1, (54)

to both sides of (1.3). Since deg P, < n, the left side vanishes, and so should the right
one. But the ¢, are distinct and this condition becomes

n—+j
T, .
Z"ﬂ'—:o’ j=1,2,....n—1. (5.5)
T o=t
m;;’ézl

This nonlinear system depends on the data T, and the unknowns ¢ only. For each j it
provides two equations based upon the first and the second component of the data. The
solution of the system (5.5) may or may not exist. The difficult part of the interpolation
problem is to find it. If the unknowns ¢ have been already determined it is straightforward
to obtain the polynomial curve P,. One only has to take any n+ 1 distinct interpolating
conditions in (1.3), and apply any standard interpolation scheme like Newton or Lagrange
to P,, componentwise.
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5.3. System of equations in asymptotic form

Let us now analyse the system (5.5) with data points given by (5.3) and A small enough.
As far as the existence of the solution is concerned, one has to show that there exists
ho > 0, such that the system (5.5) has a solution ¢ for all A, 0 < h < hy. The solution
is easy to guess at the limit value h = 0, i.e.,

t=mn:= )" (5.6)
. _ ("
/111—>I% T = (n?)

i 0 .
[nj—1777j7"'ann+j]n(772>:(0)7 j:l,?,...,n—l.

In view of (5.6) it is important to study the unknown differences

since

and

ng—tg, 621,2,...,271—2, (57)

as functions of h. It does not matter if (5.7) is studied with 7, given and ¢, unknown
or vice versa. From now on it will be simpler to assume that ¢ are given parameters
and 7 are the unknowns, as in [37]. Furthermore, the system of equations (5.5) will be
rewritten in an equivalent form, with divided differences (5.4) replaced by their linear
combinations, i.e.,

[thtla"'7tn+j]7 j:]_,Q,,TL—l (58)
With the notation (2.5) the system (5.5) is transformed into
n+j 1
. Ty=0, j=1,2,...,n—1. (5.9)
= Wont;(te)

Of course, the limit properties of the system are preserved, since the linear transformation
from (5.4) to (5.8) is invertible.

Unfortunately, the implicit function theorem can not be applied to extend the limit
solution n = ¢t continuously to h > 0 for n > 2. This is obvious from the following
theorem.

THEOREM 5.1. Let J be the Jacobian of the system (5.9) with respect to the unknowns
n at h=0. Then
dimker J =n — 2.

Proof. The Jacobian J is easily computed from

0 Oy
—Te) :( m > (m=1,2,..., 20 -2, (5.10)
(anm nt.h=0 200,m te

and from the system (5.9). Let

2

! = (0,...,0,-2,0, —2t,1144,1,0,0,...,0)", i=1,2,...,n—2.

21—2
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Observe that

2 2tny144 2tm
—= — - - =0, m=1,2,...,n+1,
Wonti(tm)  Wontit1(tm)  Dontit1(tm)
(a:iJ)m— - +1+ 4 +1+ —0, m=n+1+i,
Wontit1(tm)  Womntit1(tm)
0, otherwise.

But the ! are linearly independent, hence dimker J > n — 2. Let

2135 -+ 2n—3 . . . .
M = J( 1 923 4 ... n > - diag(wo2n-1(t1), wo2n-1(t2), - - -, Wo2n-1(tn))-
It is easy to see that M = (q;(tm));2} .=, where the polynomials g; are given as
2n—1 2n—1
at)y=2t [[ t—t), qt)=J[ t-t), j=23,...,n
=n+2 l=n-+j

This implies that M must be nonsingular. If not, its rows would be linearly dependent
and there would exist a polynomial Z?Zl 7v;q; of degree < n — 1 with n roots t¢,,, m =
1,2,...,n, an obvious contradiction. So rankJ > n and the result of the lemma follows.

O

Thus a more refined existence analysis has to be applied. The system of equations
(5.9) will now be split in two parts, the equations determined by the first components
of the points T'y, and the equations provided by the second ones. A proper reparameter-
ization of the curve f, the idea heavily leaned upon in [37], will yield a simple solution
of the first part. Let us introduce new unknowns £ := (50?2;2 by a reparameterization

7n of the curve f,
n = n(t) = ntE), (5.11)
given at t; as

e =n(t;;€) =t +u(ts; &) + Enareh™ 'p(te), €=1,2,...,2n =2, (5.12)

where & := 0, ¢ > 2n — 2. Furthermore, let

p(0) = (0~ t0) [[ (=0, wlt6) =t~ )t~ b ) W (513)

The reparameterization (5.11) is quite clearly regular for & bounded independently of h
and h small enough, since

n(to;€) =to=0=mo, n(ton-1;6) =ton—1 =1=1on_1, 7'(t:€) =1+ O(h).
The limit conditions 7, = t, at h = 0 are fulfilled too.

LEMMA 5.2. The change of variables n — & introduced in (5.12) is one-to-one.
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Proof. Note that p(t;) =0, { =n+1,n+2,...,2n—2. So (5.12) provides the conditions
ne=1te+u(t;€), L=n+1,n+2,...,2n — 2, that uniquely determine the polynomial

n—2

S e

j=1
of degree < n — 2 since t, are distinct. But then the rest of the new unknowns (&;)?Z;El
are obtained from (5.12) by choosing ¢ = 1,2,...,n. O

Let T, be given by (5.3), with the reparameterization (5.12) applied. The system
(5.9) can now be written as

5.14
G(&:1) = (G (&)= =0, o4

where

n+j
Fi(&h) = 2 G 10) (te 4+ ulte; &) + Enoreh" 'p(te)) (5.15)
and
= 1 - 2 —1
Gj(€§ h) = ; m (; Ckhkf (tg + u(tg; {‘) +&noreh™ p(tg))k> .

The following result has been conjectured from some numerical experiments.

THEOREM 5.3. The unknowns & can solve (5.14) if and only if
fn,1 - fn - §n+1 == €2n72- (516)

Proof. A divided difference is a linear functional, so the functions F}, defined in (5.15),
can be simplified to

n+j

B 1
FEh) = lotr o tuh (t+u(t€) + 17 ——esbuaep(t)
—0 0,n+5\4¢
n+j 1
ST e (L), 5.17
— Wo,nﬂ'(lfe)5 z+¢P{t0) (5:17)

since the polynomial ¢ + wu(t; &) is of degree < n — 1 in t. Further, the polynomial p is of
the particular form (5.13) and degp = n, so it follows that (5.15) reads

3
+

n+j n+j

1 <1 1
0=)> ——&- te) = —~n- te) — &n— ——p(t
; wo,n+j(tz)§ 2+ P(te) 2 WO,n+j(t€)£ 240 P(te) = &n1 ; o (00) p(te)
n+j

1

- %fnf Z_fnf ptZ

;wo,nﬂ(te)( o 1) p(te)
- 1

= ———— (&n—240 — &n1) p(te).

— Won+j(te)

~
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It is easy to verify that the square matrix

1 n—1n
A :: ( . )
Won+5(te) / jo1.0=2

is nonsingular by finding a closed form of det A (see [32], e.g.). So it can map only the
trivial vector to 0. Since p(t;) # 0, £ =2,3,...,n, the term &, o,¢ — &,—1 should vanish
for all ¢ concerned, and the claim (5.16) follows. O

Theorem 5.3 pins down the choice §; = &,—1, J = n,n+1,...,2n — 2, that will be
assumed from now on. The rest of the unknowns (f@)?:_ll should be determined by the
second part of equations (5.14). But (5.16) simplifies the reparameterization (5.11) to a
polynomial

n(t;€) =t +u(t; ) + & ah™ 'p(t), (5.18)
and further G,(&; h) to
Gi(&:h) = [to.tr, - tars] > cxh™2n(- 16 (5.19)
k=2

In order to study (5.19) further the following lemma is needed.
LEMMA 5.4. Let 1
q(t;€) =1+ Y &Rt
=1
Then |
[to’ tl’ e 7tn+j]77(' 7£)k = [t07 tl) cee atn-i-j]Q(' ,§)k + O(hn+j+1_k)7
and

o, t1, -« - tusslq(-: €)% = O(R"H7H).

Proof. Let us introduce some new notation. If r is a polynomial in variables ¢ and h,
then let
termdeg, (r) < termdeg,(r) (5.20)

denote that for every term t* h% of r, the exponents «; and [3; satisfy the relation
a; < G
From (5.13) it is straightforward to verify that

termdeg,(n) < termdeg,(n) + 1,

where 7 is given by (5.18). Furthermore, the difference  — ¢ turns out as

n—2

N(t:€) —q(t:€) = (—(to +tan)t +totan—1) DGR ™

j=1

e ((t it T -t t”) ,

f=n+1
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and clearly termdeg,(n — ¢) < termdeg,(n — ¢). But

k
o6 =awef + 3 (*) tes6) - (&) e

7j=1

and q(t; £)* satisfies
termdeg, (¢*) = termdeg), (¢") + k. (5.21)

On the other hand, a brief look at the remaining sum yields
termdeg, (n" — ¢*) < termdeg,, (n* — ¢*) + k — 1. (5.22)

The divided difference [ty, 1, ..., t,1 ] maps polynomials in ¢ of degree < n + j to zero.
So the monomials with degree = n + j will provide the leading term of the error. But
then (5.21) and (5.22) confirm the lemma. O

Lemma 5.4 simplifies the functions (5.19) to
Gj (67 h) = [t07 tla e 7tn+j]z Ckhk_2Q(' af)k + O(hn+j_1>7 (523)
k=2

and the following conclusion provides the final form of the system (5.14).

THEOREM 5.5. The expansion referenced in (5.23) could be rewritten as

> ah gt €)F =Y CulenF (5.24)
k=2 k=2

where

O = g (s v )

The polynomials Cr(€) depend on & only, but not on h nor the parameterst. So the final
form of the system (5.14), for h small enough, is given as

=0

Cris(E)+O(h) =0, j=1,2,...,n—1. (5.25)

Proof. Let us recall the proof of Lemma 5.4 and the notation (5.20). A close look reveals
that
termdeg, (h*2¢") = termdeg, (h*~2¢*) + 2,

hence (5.24) follows. But then

1

e Cil&ih) = Gy () + O() =0, j=12,....n -1

Let us sum up all the asymptotic conclusions.
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THEOREM 5.6. If there exists hg > 0, such that the system of nonlinear equations
(5.25) has a real solution for all h, 0 < h < hq, then the interpolating polynomial para-

metric curve P, exists and approzimates f with the optimal approzimation order, i.e.,
2n.

Proof. The proof will follow the path already applied in [4]. If the interpolating curve
P, is reparameterized by a regular reparameterization 6 : [0, h] — [0, 1] in such a way
that

(P, o0) (hme) = f(hny), £=0,1,....2n—1, (5.26)

the error analysis can be applied to each component separately, using the standard
approach for the function case. But this implies that the optimal approximation order
2n is achieved, provided that || (P, o 9)(2”) || remains bounded for all A small enough.

By assumption the system (5.25) has a real solution and the unknown parameters ¢
exist. Thus one can represent the curve P, in the Lagrange form,

P, - (g) = 310 Lens L) 1:[ i (5.27)
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For the particular coordinate system, chosen in subsection 5.1, a reparameterization
0 := P! is a proper choice. Indeed, from (5.27) and (5.12) it follows

=0

since the polynomial 7n(-;€), defined in (5.18), is of degree < n. Note that
Pi(0) = hn(0;§) =0, Pi(1) = hn(1;€) = h, Pi(t) = ht + O(h%).

So P is a diffeomorphism [0, 1] — [0, A] for A small enough. The interpolation conditions
(5.26) are satisfied, since

“%on)@m%:PAQ):meL (=0,1,...,2n -1,

and § = P! is the required reparameterization. In order to prove the boundedness of
(P, 060)® we apply the chain rule derivation to P, o P{"'. As already obscrved in [4]
for the cubic case, and in [16] for a general n, it suffices to see that P|(t) = ch + O(h?),
c# 0, and

PPy =0mY), i=1,2, k=2.3,... 2n.

Obviously Pj(t) = h+ O(h?). Since deg P; < n, it is enough to consider 2 < k < n only.
The case i = 1 follows immediately from (5.18) and (5.28). As to the other,

Zy hne) Loy (t) Zy hn(te; €)) Lon(t).
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Let us recall the expansion (5.1) from which we observe that the sums involved are

n n

D (it )" Lon(t) =Y ™7 Lon(t) + O™, m > 2.

£=0 /=0

Since the interpolation is a projection on the space of polynomials of degree < n, the
proof is complete. ]

THEOREM 5.7. The system of nonlinear equations (5.25) has a real solution for
n < 5, and h small enough.

Proof. If n = 2, the system (5.25) simplifies to one linear equation for &,
251 +c3+ O(h) = O,

which obviously has a real solution. The case n = 3 is easy to analyse too, since the
nonlinear system in this case is

G436 +286+ e+ O(h)
363&%"’_251 (€2+264)+303§2+C5+O(h)

0, (5.29)
0.

The first equation is always linear in &, 1 = &. So (5.29) can be reduced to a cubic
equation for &,

3 9 3
ff—l—icgff-k (5032)_304) §1+§C3C4_C5+O(h) =0,

and the conclusion follows. The proof for the case n = 4 and n = 5 will require quite a
lot of technical details, and will be given in the next two subsections. O

5.4. The case n = 4.

The idea of the proof will be borrowed from [46], but it will require some additional
steps. For n = 4 the system (5.25) is given as

Bes&i +& (26 +4c) +3c3&+28+ ¢+ O(h) =0,

C3E3 46y €2+ 6 (6c3& +28+5¢5)+E2 +4dcybo+3c365+ g+ O(h) =0,
ey 4+ 65 (Bes&+10¢s) + & (1246 + 6383 +6¢6) + 3365

+& (28 +5¢5)+4ces &3+ e+ O(h) =0.

The unknown &3 appears linearly again, and this system reduces to

9 9
£24 & (—253— §c§+4c4) —2c3& + &2 <—§c§+2c4) (5.30)

3
—f-gl (—603C4+4C5) - 50305 —f-CG—I—O(h

)
(=9¢3+4cy) &+ & (—6c3& — 18cze4 + 10¢5) (5.31)
—|—§1 (—2§§ + (—963 —|—4C4) fz — 3C3C5 — 80421 + 666)
+(—60304 -+ 405) gg - 20405 -+ Cr + O(h) = 0.
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The equation (5.30) is quadratic in &, and its solution gives & as a function of i,

52:§f+— —2c4i \/ R(&)+O(h (5.32)
where

R(&) = 1667 +32¢c38 + (1445 — 96 ¢4) €7 + (96 ez ¢4 — 64 ¢5) &
+81cs— 144 c5eq + 24305+ 64¢5 — 16 c6.

Inserting (5.32) into the equation (5.31) yields

H (&) = ps(80) F ¢ R’ (E)VR(E) + O(h (5.33)
where
5 4 2 3 27 2
p5(&1) =—4& — 1038 + (—45¢5 +28¢y) & + 5 c3—24czey +22¢5 ) &
81 27
+ (—3c§+63c§c4 —6czes —320?1+806> §1— ?c§c4+90305
+ 1203@21 —10c¢4c5 + c7.
Let D := (—o0,00) if the polynomial R has only complex zeros. Otherwise, let z,,

and z); denote its smallest and largest real zero respectively, and choose D := (—o0, z,,|U
[zar, 00). Since R is obviously nonnegative on D, the functions H. are well defined and
continuous on D. If we prove that the ranges Hy (D) of Hy satisfy

H_(D)UH,(D) =R, (5.34)

then the equation (5.33) has a real solution for any right hand side, with a proper choice
of £. Note that

H (&) = (=bci+4a)€, and Hi(&)~ -8, [&] — oo

When R has no real zeros, the relation (5.34) is confirmed since D = R and

lim H., (&) = oo, 5lim H, (&) = —o0.
1—00

§1——00

Suppose now that the polynomial R has real zeros. Quite clearly
H () = Hy(zn), H (2a1) = Ho(2ar).
If ¢y > 2 3 the condition (5.34) is fulfilled too since

lim H (§) = —o0, lim H_(&)=

§1—00 £1—00
(see Figure 5.1, left). In the case ¢4 < 2 ¢ a more refined analysis is needed since

lim Hi(&) = oo, 5lim Hi(&) = —o0.
1—00

&1——00
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But if one can find values &, < z, and zy < &g such that H_({,) < H_({g), then
the equation (5.34) is verified again since then H_(D) = R. The proof of this fact will

be given as Lemma 5.8. We are then left with some particular cases. First, the choice
cq = 2 ¢} implies that

H(@)~—5 (Td—de)& Ja] - oo

and (5.34) follows if ¢5 # I ¢3. Furthermore, ¢y = 2 ¢}, c5 = 1 ¢} leads to

H_(&) ~ —2 (21 ¢ —8c¢g) &1, |&1] — oo.

holds also for these particular constants. The possibility ¢y =
is covered too since

It is straightforward to verify that c¢g < % c3 implies only complex zeros of R, and (5.34)

2 _ 73
4C3a05_

L}, co =2}
33
H (&)= ——a—c, [&] = oo,
and R(&) = (2& + c3)*. An additional choice ¢; = 2
solutions of the system without terms O(h)

3 gives an infinite number of
proof for the case n = 4.

The following lemma will conclude the
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Figure 5.1: Functions Hy and R (left), polynomials py and ps together with H_ and R
(right).

LEMMA 5.8. Suppose that c4 < %c% and polynomial R has real roots. Then there exist
points &, and Er such that H_(£1) < H_(&R).
Proof. Let us introduce the constants

1

dy = —5 c3,

2
dy =24 (5e3* —4dcy),
dz := —64 (2 033 —3czeq + C5) )

dy =2 (57¢cs" — 108 ¢s” ca + 28 e3¢5+ 32¢4” — 8¢)
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and let us shift the origin & — & + d;. The polynomial R is simplified to
R(&1) = 16& + do & + d3 & + da,

where dy > 0 by the assumption. So R"(&;) = 1922 +2dy > 0, and R is strictly convex
with exactly two real roots z,, and z,;. Let &, denote the abscissa of the minimum of R.
By the assumption R(&,) < 0. It is straightforward to verify

R(&) = ifl R'(&1) + p2(&1),

ps(6) = —7 60 R(E) + pol6a),

where py (&) = % do &3 +% d3 & +d4 and ps is a cubic polynomial that satisfies pfy, = —i Pa.

The polynomial p, agrees with R precisely at points & = 0, & = & and po > R
only on the interval (min(0,&,), max(0,&,)). Suppose z, < 0 < zp. Then pa(z,) < 0,
p2(zy) < 0, and since the parabola py; has a positive leading coefficient, p; < 0 on
[Zm, zp]. But then

1¥mn—H@m:mmnﬂm%wrifwm@%za

4
and the choice &, := z,, {g := 2y will satisfy the claim of the lemma (see Figure 5.1,
right).

Suppose now that zp; < 0. The constants involved are now all positive since R(0) =
dy > 0 and R'(0) = d3 > 0. The only part in R that can be negative is d3 &;. Therefore
the condition R(§,) < 0 gives a lower bound on the size of d3. The polynomial R has a
double zero in &, if and only if the resultant of R and R’ is zero, namely

1024 (—108d5+ d3 (576 dody — d3) + 4 dydy — 512d3 d3 4 16384 d3) = 0.

This is a quadratic equation in d2 with one positive solution which implies

d3 > ﬁ (—dg + 576 dy dy + (d + 192 d4)%> (5.35)
and a rough estimation yields
d3 > ng dy. (5.36)
Let us show that the choice 5 dy
L= o d §r:=0

is appropriate here. Since H_(0) = 6%1 ds\/dy > 0, it is sufficient to show H_(&) < 0.
Now

ds

H-(&) = =355 e

( (12.d3 + 3000 d3) \/15 d 03 + 4 d3 s + 2500

— (480 d3 dy + 925 dj d3 + 150000 ds) >
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is negative if

(123 + 3000 d2)* (15 d3 d2 + 4 d} dy + 2500 d2)
— (480 d} dy + 925 d3 d2 + 150000 d3)’

is positive or equivalently

1500000 d5 dy (25d5 — 72dady) +25d5 (125d5 (187d3 — 192dy dy) — 9216 d3 dy)
+ 576 dy’ dy + 2160 dy d3 > 0.

The term 25d3 — 72dydy is estimated from below using (5.35). The square root free
form of the estimate is

5 (625 (3 +192d)" - (2543 + 1152y )

1
5= da (175 dy + 39232 d3 dy + 2560000 d3) > 0.

Furthermore, the second term gives

25dy (125d3 (187d5 — 192dydy) — 9216 d5d3) >

11
25 dld, ( 5000

d3 — 9216 dy d4) >

20926400

5 dsdi >0,

where (5.36) was used twice. Since the rest of the terms are nonnegative the result
follows. The case 0 < z,, is symmetric, and the proof is completed. O

5.5. The case n = 5.

Let us now consider the case n = 5. After the elimination of the variable £, = &, 1 the
system (5.25) becomes

Bi(£1>£2a §3) + O(h) =0, =123, (537)
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with
By (&1,82,&3) =
—c3 &t — (%c§—|—204) & —(9c3cq — Hes) 2 — (1—250305 —506) &
+(3es—&) &+ (6esca—5es+ (963 —8ea) &1—3e383) &
— (2 -4 +28-28) & —Scsc6+ o,
By(&1,82,&3) =
— (32 —cy) & —(20c3¢c4 —10¢5) & — (122 + 15¢3¢05 — 15¢6) &F
—(10¢cyes +3ezce —Ter) &1 —2cace+ s — & — 636163
— (82 —5cg+ (24c3cqa —15¢5) &+ (183 —6cy) & — 383 &
+&5 —(6czca =505+ (9¢5 —8ca) &1 +3c387 — (Bes —26&) &) &3,
B;(&1,&2,83) ==
—33& — (15e3ca —Hes) & — (36 + 10c3 5 — 20¢6) &
—(45cacs+3c306—21cr) ¢ — (B2 +6cace—8cs) & — 2506+ o
—20385 — (12¢50ca — L5+ (18c2 —6cy) & + 2 ¢383) &3
—(10¢cse5+3czc — Ter+ (24¢2 +30cz05 —30¢6) &
—(60c3cy —30¢s) &+ (1265 —4ey) &) &
2868 — (s —5c6+ (18csea —10¢5) &+ (33 +61¢q) &
—des i — (93 —8eu+6c38) & — &) &
The terms O(h) in (5.37) will be neglected for the moment. Let R[¢1, &, ..., &] denote

the ring of polynomials in variables &1, &, ..., & over R. A straightforward approach to
the system (5.37) is right at hand: compute the Grobner basis of the ideal

T := (B1, By, Bs) C R[&1, &2, &3], (5.38)

and study the properties of the zeros of this basis, i.e., the variety V(Z), the set of
common zeros of B;, i = 1,2,3. But this approach is computationally too complex, and
some ad hoc simplification is needed. The key conclusion is summarized in the following
lemma.

LEMMA 5.9. Let T be the ideal given in (5.38) and let Z, := ZNR[¢] denote the second
elimination ideal, obtained from T after elimination of & and &. Then V(Zy) = V(Q)
where Q) s a polynomial of degree < 25 in &, given as

14641 s
Q&) = 65536 (5 2 — 404) 25
3025
13107 (5 3 — 404)4 (1043 cy — 1988 c3cy + 82405) 204

Proof. Consider the system (5.37). The first equation is linear in &3, and can be written
as

B1(&1,2,&3) = ¥1(&1,62) +12(61,&2) §3 =10, ¥y, s € R[€1, &) (5.39)
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Similarly, the modified third equation

Bs(&1,82,83) + 281 Ba(61,62,&3) = x1(61,82) + x2(61,62) &3 = 0, (5.40)

with x1, x2 € R[{1, &), turns out to be linear in &3 too. One can now use the equation
(5.39) to eliminate &3, and the system (5.37) becomes

B12(§1,fz) = ¢2(517€2)2 B, (517527 —%) = 0, (5-41)

Bi3(&1,&2) == x1(61,62) ¥2(&1, &) — x2(&1,&2) ¥1(61,62) = 0.

Finally, the resultant of By and B3 with respect to & is a single equation

R1(&1) := Res (B12(&1,&2), B13(&1,&2);&2) = 0.

The variety V(R;) 2 V(Z,) may include some extraneous zeros introduced by the factor
1(€1, €)% in (5.41) or by the resultant Res. Also, the variety V does not precisely keep
track of the multiple zeros, and the number of zeros of R counting multiplicities could be
greater than the number of elements in V(R;), i.e., #V(R;). The elimination procedure
described provides also the extension path: if & € V(15), the equations (5.41) determine
&, and (5.39) finally &3, except when 15(&1, &) = 0, since then (5.39) leaves &3 undefined.
But then, at the first elimination step, one may choose the equation (5.40) rather than
(5.39) to eliminate &;. The equation (5.41) would be replaced by

Bss(&1, &) = X2(§1,§2)2 By (51,52, —%) = 0,

and one would finally be left with

Ry(&1) = Res (Bs2(&1,&2), B13(&1,82);§2) = 0.

Thus any & € V(R;) NV (Ry) that is not extraneous can be extended to the complete
solution of the system (5.37) provided ¥9(&1, &) # 0 or x2(&1, &) # 0. Using a computer
algebra system (Mathematica, Maple, ...), the polynomials R; and R can be factorized
as

Ri(&) = (&) Q(&), Ru(&) = —1n(6)? Q(&), (5.42)

where v; form a basis of the elimination ideals

() = (1, ) NR[E], vi(&) =4E0 +10c3&) + (60c§ — 40 c4) g4+,

and
(v2) = (X1, x2) RG], va(&1) = (5c5 —4de) &7+,

and () has the form as written in Lemma 5.9. If 14 and v have no common divisors,
they are obviously extraneous factors in the equation (5.42), and

V() CV(Q). (5.43)
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If 11(&) = 0, (&) = 0 for some & € C then Res (14(&1),12(&1);&1) = 0 gives a
tremendous, but polynomial relation between the constants ¢; that has to be satisfied.
So the measure of the set of constants

{(03,04, R ,Cg) S R7; 1/1(51) =0, 1/2(51) = O}

is zero, and one may extend (5.43) to all possible constants by the continuity. Note that
the inclusion (5.43) also shows that if & = &1(cs, ¢4, ..., c9) € V(Z3) grows unboundedly
or decreases from infinity as a function of the constants ¢; so must the corresponding
& € V(Q). Thus the difference of the number of solutions

#V(Q) — #V(Z2) = 0

is independent of the constants ¢;. But for a particular choice of the constants
03:17 64257 C5:_17 C6:17 07207 68:_57 09:1

it is straightforward to verify that V(Zy) is equal to V(Q) since #V(Z;) = #V(Q) =
25. U

Thus only the roots of () have to be considered. If the degree of @) is odd, then @)
has at least one real root & of odd multiplicity, which can be extended to a real element
of V(Z). Since & € R is of odd multiplicity, a perturbation O(h) preserves the existence
of a real solution, and the system (5.37) has at least one real solution for all h small
enough.

There remains to verify that Q #Z 0 is of odd degree. The first step is obvious from
Lemma 5.9 since @) is of degree 25 unless the leading term vanishes. In this case,

5, 1953125 3 4 93
= - =———(Tc; — 4 e

= 3% Q)= —qapesrg (T —4es) &7 +
and further,

) 7 1953125 4

Cy = ZC%, Cr = ZC%, Q(&) = —W(Ql C§—8C6) 119+
The additional assumptions
21 33 429
Cg = g Cg, Cr g Cg, Cg a Cg

reduce the degree of () to 15, 11 and 7, respectively. Note that regardless of the particular

715
constants ¢; the polynomial () remains to be odd. Finally, the choice ¢y = 1 cg gives

@ =0, and any & € R is suitable. It is not difficult to guess where this particular data
curve comes from. One can easily verify that in this case

9
E Cr hk_QZL‘k
k=2
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is the Taylor polynomial of the function

(z) = 1 x 1 —dex '_h
y\r 22 ¢ 2¢2 €= 203'

A straightforward computation leads to one of the possible reparameterizations of f

cz — 322 1-V1—-dca
2 . z:=z(c) = :

2
z 2c2

f(2) =

Thus f is a quadratic parametric polynomial. This remains true also as ¢3 — 0, since
y(x) — z? in this case. Of course, the quintic geometric interpolation reproduces the
quadratic parametric polynomial. The proof is concluded.







Chapter 6

Circle-like curves

In the previous chapter the conjecture that a parametric polynomial curve of degree < n
can interpolate 2n given points in R? has been confirmed for n < 5 under certain natural
restrictions. Furthermore, the optimal asymptotic approximation order 2n has been
confirmed provided that an interpolating polynomial curve exists. But its existence for
a general n has been an open challenge for quite a while. In this chapter the existence of
an interpolating curve for a general n is established, provided the data are sampled from
a smooth curve sufficiently close to a circular arc a so called circle-like curve. Numerical
examples confirm the results of the main theorem and suggest that when the whole circle
is approximated the error decreases exponentially with growing n.

6.1. Circle-like curves

The approximation of circular arcs is an important task in Computer Aided Geometric
Design (CAGD), Computer Aided Design (CAD) and Computer Aided Manufacturing
(CAM). Though a circle arc can be exactly represented by a rational quadratic Bézier
curve (or, generally, by a rational parametric curve of a low degree, see [13], e.g.), some
CAD/CAM systems require a polynomial representation of circular segments. Also,
some important algorithms, such as lofting and blending can not be directly applied to
rational curves. On the other hand, circular arcs can not be represented by polynomials
exactly, thus interpolation or approximation has to be used to represent them accurately.

There are several papers dealing with good approximation of circular segments with
radial error as the parametric distance. In [10] the authors study the existence of a cubic
Bézier Hermite type interpolant which is sixth-order accurate, and in [19] a similar prob-
lem with various boundary conditions is presented. In [35] the problem of approximation
of circle segments by quadratic Bézier curves is considered. Lyche and Mgrken (see [34])
give an excellent explicit approximation of circular segments by odd degree parametric
polynomial curves, and they conjecture that the same problem with even degree could
be a tough task. Their method is based on Taylor-type approximation and explicitly
provides parametric polynomials of odd degree n with high asymptotic approximation
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order, i.e., 2n. Probably the most general results on Hermite type polynomial approxi-
mation of conic sections by parametric polynomial curves of odd degree are given in [17]
and [18]. Several new special types of Hermite interpolation schemes are also given in
[11] and [12]. All these results include odd degree interpolating curves as a rule and do
not extend to Lagrange type of interpolation directly.

In this chapter geometric interpolation of circular segments and, more generally, so
called circle-like curves by parametric polynomial curves is studied. Circle-like curves
are defined in the following way. Let A be a circular arc of an arclength h > 0. Since the
term circle-like necessarily involves a comparison of two curves, the arclength parametric
representation A : [0,h] +— R? is perhaps the most convenient tool. Suppose that a
convex curve f =~ A is parameterized by the same parameter as A. The curve f will be
called circle-like, if it agrees twice with A at 0, has the curvature of the same sign at 0
as well, i.e.,

f(0) = A(0), f'(0)=A(0), det (f'(0), f(0)) det (A'(0),.A"(0)) > 0, (6.1)

and its smooth correction g := f — A expands as

1 1
9(5) = 5 8" ()5 + 5 99 (0) 8+ .. (6.2)
In order to make a distinction among the circle-like curves, we introduce a constant M,
(r) <
, omax g7 0] < (6.3)

that bounds the magnitudes of derivatives at 0. For any particular M, the corresponding
set of circle-like curves will be denoted by ;.
As a motivation, let us consider the following numerical example. Let

sint s

F(t) = exp(t/4) (1 e t), te [o, 5} , (6.4)
be a particular exponential spiral, geometrically interpolated by a polynomial parametric
curve of degree n = 6 and n = 7, respectively, at 2n points obtained by the equidistant
splitting of the parameter interval. The curve (6.4) is clearly a circle-like one. Figure 6.1
(left) shows the curve (6.4) and the circular arc, and Table 6.1 gives numerical evidence
of the approximation error measured as a parametric distance between the curve (6.4)
and its geometric interpolant. A simple error analysis indicates that the asymptotic
approximation order is O(h?"), at least for n =6, 7.

6.2. Interpolation problem

The interpolation problem considered is the problem (1.3) introduced in Chapter 1 and
further considered in Chapter 5. But here the data points T'; are sampled from a smooth
circle-like curve

f=A+g:[0,h] — R
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Figure 6.1: The exponential spiral (6.4) and the circular arc (left) and their curvatures

(right).

Interval Approximation error Decay exponent
n =06 n="7 n=6 | n=7

[0,5] | 17783 x 107" | 2.4704 x 10~ —
0,22] | 29789 x 107! | 3.6024 x 107" | 3.86 | - 14.42
0,5%] | 4.3754 x 107"% | 3.9342 x 107" | - 12.44 | - 14.37
0,2%] | 4.5808 x 107* | 2.8953 x 107'° | - 12.38 | - 14.31
0,75] | 2.9377 x 107 | 2.4957 x 107" | - 12.31 | - 21.30
0,9%] | 8.6811 x 107'% | 4.4201 x 107> | - 12.24 | - 14.02
0,22] | 6.2403 x 107'® | 6.5502 x 1072 | - 12.17 | - 10.39
[0, 2] | 1.4208 x 102! | 3.7763 x 10726 | - 12.10 | - 14.08

Table 6.1: The error of geometric interpolation of the exponential spiral (6.4).

Since affine transformations of data points do not change the solution of equations (5.5),
one can place the origin of a coordinate system at f (0) = .A(0), and choose A to be the
unit circle, centered at (0,1)". Thus

A(t) == (sint, 1 — cost)”.

But then the expansion (6.2) implies f'(0) = A’(0) = (1,0)". Therefore, for h small
enough, f = ( fl-)?:1 can be reparameterized as

1= (o) = (a9 o00): o
where T

is a circular arc, parameterized by the first component, and

7" (0) o v (0)
5 s2+ T sS4 (6.6)

Y(s) = f2 (fi(s) —als) =




96 Circle-like curves

The coefficients 4 (0) in (6.6) are polynomials in the components of g (0), but with
the constant term equal to 0. Indeed, with v(s) := f; '(s) — arcsin s, and an obvious
conclusion v(0) = 0 as well as /(0) = 0 since

_ d ,_
fll(o):()’ %fll(s) =7 =1,
we obtain

Y(s) =1 —cos(fy ' (s)) + gaf1 ' (5)) — a(s)
=V1 =5 (1 = cos (v(s)) + ssin (v(s)) + ga2(f1 ' (5))

1 1 1
— 5040 + (5 0+ )0+ o 0] 5
and the claim will be confirmed if #()(0) are polynomials in ¢\" (0) without the constant
term. This fact could be formally verified by an application of Faa di Bruno’s formula

to the implicit definition of v, i.e., fi (v(s) + arcsin s) —s = 0 and the induction, but the
following expansion is even more convincing,

0= f1(v(s) +arcsins) — s :% (g7 (0) +1"(0)) s*
g(0) + 391 (0)//(0) + 9 (0)) 5°

91”(0) + 6 9" (0)/(0)
+ g1 (0) (4+3@"(0))* +4v9(0))
(0) + v (0)) s* +
So one can find a bound ¢(M),

VD (0) | <e(M), i=2,3,...,2n—1,

depending only on M that was introduced in (6.3). This bound can be chosen as a
nondecreasing continuous function of M, starting with ¢(0) = 0, since g = 0 implies
~v = 0. This proves the following lemma.

LEMMA 6.1. With a proper choice of M, a circle-like curve f € Fy; has the correction
v and its derivatives arbitrary small.

Now, since f is of the form (6.5), the expansion (6.6) and assumptions (6.1) imply
u(0) =u/'(0) =0, «"(0) > 0.

With this assumption the analysis carried out in Chapter 5 shows that the asymptotic
existence of the solution of the interpolation problem (1.3) is in general equivalent to a
fact that a system of nonlinear equations

Cryj@) +0O(h) =0, j=1,2,....,n—1, (6.7)
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has a real solution a := (a,),_; for all h small enough.

For circle-like curves (6.5), the functions C,,; simplify to

1 drti — /+1 = l+1
Chyjla) == WW (a <t+2agt + v t+Zagt

=1 =1
Further discussion will prove that the system
1 dv —
e <a<t+;aﬂf+1>>t:0:0, j=1,2,...,n—1, (6.8)

has a real solution and that the Jacobian at that solution is nonsingular. So the Implicit
Function Theorem implies the existence of constant ¢(M) for M small enough such that
the equations

Chij(@) =0, j=1,2,...,n—1,

for circle-like curves that satisfy (6.3) for this particular M also have a real solution
with a nonsingular Jacobian, by Lemma 6.1. But then, again by the Implicit Function
Theorem, the system (6.7) has a real solution for A small enough too, which proves the
next theorem.

6.3. The main results

THEOREM 6.2. Let A : [0, h] — R? be a circular arc, parameterized by the arclength.
There exist positive constants M and hy with hg < h, such that for any hy < hg, any
circle-like curve f = A+ g € Fy can be geometrically interpolated by a polynomial
parametric curve of degree < n at 2n distinct points f (s;), s; € [0,h1]. The asymptotic
approximation order is optimal, i.e., equal to 2n.

Now one is left to show the existence of the solution of (6.8) and to prove the non-
singularity of the Jacobian. The expansion

n—1 n—1 2 00
1—a<t+zaﬂ“1> = 1—<t+zaﬂ€+1> =14+ bt (6.9)
=1
yields

n—1 2 00 2
(t +) a t“l) + (1 +) b tf> =1. (6.10)
/=1 /=1

Since the equations (6.8) for h — 0 are equivalent to the fact that the expansion (6.9)
does not contain the powers n + 1,n 4+ 2,...,2n — 1, the relation (6.10) implies

n—1 2 n 2
(t +) a t”l) + <1 +) b tf> =14 , +0) e (6.11)
(=1 (=1
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One is now left with 2n — 1 equations for 2n — 1 unknowns a and b := (by),_,. Once a
is obtained, linear relations determine b and vice-versa.

Let
1

A regular reparameterization ¢t — «; - t, and new variables

a1 =

a; = (1) a;—1, j=2,3,...,n,
60 = 1, BJ = (Oél)j bj, j = 1,2, e, n,

simplify (6.11) to the problem of finding two nonconstant polynomials z,, vy, € R[] of
degree < n such that

22(t) +y2i(t) =1+, 2,(0) = 0. (6.12)

Now, let
za(t) =2 (8) +ya(t) — (L + 7). (6.13)

The relation (6.12) can also be considered as a system of nonlinear equations for the
coefficients of the polynomials

xn(t> = Z Q; tja yn(t> = Z Bj tj, (614)
j=1 =0

ie.,

d7

dti
Although the solutions of the system of nonlinear equations given by (6.12) can be
obtained numerically for particular values of n, finding a closed form solution is a much
more complicated problem. The importance of equation (6.12) has already been noted
in [34] considering a slightly different approximation problem that will be described
in Subsection 6.5, and the existence of a solution has been established for odd n. The
authors proposed a very nice approach to solve this problem. They have used a particular
rational parameterization of the unit circle to obtain the coefficients of the polynomials
x, and y,. Indeed, if

(), =0, j=0,1,...,2n. (6.15)

2t 0 1=z
yO ‘—1+t27

zo(t) :

is a parameterization of a unit circle, then the functions

2, (1) 1= wo(t) — (—1)"D/2 4"y (1),
Yn(t) = yo(t) + (=) D2 1" o (1),
are actually polynomials of degree < n for which (6.12) holds. It is also easy to find

their explicit form, but unfortunately if n is even, their coefficients are no more real
numbers. However, this idea can be applied for even n too, but a slightly different
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rational parameterization of the unit circle has to be considered. Namely, let z¢, yo be
redefined as

_ 2V1—=c2t (1 —ct)

1—2ct+t2 ’

C1=2ct+ (22 -1)¢
N 1—2ct+t2 ’

xo(t) : yo(t) :
where ¢ € [0,1). It is straightforward to see that z3(¢) + y2(t) = 1. The polynomials
(6.14) depend heavily on the degree n of the interpolating curve, and throughout this
chapter it will be assumed that the integers n, k, and r are related as

(6.17)

n=2"2r—-1), k>0 r>1. (6.18)

Each k determines a family of polynomials that satisfy (6.12). In addition, the coefficients
of the polynomials z,, and y,, can be given in a closed form with the help of Chebyshev
polynomials of the first and the second kind, 7;, and U,,.

THEOREM 6.3. Suppose that n, k, and r satisfy (6.18), and let the constants cy, Sk
be given as

™ ) T
Ck = COS (W) , Sk :=sin (W) . (6.19)
Further, suppose that q; are polynomials of degree < 2, defined as
qO(t) .
q1 (t) .
@(t) =

Then, the functions x,, and y,, defined by

(0} o I (L S (), e

are polynomials of degree < n that satisfy (6.12). Furthermore, their coefficients are
given as

Q(t; k) :=1—2¢,t+
Gt k) =285t (1 —cxt), (6.20)
ot k) i=1—2¢c,t + (2¢; — 1) %

o =2 3, cos ((j . 1)%) =25, Tyi(e), j=12....n—1, (6.22)

ay, =2 8 COS ((n — 1)%) + (=1)" =28, Ty1(cx) + (—1)", (6.23)
and

Bo=1, 4 =0, (6.24)

B; = —2s; sin ((j - 1)%) = 282Uja(cr), j=2,3,....n. (6.25)

Theorem 6.3 actually proves the optimal approximation order for the circular arcs
as studied in [34]. But Theorem 6.2 extends the conclusion to Lagrange interpolation
of circular arcs and of the circle-like curves of degree n. All that is left to prove is that
the Jacobian of the system of equations (6.15) with respect to the variables a;, (3; at
values provided by Theorem 6.3 is nonsingular. A surprisingly simple closed form of the
determinant of the Jacobian that confirms this fact is given in the next theorem.
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THEOREM 6.4. With n, k, and r as in (6.18), and o, 3; given by Theorem 6.3, the
determinant of the Jacobian of the system (6.15) is

det J = (—1)"r+L g2ntl 2 2

The asymptotic conclusion of Theorem 6.2 seems to be rather pessimistic since the
parameter interval is supposed to be small. As an impetus, consider the approximation
of a complete circle. A quick numerical test in Table 6.2 shows that the circle

(Si“) s € -m (6.26)

COS S

can be geometrically interpolated at points corresponding to the parameter values

¢, (=0,1,...,2n—1,

by a polynomial curve of small degree n quite accurately. The error seems to decrease

Approximation error T n | Approximation error T
2.85951 x 107* — 10 7.28389 x 107! -1.21
2.32476 x 1072 -1.11 | 11 1.14441 x 10712 -1.24

2.08441 x 1073 -0.96 || 12 1.49890 x 104 -1.26
1.22589 x 10~ -1.05 || 13 1.66223 x 10716 -1.28
5.09328 x 1076 -1.11 || 14 1.58128 x 10718 -1.29
1.57805 x 1077 -1.15 || 15 1.30483 x 10720 -1.30
3.79252 x 107 -1.19 || 16 9.42975 x 10723 -1.31

© 00~ O Otk W3

Table 6.2: The error of geometric interpolation of the circle measured as radial distance.

exponentially with n, like O(n™), 7 &~ —1.30. Figure 6.2 shows that the curvatures of
geometric interpolants are close to 1 (the curvature of the circle). As can be seen from
Table 6.3, they approach 1 with growing n.

/L N\ ™\ Pa\
~ 1 = 1 L L 3 !
7 2 7 4 2 4

0.995
0.95

0.99
0.9

0.985

Figure 6.2: The curvatures of geometric interpolants of the complete circle for n = 5, 6.
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n 3 4 5 6 7 8
|11 = Fnlloo,jo, || 1.59739 | 0.48393 | 0.12798 | 0.01569 | 0.00110 | 0.00005

Table 6.3: Maximal deviation from 1 of the curvatures s, of degree n geometric inter-
polants of the complete circle.

6.4. Proofs

From the previous discussion it is obvious that it suffices to prove Theorem 6.3 and
Theorem 6.4 only. Theorem 6.2 then follows as a corollary. Consider the proof of
Theorem 6.3 first. Equation (6.21) yields

@(t) — (=" t" q(t)
CJo(t) ’

@) + (=1)"1" ga(t)

xn(t) N CJo(t) ’

Yn(t) =

(6.27)

where ¢;, i = 0,1,2, are defined by (6.20). In order to verify that the function z,, is
actually a polynomial of the form (6.14), by (6.27) it is sufficient to check that

qo(t) Z&j th=ait+ (g —2cpay)t* + Z(aj —2cp a1 + aj_2) I
j=1 =3

+ (=2 an + 1) " F T2 = g (t) + (1) " go(t).
A comparison of the coefficients implies the linear recurrence
ap =28, iy =cpon, o —2c,aj_1+0;0=0, 7=34,...,n—1, (6.28)
with additional conditions

Qp — 2019 Qp_1 + Qpo :(_1)1"’
2¢pan — o =(—1)"2¢y, (6.29)
an =(—1)"(2¢; —1).

A straightforward calculation confirms that (6.22) and (6.23) give a solution of (6.28)
and (6.29). The proof for the function vy, is similar and will be omitted.

Since by Theorem 6.3 the function (6.13) vanishes identically, the limit solution of
the system of equations (6.7) is obtained. The existence of a real solution is verified if
the Jacobian at the limit solution is nonsingular. From

0 J .
P, Zn (1) P, x; (t) tVx,(t), J J2,...,m,
0 0

— 2, (t) = —y2(t) =2t yu(t), j=0,1,...,n,
55, () = 55 Vi) =26 a(t), n
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it is straightforward to compute the Jacobian J := 2 D, where

0 0 B O 0 0
0 0 0 B B O Lo
a; 0 . LB B .
Qg LB 0
g 0 0 : B 0
D= ay 0 B B Bo
o, a a0 B, S
0 « (0%} : 0 B :
0 .. : : : S0 - :
N ™ : : - e B
0 0 S 0 Qay, 0 0 O e 0 0B,

Unfortunately, obtaining the explicit formula for det D is not an easy task, since its
entries are given by (6.22)-(6.25). But the columns of D are simply the shifts of the
coefficients of x,, and y,,, which leads to the following observation. If

ug = 0,uy, Uy, ..., Uz, € C

are 2n + 1 pairwise distinct values, and

1\ 2n+1
Vg, ur, . una) = (071)

is the corresponding Vandermonde matrix, then the rows of the product VD are given
by
w; Ty (uy), u? (), ..., uf (1)), yn(uy), wjyn(uj),..., uf Un(uj), (6.30)

where 7 = 0,1,...,2n. Now (6.12) suggests how to choose u;, i.e., to define u; as 2n
different solutions of the equation

2" +1=0. (6.31)

Then (6.12) implies z,(u;) = £iy,(u;). Here i will denote the imaginary unit, i.e.,
i?=—1.If

T, ) . .
u] = eXp ((_1)7’%(43 - 3)) 5 J = 1a2 - N, J %jOa

LT
Uj, 1= exp (%(27“ — 1)) ,

N | R
Uptj = Uj 17=12...,n,

where

) w’ r even’
Jo =
ril r odd,
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then

Yn(u;) = —ixn(u;), j=12,...,n,
Yn(u;) =ixn(u;), j=n+1ln+2,...,2n, (6.32)

as can easily be verified. Recall that ug = 0, y,(0) = 1, and use (6.30) and (6.32) to see
that

2n
det(V D) =" H:cn(uj) det C,
j=1
where
0 0o .- 0 1 0O --- 0
w, ul up =1 —uy - —ul
o | w2 oo ou =1 —u, o —ul
Unit Uppy 0 Uppr L U o upy
Unt2 Unig 0 Uppy 1 Unga oo g
U2, U%n Ugn 1 U n ugn
Since J = 2D,
2n
det C'
det J = 2" i T n ()~ (6.33)
ey det V'

LEMMA 6.5. If sy is given by (6.19), then
2n
Hxn(uj) =n* s
j=1

Proof. Some straightforward computation and (6.27) yield

sin® (& ((—=1)"(4j —3) +2r —1))
sin® (& ((=1)7(4j —3) —2r+1))

l’n(Uj)ZL'n<Un+j> = yJ=12,...n, J 7é Jos

and, by the L’Hospital rule,
T (Wjo) Tn(Untjo) = n? 3%' (6.34)
The formulae (see [20], e.g.)

—1)™
sin (5-(2j = 2m 1)) = S L

=

: 2n

7j=1

n -1 m+1

H sin (1(2j —2m)> = u, 1<m<n,
2n 2n—1

M.g_
o
S —
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imply
2n
[T #alu) =n*st,
j=1
j¢j07 TL+_]0
which, together with (6.34), completes the proof of the lemma. O

LEMMA 6.6. The quotient of determinants in (6.33) is
det ¢ (=1)"r*!
detV =~ inn2s?

Proof. The determinant of C' can be reduced to

2n
det C' = (—1) Hu]det(vz v, >,

where Vi = V(uy,ug,...,u,) and Vo := V(upi1, Upio,. .., Us,) are the corresponding
Vandermonde matrices. Since u; are the roots of (6.31), ijl u; = 1. Further, a simple

columnwise reduction implies that

det C' = (—1)" 2" det V] det V4,

which finally gives
det C' 1

detv — TV T T (e — )

If

pri= ] ][ Wnse —u

=1 j=1
E£0j#jo
n n
P2 = (Untjy — Ujo) H (Untjo — uy) H (Unre — wjp),
i=1 =1
J#jo £#jo

then obviously

H H Upte — = P1DP2-

(=1 j=1

A straightforward computation yields
P = (_1)nr2’n+1 2n71 Sk,
py = (—=1)"n?2i sy,

thus
det C B (—1)"’”rl

detV i”n232 ’

O

Lemma 6.6 and (6.33) confirm the result of Theorem 6.4 which concludes this sub-
section.
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6.5. Approximation of circular arcs

In this subsection a generalization of the results obtained by Lyche and Mgrken in [34]
on the approximation of circular arcs by parametric polynomial curves of odd degrees is
given. The results of the previous discussion are used to show that for the circular arc
of the angular length h, a parametric polynomial curve of arbitrary degree n € N, which
interpolates a given arc at a particular point, can be constructed with a radial distance
bounded by h%™.

The approximation problem considered is the following. Let

sin @
cos

A((p)::( ) 0<p<L<2nm, (6.35)

be a particular parameterization of a circular arc of an angular length L. Find a para-
metric polynomial curve
x
L= 0" 6.36
0.~ (1) (6.30

of degree < n with nonconstant scalar polynomials z,,, v, € R[t] defined in (6.14), which
provides “the best approximation” of (6.35). The only prescribed interpolation point is
A(0) := (2,(0),4,(0))T := (0,1)T. Note that it is enough to consider arcs of the unit
circle only, since any other arc of the same angular length can be obtained by affine
transformations.

The approximation error between a circular arc and a parametric polynomial curve
is measured as a “radial distance” (see Figure 6.3), i.e.,

4,(A,q,) = max {| Va2 (0) + 5200 - 1|} (6.37)

tel

where [ is some interval of observation. If g, is a good approximation of A on [ then

(6.37) is small and /a2 (t) + y2(t) ~ 1, thus

VR0 R0 1] = A S k)42 -1,

and, for computational purposes, it is enough to consider only the “error”

e(t) = |2 (t) + ya(t) — 1]. (6.38)

Ideally, e would be zero if a polynomial parameterization of a circular arc would exist.
But if at least one of x,, or y, is of degree n, then

T (t) +yn(t) = (o + B) " + - # 1. (6.39)

Now it follows from (6.38) that e will be small (at least for small ¢), if coefficients at the
lower degree terms in (6.39) will vanish. This implies that e will be as small as possible
if

22 (t) +y2(t) = 1+ const - 2. (6.40)
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Figure 6.3: Radial distance between a circular arc (solid) and a parametric curve ap-
proximation (dashed).

Now, a proper reparameterization

ot

ot T

transforms (6.40) to relation (6.12), and Theorem 6.3 (eq. (6.22)—(6.25)) gives the closed-

form solution for the coefficients of polynomials x,, and v,,.
The approximation order is stated in the following lemma.

t —

LEMMA 6.7. Let the circular arc A be defined by (6.35) and its parametric approz-
imation q, by (6.36). Let the coefficients of x, and y, be given by (6.22)—(6.25). If
q, : [0,h] — R?, where h is sufficiently small, then

dH(Aa qn) < dP(A> qn) < dT(A7 qn) < h2n7
where d, is defined by (6.37).

Proof. 1t is clear that for a particular #, which is a regular reparameterization of A on
[0, A],

dp(A, q,) < max [|A(0(1)) — ¢,(1)]l2.
t€[0,h]

Thus, it is enough to find a regular reparameterization 6 of A for which

max [|A(0(t)) — g, (t)|[> < h*",
t€[0,h]

Let 6 : [0, h] — I be defined as

T (t)
Yn (t)

0(t) := arctan ( > . (6.41)
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Since z,(0) = 0, y,(0) = 1 and by (6.22) 2/,(0) = 2 s,

o a(0) 5al0) — 2a(0) 5h(0)
=T ao e 20

and there exists hg > 0, such that 6 is a regular reparameterization on [0, k] for 0 < h <
ho. But a point (A o 0)(t) lies on the circular arc defined by A and on the ray from the
origin to g,,(t). This implies

(A0 0)(t) — g, (t)ll2 = [V/a2(t) + y2(t) — 1] < |23 (t) +yu(t) — 1| =277,

where the last equality follows from (6.12). Finally,

max |[(Ao0)(t) — q,(t)][> < h*"
te[0,h]

and the proof of the lemma is complete. O

An interesting question is, how large can be the angular length of the circular arc,
which can be approximated by the previous method. First of all, the regularity of
has to be assured, i.e., h has to be small enough. Then the angular length of the
reparameterized circular arc A o f can be derived at least asymptotically.

LEMMA 6.8. If 0 is a regular reparameterization on [0, h] defined by (6.41), then the
length of the circular arc Ao 0 :[0,h] — R? is 25, h + O(h?).

Proof. The proof is straightforward. The regularity of 6, (6.12), (6.22)—(6.25) and the
fact that (14 ¢*™)~' =1+ O(t*"), simplify the arc-length to

h by . ,
s:/o 1(Ao6) (1), dt:/o [0, (0) yn(t) = 2a(t) yu(B)] .
h

2 (t) +9a(t)
_ / 2 () yn(t) = 2O (1)
0 L +¢2n

:/0 (@0 (8) Ya(t) — 2 () () (1 + O(t*™)) dt = 2 5. h + O(h?).

0

Since we know that the best local approximation at a particular point in the functional
case is the Taylor expansion, the natural question arises how good the approximation
can be, if z,, and y,, are taken as Taylor polynomials for sine and cosine at ¢t = 0. The
result is summarized in the following lemma.

LEMMA 6.9. Let x, and y, be the degree n Taylor polynomials of sine and cosine,
respectively. Then
1
() +yn(t) =1+ — 1" o™,

where

n+2, nis even,

._{ n+1, n is odd,
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and
{ 2nl, if nmod4 =1,2,
Wy =

—5 n!, otherwise.

Proof. Let

Ry (t) = sint — z,(1),
Ru(t) = cost — y(t),

be Lagrange remainders in Taylor expansions. Since
22() + 12(t) = 1 — 2(R,(t) sint + R.(t) cost) + R2(t) + R2(t) (6.42)

and R,, R. are of order O(t"'), it is enough to consider S(t) := —2(R,(t) sint +
R.(t) cost) only.

First, suppose that n is odd, i.e., n = 2¢ — 1. In this case the expansions of R; and R,
are

Ry(t) = %t’”? + O™, R.(t) = %t”*l + O(t"+3),

therefore

_ (_1)Z n+1 n+3
S(t)_—th + O3,

By (6.42), m =n + 1 and
(1) (o + 1)

Wy =

2
If nis even, n = 2/,
_1\¢ _1\4+1
Rs(t) — (( —l_l)l)'thrl 4 O(thrB)’ Rc(t) — E 22)'tn+2 4 O(tn+4),
n ! n !
thus ( 1)2 ( 1)”1
S(t) = —2 ( Al CU ww) )

Again by (6.42), m =n + 2 and

(=)t (n+2)n!
5 :

Wy =

0

The last lemma confirms that the Taylor polynomials are not an optimal choice if
the radial distance is used as a measure of the approximation order.




Chapter 7

Resultants, Grobner basis and
Brouwer’s degree

In this chapter the definition and some of the main properties of resultants, Grobner
basis and Brouwer’s mapping degree are given. Further results can be found in [6], [1],

3], [5]-

7.1. Resultants
A resultant is defined in the following way.
DEFINITION 7.1. Given a polynomial
p(2) = apt™ + ap_1 2" 4 a4 ag
of degree n with zeros o;, v = 1,...,n, and a polynomaial
q(2) = bpx™ + by 2™ - by + by

of degree m with zeros 3;, 7 = 1,...,m, the resultant is defined by

Res(p, ¢; ) := a;'by, H H(Oéz' — Bj)-

i=1j=1

The resultant is also given by the determinant of the corresponding (n+m) x (n+m)
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Sylvester matrix. Namely,

Qg b()
ap Qo br bo
ap - by
agp . bo
Res(p,q;x) = det ay b1
an, b,
an, : by,
Qn, bm

It is clear that Res(p, ¢; ) = 0 if and only if p(x) and ¢(z) have a common factor in R|x].
If p and ¢ are polynomials of the same degree n = m, then there is another way to
compute their resultant. From the following polynomial in two variables

n—1

p(2)q(y) —p(y)q(z) i
B(:E)y) - = Z C’i,j'r yj7
r—y =
2,7=0
form a symmetric n X n matrix C' := (ci,j)?’j_:lo (Bézout matrix). The determinant of

C' (Bézout resultant) equals £Res(p, ¢; z). Practical experience shows that the Bézout
matrix is superior to the Sylvester matrix with regard to the numerical stability. So, if
one has two polynomials of the same large degree with numerical coefficients, then it is
better to use the Bézout matrix.

Computing the resultant of two polynomials with respect to a specific variable is a
standard feature in many computer algebra systems. These implementations make use
of either the Sylvester matrix or the Bézout matrix, and they work quite fast.

There are many applications of the resultants. Resultants can be used to eliminate
the variables from the system of polynomial equations. Furthermore, one can use them to
find intersections of two algebraic curves in the real plane, for implicitization of rational
curves in the plane, etc.

7.2. Grobner basis

Let K := k[x1, 22, ...,x,] denote a ring of multivariate polynomials over k in variables
1, To,...,T,. Further, let

T =(x1,29,...,2,), B=B,00,....0), zP= xflxgz ol
Every f € K can be written as
f=ax™ + ax™* + - - 4 a,x°,

where 0 # a; € k, and % > % > ... > % with respect to some chosen monomial
order. Further let us denote the leading power product by Ip(f) := . A Grobner
basis is defined in the following way.
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DEFINITION 7.2. A set of nonzero polynomials G = {g1,92,...,9¢} contained in
some ideal I C K is a Grobner basis for I if for every nonzero f € I there exists
i€{1,2,...,0} such that the lp(g;) divides Ip(f).

A Grobner basis G can also be characterized by one of the properties given in the
next theorem.

THEOREM 7.3. Let I C K be a nonzero ideal. The following statements are equivalent
for a set of nonzero polynomials G = {g1,92,...,9¢} C I.

(i) G is a Grobner basis for I.
(ii) Multivariate division (see [1]) of any polynomial in the ideal I by G gives 0.
(iii) f € I if and only if f = 321, higs, where

Ip(f) = max{Ip(h;)Ip(g:)}-

1<i<t
(iv) The ideal given by the leading terms of polynomials in the ideal I is itself generated
by the leading terms of the basis G.

It G ={g1,92,---,9:} is a Grobner basis of the ideal I, then I is generated by its
elements, i.e., I = (g1, ga, .. ., g¢). Furthermore, for every nonzero ideal I C K, generated
by a finite set of polynomials, a Grobner basis exists. One method for computing it is
known as Buchberger’s algorithm.

Since multivariate division requires a monomial ordering, the basis depends on the
chosen monomial ordering, and different orderings can give rise to radically different
Grobner bases. Two of the most commonly used orderings are a lexicographic order,
and a degree reverse lexicographic order. A lexicographic order eliminates variables, but
resulting Grobner bases are often very large and expensive to compute. Degree reverse
lexicographic order typically provides the fastest Grobner basis computations.

A Grobner basis is called reduced if the leading coefficient of each element of the basis
is 1 and no monomial in any element of the basis is in the ideal generated by the leading
terms of the other elements of the basis. The reduced Grobner basis is unique.

In the worst case, computation of the Grobner basis may require time that is expo-
nential or even doubly-exponential in the number of solutions of the polynomial system.
Most computer algebra systems contain routines to compute the Grobner basis.

Grobner bases with respect to the lexicographic order are very useful for solving poly-
nomial equations and for elimination of variables. The set of polynomials in the Grobner
basis have the same collection of roots as the original polynomials.

7.3. Brouwer’s mapping degree

Let U denote a bounded open subset of R”. For a C!' mapping f : U — R", f =
(f1, fo,- -, fn), the Jacobian matrix at & € U is

f@ - (rw)

i,j=1
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and the Jacobian determinant is
Jg(z) = det f'(z).
Further,
RV(f) ={y €eR"| Vz e f(y): Js(z) #0}
is the set of regular values. Its complement CV(f) = R™ \ RV(f) is called the set of
critical values.
Brouwer’s degree or simply a degree of a continuous mapping f on U is an integer,

that gives some evidence on the number of zeros of f in U provided that f(z) # 0 on
OU. The precise definition is given in three parts.

(i) Suppose that f: U — R" is a C! mapping and y is a regular value. Then the degree
of f at y relative to U is

deg(f,U,y) = > signJg(z),
zef ' (y)

where the sum is finite and ), = 0.

(ii) Suppose that f: U — R" is a C! mapping. Then one can find a sequence of regular
points (y,); that converge to y. The degree of f at y is then defined as

deg(f,U,y) = lim deg(f, U, y;).

(iii) If f is continuous in U, then there exists a sequence of C! mappings (f;); that
converge to f uniformly on U, and

deg(f,U,y) = lim deg(f;,U,y).

It can be shown that the function deg(f,U,y) is well defined in (ii) and (iii), i.e., the
limits exist and are independent of the approximating sequences.
The basic properties of the degree function are the following:

1. deg(f,U,y) = deg(f — y,U, 0) (translation invariance).

2. Let H(z,t) be a continuous function of x € U and ¢ € [0, 1], and suppose that
H(z,t) = y has no solution € 9U for any ¢t € [0,1]. Then deg(H (-,t),U,y) is
constant, independent of ¢ € [0, 1] (homotopy invariance).

3. deg(f,U,y) = deg(f,U,y) for y and y' in the same component of R™ \ f(9U).

4. If Uy and U, are open, disjoint subsets of U such that y & f(U \ (U; U Us)), then
deg(f,U,y) = deg(f, U1, y) + deg(f, Uz, y) (additivity).

5. If U is a symmetric domain about the origin, f(—z) = —f(z) on OU, and f(z) # 0
on OU. Then deg(f,U,0) is an odd integer.

6. If deg(f,U,y) # 0, then the equation f(z) = y has solutions in U.
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Razsirjeni povzetek

Geometrijska interpolacija s parametri¢cnimi polinomskimi krivuljami in zlepki je bila
prvi¢ predstavljena v [4], kjer je obravnavana Hermitova kubi¢na interpolacija dveh
tock, smeri tangent in ukrivljenosti. Dokazano je, da je red pri aproksimaciji ravninske
konveksne krivulje Sest, za razliko od funkcijskega primera, kjer je red le stiri. Visok
red aproksimacije je le eden od razlogov, ki je k studiju geometrijskih aproksimacijskih
shem privabil mnogo avtorjev. Drug pomemben razlog je ta, da je oblika geometri-
jskih interpolantov v vecini primerov boljsa od oblike obic¢ajnih funkcijskih interpolan-
tov. Osnovni princip geometrijske interpolacije je, da krivulja ni odvisna od dejanske
parametrizacije, ampak le od geometrijskih koli¢in, kot so tocke, smeri tangent, ukriv-
ljenosti itd. Ker ne predpisemo nobenih dodatnih pogojev, kot so na primer parametri,
pri katerih tocke interpoliramo, velikosti tangent ali ukrivljenosti, je red aproksimacije
vi§ji kot pri obic¢ajni funkcijski interpolaciji. Geometrijske sheme so zato pomembno
orodje v rac¢unalnisko podprtem geometrijskem oblikovanju (CAGD). Glavni problem
teh shem pa je, da vkljucujejo nelinearne enache, zato so vprasanja o obstoju resitve,
redu aproksimacije in uc¢inkoviti implementaciji zelo tezka.

Obicajno krivulj ne aproksimiramo z eno samo polinomsko krivuljo, ampak s konénim
stevilom krivulj, ki se v sti¢nih tockah ujemajo z dolo¢enim redom geometrijske zveznosti.
Pravimo, da sta dve krivulji G° zvezni, ¢e se ujemata v skupni tocki, G' zvezni, ¢e imata
v skupni tocki isto smer tangente, G? zvezni, ¢e imata v skupni tocki isto smer tangente
in isto ukrivljenost, itd. V splosnem geometrijsko zveznost definiramo takole.

DEFINICIJA 1. Dwve parametricni krivulji
fl : [toatl] - Rd) f2 : [807 Sl] - Rd)

se ujemata z geometrijsko zveznostjo reda k oziroma sta G*-zvezni, ¢e se konéna tocka
f1 wjema z zacetno tocko fo, f1(t1) = fo(s0), in ée obstaja regularna reparametrizacija
¢ : [to, 1] = [s0, s1], da velja

& f,
dti

d'(f, o0
(t) :M(t) L i=0,1,... k.
t=t1 dtj t=t1
Za dolocanje reda aproksimacije moramo znati meriti razdalje med parametricnimi
objekti. Ker so ti najveckrat predstavljeni kot mnozice tock, je ena od moznih metrik

zelo znana Hausdorfova razdalja.
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DEFINICIJA 2. Naj bosta X in'Y podmnoZici metricnega prostora M. Hausdorfova
razdalja dy(X,Y') je definirana kot

dy(X,Y) = inf d(z,y), sup inf d(z,y) ¢,
H(X,Y) maX{jgg;gy (z,9) sup inf (x y)}

kjer je d(x,y) razdalja v metricnem prostoru M.

Na zalost pa je Hausdorfovo razdaljo v praksi zelo tezko racunati. Za njeno zgornjo
mejo sta T. Lyche and K. Mgrken ([34]) predlagala tako imenovano parametricno raz-
daljo.

DEFINICIJA 3. Naj bosta f, in fy dve parametricni krivulji, definirani na intervalih
I in Is. Parametricna razdalja med f, in f, je definirana kot

dist(f,, fo) := igf [fioo—fil = i%frtfé%;( [ f1(e(t) = F2),

kjer je ¢ = I — Iy reqularna reparametrizacija.

V [22] sta K. Héllig in J. Koch postavila naslednjo domnevo, ki v splosnem $e ni
dokazana.

DOMNEVA 4. Pod ustreznimi genericnimi predpostavkami lahko polinomska krivulja
stopnje n interpolira
NS b
m=n
d—1

tock na gladki krivulji f € R, Ta interpolacijska krivulja aproksimira f z redom aproksi-
macije m, ko gredo razlike med interpoliranimi tockamsi proti nic.

Vecina objavljenih rezultatov o geometrijski interpolaciji je dobljenih s pomocjo
asimptoticne analize. Glavni avtorji in njihova dela so C. de Boor, K. Hollig, M. Sabin,
J. Koch ([4], [22], [21]), T. Lyche, K. Mgrken, K. Scherer ([37], [45], [46], [34]), W. L. F. De-
gen ([7], [8], [9]), A. Rababah ([38], [39]), Y. Y. Feng, J. Kozak, E. Zagar ([16], [15], [14],
26], [27], [28], [47]) in R. Schaback ([40], [41], [44], [42], [43]). V prakticnih primerih pa
rezultati z asimptoticno analizo niso zadostni, saj morajo robustni algoritmi temeljiti na
pogojih, ki vnaprej zagotavljajo obstoj interpolantov. Takih rezultatov pa je zaenkrat
zelo malo. Razen posebnih primerov, kot so interpolacija kroznih lokov ([34] [10], [19]
[35], [17], [18], [11], [12]), je le nekaj rezultatov o geometrijskih pogojih, ki zagotavljajo
obstoj resitve. Pogoji za obstoj parametricne parabole, ki interpolira stiri tocke, so po-
dani v [33]. V [36] so ti pogoji razdirjeni na vse mozne primere (Taylorjev, Hermitov,
Lagrangeev). Interpolacija poljubnega $tevila tock v ravnini s parabolicnimi G? zlepki
je obravnavana v [41], [14], [26], kjer so izpeljani zadostni pogoji za obstoj in enoli¢nost
reditve. Najbolj splosen rezultat sta dokazala J. Kozak in E. Zagar v [27], kjer sta izpel-
jala potrebne in zadostne pogoje za obstoj interpolantov pri interpolaciji d + 2 razlicnih
tock v R? s polinomsko krivuljo stopnje < d.

V disertaciji obravnavam ravninske geometrijske sheme. Te so v praksi najbolj
uporabne, poleg tega pa je v ravnini razmik med parametri¢nim in funkcijskim primerom
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najvecji. Domneva 4 namrec pravi, da lahko 2n ravninskih tock interpoliramo s polinom-
sko krivuljo stopnje n in dosezemo red aproksimacije 2n, medtem ko lahko v funkcijskem
primeru polinomska krivulja stopnje n interpolira najvec n+1 tock z redom aproksimacije
n+ 1.
Lagrangeev interpolacijski problem, na katerega se osredotocim, je naslednji: za danih
2n ravninskih tock
Ty, Ty,....,Ton1 €R?* T; #T1, (1)

poisci parametriéno polinomsko krivuljo P, : [to, t2,—1] — R? stopnje < n, ki interpolira
dane tocke pri narascajocih vrednostih parametrov ¢;,

tgo <t <+ <top_o <top_q. (2)
Ker linearna transformacija domene parametrov ohranja stopnjo polinomske krivulje,
lahko predpostavimo, da je to := 0 in tg, 1 := 1. Ostali parametri t := (ti)?21_2 pa so

Se neznani. Parametrom, ki zadoscajo (2), pravimo dopustni parametri. Nanje lahko
gledamo kot na komponente tocke v odprtem simpleksu

Dn = {(tl)122;2’ O:tO <t1 < "'<t2n72 <t2n71 = 1}7
z robom 0D, kjer vsaj dva razlicna t; sovpadata. Sistem enach
Pn(tz):TZ, 220,1,,277,—1, (3)

doloc¢a tako krivuljo P,, kot tudi neznane parametre t. Nelinearni del je dolo¢iti parame-
tre. Ko jih izracunamo, dobimo koeficiente polinomske krivulje P, enostavno tako,
da vzamemo katerihkoli n + 1 razlicnih interpolacijskih pogojev v (3) in na kompo-
nentah P,, uporabimo eno izmed standardnih interpolacijskih shem (Newtonova shema,
Lagrangeeva shema).

Ker je sistem enacb (3) nelinearen, je dokaz eksistence dopustne resitve zelo tezek
problem. Resitev tudi ne obstaja nujno. Kot preprost primer vzemimo §tiri tocke (n = 2)
z nekonveksnim kontrolnim poligonom. Ker je vsaka komponenta interpolacijske krivulje
P, parabola, ki ne more imeti vec kot dve nicli, je jasno, da interpolant ne more obstajati.
Zelo lepi, potrebni in zadostni pogoji za obstoj resitve za n = 2 so dani v [27]. Interpolant
P, obstaja natanko takrat, ko imajo determinante

det (AT(), ATl), det (ATo, ATQ), det (ATl, ATQ)

enak predznak. Tu je AT, :=T,,; — T; standardna oznaka za premo diferenco.

Za motivacijo si oglejmo dva numericna primera. Najprej primerjajmo kubi¢no ge-
ometrijsko shemo s standardno interpolacijo s polinomi stopnje pet, kjer si za parametri-
zacijo izberemo enakomerno ali tetivno parametrizacijo. Na slikah 1.1 se lepo vidi, da se
kubicna krivulja (¢érna krivulja) dosti lepse prilega podatkom kot ostali dve. Racunska
zahtevnost za izracun teh kubic¢nih interpolantov je zelo majhna. Newtonova metoda
z ekvidistantnimi zacetnimi priblizki ¢; = é konvergira v povprec¢ju v osmih iteracijah.
Kot naslednji primer aproksimirajmo logaritmi¢no spiralo

f(t) =log(t+ ) (ig;i) , te [—g,g} , (4)




122 Razsirjeni povzetek

z geometrijskimi interpolanti stopenj n = 3, 4,5, 6. Podatke dobimo iz (4) z enakomerno
delitvijo domene parametrov. Tabela 1.1 numericno potrjuje, da je red aproksimacije
2n. Napako merimo kot parametricno razdaljo med krivuljo in njenim interpolantom.

Geometrijska interpolacija s kubi¢nimi polinomskimi krivuljami

V tem poglavju obravnavam Lagrangeevo interpolacijo Sestih ravninskih tock s kubi-
¢no polinomsko krivuljo. Podani so zadostni geometrijski pogoji, ki zagotavljajo obstoj
interpolanta P3. Pogoji so precej preprosti in odvisni le od dolo¢enih determinant,
izpeljanih iz danih tock.

Problem je naslednji: poiskati moramo pogoje, ki zagotavljajo obstoj vsaj ene do-
pustne resitve nelinearnega sistema

Pg(tz):TZ, Z:O,l,,5 (5)
Resitev je dopustna, ¢e parametri zadoscajo
O=tg <t <---<t5:=1. (6)

Pomembno vlogo igra matrika diferenc tock (ATi)j:o € R**® in predznaki ter razmerja

med njenimi minorji D; ; := det (AT;, AT;). To so predznacene plos¢ine paralelogramov,
napetih na vektorje AT;, AT';. Definirajmo Se

DOl D02 D24 D34 D13 D23
A= —=, A= —=, 3= ——, N\ = ——, § = —=, ==
YT D T Diy 0T Day’ T Das D, T Dy,
e Ao(1+ o)
1 -— )
A1+ X2) + VA (14 X)) (A + A2)
A3(1+ A3)
Y2

TN )+ V(e O )

Pri podatkih s konveksnim kontrolnim poligonom, kot na prvih treh slikah 1.1, je > 0
in \; >0,7=1,2,3,4. Kontrolni poligoni tock na zadnjih treh slikah 1.1 imajo prevojno
tocko in zanje je p < 0in A\; > 0, ¢ = 1,2,3,4. Omejimo se na studij takih podatkov.
Geometrijska interpretacija A;, d in u je prikazana na sliki 2.1. Definirajmo se X := (\;);

in funkcije

2=+ VR A+ )

191 (Aa ) 271 )
2 — py2 + /1273 + Ap(l + 72)
192 ()‘a ) = 9 )
V2

Mi Ao A+ )

9y (A p) = o 24 B oA T 7e)
3 ( 7:U/> )\2 _'_ )\3 + )\2 1 + )\2 Y
A A T [ A(As 4 Ag)

Oy (A p) = S 24y — JOR T2
4( 7:U/> )\2 _'_ )\3 + )\3 1 + )\3 )

ki bodo uporabljene v relacijah, ki zagotavljajo obstoj resitve. Glavna izreka sta nasled-
nja:
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IZREK 5. Naj bo D1 2D53 # 0 in naj bodo podatki konveksni, to je jp > 0 in A\; > 0,
i =1,2,3,4. Ce sta bodisi ¥y enaka, ¥ (X, 1) = 95 (X, 1), bodisi nista enaka in velja
eden od pogojev

0 < min {J¢ (A, p)} ali 6> max{de (X p)},

potem kubicna interpolacijska krivulja Ps, ki zadoséa (5), obstaja.

IZREK 6. Naj bo D15D; 3 # 0 in naj ima kontrolni poligon tock prevoj, to je u < 0 in
Ai>0,1=1,2,3,4. Ce je
0 € (193()‘7 :u)a l94()‘7 :u)) )

potem kubicna interpolacijska krivulja Ps, ki zadoSca (5), obstaja.

Izrek 5 in izrek 6 podata zadostne pogoje za obstoj kubiénega geometrijskega inter-
polanta. Naslednji izrek pa izkljuci vecino podatkov, ki jih ta dva izreka ne pokrijeta.

IZREK 7. Pogoji na tocke, pri katerih resitev interpolacijskega problema (5) ne obstaja,
so podani v tabeli 1.

Di2Dy3 # 0 Dy3Dy3=0
w>0 n<0
/\QSO,)\;;SO AQSO DLQZO, D273:0
5§0,/\1§0 AgSO DLQ:O,/\?,SO
0<0,2<0 M <0,0<0 Dy3 =0, <0
M0, A<0, 20 M<0,0>0|D12=0,Dy1Dy3>0
A <0, A <0, 020 Dy3=0,D9D34 >0

Table 1: Pogoji na tocke, pri katerih resitev interpolacijskega problema (5) ne obstaja.

Se vedno pa ostane nekaj primerov, ki z izreki 5, 6 in 7 niso pokriti. Kot primer
vzemimo tocke

() me) me(®) o
T3 = (g) ) T4 = (110) ) T5 = (20; C) ’ C > 07

za katere je A\ = \y = —1—%, A= A3 = 2,6 =pu = 1. Ocitno niso izpolnjeni pogoji
nobenega od zgornjih izrekov. Ti podatki imajo za ¢ € (0, (o], kjer je (o := 2.95373852,
dve dopustni resitvi (slika 2.2). Pri ( = (, ti dve resitvi sovpadeta in krivulja ima $pico,
za ( > (o pa dopustna resitev ne obstaja vec.

Primeri na slikah 1.1 vsi zados¢ajo pogojem izreka 5 ali izreka 6. Poglejmo si dva
izmed njih bolj natanéno. Pri prvem primeru je § < ¥ (A, p) < ¥ (A, ). Slika 2.3
(levo) prikazuje, kako se spreminja polozaj tock, ko se § priblizuje ¥, (A, u). Za § €
[ (A, @) , Yo (A, p)] dopustna resitev ne obstaja. Podobno nam slika 2.3 (desno) prikazuje
spreminjanje polozajev tock, ko gre § od 93 (A, 1) do ¥4 (A, i) za zadnji primer s slike 1.1.
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Za & < 93 (A, p) ali 6 > 94 (A, u) lahko obstajata dve dopustni resitvi, zgodi pa se
podoben problem kot pri zgornjem primeru.

Pogoji izrekov 5 in 6 so zelo preprosti, v dokazu pa je potrebnih kar nekaj korakov.
Poglejmo si idejo in skico dokaza. Sistem (5) najprej pretvorimo v obliko, ki je bolj
primerna za nadaljno analizo. Loc¢imo enacbe za neznane koeficiente od enach za nez-
nane parametre. To naredimo tako, da na sistemu (5) uporabimo deljene diference

[to,tos1, - .., tera], ki vsak kubicni polinom Pj preslikajo v ni¢. Dobimo enacbe
044 1
ZiTz :07 620717 (8)
— We,era(ts)

kjer je

Gu0) 1= (= 8t~ tin) -+ (= 1) (= 1), Guglt) = nsld), i<

Nekaj enostavnih transformacij sistema (8) nam da koné¢ni sistem enacb za neznane
parametre, ki se glasi

1 1 1
, 14 Ay) + = _ _0, 9
u)0,4(?50)( 2) Wo,a(t1) w0,4(t4)u (9)
1 1 1
— X\ + - + - 1+9) =0, 10
Woa(to) " Qoalts) W0,4(t4)( ) (10)
1 1) 1 1
, 1+ 2 ) 4 - + - M= 0, 11
w 5(t1) ( ,u) wi5(t2)  wWips(ts) ! (11)
1 1 1

Wi 5(t1) ; * w1 5(ts) T 6 5(ts) (1+2X3)=0. (12)

V naslednjem koraku dokazemo, da parametri ¢; ne morejo biti pri nobeni resitvi, ki
zadosca (6), poljubno blizu roba dD3. To pove naslednji izrek, katerega dokaz je tehni¢no
precej zapleten, je pa to najpomembnejsi del v dokazu glavnih izrekov.

IZREK 8. Naj bodo izpolnjeni pogoji izreka 5 ali izreka 6. Potem sistem (9) - (12) ne
more imeti nobene resitve poljubno blizu roba obmocja ODs.

Sledi dokaz, da ima nelinearni sistem za posebne podatke liho Stevilo dopustnih
resitev. To dejstvo nato razsirimo na splosni sistem s pomocjo homotopije in Brouwer-
jevega izreka. In sicer definiramo homotopijo H(t;(), ki nam da pri ¢ = 0 sistem za
posebne, pri ¢ = 1 pa sistem za splosne podatke. Dokazemo, da H(t;() = 0 zadosca
pogojem izreka 8 za vsak ¢ € [0, 1]. Zato obstaja kompaktna mnozica K C Ds, da velja

V:i={teDs; H({t () =0CKcCD;, VNOK=1{.

Ker torej H ni ni¢ na robu K za noben ¢ € [0, 1], je Brouwerjeva stopnja invariantna
za ¢ € [0,1]. Ker pa je liha za posebne podatke, mora imeti sistem vsaj eno dopustno
resitev.
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Geometrijska interpolacija s kubi¢nimi G' zlepki

V tem poglavju je obravnavana geometrijska interpolacija stirih tock in dveh smeri
tangent ter interpolacija s kubi¢nimi G zlepki. Doloé¢en je §irok razred zadostnih pogo-
jev, ki zagotavljajo obstoj interpolantov in pokrijejo tako konveksne kot nekonveksne
podatke. Eksistencni pogoji so odvisni le od geometrije podatkov in so enostavno pre-
verljivi. Dodan je tudi algoritem, s katerim doloc¢imo obmocja za smeri tangent, ¢e le te
niso vnaprej predpisane.

Interpolacijski problem je sledec. Za dano zaporedje tock

T, cR?* i=0,1,2,....3m, T;#Ti,
poisci kubitno G' krivuljo zlepkov S : [a,b] — R? s stitnimi tockami
a:=uy < up < - < Up:=Db,
ki interpolira dane tocke T';, tako da
S(ug) =Ts3, £=0,1,...,m.

Z dsg, ||dsella = 1, oznac¢imo smeri tangent krivulje S v wy. Z odsekoma polinomsko
predstavitvijo

tg U U
[ug—1,ue)’ ) Auy_q

P’ () == S(u) | €[0,1], ¢=1,2,...,m,

se interpolacijski problem glasi takole: poiséi kubiéne polinomske krivulje P*, za katere
velja

P@ (tf) :T3(€—1)+ia 2.2071’""37

d _, . d _, . (=1,2,....,m, (13)
WP (0) = Ozodg(g_l), WP (1) = Oz3d3g,
kjer parametri 4,5, af, af zadoséajo
0=t <th<th<ti=1 af>0 af>0 (=12,...,m
Smeri tangent ds,, £ = 1,2, ..., m—1, zaenkrat Se niso predpisane, zato nas zanima tudi,

kako dolociti obmocja za (dy)," ,, ki zagotavljajo obstoj resitve sistema enach (13).
Poglejmo si najprej analizo enega odseka, torej m = 1 in P' =: P. Naj velja

R 1| R )t 4l 4l Al R
dO -— do, d3 — dg, tl -— t17 t2 — t2, O[Q -— a07 043 — Ofg.

Nelinearen del interpolacijskega problema (13) je izracunati dopustne parametre
(t17 t27 Qp, OZg) € ua kjer je

U= {(tl,tg), 0=ty <t <ty <t3:= 1} X {(04070[3); ag >0, ag > O}
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Ce na enacbah (13) uporabimo deljene diference, ki preslikajo kubi¢ne polinome v nic,
dobimo naslednji nelinearen sistem za (1, t2, g, 3):

1
[to, to, L1, ta, t3] P =0 = ———— o to o+z (ZZ T —t0> AT; 4,

=1 \im wo3(t
1
to,tr, to, by, t5]P =0 = — 2 AT,
ot 5, P = 0= %% 3+j§;(izwg3 )tg_t) ]

Z nekaj preprostimi transformacijami se ga da prepisati v

1 1 lo —1 A
— (1+M1( +)\1)_)\_1) =0,
2

Pi—t) Bi-n) Tt a5

1 1 lo — 11 A2
— 1 1 1+X)——1]=0 14
tg(l —t2)2 tl(l—t1)2< +M2)+ 1t ( +/’L2( + 2) /\1) ) ( )
in
tltg 1 t2 - tl
=94 — 1+ A 15
=02 (e~ atnsm) )
(1—)(1— t) 1 bt
=4 — 1+ A 16
=T T t(l—t)2 bty (1+A) ). (16)
kjer so nove konstante definirane z
D3_330-1 D3g_330-1
Aopq 1= ————, Aoy i= —————
2 D3p_330-2 . Ds3y_930-1
- det (d3;—3, AT'3_2) oy = det (AT'5¢_5, d3)
20—1 -— ) 20 -— )
det (dsr—3, AT'3—3) det (AT'sp—1, d3)
Sppy = D3y 3302 Spp im D3y 2301
— det (dg—3, AT'3-3)’  det (AT'5_1,d3e)

Da poenostavimo analizo, predpostavimo Ay > 0, g > 0in o, > 0, k = 1, 2, za konveksne
podatke in Ap- A <0, 5k > 0 za nekonveksne to je podatke s prevojno tocko. Naslednji

LEMA 9. Najbo Ay > 0. Tedaj obstaja enolicna resitev sistema (14) in (15), ki zadosca
0 <ty <ty <1 in prikateri je oy = 0, natanko tedaj, ko je Ay > 0 in po = ¢o(A1, \a),
kjer je

¢2()\17 )\2) = 1_ t~2 52 -1,
ey
m je (tl, t2) enoliéna resitev sistema
1= =14\, i:ﬁ(l—f—)\g), 0<t; <ty<l.
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LEMA 10. Naj bo Ay > 0. Tedaj obstaja enolicna resitev sistema (14) in (16), ki
zadoscéa 0 < t1 < to < 1 in pri kateri je ag = 0, natanko tedaj, ko je Ao > 0 in
1 = ¢1(A1, Aa) = da( Ao, Ar).

Definirajmo Se funkciji

)\2,u1
)\ 7)\ ) = bl
¢3( 15 A2 Ml) )\1()\2/“ —1_ m)

/\2,[11()\2/11(]. + 2)\1) - 2/\1)
A, A =
Pa(A1, Aa, p1) N o — 1)?

Naslednja dva izreka podata zadostne pogoje na podatke, ki implicirajo obstoj inter-
polanta P. Prvi pokrije konveksne, drugi pa nekonveksne podatke.

I1ZREK 11. Naj podatki dy, Ty, T1,T>,T3,ds zadoscajo
A >0, 0 >0, i >0, k=1,2.
Ce je
0 < <di(M,A2) im0 < pg < (A1, Aa),
ali
pr > @1 A1, A2) in pp > ¢a(Ar, A2),

potem kubicna interpolacijska krivulja P, ki zadoscéa (13), obstaja.
I1ZREK 12. Naj podatki dy, Ty, T1,T>,T3,ds zadoscajo
)\1>O, )\2<O, (51>O m 52>O

Ce je iy > 0 in
P3( A1, Ag, p1) < pra < Pa(A1, A, 1),

potem kubicna interpolacijska krivulja P, ki zadoSéa (13), obstaja.

OPOMBA 13. Iz simetrije v enacbah (14)-(16) sledi, da izrek 12 velja tudi, ¢e zamen-
jamo vlogi Ay in Ay ter vlogi j1y in fio.

Geometrijska interpretacija izrekov 11 in 12 je prikazana na slikah 3.4 in 3.5. Ideja
dokaza je podobna kot v prejsnjem poglavju. Najprej dokazemo, da pod pogoji izrekov
sistem (14)—(16) ne more imeti nobene resitve poljubno blizu roba oU. V naslednjem
koraku pokazemo, da imajo posebni podatki, ki zadosc¢ajo pogojem izrekov, liho stevilo
resitev. Nato to dejstvo prenesemo na splosne podatke s pomocjo homotopije in Brouw-
erjeve stopnje.

Poglejmo si sedaj interpolacijo z G* kubi¢nimi zlepki ob predpostavki, da so smeri
tangent ds; neznane. Vsaka smer tangente je odvisna le od enega parametra. Ce sta
vektorja AT's,_1 in AT'3, nekolinearna, smeri tangent izrazimo kot

do := dy(&) := ({0 — 1)AT + AT,
dso = ds(&) = 030(1 = &) AT 31 + 0301 AT, (=1,...,m—1,
d3m = dm(gm) = (1 - £m)AT3m—1 - gmAT3m—2>
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D1,

kjer je o := sign( > Ceprav tako predstavljene tangente niso normalizirane,
kk+1

to ne spremeni eksistenénih pogojev. Po predpostavkah v eksisten¢nih izrekih morajo
biti konstante dop(&p) > 0 in dopr1(&) > 0 pozitivne. To je res, ¢e & lezi na intervalu
(0,1). Preprosto se da dolociti tudi podinterval v (0, 1), kjer sta pozitivna tudi pae—1(€)
in p190(¢). Rekli bomo, da je neka izbira parametrov (&)}, dopustna, ¢e so na vsakem
polinomskem odseku izpolnjeni pogoji izreka 11 ali izreka 12. Algoritem ForwardSweep,
ki je predstavljen v disertaciji, vrne mnozico vektorjev intervalov 2 = {Z¢, =1, ..., =, },
za katere velja naslednje: za vsak r, 0 < r < m, in poljubno izbran £, € =, obstaja vsaj
ena dopustna izbira

(gOa"'>£T—1>£T>£T+1a"'a§m)a & S Ef'

Kadar so podatki na vsakem odseku konveksni, to je
Aop1>0, N\gy >0, (=1,2,...,m,

pa velja mnogo mocnejsi rezultat. Ce je = vektor intervalov, ki ga vrne algoritem, potem
je poljubna izbira parametrov

(anfla---afm)7 gZEEfa

dopustna. Algoritem je preprost algoritem sestopanja, ki pregleda podatke najprej v eno
smer Ty — T3, in doloc¢i vmesni rezultat =,, £ = 0,1,...,m, ki je tak, da za poljuben
& € Zy obstaja izbira & € Z;, i = 0,1,...,0 — 1, da je (£, &, ...,&) dopustna izbira
za tocke T;, i = 0,1,...,3(. Korak v nasprotno smer T,, — T skrci trenutne =,
C=m-—1,m—2,...,0, tako da za vsak & € =, obstaja izbira

fiEEZ’, iIO,l,...,£—1,€+1,...,m,

da je (&o,&1,...,&n) dopustna za vse podatke. Ko enkrat imamo dolocene meje =,
moramo izbrati dejanske smeri tangent, to je izbrati & € Z,. Predstavljen je preprost
algoritem deli in vladaj, s katerim iz neprazne Z vedno dobimo dopustno izbiro. S tem
algoritmom pa lahko tudi preverimo ali ima interpolacijski problem (13) resitev, kadar
so smeri tangent predpisane vnaprej.

Hermitova geometrijska interpolacija s kubi¢nimi G! zlepki

V tem poglavju obravnavam Hermitovo geometrijsko interpolacijo z ravninskimi ku-
biénimi G* zlepki. Na vsakem polinomskem odseku interpoliram tri tocke in tri smeri
tangent. Podani so zadostni geometrijski pogoji za obstoj resitve, ki pokrijejo vecino
primerov.

Problem je sledec. Za danih 2m + 1 tock in smeri tangent

T, ER2, d; GRQ, Tz‘%Tz‘—i—l) ||dz||2:1, 1=20,1,...,2m,
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poiséi kubiéno G' krivuljo zlepkov S : [0,1] — R? s predpisanimi sti¢nimi toc¢kami
(2:)i0,

0=ty <ty < -+ <tlopo1 <tloy =1,
ki interpolira tocke T'; in smeri tangent d; pri parametrih ¢;,

1
[ELGIE

kjer so (t;—1)", neznanke. Interpolacijska shema je o¢itno lokalna, saj sprememba ene
tocke ali smeri tangente vpliva le na odsek, ki podatek vsebuje. Analizo in vse izracune
lahko zato naredimo lokalno. Za m = 1 je zlepek S kar polinom, ki ga oznac¢imo s P.
Enacbe za polinomski problem se dajo prepisati v

S(tl) :Tz'7 Sl(tz) :di, ’i:O,l,...,Qm, (17)

P(t)="T, P'(t;) = ayd;, ;> 0, 1=0,1,2, (18)

kjer mora veljati 0 := ty < t; < ty := 1. Preostane nam torej dvanajst enach za osem
neznanih koeficientov krivulje P in Stiri neznane parametre ¢y, g, a; in as. Da lahko
podamo glavne eksistencne izreke, potrebujemo Se nekaj oznak. Definirajmo konstante

det (do, AT()) det (ATQ, dl)

A G (AT AT,) 2 det (AT, AT,
det (dl, ATl) det (ATl, d2)
)\3 = s )\4 = )
det (AT(), ATl) det (AT(), ATl)
det (do, ATl) L det (AT(), dg)

M= et (ATo, ATy 17 det (AT, ATY)

in funkcije

@NXMQ?ZX%§¥%aﬂ wx&uﬁszxi%g%ﬁg
B 7(A3, A2)%(3 — 27( A3, \a))

Pi(A) =N\ (1 —7(A3,22))2(1 4+ 27(X3, A2))’
T2 A3 — 2700 Ag))

) = MO R+ 200, )

(B3 —=7(=A1, 1)) T(_)‘17U1)2
3 )\17)\47 1) = _)\4 3
valn As ) (L= (A )

Ya(A, Ag, 1) = P3( Mg, Ay ),

kjer je 7(Aa, A3) definiran kot enoli¢na resitev problema

)

1 1 (1=t)2+h)
t1: Ao, A =0, 0<t <l
(17 25 3) Agl—tl )\3 tl ) 1

Zadostni pogoji za obstoj interpolacijske polinomske krivulje so naslednji:

IZREK 14. Naj podatki T;, d;, i = 0,1,2, zadoicajo det (AT, AT1) #0 in XA > 0. Ce

velja katerakoli od nasledngjih moznosti
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1o py > i(A) in pg > e(A),
2. 220 <y < ahi(X) in g < ha(N),

3. )\i—i\‘l < pz2 < ha(A) in py < i (A),

A3

b =00 < < AP i pa(X, ) < pp < Pa(X),

J. —/\i—i\‘l < p2 < )‘i—i“l in e1(A, p2) < pa < Pr(X),

potem kubicna interpolacijska krivulja P, ki zadosca (18), obstaja.

IZREK 15. Naj podatki T;, d;, i = 0,1,2, zadosc¢ajo det (ATy, ATy) # 0, A\; > 0,
1=1,2,3,in Ay < 0. Ce velja

pr > Ui(A) i po > oA, ) ali
A1 A3
A

<pr < Pi(A) in gy < @A, ),

potem kubicna interpolacijska krivulja P, ki zadoSéa (18), obstaja.

OPOMBA 16. Primer, ko je \y < 0 in A\; > 0, 1 = 2,3,4, je simetricen primeru iz
wzreka 15. Velja naslednje: ce je

po > Pa(X) in g > o1(A o) ali
Aoy
A3

< pg < Pa(A) in oy < o1(A pa),

potem kubicna interpolacijska krivulja P, ki zadoSéa (18), obstaja.

IZREK 17. Naj podatki T;, d;, i = 0,1,2, zadoScajo det (AT o, AT1) # 0 in A\ > 0,
/\2>O, )\3<0, Ay < 0. Ceje

A3

)\2 )\4 2)\ )\4
_|_ 1
)\2

Az pr

<pr i oA ) < pg <

potem kubicna interpolacijska krivulja P, ki zadosca (18), obstaja.

OPOMBA 18. Primer, ko jev)\l <0, Ay <0, A3 >0, \y >0, je simetricen primeru iz
1zreka 17. Rezultat je sledec. Ce je

LY

)\ )\3 2)\ )\4
1 _|_ 1
AB

A2 25) ’

<py i (A pg) < pp <

potem kubicna interpolacijska krivulja P, ki zadosca (18), obstaja.

IZREK 19. Naj podatki T, d;, i = 0,1,2, zadoscajo det (ATy, AT;) # 0 in A\ <0,
A <0, pp > 0. Ce velja katerakoli od naslednjih moznosti

1. A >0, A3>0, po>1s3(A, A\, 1),
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2. %<0, A3>0, 0<py <A iy > ahg(M\y, My, pia),

3. x>0, A3<0, 0<pg <24 iy > ahy(My, Ay, pia),

4- A2 <0, A3 <0, 1> —)‘i—f; (A 1) < pa < 3(Ai, Ad, ),

2\ A3 AaFAo)
5. A2 <0, A3<0, 0<py < —)‘,1\;‘3, : 3,\2212 L < g < P3( A1, Mgy ),

potem kubicna interpolacijska krivulja P, ki zadosca (18), obstaja.
Dokazi teh izrekov so tehni¢no precej zapleteni, potekajo pa podobno kot v prejsnjih

poglavjih z uporabo homotopije in Brouwerjeve stopnje. Enostavno pa se da poiskati
pogoje, ko resitev ne obstaja.

LEMA 20. Kubiéna interpolacijska krivulja P, ki zadosca (18), ne obstaja v nobenem
od nasledngih primerov:

1. )\QSO m )\120, 2. )\3§0 m )\420,

V primeru zlepkov velja naslednji rezultat.

IZREK 21. Ce na vsakem odseku [tar—o,ta0], £ = 1,2,...,m, velja eden od pogojev iz
izrekov 1419, potem kubiéna G* krivulja zlepkov S, ki zadoscéa (17), obstaja.

Red aproksimacije je optimalen, kar pove naslednji izrek.

IZREK 22. Naj bodo podatki vzeti 1z gladke konveksne ravninske parametricne krivulje
f :la,b] — R? pri parametrih s;, a = s < 8y < +++ < Soy = b, i =0,1,...,2m,
1
Ti=f(si), di =1 (s),

1 (s0)ll2
in naj bo h := max{As; : 1 =1,2,...,2m — 1}. Potem obstaja taka konstanta hy > 0,
da za vse h, 0 < h < hg, kubiéna G' krivulja zlepkov S, ki zadoscéa (17), obstaja in
aproksimira f z optimalnim redom aproksimacije Sest.

Asimptoticna analiza

Iz analize kubi¢nega primera se vidi, da je nelinearni sistem (3) za poljubno stop-
njo n nemogoce obravnavati brez kaksnih dodatnih predpostavk. V tem poglavju je
uporabljen asimptoti¢ni pristop, kar pomeni, da vzamemo tocke T', iz gladke regularne
konveksne ravninske parametriéne krivulje f : [0, h] — R?, kjer je h majhen. Ker afine
transformacije na tockah T’y ne spremenijo resitve ¢ sistema (3), lahko predpostavimo,

da je f(0) = (8> in f'(0) = (é), in reparametriziramo f po prvi komponenti

fer= (yfw)) ’
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kjer je razvoj y enak

1

1 1
y(a) = 59" (0)% + Sy () + o+

= ,@n-1 2n—1 2n "
o= 1)!y (0)z + O(z°"), y'(0) > 0.

Ker nas zanimajo vrednosti f za majhne h, koordinatni sistem skaliramo z matriko

Dy, := diag (%, W) :
Za poljubno izbrane 7y,
Mo =0 <m < <Mopg <M1 :=1,
so tocke dane s T'y = Dy, f(n,h), njihov razvoj pa je enak
Tle

T= |~  ,r (=0,1,...,2n—1
)4 j{:ckhk 2”5 ) y 4y , &M )
k=2

kjer so konstante

2 y®(0
o = 290 o
k! y"(0)
odvisne le od krivulje, ne pa od h ali n,. Z uporabo deljenih diferenc [to,t1,. .., tmijl,
j=1,2,...,n— 1, dobimo iz sistema (3) nelinearen sistem
n+j 1
—T,=0, j=12....,n—1, 19
Wo,n+(te) (19)

(=0

za neznane parametre t, kar je tudi edini nelinearni del celotnega problema. Resitev v
limiti, ko je h = 0, je enaka t = 5. Na zalost pa je Jakobijan v resitvi izrojen, zato z
izrekom o implicitnih funkcijah ne moremo sklepati na obstoj resitve v okolici A = 0.
Lahko pa zamenjamo vlogo neznank ¢, in parametrov 7,. Uvedemo Se nove neznanke
£ = (&)7"? 7 reparametrizacijo n krivulje f,

n = n(t) = n(t§), (20)
ki je dolo¢ena pri t; z enachami
ne=n(te; ) = to+ u(ts;€) + Enareh™ 'p(te), (=1,2,...,2n -2,
kjer definiramo & :=0, { > 2n — 2, in
2n—1 n—2

p(t) == (t—to) J[ (t—to), ult;€):=(t—to)(t —tan 1) ijhjtj_1~

f=n+1
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Zamenjava spremenljivk n — £ je bijektivna. Sistem enacb (19) za neznane £ pa se zdaj
glasi

F(&h) == (F;(&h)'~} =0,

n—1 (21)
G(& h) == (G5(&h)—} =0,
kjer je
n+j 1
Fy(&h) = : te+u(t; &) + Enareh™ 'p(ts
]( ) ; wO,n—i—j(tﬁ) ( ( ) 2+ ( ))
in
n+j 1 [SS) .
Gj(&:h) == Z S Z crh™™2 (te + u(te; €) + Enareh" 'p(t0)" | -
= Wonti(te) \ =
Velja naslednji izrek.
IZREK 23. Neznanke & so resitev sistema (21) natanko takrat, ko velja
1 =& =81 =" = &an2. (22)

Iz izreka 23 sledi, da mora veljati §; = &,—1, 7 = n,n+1,...,2n — 2. Preostale
neznanke (&)2:11 pa moramo dolociti iz drugega dela enacb (21). Toda (22) poenostavi
reparametrizacijo (20) v polinom

n(t:€) =t +ut; &) + & h"'p(t)

in dalje funkcije G;(&; h) v
Gi(&:h) = [to tr, - turs] D cuh® (- €. (23)
k=2

Ce definiramo q(t; &) := t + S_5—, &h‘t*H!, potem je

fortr, s b€ = oty tasla( 58+ O H17H)

in [to, t1,. . tosjlg(- ;€)% = O(h™7F). Funkcije (23) postanejo

o0

G(&sh) = [to, tr, - tug] ) cxh™2q(-€)" + O(R™7), (24)

k=2
naslednji izrek pa poda koncno obliko nelinearnega sistema (21).

IZREK 24. Razvoj (24) je enak

D ahfP(t0)F =D Cu(€)nt R,
k=2 k=2
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kjer so

) =ty (v (a(s:8)))

Polinomi Cy (&) so odvisni le od neznank &, ne pa tudi od h ali od parametrovt. Koncéni
nelinearni sistem (21) za maghne h je enak

=0

Cn+ij(&) +0O(h)=0, j=12,...,n—1 (25)
Glavna rezultata sta podana v naslednjih dveh izrekih.

IZREK 25. Ce obstaja tak hy > 0, da ima nelinearen sistem (25) vsaj eno realno resitev
za vse h, 0 < h < hg, potem interpolacijska polinomska parametricna krivulja P, obstaja
in aproksimira f z optimalnim redom aproksimacije 2n.

IZREK 26. Nelinearen sistem enacb (25) ima realno resitev zan < 5 in dovolj maghen
h.

Dokaz zadnjega izreka je preprost za n = 3, za n = 4 in n = 5 pa je dokaz obstoja
resitve precej tehni¢no zapleten.

Krivulje blizu kroznice

Domnevo, da lahko parametri¢na polinomska krivulja stopnje n interpolira 2n tock v
R? v asimptoti¢nem smislu, smo v prejsnjem poglaviu dokazali za stopnje n < 5. Toda
obstoj za splosen n je odprt problem Ze kar precej casa. V tem poglavju je dokazan
obstoj interpolacijske krivulje za splosen n pod pogojem, da so tocke vzete iz posebnih
krivulj, tako imenovanih krivulj blizu kroznice.

Najbo A : [0,h] — R?krozni lok, parametriziran po naravnem parametru. Krivulja
f = A je krivulja blizu kroznice, ¢e se ujema z A v tocki 0 dvakratno, ima v 0 enako
predznaceno ukrivljenost,

£(0) = A(0),  f(0) =A(0), det (f(0),£7(0)) det (A'(0),.4"(0)) >0,

in je razvoj gladkega popravka g := f — A enak

1 1
g(s) = o g’ (0)s* + 3 g?(0)s® + ...

Da bi razlikovali med krivuljami blizu kroznice, uvedemo konstanto M,

max [g"(0)]| < M, (26)

2<r<2n—-1

ki meri velikosti odvodov v tocki 0. Mnozico krivulj blizu kroznice, ki ustreza konstanti
M, oznacimo s [F;.
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Interpolacijski problem je problem (3), pri ¢emer vzamemo tocke T'; iz gladke krivulje
blizu kroznice f = A+g : [0, h] — R? kjer je A(t) := (sint, 1—cost)”. Za dovolj majhen
h lahko f reparametriziramo po prvi komponenti

169 = (u) = (e 5006

kjer je a(s) :== 1 — v/1 — s? krozni lok, parametriziran po prvi komponenti, in

V() = F (fT'(5)) —als) = =5+
Da se pokazati, da obstaja konstanta ¢(M), odvisna le od M, da velja
VD) <e(M), i=23,...,2n—1.

Z ustrezno izbiro konstante M ima torej krivulja blizu kroznice f € F); poljubno majhen
popravek v, prav tako pa so poljubno majhni njegovi odvodi.

Iz prejsnega poglavija sledi, da je asimptoticen obstoj resitve interpolacijskega prob-
lema (3) ekvivalenten dejstvu, da ima nelinearni sistem

Coyi(@) +0O(h) =0, j=1,2,...n—1, (27)

realno resitev a := (ag);;l za vse dovolj majhne h. Za krivulje blizu kroznice se da
funkcije Ci,4; prepisati v

1 i — +1 — l+1
C’n+j(a) = WW (Oé (t—f-gzla,gt + t+2agt

(=1

t=0

Dokaze se, da ima sistem

1 dv —
—_— t+ A
i (S
realno resitev in da je Jakobijan v reSitvi nesingularen. Zato po izreku o implicitni
funkciji obstaja taka konstanta ¢(M) za dovolj majhen M, da imajo enacbe

=0, j=1,2,...,n—1, (28)
t=0

Cpij(@) =0, j=1,2,....n—1,

za krivulje blizu kroznice, ki zados¢ajo (26) za ta poseben M, tudi realno resitev z
nesingularnim Jakobijanom. Zato pa ima, Se enkrat po izreku o implicitni funkciji, tudi
sistem (27) realno resitev za dovolj majhne h. Rezultat je povzet v naslednjem izreku.

IZREK 27. Naj bo A : [0, h] — R? krozni lok, parametriziran z naravnim parametrom.
Tedaj obstaja pozitivna konstanta M in tak hg, ho < h, da lahko za vsak hy < hg
vsako krivuljo blizu kroznice f = A+ g € Fyy geometrijsko interpoliramo s polinom-
sko parametricno krivuljo stopnje < n v 2n razlicnih tockah f(s;), s; € [0,h1]. Red
aproksimacije je optimalen, to je 2n.
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Glavni del v dokazu je pokazati, da ima sistem (28) realno resitev z nesingularnim
Jakobijanom. Da se videti, da je vprasanje obstoja resitve ekvivalentno vprasanju, ali
obstajata dva nekonstantna polinoma z,,, vy, € RJt] stopnje < n, ki zadoscata relaciji

22(t) +2(t) = 1+ 2", 2,(0) = 0. (29)

Ce definiramo
z(t) =2 (t) + 2 (t) — (L+ 7)),

potem lahko gledamo na relacijo (29) kot na nelinearen sistem enach
d’ ‘
@zn(t)}tzo =0, j=0,1,...,2n, (30)

za neznane koeficiente polinomov

wa(t) =) ait!, y(t) =) Gt
j=1 J=0

Resitve sistema (30) se da numeri¢no izracunati za nizke stopnje n, poiskati resitev v
zakljuceni obliki pa je precej kompliciran problem. V pomo¢ nam je posebna racionalna
parametrizacija enotske kroznice, in sicer

_ 2V1—=c2t (1 —ct)

1—2ct+1t? ’

C1=2ct+ (22 -1)¢t
a 1—2ct+1t2

wo(t) : Yo(?) :

’

kjer je ¢ € [0,1). Velja 23(t) +y3(t) = 1. Koeficienti polinomov x,, in 4, so v naslednjem
izreku podani v zakljuceni obliki s pomocjo Cebisevih polinomov prve in druge vrste.

IZREK 28. Naj bodo stevila n, k in r povezana z enacbo
n=2"2r-1), k>0, r>1, (31)

in naj bosta konstanti ¢y, sy definirani kot

7 . ™
Cl .= COS W s S = S1n W .

Dalje, naj bodo q; polinomi stopnje < 2 definirant kot

Qo(t) == qo(t; k) =1 —2¢pt + 12,
G (t) = q(t; k) :=2s,t (1 —cpt),
@) =@t k) =1—-2ct+ (2¢ — 1) 12

Tedaj sta funkciji x, in y,

(yg) - qoto (—(—11>Tt" (_11)””) (%)’
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polinoma stopnje < n, ki zadoscata (29). Njuni koeficienti so enaki
a; =2 j cos <(j — 1)%) =2s,T;-1(ck), 7=1,2,...,n—1,
ay, =2 8}, COs <(n — 1)%) + (1) =28 Tr1(ck) + (—1)7,
m
Bo=1,0=0,
Bj = =2 sj, sin ((] — 1)%) =25 U; s(ck), 7=2,3,...,n.

Iz izreka 28 sledi tudi, da je red pri aproksimaciji kroznih lokov, kot je obravnavana
v [34], optimalen. Toda izrek 27 razsiri rezultat na Lagrangeevo interpolacijo kroznih
lokov in krivulj blizu kroznice. Videti moramo le e, da je Jakobijan sistema enacb (30)
glede na neznanke «; in 3; pri vrednostih iz izreka 28 nesingularen. Zelo lepa formula

za determinanto Jakobijana, ki to potrjuje, je podana v naslednjem izreku.

IZREK 29. Naj bodo stevila n, k in r povezana z enacbo (31) in naj bodo koeficienti o,
B podani z izrekom 28. Tedaj je determinanta Jakobijana sistema (30) v resitvi enaka

detJ _ (_1)nr+1 22n+1 TL2 S%.
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