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Abstract

We study a firm’s decision to classify transactions as recurring or nonre-
curring in a setting with no fixed classification scheme, but with the following
principle: transactions classified as recurring must be more persistent than
those classified as nonrecurring. This principle corresponds to existing classifi-
cation standards. We find that the firm’s optimal classification strategy has a
simple form: maximize the product of the (absolute) total of income-reducing
nonrecurring and the total income-increasing recurring items. We characterize
the possible firm values consistent with a report, and provide a measure of how
opaque a firm’s valuation is given its classification choice.
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1. Introduction

Income statement classifications inform investors about a firm’s earnings persistence. In-

vestors attach a higher present value factor to recurring revenues and expenses than to

one-time gains or losses, restructuring charges, or other items presented as transitory.

Despite the importance of classification in determining a firm’s fundamental value,

neither US Generally Accepted Accounting Principles (GAAP) nor International Financial

Reporting Standards (IFRS) specify a fixed rule for classifying transactions as recurring

or nonrecurring. Instead, standards on classification provide a general principle. Loosely

expressed, this principle is that the items considered recurring should be more persistent

than those considered nonrecurring. Our purpose is to explain what a firm can credibly

reveal about the persistence of its income and about its fundamental value under this

classification principle.1

To that end, we characterize a firm’s optimal classification strategy, and then describe

the degree to which firms with different values pool by making identical classifications. This

tells us how classifications endogenously vary with income characteristics, and how opaque

optimally classified income statements are.

Without definitive guidance, any firm can privately pick its own threshold for what

counts as recurring without violating the classification principle. The firm has incentive to

do so in a way that enables it to report positive transactions as recurring revenues and neg-

1The principle we study is an abstraction, but reflects a common theme in standard-setting
practice. For instance, FASB [1985, CON6–24] states “Revenues and gains are similar, and ex-
penses and losses are similar, but some differences are significant in conveying information about
an enterprise’s performance. Revenues and expenses result from an entity’s ongoing major or cen-
tral operations. . . . In contrast, gains and losses result from incidental or peripheral transactions.”
Similar distinctions are not difficult to find; however, the Accounting Standards Codification (ASC)
Master Glossary does not give specific definitions of these terms, leaving classification as a judgment
call (see PricewaterhouseCoopers [2019, 3-10] and the related discussion on ASC 605 about gains
versus revenues).
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ative ones as nonrecurring losses. With so much flexibility, it is natural to wonder whether

investors can reliably estimate the persistence of different line items. We argue, however,

that investors can learn a considerable amount of information from the classifications.

The reason is that the classifications reveal information about the ranking of transaction

persistence. Investors learn that those transactions classified as a highly persistent line item

have present value factors greater than that of transactions classified as highly transitory

items. To the extent that classifications reveal the persistence ranking, investors learn

about present value factors from their order distribution (that is, the prior distribution of

the sample order statistics of present value factors).

Our first result shows that income statement classifications could fully reveal a firm’s

expected value conditional on the persistence ranking of all the firm’s transactions.2 As long

as the firm has at least two possible classifications, it can comply with the principle and have

a distinct report for every possible valuation based on its persistence ranking. A firm with

four income statement line items—say, recurring revenues, recurring expenses, nonrecurring

gains, and nonrecurring losses—has a communication channel that could express as much

information about firm value as one that lists every dollar it receives or spends in order of

persistence.

The amount investors actually learn from classifications is more limited. As each firm

can choose its own cutoff for what counts as recurring, it can classify its transactions in

many ways, all of which comply with the standard. For instance, a firm for which every

income-reducing transaction is more persistent than every income-increasing transaction

can classify all its transactions as recurring. To make its classifications informative, a firm

2In the terminology of Nezlobin [2012, 261], the firm’s message space is informationally sufficient
for the firm value that investors would assign if they could rank all of the firm’s transactions in order
of persistence. There is a large literature on informational sufficiency; examples include Mount and
Reiter [1974], Sonnenschein [1974], Calsamiglia [1977], Reichelstein and Reiter [1988], and Jordan
and Xu [1999].
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needs to consider whether less valuable firms can mimic it.

We address this problem by modeling investors as anticipating the firm’s incentives and

reading reports skeptically. Firms respond by choosing their thresholds to maximize the

worst-case interpretation of their reports, as is standard in models of signaling to a skeptical

receiver (for detailed exposition, see Milgrom and Roberts [1986], Okuno-Fujiwara et al.

[1990], and Shin [1994, 2003]). This response to skepticism leads to our second result, in

which we provide the firm’s optimal classification strategy. This strategy has a remarkably

simple form: choose the cutoff to maximize the product of the number of nonrecurring

losses and recurring revenues.

Having established this optimal strategy, we can characterize the degree to which op-

timally classified income statements pool firms of different types. As our third result, we

provide an explicit formula for the number of possible persistence rankings a firm would

optimally report as a given income statement.3 The formula has a convenient decomposi-

tion into the product of the number of rankings for transactions below the firm’s cutoff and

the number of rankings for those above the cutoff, enabling us to evaluate the nonrecurring

and recurring transactions separately.

Each term in this decomposition depends on both the reported recurring revenues and

nonrecurring losses. This implies that we should not expect classifications to be indepen-

dent of income, or to see the persistence of recurring revenue to be independent of the

value of nonrecurring losses. These results are consistent with a large empirical literature,

dating back to the 1970s (examples include Gonedes [1975], Ronen and Sadan [1975], and

3This question is in the tradition of early work the amount of information lost through aggrega-
tion of financial reports (some examples are Ijiri [1967, in particular Appendix B], Ijiri [1968], and
Lev [1968]). Other work in this stream includes Kanodia and Mukherji [1996] on the real effects
of aggregation of cash flow classifications, Anctil et al. [1998] on the informational sufficiency of
activity-based costing systems for identifying residual income maximizing projects, Arya et al. [2000]
on the ability to recover transactions from changes to line items, and Dye and Sridhar [2004] on
informational gains from aggregate reporting arising from reduced incentives to manipulate reports.
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Barnea et al. [1976]), with a considerable renewed interest beginning with McVay [2006].

Although the empirical literature interprets these patterns as evidence of misreporting,

our characterization shows they would arise for firms that fully comply with classification

standards.4

Our fourth result complements this characterization by describing the effects of classi-

fications on firm valuation (rather than on line item persistence). We provide a formula

for the smallest and largest optimal firm values associated with a given report, and show

that every firm value between these bounds shares the same optimal report. The range of

possible values gives us a measure of the opacity of the report.

By providing this measure of classification opacity, our results contribute to ongoing

policy discussions over both reporting classifications and non-GAAP reporting. The Secu-

rities and Exchange Commission has expressed concern about whether a firm’s non-GAAP

earnings classification choices mislead or clarify (see Donelson et al. [2020]). Prior academic

empirical work on this topic provides inconclusive results. Bradshaw and Sloan [2002] and

Doyle et al. [2003] argue that non-GAAP earnings conceal information from the market by

conflating what is transitory and what is persistent; Brown and Sivakumar [2003], Gu and

Chen [2004], and Ribeiro et al. [2019] argue instead that non-GAAP earnings inform the

market. Their discussion appears difficult to settle: as shown in Abarbanell and Lehavy

[2007], there is little difference in predicted behavior under either hypothesis.

The structure of the rest of this paper is as follows: Section 2 introduces the model

and provides preliminary results. Section 3 shows our main results. We interpret these and

conclude in Section 4. All proofs are in an appendix.

4For results on the interpretation of patterns often attributed to earnings manipulation, see
Breuer and Windisch [2019], Hemmer and Labro [2019], Hiemann [2020]. For discussion of the
difficulties of using line items to measure persistence, see Amir et al. [2013].

4



2. Preliminaries

2.1. Model setting

We analyze a game between two risk neutral players with rational expectations. A firm’s

manager (henceforth called the firm) issues a report as described below, and aims to max-

imize the firm’s share price. A representative investor prices the firm at its expected net

present value, given the firm’s report and a market discount rate ρ > 0.

The firm bases its report on its information, consisting of n ordered pairs:

{(xi, αi)}ni=1

Each xi corresponds to a transaction, in the amount of 1 or −1, which the firm must include

in a line item on its income statement. The αi associated with xi is its present value factor,

in the form of an annuity due. That is, αi includes present period income, and therefore

ranges over [1, (1 + ρ)/ρ]. As our interest is in the firm’s choice of cutoff, we allow each

αi to vary continuously. To keep the focus on what the firm can communicate through

its classification decisions, we assume that the firm has no credible way to reveal the αi

through a voluntary disclosure.5

The representative investor does not know the realized {αi}ni=1, but views them as

random variables {α̃i}ni=1. We assume a commonly known uniform prior; that is, for i 6= j,

5For discussion, see Dye and Sridhar [2008, 314] and Nezlobin [2012, 235]. Additionally, it is
known that voluntary disclosure with multiple dimensions does not lead the unravelling result of
Grossman [1981] and Milgrom [1981]; see, for example, Shin [2003] and Ebert et al. [2017]. Potential
interactions between voluntary and mandatory disclosures are studied in Bagnoli et al. [2001] in
an auditing context and in Dye [1985], Einhorn [2005], and Bertomeu et al. [2021] in a financial
reporting setting.

5



α̃i is independent of α̃j with a uniform marginal distribution:

(∀i ∈ {1, . . . , n}) α̃i
iid∼ U

[
1,

1 + ρ

ρ

]
(1)

The investor can infer the realized {xi}ni=1 from the firm’s income statement, so their prior

distribution is irrelevant unless it provides information about the present value factors. We

rule this out, and assume that each α̃i is independent of the transactions {x̃i}ni=1.

The firm faces a classification problem. Specifically, it publicly releases an income state-

ment, which decomposes its total income-increasing transactions (U , for up) into recurring

revenues (R) and nonrecurring gains (G := U − R), and decomposes its total income-

reducing transactions (D, for down) into nonrecurring losses (L) and recurring expenses

(E := D − L). We represent the firm’s income statement as (D,U,L,R), and adopt the

convention of writing income-reducing totals as positive amounts. This lets us write the

current period net income as π := U −D and the total number of transactions n as U +D.

An unmodeled authority, such as an auditor or regulator, restricts the firm’s classifica-

tion choice, according to the following reporting principle: the firm must select a unique

cutoff α̂ ∈ [1, (1 + ρ)/ρ], so that its classifications satisfy (2):

R = R(α̂) =
∑

{i|αi≥α̂}

{xi|xi > 0} L = L(α̂) =
∑

{i|αi<α̂}

{−xi|xi < 0} (2)

The values of U and D are independent of the firm’s chosen classification cutoff:

U =
n∑
i=1

max{xi, 0} D =
n∑
i=1

max{−xi, 0}

The requirements in (2) serve two purposes. First, the firm’s reporting must be mono-

tone in persistence: if αi ≤ αj , the firm cannot treat xi as recurring and xj as nonrecurring.
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Any transactions called recurring must be more persistent than any called nonrecurring.

Second, this monotonicity with respect to the present value factor αi is independent of

whether xi is positive or negative. What counts as recurring or nonrecurring does not

change based on whether a transaction increases or reduces income.6

The investor observes the firm’s report, forms a conjecture αM about the firm’s cutoff,

and updates beliefs. We write the investor’s firm value v as

v(D,U,L,R;αM ) = E

[
n∑
i=1

α̃ixi|αM ;D,U,L,R

]
(3)

The firm anticipates the investor’s conjecture αM as an implicit function of its report,

and optimally chooses its cutoff α̂:

max
α̂∈

[
1, 1+ρ

ρ

]E [v(D,U,L(α̂), R(α̂);αM (D,U,L(α̂), R(α̂))] (4)

Figure 1 summarizes the timeline.

Nature chooses

transaction

values and

persistence

Firm classifies

transactions and

issues report

Investor

prices firm

Figure 1 – Timeline.

6A weaker requirement could impose conservatism, under which the firm chooses a lower cutoff
for its income-reducing transactions than for its income-increasing ones (similar to Gigler et al.
[2009]). We do not impose conservatism here, because conservatism would automatically generate
a relationship between transaction signs and classifications, obscuring the fact that this relationship
arises endogenously.
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2.2. Valuation using persistence ranking

Because of the principle in (2), the firm’s report reveals the total number of transactions

below and above the firm’s cutoff (L+ U −R and R +D − L, respectively). The investor

learns the cutoff from the report, and uses the information in the report to estimate the

ranking of the firm’s transactions in order of their persistence. Before proceeding to our

main results, we make some observations on using relative persistence in valuation.

We first introduce some notation. For i ∈ {1, . . . , n}, let

α̃(i) = ith order statistic of (α̃1, . . . , α̃n),

i.e., α̃(i) is the ith-lowest draw among the present value factors. Let x(i) be the transaction

that corresponds to α̃(i). Without loss of generality, the firm can choose its cutoff α̂ as α̃(i)

for some i ∈ {1, . . . , n}. Because each α̃i is an independent uniform draw from [1, (1+ρ)/ρ],

it follows that

E[α̃(i)] = 1 +
i

ρ(n+ 1)

Thus, in expectation, the n ordered uniform draws chop the interval [1, 1 + 1/ρ] into

n + 1 equally long sub-intervals, each of length 1/(ρ(n + 1)). Figure 2 illustrates the case

with n = 4.

1 1 + 1
5ρ

E[α̃(1)]

1 + 2
5ρ

E[α̃(2)]

1 + 3
5ρ

E[α̃(3)]

1 + 4
5ρ

E[α̃(4)]

1 + 1
ρ

Figure 2 – Expected values of the ordered present value factors in the case of four
draws. The expectations of the sample order statistics cut the interval into five pieces,
each of length 1/(5ρ).

If the report reveals the persistence ranking of the transactions, then the investor prices
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the firm at

v∗ =
n∑
i=1

E[α̃(i)]x(i) =
n∑
i=1

x(i)

[
1 +

i

ρ(n+ 1)

]

=
n∑
i=1

x(i)︸ ︷︷ ︸
Net income

+
1

ρ(n+ 1)

n∑
i=1

ix(i)

= π +
1

ρ(n+ 1)

n∑
i=1

ix(i) (5)

As n increases, the mean-squared difference between v∗ and the firm’s true value approaches

an asymptotic bound from below. We state this as follows:

Proposition 1. If a report (D,U,L,R) fully reveals the persistence ranking, then the mean-

squared error in the investor’s estimate of the firm value, conditional on the report, is

E

(v∗ − n∑
i=1

α̃ixi

)2
 =

n

6ρ2(n+ 1)
(6)

Thus, the mean-squared error of v∗ asymptotically approaches its upper bound of 1/(6ρ2).

To understand Proposition 1, refer again to Figure 2. As n increases, the distance

between E[α̃(i)] and E[α̃(i+1)] shrinks. This increase in precision offsets the additional

noise associated with more transactions.

We close this section by introducing some definitions that will help us reduce the amount

of notation in the analysis below. Given the persistence-ranked transactions {x(i)}ni=1, define

y = (y1, . . . , yn) by

(∀i ∈ {1, . . . , n}) yi :=
x(i) + 1

2

Thus, yi = 1 if x(i) = 1 and yi = 0 if x(i) = −1.
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Given y (representing the persistence-ranked transactions as a bit string), we define the

sum of the positions of income-increasing transactions as

w(y) :=

n∑
i=1

iyi (7)

This definition gives us an alternative way to express v∗. From the inverse transforma-

tion

x(i) = 2yi − 1

and (7), we can rewrite (5) as

v∗ = π +
1

ρ(n+ 1)

n∑
i=1

ix(i) = π +
1

ρ(n+ 1)

n∑
i=1

i (2yi − 1)

= π +
1

ρ(n+ 1)

[
n∑
i=1

(−i) + 2

n∑
i=1

iyi

]

= π − n

2ρ
+

2w(y)

ρ(n+ 1)
(8)

It is clear from Equation (8) that v∗ depends on the firm’s classification decision only

through w(y), as π and n are observable directly from D and U , and the firm cannot

control the market discount rate ρ.

3. Results

3.1. Benchmark: first-best

We have seen that an investor who can infer the persistence ranking of the transactions

can price the firm accurately, in the sense that the pricing error in v∗ is bounded by a fixed

constant regardless of n. It is also clear that the report can reveal at most the persistence
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ranking (along with D and U , which the report reveals regardless of the classification

decision). Therefore, the most that an investor can hope to learn from the report is v∗,

making v∗ the appropriate first-best benchmark.

Our first main result shows that the set of possible reports (D,U,L,R) that conform to

the principle (2) is large enough to enable the investor to price the firm at v∗. This result

may appear surprising. Even if the firm did not have to conform to (2), it would have only

2n possible reports, compared with n! possible persistence orderings. Since n! > 3n−2, the

number of possible orderings grows much faster than the number of possible reports.

The reason a four line-item report suffices for valuing the firm at v∗ is that many distinct

persistence rankings generate the same firm value. From (8), we see that, given U , D,and

ρ, the sum w(y) of the rankings of the income-increasing transactions determines v∗. It

follows that the investor can determine v∗ if and only if the report (D,U,L,R) is a sufficient

statistic for w(y). Theorem 1 shows that, for firms conforming to the principle in (2), this

is always the case.

Theorem 1. There are enough reports (D,U,L,R) satisfying (2) to communicate every

possible value of v∗. In particular, given U positive transactions and D negative ones, there

are

D · U + 1 possible values of v∗, and

D · U + 1 + n possible reports.

3.2. Optimal classification

If the firm could use the expressiveness of the income statement that Theorem 1 establishes,

then its report would fully separate it from other firm types. This can occur only if a firm
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type with a lower value of v∗ could not mimic the firm’s report. As a preliminary step

toward finding the firm’s optimal classification strategy, we rule out complete separation.

Proposition 2. Let v∗(y) be the value of v∗ associated with a given bit string y. If

min{D,U} ≤ 1, then for every possible y with
∑n

i=1 yi = U and with length equal to

U +D, there exists a report (D,U,L,R) such that

1. Reporting y as (D,U,L,R) is consistent with (2), and

2. For every bit string y′ with
∑n

i=1 y
′
i = U and length U +D that the firm can report

as (D,U,L,R), v∗(y) ≤ v∗(y′)

If min{D,U} > 1, then there exists a bit string ŷ with
∑n

i=1 ŷi = U and with length

U +D such that, for every report (D,U,L,R) of ŷ that satisfies (2), there exists some y′

with
∑n

i=1 y
′
i = U , length of U + D, and v∗(ŷ) > v∗(y′) that the firm can also report as

(D,U,L,R).

Proposition 2 implies there cannot be an equilibrium in which every firm type reports

differently, that is, in which the firm necessarily reveals v∗(y). Accordingly, following Shin

[1994, 2003], we look for an optimal sanitization strategy for the firm (i.e., in which the

firm maximizes its worst-case valuation).

The worst-case valuation is easily characterized. Given the report (D,U,L,R), the most

pessimistic interpretation is that firm’s least persistent transactions are its G = U−R gains,

followed by its L losses, then its R revenues, and finally its E = D − L expenses. The bit

string y(D,U,L,R) corresponding to this interpretation is

y(D,U,L,R) =

1, . . . , 1︸ ︷︷ ︸
U−R

,

L︷ ︸︸ ︷
0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

R

,

D−L︷ ︸︸ ︷
0, . . . , 0


Our second main result, Theorem 2, provides the optimal sanitization strategy.
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Theorem 2. Let

w(D,U,L,R) = w
(
y(D,U,L,R)

)
be the investor’s most pessimistic interpretation of the firm’s report. Then

w(D,U,L,R) = LR+

(
U + 1

2

)
(9)

and the corresponding level of v∗ is

v = v∗(y) = π − n

2ρ
+
U(U + 1) + 2LR

ρ(n+ 1)
(10)

From (10), we see that only LR depends on the firm’s classification decision. Therefore,

the firm maximizes v if and only if the firm chooses its cutoff α̂ in (4) to maximize

L(α̂) ·R(α̂) (11)

As the firm’s objective (11) has a simple multiplicative form, we can easily find the

optimal report(s) from any given transaction sequence or its associated bit string. We use

the following two auxiliary functions, which give the values of the losses and revenues that

would be reported if the firm were to put its cutoff between the jth and (j + 1)st entries in

y (i.e., if α̂ ∈ (α(j), α(j+1)]):

`j(y) =



0, if j < 1

D, if j ≥ D + U

j −
j∑
i=1

i, otherwise

rj(y) =



U, if j ≤ 1

0, if j > D + U
U+D∑
i=j+1

i, otherwise

(12)
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In words, `j(·) counts the number of the j least persistent transactions that reduce income,

and rj(·) counts the number of the n− j most persistent transactions that increase income.

An increase in j slides the cutoff to the right. Example 1 illustrates:

Example 1. Let y = (0, 1, 0, 1, 0, 0, 1). Then for j ∈ {0, . . . , 7}, the firm has the following

values:

String (recurring above cutoff ‘|’) j D U `j(y) rj(y) `j(y) · rj(y)
(| 0, 1, 0, 1, 0, 0, 1) 0 4 3 0 3 0
(0 | 1, 0, 1, 0, 0, 1) 1 4 3 1 3 3
(0, 1 | 0, 1, 0, 0, 1) 2 4 3 1 2 2
(0, 1, 0 | 1, 0, 0, 1) 3 4 3 2 2 4
(0, 1, 0, 1 | 0, 0, 1) 4 4 3 2 1 2
(0, 1, 0, 1, 0 | 0, 1) 5 4 3 3 1 3
(0, 1, 0, 1, 0, 0 | 1) 6 4 3 4 1 4
(0, 1, 0, 1, 0, 0, 1 |) 7 4 3 4 0 0

The firm’s set of optimal reports is

{(4, 3, 2, 2), (4, 3, 4, 1)}

As the example shows, L and R are those instances of `j and rj that maximize `j · rj ,

as required by Theorem 2. It is clear from Example 1 that the firm’s optimal reporting

strategy is a correspondence, and from Proposition 2 that different sequences can generate

the same optimal report.

3.3. Classification informativeness

Our results to this point address classification from the firm’s viewpoint. In this subsection,

we turn to the investor’s problem, addressing two aspects of the amount of information

pooled in a given report. First, we characterize what the investor can learn about the
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persistence of the firm’s line items from the report. This characterization helps clarify

why line item persistence varies with income, even in the absence of any misclassification.

Second, we discuss the amount of pooling in terms of valuation, rather than in terms of

persistence ranking. As Proposition 2 shows, as long as the firm has at least $2 in positive

transactions and at least $2 in negative ones, the report (D,U,L,R) is informationally

insufficient for v∗. Below, we explicitly show how much variation there is in firm value

given the report, that is, how opaque a given report is.

To fix terminology, call a bit string y legal for report if (D,U,L,R) is an optimal report

of y. If (D,U,L,R) is the uniquely optimal report for y, we say that y is strictly legal for

the report.

Definition 1. Given nonnegative integers (D,U,L,R), a sequence y = (y1, . . . , yU+D) is

legal with respect to (D,U,L,R) if:

1. it contains U 1s and D 0s;

2. for i = L+ U −R, we have `i(y) = L and ri(y) = R;

3. for every j ∈ {0, . . . , U +D}, we have `j(y)rj(y) ≤ LR.

A legal sequence is strictly legal if we have

3’ for every j ∈ {0, . . . , U +D}\{L+ U −R}, we have `j(y)rj(y) < LR.

If D = 0 or U = 0, then all classification decisions are equivalent. In these cases, all

reports satisfying (2) are legal and no report is strictly legal. However, all the legal reports

in this case are informationally equivalent. If D and U are both positive, then no report

with L = 0 or D = 0 is legal. On the other hand, for any report (D,U,L,R) satisfying

D > 0, U > 0, L ∈ {1, . . . , D}, and R ∈ {1, . . . , U}, the sequence y(D,U,L,R) is always

strictly legal. This follows immediately from writing out `j(y) and rj(y). In particular, if a
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report with min{D,U,L,R} ≥ 1 has a unique legal sequence, it is strictly legal. Example 2

illustrates a case in which min{D,U,L,R} ≥ 1 and there is a legal sequence that is not

strictly legal.

Example 2. Take D = U = 3, L = 1, R = 2. Among the 20 possible rearrangements of 3

1s and 3 0s, 12 satisfy `2(y) = 1 and r2(y) = 2:

(0, 1, 0, 0, 1, 1) (1, 0, 0, 0, 1, 1)

(0, 1, 0, 1, 0, 1) (1, 0, 0, 1, 0, 1)

(0, 1, 0, 1, 1, 0) (1, 0, 0, 1, 1, 0)

(0, 1, 1, 0, 0, 1) (1, 0, 1, 0, 0, 1)

(0, 1, 1, 0, 1, 0) (1, 0, 1, 0, 1, 0)

(0, 1, 1, 1, 0, 0) (1, 0, 1, 1, 0, 0)

Of those, only (1, 0, 1, 1, 0, 0) and (1, 0, 1, 0, 1, 0) satisfy `j(y)rj(y) ≤ 2 for j = 0, . . . , 6, so

they are the only legal sequences. Furthermore, only (1, 0, 1, 1, 0, 0) is strictly legal.

In Example 2, the classification principle (2) reduces the number of possible reports

from 20 to 12 because the report indicates that there is L = 1 income-reducing transaction

and G = U − R = 1 income-increasing transaction below the cutoff. This restricts the

possible sequences to those that start with (0, 1) and those that start with (1, 0). Similarly,

there are two 0s and two 1s above the cutoff, giving
(
4
2

)
= 6 permissible orderings under

the principle. As the example shows, the requirement that the report maximizes L · R

for a given sequence dramatically reduces the total number of possibilities, from 12 that

are permissible to two that are optimal (legal in our terminology), with only one having

(D,U,L,R) as its uniquely optimal report (strictly legal in our terminology).

An important idea in Example 2 is that we can split the task of finding sequences
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optimally reported as (D,U,L,R) into two subtasks. If we take the amount of revenue R

as given, we can concentrate on the subsequence below the cutoff. Similarly, we can take L

as given, and then focus on the subsequence above the cutoff. In the example, we see that if

y starts with (0, 1), the firm could shift its cutoff one position to the left, thereby increasing

the number of positive transactions reported as revenues without decreasing the number of

income-reducing transactions reported as losses. Therefore, we know that any sequence y

that starts with (0, 1) cannot be a legal sequence for (3, 3, 1, 2). The subsequence to the

left of the cutoff must be (1, 0).

Similarly, there are six possible subsequences above the cutoff:

{(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0)}

The first three all start with an income-reducing transaction. These cannot be the contin-

uation of a legal sequence, because the firm could shift its cutoff one position to the right,

increasing the number of income-reducing transactions reported as losses without changing

its reported revenue.

The fourth also cannot be part of a legal sequence, but the reason is more subtle. With

L = 1, the subsequence (1, 0, 0, 1) would give R = 2 and thus LR = 2. Shifting the cutoff

three positions rightward would increase L from 1 to 3, and would decrease R from 2 to 1,

making LR = 3. Ruling out the subsequence (1, 0, 0, 1) requires us to know L; for instance,

if we had L = 3 and R = 2, we would have had LR = 6; increasing L by 2 and decreasing

R by 1 would not be worthwhile, as it would drop the product LR from 6 to 5.
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We make this argument precise in two lemmas. To fix notation, let

GL,R(D,U) = {y ∈ {0, 1}n|y is legal for (D,U,L,R)}

G′L,R(D,U) = {y ∈ {0, 1}n|y is strictly legal for (D,U,L,R)}

gL,R(D,U) = |GL,R(D,U)|

g′L,R(D,U) =
∣∣G′L,R(D,U)

∣∣ (13)

If L > D, L < 0, R > U , or R < 0, we write GL,R(D,U) = G′L,R(D,U) = ∅ and

gL,R(D,U) = g′L,R(D,U) = 0. We state the first lemma as follows:

Lemma 1. For given (D,U,L,R), we have y ∈ GL,R(D,U) if and only if

(y1, . . . , yL+U−R, 1, . . . , 1︸ ︷︷ ︸
R

) ∈ GL,R(L,U), and

(0, . . . , 0︸ ︷︷ ︸
L

, yL+U−R+1, . . . , yU+D) ∈ GL,R(D,R)

Consequently,

gL,R(D,U) = gL,R(L,U) · gL,R(D,R).

The same statement holds for G′ and g′.

Lemma 1 establishes that we can decompose our search for the sequences under which

the report is optimal into two smaller search problems: those of finding subsequences to

the left and to the right of the cutoff for which the report is optimal. Although both

subsequences depend on L and R, we show that one set of subsequences is independent of

U , and the other is independent of D.

Define γL,R(m) := gL,R(m,R) and γ′L,R(m) := g′L,R(m,R). Then the following gives
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the result:

Lemma 2. Given (D,U,L,R), a bit string y ∈ GL,R(D,U) if and only if (1−yU+D, . . . , 1−

y1) ∈ GR,L(U,D). Consequently, gL,R(L,U) = gR,L(U,L) = γL,R(U), and

gL,R(D,U) = γL,R(D) · γR,L(U).

The same statement holds for G′, g′, and γ′.

From Lemma 1, Lemma 2, and two technical results in the appendix, we can derive

the following explicit characterization of the number of sequences pooled in a given report.

Below, we use the following standard notation: for c ∈ R, we denote the ceiling (least

integer weakly above c) and floor (greatest integer weakly below c) as

dce := min{k ∈ Z|c ≤ k} (the ceiling of c)

bcc := max{k ∈ Z|k ≤ c} (the floor of c)

The characterization of the amount of pooling is as follows:

Theorem 3. We have

gL,R(D,U) = γL,R(D) · γR,L(U), (14)

where function γL,R satisfies the following recurrence:

γL,R(m) =



0 if m < L

1 if m = L

d(LR+1)/me∑
j=1

(−1)j−1
(
d(LR+ 1)/me

j

)
γL,R(m− j) otherwise

(15)
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Similarly,

g′L,R(D,U) = γ′L,R(D) · γ′R,L(U), (16)

where function γ′L,R satisfies the following recurrence:

γ′L,R(m) =



0 if m < L

1 if m = L

dLR/me∑
j=1

(−1)j−1
(
dLR/me

j

)
γ′L,R(m− j) otherwise

. (17)

A practical consequence of Theorem 3 is that the persistence of income-reducing line

items (L in the model) should not be expected to be independent of reported recurring

income. The number of possible sequences below the cutoff is at least γ′L,R(D) and at most

γL,R(D). Both depend on revenue and on total income reducing items (hence on expenses,

and therefore on reported recurring revenue less recurring expenses, which the classification

shifting and non-GAAP reporting literature refer to as core income). A systematic rela-

tionship between core income and the persistence of income-reducing items arises without

any violation of the classification principle, a point that to the best of our knowledge is not

found in the prior literature.

To illustrate the calculation in Theorem 3, return to Example 2, in which (D,U,L,R) =

(3, 3, 1, 2). Using an explicit listing, the example shows that there are two legal sequences,

one of which is strictly legal. We now show that Theorem 3 gives us this result without

requiring an explicit listing of the possible sequences.

Example 3. Let (D,U,L,R) = (3, 3, 1, 2). From (14), we have

g1,2(3, 3) = γ1,2(3) · γ2,1(3)
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From (15),

γ1,2(3) =

d3/3e∑
j=1

(−1)j−1
(
d3/3e
j

)
γ1,2(3− j) = (−1)0

(
1

1

)
γ1,2(2) = γ1,2(2)

=

d3/2e∑
j=1

(−1)j−1
(
d3/2e
j

)
γ1,2(2− j)

=

(
2

1

)
γ1,2(1)−

(
2

2

)
γ1,2(0) = 2 · 1 + 1 · 0 = 2

and

γ2,1(3) =

d3/3e∑
j=1

(−1)j−1
(
d3/3e
j

)
γ2,1(3− j) = (−1)0

(
1

1

)
γ2,1(2) = 1

giving g1,2(3, 3) = 2 · 1 = 2 legal sequences, i.e., two transaction orderings that the firm

optimally reports as (D,U,L,R).

From (16), we have

g′1,2(3, 3) = γ′1,2(3) · γ′2,1(3)

From (17),

γ′1,2(3) =

d2/3e∑
j=1

(−1)j−1
(
d2/3e
j

)
γ′1,2(3− j) = (−1)0

(
1

1

)
γ′1,2(2) = γ′1,2(2)

=

d2/2e∑
j=1

(−1)j−1
(
d2/2e
j

)
γ′1,2(2− j) = γ′1,2(1) = 1

and

γ′2,1(3) =

d2/3e∑
j=1

(−1)j−1
(
d2/3e
j

)
γ′2,1(3− j) = (−1)0

(
1

1

)
γ′2,1(2) = 1
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giving g′1,2(3, 3) = 1 · 1 = 1 strictly legal sequence.

Theorem 3 allows for fast computation of the amount of pooling with a given report.

For example, for the report (D,U,L,R) = (12, 15, 5, 8), we can compute γ5,8(12) = 1, 107

and γ8,5(15) = 248, giving g5,8(12, 15) = 274, 356. This provides an upper bound on the

number of different sequences that can be reported as (12, 15, 5, 8). A similar calculation

shows γ′5,8(12) = 927, γ′8,5(15) = 196, and hence g′5,8(12, 15) = 181, 692. This tells us that

roughly 2/3 of the sequences that the firm could optimally report as (12, 15, 5, 8) have this

as their uniquely optimal report.

It is natural to ask whether, as the number of transactions increases, the fraction of

legal sequences that are also strictly legal increases or decreases. Equations (15) and (17)

show that the behavior of g and g′ depends on a recursion in which each step depends

on a factorization problem. Solving this directly is unlikely to be attainable. However,

using Theorem 3, we can conjecture that the ratio of g′/g approaches 1 as the number of

transactions is scaled up.

Example 4. Let (D,U,L,R) = (120, 150, 50, 80). Then

g50,80(120, 150) ≈ 6.96 · 1075

g′50,80(120, 150) ≈ 6.92 · 1075

∴,
g′50,80(120, 150)

g50,80(120, 150)
≈ 0.994

Thus, we see that for (D,U,L,R) = (12, 15, 5, 8), roughly 2/3 of the legal sequences are

strictly legal. Scaling all transactions by a factor of 10 increases this ratio to 99.4%. In

other words, for 99.4% of the sequences that the firm optimally reports as (120, 150, 50, 8),

the investor knows that this was the uniquely optimal report. Figure 3 illustrates.
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5 10 15 20 25 30 35 Scaling factor

uniquely optimal reports

optimal reports

1

0.66

Fraction unique

Figure 3 – For 2/3 of firms with optimal report (D,U,L,R) = (12, 15, 5, 8), as in
Example 3, the report is uniquely optimal. If each line item is scaled by a constant
factor, this fraction quickly approaches 1.

Although the report is asymptotically essentially unique, it remains for us to address

how transparent the report is to the investor. In other words, we are interested in how the

investor values the firm given the report.

Recall from (9) that the minimum value associated with report (D,U,L,R) is

LR+

(
U + 1

2

)
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Define the opacity of the report as

o(D,U,L,R) = max
y∈GL,R(D,U)

w(y)− min
y∈GL,R(D,U)

w(y) (18)

That is, the opacity is the range of possible valuations consistent with the firm optimally

choosing a given report. Our last main result, Theorem 4, characterizes the opacity o(·)

and the corresponding range of possible values given the report.

Theorem 4. We have

o(D,U,L,R) =
R∑
i=1

min

(
D − L,

⌊
(i− 1)L

R− i+ 1

⌋)
+

L∑
i=1

min

(
U −R,

⌊
(i− 1)R

L− i+ 1

⌋)
.

Furthermore, the image of w on GL,R(D,U) is all of

[LR+
(
U+1
2

)
, LR+

(
U+1
2

)
+ o(D,U,L,R)] ∩ Z (19)

Returning to Example 4, if the firm reports (D,U,L,R) = (120, 150, 50, 80), the opacity

is 5,914. Theorem 4 also tells us that all values in the range (19), if possible with n bits,

can occur as an optimal report. If these are distributed symmetrically, then the average

value associated with the report (120, 150, 50, 80) is approximately 30− 0.0775/ρ.

In this case, the firm value increases in the discount rate. As ρ becomes large, the

firm value asymptotically approaches its current net income π, and the distinction between

recurring and non-recurring income vanishes. Even though the firm has positive net income

and positive core income, the investor in this example typically interprets the negative

transactions as more persistent than its positive ones. At a low enough discount rate

(below 0.0026), the firm value becomes negative.
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4. Discussion and conclusion

Classification standards are typically in the form of a general principle, rather than a specific

rule. To some degree, this is of necessity. For example, Dye [2002] shows that a hypothetical

rules-based classification standard would lead to standards creep, i.e., would inherently lack

stability. Relatedly, Dechow and Schrand [2004] and McVay [2006] argue that a rule would

be difficult to enforce, and that auditors cannot or will not go so far as to impose an exact

classification or specific threshold on any transaction. To the best of our knowledge, this

paper is the first to specify and study the informativeness of reports under a classification

principle.

Our findings provide a simple, multiplicative characterization of how firms optimally

choose their persistence threshold for what counts as recurring. As is widely appreciated,

firms face a trade-off between setting a higher persistence threshold, in order to report more

income-reducing transactions as nonrecurring, and setting a lower one, in order to report

more income-increasing transactions as recurring. The multiplicative characterization of

the firm’s objective arises as a result of the firm’s response to investor skepticism.

A consequence for empirical studies on classification is that a firm’s reported income-

reducing items is not independent of the firm’s recurring revenues and other recurring

income-increasing items. The two are selected simultaneously, and empirical work may

need to adjust for this source of endogeneity.

In a more positive direction, we provide explicit formulas for characterizing the amount

that an optimally classified report pools firms of different types. Our first formula describes

the degree that firms report the same way despite having different persistence of their

income-statement line items. Our second formula describes the amount that a given report

pools firms with distinct fundamental values.
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A. Proofs

Proof of Proposition 1. For each i ∈ {1, . . . , n}, α̃i ∼ U [1, (1 + ρ)/ρ], so

ρ (α̃i − 1) ∼ U [0, 1]

and ρ(α̃ − 1)(i) = ρ
(
α̃(i) − 1

)
, i.e., the order is the same as the ordering of the α̃(i). From

the fact that the ith sample order statistic of n independent U [0, 1] draws is distributed

Beta(i, n− i+ 1) (see Arnold et al. [2008]), we have

ρ
(
α̃(i) − 1

)
∼ Beta(i, n− i+ 1)

Using the fact that the a Beta(a, b)-distributed random variable has mean a/(a + b) and

variance ab/[(a+ b)2(a+ b+ 1)], it follows that

E[α̃(i)] =
i

ρ(n+ 1)
+ 1

Var[α̃(i)] =
i(n− i+ 1)

ρ2(n+ 1)2(n+ 2)

The investor’s mean-squared error, given that the report reveals the persistence ordering,

is therefore

n∑
i=1

i(n− i+ 1)

ρ2(n+ 1)2(n+ 2)
=

1

ρ2(n+ 1)2(n+ 2)

[
(n+ 1)

n∑
i=1

i−
n∑
i=1

i2

]

=
n(n+ 1)2/2− n(n+ 1)(2n+ 1)/6

ρ2(n+ 1)2(n+ 2)

=
n

6ρ2(n+ 1)
(20)
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As n→∞, expression (20) is easily seen to converge to 1/(6ρ2) from below.

Proof of Theorem 1. Fix U and D. From (8), w(y) is a sufficient statistic for v∗. The

smallest value of w(y) consistent with (D,U) is obtained if the 1s in y occur in positions

{1, . . . , U}. The largest value of w(y) consistent with (D,U) is obtained if the 1s in y occur

in positions {D + 1, . . . , D + U}. Call these values w and w, respectively. Then

w =
U∑
i=1

i =
U(U + 1)

2

w =

D+U∑
i=D+1

i =
(D + U)(D + U + 1)

2
− D(D + 1)

2
= D · U +

U(U + 1)

2

For any y, interchanging a 0 with a 1 that is j positions ahead of (respectively behind) the

0 decreases (respectively increases) the sum by j. Thus, every integer sum between w and

w is attainable, so there are

w − w + 1 = D · U + 1

possible distinct values of w(y), and hence D · U + 1 possible values of v∗.

For any report that satisfies (2),

L ∈ {0, . . . , D} and R ∈ {0, . . . , U},

giving D+1 possible values for L and U +1 possible values for U . The number of possible

reports is therefore

(D + 1)(U + 1) = D · U +

n︷ ︸︸ ︷
D + U +1 = D · U + n+ 1
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Proof of Proposition 2. We proceed by cases. First, suppose min{D,U} ≤ 1. If

max{i ∈ Z++|yi = 1} < min{i ∈ Z++|yi = 0}

set L = 0 and R = U . Otherwise, let i be the position in y of the 0 before a 1. By

hypothesis, there is exactly one {0, 1} subsequence in y, so i is uniquely determined. Set

L = i−
i∑

j=1

yi and R =

U+D∑
j=i+1

yj

A direct examination of subcases shows no firm can be mimicked by a type with lower v∗.

For the second case, assume that min{D,U} > 1. Fix i ∈ {1, . . . , U +D − 3}, and let

ŷ = (y1, . . . , yi−1, 0, 1, 0, 1, yi+4, . . . , yU+D)

y′ = (y1, . . . , yi−1, 0, 1, 1, 0, yi+4, . . . , yU+D)

y′′ = (y1, . . . , yi−1, 1, 0, 0, 1, yi+4, . . . , yU+D)

Then w(ŷ) = w(y′) + 1 = w(y′′) + 1, so both y′ and y′′ are firm types with strictly lower

values of v∗ than that of ŷ. However,

(ŷ1, . . . , ŷi+1) =
(
y′1, . . . , y

′
i+1

)
, and

(ŷi+2, . . . , ŷU+D) =
(
y′′i+2, . . . , y

′′
U+D

)
If a firm of type ŷ sets its cutoff at or below the (i + 1)st position, it pools with a firm of

type y′. If it sets its cutoff higher, it pools with a firm of y′′. Either way, the firm pools

with a type with a lower value of v∗.
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Proof of Theorem 2. We have

w(y(D,U,L,R)) =
U−R∑
i=1

i+
U+L∑

j=U−R
+L+1

i

=
(U −R)(U −R+ 1)

2
+

(U + L)(U + L+ 1)

2

− (U −R+ L)(U −R+ L+ 1)

2

=
1

2

(
U2 + U + 2LR

)
= LR+

(
U + 1

2

)

Substituting into (8),

v∗(y(D,U,L,R)) = π − n

2ρ
+

2w(y(D,U,L,R))

ρ(n+ 1)

= π − n

2ρ
+

[
2

ρ(n+ 1)

] [
U(U + 1)

2
+ LR

]
= π − n

2ρ
+
U(U + 1)

ρ(n+ 1)
+

[
2

ρ(n+ 1)

]
LR

As ρ > 0 and n > 0, the most skeptical interpretation of the report is linear and increasing

in the product L ·R.

Proof of Lemma 1. Write

y = (y1, . . . , yU+D)

y′ = (y1, . . . , yL+U−R, 1, . . . , 1︸ ︷︷ ︸
R

)

y′′ = (0, . . . , 0︸ ︷︷ ︸
L

, yL+U−R+1, . . . , yU+D)

Then `j(y)rj(y) > LR for j < L+U −R if and only if `j(y′)rj(y′) > LR, and `j(y)rj(y) >
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LR for j > L+U −R if and only if `j−u+r(y′′)rj−U+R(y
′′) > LR. The equivalence follows.

The proof for G′ and g′ is the same.

Proof of Lemma 2. Immediate from interchanging the roles ofD and U and of L and R.

Proof of Theorem 3. Lemmas 1 and 2 establish that gL,R(D,U) = γL,R(D) · γR,L(U). It

remains to prove the recursive formula for γL,R(m) and γ′L,R(m). It is clear that γL,R(m) =

γ′L,R(m) = 0 if m < L, and that γL,R(L) = γ′L,R(L) = 1. The following characterizes

GL,R(R,m) and G′L,R(R,m).

Lemma 3. For given m,L,R, we have y = (y1, . . . , yR+m) ∈ GL,R(m,R) if and only if:

1. y1 = . . . = yL = 0;

2. there are exactly R 1s in (yL+1, . . . , aR+m);

3. for i = 1, . . . , R, the number of 0s in (yl+1, . . . , yr+m) before the ith 1 is at most

(i− 1)L/(R− i+ 1).

A similar statement holds for G′L,R(m,R), with (3) replaced by

(3’) for i = 1, . . . , R, the number of 0s in (yL+1, . . . , yR+m) before the ith 1 is less than

(i− 1)L/(R− i+ 1).

Proof. We use the following standard notation: for k ∈ Z++, let [k] := {1, . . . , k}. Assume

first that y ∈ GL,R(m,R). Then all 1s have to be to the right of position L, so the first

two conditions are obvious. Furthermore, if i ∈ [R] and ji is the position of the ith 1,

then rji−1(y) = R − i + 1 and `ji − 1(y)rji−1(y) ≤ LR = L(R − i + 1) + (i − 1)L, so

`ji−1(y) ≤ L+ (i− 1)L/(R− i+ 1).

Conversely, suppose that the three conditions are satisfied. Clearly, there are m 0s and

R 1s in y, and `L(y)rL(y) = LR. Again, for i ∈ [R], denote by ji the position of the ith
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1 in y, and also write j0 = 0, jR+1 = R +m + 1. Now take j ∈ [0, R +m], and pick (the

unique) i ∈ [R + 1] so that ji−1 ≤ j < ji. Then `j(y) ≤ `ji(y) ≤ L + (i − 1)L/(R − i + 1)

and rj(y) = R− i+ 1, so `j(y)rj(y) ≤ LR.

The proof for G′L,R(R,m) is analogous. �

For the last step in establishing the recursions (15) and (17), we define the following

auxiliary functions. Given m,L,R ∈ Z+, write k = d(LR + 1)/me and k′ = dLR/me.

Define the functions ϕ and ϕ′, where

k⋃
j=0

(
[k]

j

)
× GL,R(m− j, R)

ϕm,L,R-
k⋃
j=0

(
[k]

j

)
× GL,R(m− j, R)

k′⋃
j=0

(
[k′]

j

)
× GL,R(m− j, R)

ϕ′
m,L,R-

k′⋃
j=0

(
[k′]

j

)
× GL,R(m− j, R),

as follows. Choose S ∈ [k] and a sequence (y1, . . . , yR+m−|S|) ∈ GL,R(m− |S|, R). Let

i = max{ι ∈ [k]|ι ∈ S, or there is at least one 0 between the

(R− k + ι)th 1 and the (R− k + ι+ 1)st 1}

= max{ι ∈ [k]|ι ∈ S or jR−k+ι ≤ jR−k+ι+1 − 2},

where for h ∈ [R], jh is as defined in the proof of Lemma 3.

For ι = k, we interpret this as meaning there is at least one 0 after the last 1. If i ∈ S,

define S′ = S\{i}, and let y′ be the sequence obtained from y by inserting a 0 between the

(R − k + i)th and the (R − k + i + 1)st 1. If i 6∈ S, define S′ = S ∪ {i}, and let y′ be the

sequence obtained from y by deleting one of the zeroes between the (R − k + i)th and the

(R− k + i+ 1)st 1. Then let ϕm,L,R(S, y) = (S′, y′). Define ϕ′m,L,R analogously, with k′ in

place of k throughout.
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Lemma 4. For all m,L,R ∈ Z+, the maps ϕm,L,R and ϕ′m,L,R are well-defined involutions

which change the parity of the size of the first argument, and therefore prove

k∑
j=0

(
k

j

)
γL,R(m− j) = 0

and
k′∑
j=0

(
k′

j

)
γ′L,R(m− j) = 0.

Proof. Take k = d(LR + 1)/me, S ⊆ [k], y ∈ GL,R(m − |S|, R). First, let us prove that

the set {ι ∈ [k]|ι ∈ S or jR−k+ι ≤ jR−k+ι+1 − 2} is non-empty. If S 6= ∅, this is obvious.

Assume that S = ∅ (which implies y ∈ GL,R(m,R)) and that jR−k+ι = jR−k+ι+1 − 1 for

ι = 1, . . . , k. Note that this means that the last k terms in y are 1. The number of 0s

in (yL+1, . . . , yR+m) before the (R − k + 1)st 1 is therefore m − L. On the other hand,

by Lemma 3, this must be at most (R − k)L/k. We get k ≤ LR/m, which contradicts

k = d(LR+ 1)/me.

It is clear that S′ defined in the procedure lies in [k] and differs by S by exactly one

element, and also that the sequence y′ is well-defined (we erase a 0 only when there is

at least one 0). Let us prove that y′ ∈ GL,R(m − |S′|, R). The first two conditions of

Lemma 3 are obviously satisfied; we have to prove the same for the third condition. When

i /∈ S, this is obvious (as there are fewer 0s then before). When i ∈ S, we have to see

that m − |S| − L + 1, the number of 0s before the (R − k + i + 1)st 1 in y′, is at most

(R − k + i)L/(k − i) (if k = i, there is nothing to prove). But |S| ≥ 1, so it is enough to

prove that (m− L)(k − i) ≤ (R − k + i)L. But (m− L)(k − i) ≥ (R − k + i)L+ 1 would

imply mk ≥ LR+ 1 +mi and k ≥ LR+1
m + i, which contradicts k = d(LR+ 1)/me.

It is clear that the map is an involution.
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The proof for ϕ′m,L,R is almost exactly the same. �

The theorem then follows from Lemmas 1–4.

Proof of Theorem 4. We note first that y(D,U,L,R) ∈ GL,R(D,U). Begin by considering

the D − L + R positions to the right of the cutoff. If the subsequence {1, 0} occurs, we

can replace it with {0, 1}, and thereby increase increase the opacity by 1. We can proceed

sequentially, first pushing the leftmost 0 as far to the left as possible through repeatedly

replacing a {1, 0} subsequence with a {0, 1} subsequence, then pushing the next leftmost 0

as far to the left as possible, and so forth. The largest number of 0s before the ith 1 cannot

exceed D−L, as this is the total number of available 0s. By Lemma 3, the largest number

of 0s before the ith 1 also cannot exceed d(i − 1)L/(R − i + 1). With this procedure, we

have increased the opacity by 1 in each step, and by

R∑
i=1

min

(
D − L,

⌈
(i− 1)L

R− i+ 1

⌉)

in total.

Next, consider the U − R + L positions to the left of the cutoff. We can keep pushing

the 1s to the right by an analogous procedure, while still keeping the sequence legal. In

this way, we increase the opacity in each step, and by

R∑
i=1

min

(
U −R,

⌈
(i− 1)R

L− i+ 1

⌉)

in total. This finishes the proof.
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