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Abstract. Alternating sign matrices are known to be equinumerous with descending plane
partitions, totally symmetric self-complementary plane partitions and alternating sign tri-
angles, but no bijective proof for any of these equivalences has been found so far. In this
paper we provide the first bijective proof of the operator formula for monotone triangles,
which has been the main tool for several non-combinatorial proofs of such equivalences. In
this proof, signed sets and sijections (signed bijections) play a fundamental role.

1. Introduction

An alternating sign matrix (ASM) is a square matrix with entries in {0,1,−1} such that
in each row and each column the non-zero entries alternate and sum up to 1. Robbins
and Rumsey introduced alternating sign matrices in the 1980s [RR86] when studying their
λ-determinant (a generalization of the classical determinant) and showing that the λ-deter-
minant can be expressed as a sum over all alternating sign matrices of fixed size. The
classical determinant is obtained from this by setting λ = −1, in which case the sum reduces
so that it extends only over all ASMs without −1’s, i.e., permutation matrices, and the well-
known formula of Leibniz is recovered. Numerical experiments led Robbins and Rumsey to
conjecture that the number of n × n alternating sign matrices is given by the surprisingly
simple product formula

(1)
n−1

∏
i=0

(3i + 1)!

(n + i)!
.

Back then the surprise was even bigger when they learned from Stanley (see [BP99, Bre99])
that this product formula had recently also appeared in Andrews’ paper [And79] on his proof
of the weak Macdonald conjecture, which in turn provides a formula for the number of
cyclically symmetric plane partitions. As a byproduct, Andrews had introduced descending
plane partitions and had proven that the number of descending plane partitions (DPPs)
with parts at most n is also equal to (1). Since then the problem of finding an explicit
bijection between alternating sign matrices and descending plane partitions has attracted
considerable attention from combinatorialists and to many of them it is a miracle that such
a bijection has not been found so far. All the more so because Mills, Robbins and Rumsey
had also introduced several “statistics” on alternating sign matrices and on descending plane
partitions for which they had strong numerical evidence that the joint distributions coincide
as well, see [MRR83].
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There were a few further surprises yet to come. Robbins introduced a new operation on
plane partitions, complementation, and had strong numerical evidence that totally symmetric
self-complementary plane partitions (TSSCPPs) in a 2n×2n×2n-box are also counted by (1).
Again this was further supported by statistics that have the same joint distribution as well
as certain refinements, see [MRR86, Kra96, Kra16, BC16]. We still lack an explicit bijection
between TSSCPPs and ASMs, as well as between TSSCPPs and DPPs.

In his collection of bijective proof problems (which is available from his webpage) Stanley
says the following about the problem of finding all these bijections: “This is one of the most
intriguing open problems in the area of bijective proofs.” In Krattenthaler’s survey on plane
partitions [Kra16] he expresses his opinion by saying: “The greatest, still unsolved, mystery
concerns the question of what plane partitions have to do with alternating sign matrices.”

Many of the above mentioned conjectures have since been proved by non-bijective means:
Zeilberger [Zei96a] was the first who proved that n×n ASMs are counted by (1). Kuperberg
gave another shorter proof [Kup96] based on the remarkable observation that the six-vertex
model (which had been introduced by physicists several decades earlier) with domain wall
boundary conditions is equivalent to ASMs, see [EKLP92a, EKLP92b], and he used the
techniques that had been developed by physicists to study this model. Andrews enumerated
TSSCPPs in [And94]. The equivalence of certain statistics for ASMs and of certain statistics
for DPPs has been proved in [BDFZJ12, BDFZJ13], while for ASMs and TSSCPPs see
[Zei96b, FZJ08], and note in particular that already in Zeilberger’s first ASM paper [Zei96a]
he could deal with an important refinement. Further work including the study of symmetry
classes has been accomplished; for a more detailed description of this we defer to [BFK17].
Then, in very recent work, alternating sign triangles (ASTs) were introduced in [ABF16],
which establishes a fourth class of objects that are equinumerous with ASMs, and also in
this case nobody has so far been able to construct a bijection.

Another aspect that should be mentioned here is Okada’s work [Oka06] (see also [Str04]),
which hints at a connection between ASMs and representation theory that has not yet been
well understood. He observed that a certain multivariate generating function (a specialization
at a root of unity of the partition function that had been introduced by physicists in their
study of the six-vertex model) can be expressed—up to a power of 3—by a single Schur
polynomial. Since Schur polynomials are generating functions of semistandard tableaux,
this establishes yet another challenging open problem for combinatorialists inclined to find
bijections.

The proofs of the results briefly reviewed above contain rather long and complicated
computations, and include hardly any arguments of a combinatorial flavor. In fact it seems
that all ASM-related identities for which there exists a bijective proofs are trivial, with the
exception of the rotational invariance of fully packed loop configurations. This was proved
by Wieland [Wie00] bijectively and is also used in the celebrated proof of the Razumov-
Stroganov (ex-)conjecture [CS11].

We come now to the purpose of the current paper. This is the first paper in a planned series
that seeks to give the first bijective proofs of several results described so far. The seed of the
idea to do so came from a brief discussion of the first author with Zeilberger on the problem
of finding such bijections at the AMS-MAA Joint Mathematics Meetings 2019. Zeilberger
mentioned that such bijections can be constructed from existing “computational” proofs,
however, most likely these bijections are complicated. The authors of the current paper agree,
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in fact the first author gave her “own” proof of the ASM theorem in [Fis06, Fis07, Fis16]
and expressed some speculations in this direction in the final section of the last paper. It is
also not implausible that a simple satisfactory bijective proof of the ASM theorem does not
exist at all. Combinatorialists have failed to find such bijections for decades now, and we
may start to ask ourselves why we are not rewarded for these efforts.

This is how the authors of the current paper decided to work on converting the proof in
[Fis16] into a bijective proof. After having figured out how to actually convert computations
and also having shaped certain useful fundamental concepts related to signed sets (see Sec-
tion 2), the translation of several steps became quite straightforward; some steps were quite
challenging. Then a certain type of (exciting) dynamics evolved, where the combinatorial
point of view led to simplifications and other modifications, and after this process the original
“computational” proof is in fact rather difficult to recognize. For several obvious reasons,
we find it essential to check all our constructions with computer code; to name one it can
possibly be used to identify new equivalent statistics.

After the above mentioned simplifications, it seems that signs seem to be unavoidable.
After all, if there would be a simple bijective proof that avoided signs, would it not also
be plausible that such a proof could be converted into a simple “computational” proof that
avoids signs? Such a proof has also not been found so far.

In the remainder of the introduction we discuss the result that is proved bijectively in this
paper, in particular we discuss why signed enumerations seem to be unavoidable from this
point of view. We also sketch a few ideas informally before giving rigorous definitions and
proofs later on.

The operator formula. We use the well-known correspondence between order n×n ASMs
and monotone triangles with bottom row 1,2, . . . , n. A monotone triangle is a triangular
array (ai,j)1≤j≤i≤n of integers, where the elements are usually arranged as follows

(2)

a1,1

a2,1 a2,2

. . . . . . . . .
an−2,1 . . . . . . an−2,n−2

an−1,1 an−1,2 . . . . . . an−1,n−1

an,1 an,2 an,3 . . . . . . an,n

,

such that the integers increase weakly along ↗-diagonals and ↘-diagonals, and increase
strictly along rows, i.e., ai,j ≤ ai−1,j ≤ ai,j+1 and ai,j < ai,j+1 for all i, j with 1 ≤ j < i ≤ n. In
order to convert an ASM into the corresponding monotone triangle, add to each entry all the
entries that are in the same column above it, and record then row by row the positions of
the 1’s, see Figure 1 for an example.

The following operator formula for the number of monotone triangles with prescribed
bottom row was first proved in [Fis06] (see [Fis10, Fis16] for simplifications and generaliza-
tions). Note that we allow arbitrary strictly increasing bottom rows.

Theorem. Let k1 < k2 < . . . < kn be a sequence of strictly increasing integers. The number of
monotone triangles with bottom row k1, . . . , kn is

(3) ∏
1≤p<q≤n

(Ekp +E−1
kq −EkpE−1

kq ) ∏
1≤i<j≤n

kj − ki + j − i

j − i
,
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⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1 0 0
0 1 0 −1 1 0
1 −1 0 1 −1 1
0 1 0 −1 1 0
0 0 0 1 0 0
0 0 1 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1 0 0
0 1 0 0 1 0
1 0 0 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 1 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

4
2 5

1 4 6
1 2 5 6

1 2 4 5 6
1 2 3 4 5 6

Figure 1. ASM → partial columnsums → monotone triangle

where Ex denotes the shift operator, i.e., Exp(x) = p(x + 1).1

The purpose of this paper is to provide a bijective proof of Theorem 1. While the operator
formula is an interesting result in its own right, it has also been the main tool for proofs of
several results mentioned above. This will be reviewed in the final section of this paper along
with indications for future projects on converting also these proofs into bijective proofs.

In order to be able to construct a bijective proof of Theorem 1, we need to interpret (3)
combinatorially. Recall that Gelfand-Tsetlin patterns are defined as monotone triangles with
the condition on the strict increase along rows being dropped, see [Sta99, p. 313] or [GC50,
(3)] for the original reference2. It is well known that the number of Gelfand-Tsetlin patterns
with bottom row k1 ≤ k2 ≤ . . . ≤ kn is

(4) ∏
1≤i<j≤n

kj − ki + j − i

j − i
,

which is the operand in the operator formula (3). Expanding ∏1≤p<q≤n (Ekp +E−1
kq −EkpE−1

kq )

into 3(
n
2
) monomials in E±1

k1 ,E
±1
k2 , . . . ,E

±1
kn (keeping a copy for each multiplicity), (3) is a signed

enumeration of certain Gelfand-Tsetlin patterns, where each monomial causes a deformation
of the bottom row k1, . . . , kn. It is useful to encode these deformations by arrow patterns as
defined in Section 5, where we choose ↙ if we pick Ekp from Ekp + E−1

kq − EkpE−1
kq , we choose

↘ if we pick E−1
kq , while we choose ↙↘ if we pick −EkpE−1

kq . Arranging the (
n
2
) arrows in a

triangular manner so that the arrows coming from Ekp +E−1
kq −EkpE−1

kq are situated in the p-th
↙-diagonal and the q-th ↘-diagonal, and placing k1, . . . , kn in the bottom row will allow us
to describe the deformation coming from a particular monomial in a convenient way. The
combinatorial objects associated with (3) then consist of a pair of such an arrow pattern and
a Gelfand-Tsetlin pattern where the bottom row is a deformation of k1, . . . , kn as prescribed
by the arrow pattern. This will lead directly to the definition of shifted Gelfand-Tsetlin
patterns.

A sign comes from picking −EkpE−1
kq , but there is also a more subtle appearance. The

deformation induced by the arrow pattern can cause a deformation of the increasing bottom
row k1, k2, . . . , kn into a sequence that is not increasing. Therefore we are in need of an

1The formula has to be understood as follows: Take ∏1≤i<j≤n
kj−ki+j−i

j−i
and treat the ki’s as indeterminates.

Apply ∏1≤p<q≤n (Ekp +E−1kq
−EkpE−1kq

) to this polynomial to obtain another polynomial. Only then the ki’s

can be specialized to the actual values.
2Gelfand-Tsetlin patterns with bottom row 0 ≤ k1 ≤ k2 ≤ . . . ≤ kn are in an easy bijective correspondence

with seminstandard tableaux of shape (kn, kn−1, . . . , k1) and entries in {1,2, . . . , n}.
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extension of the combinatorial interpretation of (4) to any sequence k1, . . . , kn of integers.
Such an interpretation was given in [Fis05] and is repeated below in Section 4.

Outline of the bijective proof. Given a sequence k1 < . . . < kn, it suffices to find an
injective map from the set of monotone triangles with bottom row k1, . . . , kn to our shifted
Gelfand-Tsetlin patterns associated with k1, . . . , kn so that the images under this map have
positive signs, along with a sign-reversing involution on the set of shifted Gelfand-Tsetlin
patterns that are not the image of a monotone triangle.

We will accomplish something more general, as we will also consider an extension of
monotone triangles to all integer sequences k1, . . . , kn, see Section 5, along with a sign function
on these objects, and prove that the operator formula also holds in this instance. To do that,
we will construct a sign-reversing involution on a subset of monotone triangles, another
sign-reversing involution on a subset of shifted Gelfand-Tsetlin patterns, and a sign-preser-
ving bijection between the remaining monotone triangles and the remaining shifted Gelfand-
Tsetlin patterns. Note that this is actually equivalent to the construction of a bijection
between the (disjoint) union of the “positive” monotone triangles and the “negative” shifted
Gelfand-Tsetlin patterns, and the (disjoint) union of the “negative” monotone triangles and
the “positive” shifted Gelfand-Tsetlin patterns. We call such maps sijections for general
signed sets.

The actual construction here will make use of the recursion underlying monotone triangles.
For a monotone triangle with bottom row k1, . . . , kn, the eligible penultimate rows l1, . . . , ln−1

are those with
k1 ≤ l1 ≤ k2 ≤ l2 ≤ . . . ≤ ln−1 ≤ kn,

and l1 < l2 < . . . < ln−1. This establishes a recursion that can be used to construct all
monotone triangles. Phrased differently, “at” each ki we need to sum over all li−1, li such that
li−1 ≤ ki ≤ li and li−1 < li.

3 However, we can split this into the following three cases:

(1) Consider all li−1, li with li−1 < ki ≤ li.
(2) Consider all li−1, li with li−1 ≤ ki < li.
(3) Combining (1) and (2), we have done some double counting, thus we need to subtract

the intersection, i.e., all li−1, li with li−1 < ki < li.

This can be written as a recursion. The arrow rows in Section 5 are used to describe this
recursion: we choose ↖ “at” ki if we are in Case (1), ↗ in Case (2), and ↖↗ in Case (3). Our
main effort will be to show “sijectively” that shifted Gelfand-Tsetlin patterns also fulfill this
recursion.

Outline of the paper. The remainder of this paper is devoted to the bijective proof of
Theorem 1 (or rather, the more general version with the increasing condition on k1, . . . , kn
dropped). In Section 2 we lay the groundwork by defining concepts like signed sets and
sijections, and we extend known concepts such as disjoint union, Cartesian product and
composition for ordinary sets and bijections to signed sets and sijections. The composi-
tion of sijections will use a variation of the well-known Garsia-Milne involution principle
[GM81, And86]. Many of the signed sets we will be considering are signed boxes (Carte-
sian products of signed intervals) or at least involve them, and we define some sijections on
them in Section 3. These sijections will be the building blocks of our bijective proof later
on. In Section 4 we introduce the extended Gelfand-Tsetlin patterns and construct some

3The degenerate cases k1 and kn are slightly different.
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related sijections. In Section 5, we finally define the extended monotone triangles as well
as the shifted Gelfand-Tsetlin patterns (i.e., the combinatorial interpretation of (3)), and
use all the preparation to construct the sijection between monotone triangles and shifted
Gelfand-Tsetlin patterns. In the final section, we discuss further projects.

To emphasize that we are not merely interested in the fact that two signed sets have
the same size, but want to use the constructed signed bijection later on, we will be using a
convention that is slightly unorthodox in our field. Instead of listing out results as lemmas
and theorems with their corresponding proofs, we will be using the Problem–Construction
terminology. See for instance [Voe] and [Bau].

2. Signed sets and sijections

Signed sets. A signed set is a pair of disjoint finite sets: S = (S+, S−) with S+ ∩ S− = ∅.
Equivalently, a signed set is a finite set S together with a sign function sign∶S → {1,−1}.
While we will mostly avoid the use of the sign function altogether (with the exception of
monotone triangles defined in Section 5), it is useful to keep this description at the back of
one’s mind. Note that throughout the paper, signed sets are underlined. We will write i ∈ S
to mean i ∈ S+ ∪ S−.

The size of a signed set S is ∣S∣ = ∣S+∣− ∣S−∣. The opposite signed set of S is −S = (S−, S+).
We have ∣−S∣ = −∣S∣. The Cartesian product of signed sets S and T is

S × T = (S+ × T + ∪ S− × T −, S+ × T − ∪ S− × T +),

and we can similarly (or recursively) define the Cartesian product of a finite number of signed
sets. We have

∣S × T ∣ = ∣S+∣ ⋅ ∣T +∣ + ∣S−∣ ⋅ ∣T −∣ − ∣S+∣ ⋅ ∣T −∣ − ∣S−∣ ⋅ ∣T +∣ = ∣S∣ ⋅ ∣T ∣.

The intersection of signed sets S and T is defined as S ∩T = (S+ ∩T +, S− ∩T −), while the
union S ∪ T = (S+ ∪ T +, S− ∪ T −) is only defined when S+ ∩ T − = S− ∩ T + = ∅. Again, we can
extend these definitions to a finite family of signed sets.

Example 1. One of the crucial signed sets is the signed interval

[a, b] = {
([a, b],∅) if a ≤ b

(∅, [b + 1, a − 1]) if a > b

for a, b ∈ Z, where [a, b] stands for an interval in Z in the usual sense. We have [b + 1, a − 1] =

−[a, b] and ∣[a, b]∣ = b − a + 1.
We will also see many signed boxes, Cartesian products of signed intervals. Note that S+ = ∅
or S− = ∅ for every signed box S.

Signed subsets T ⊆ S are defined in an obvious manner, in particular, for s ∈ S, we have

{s} = {
({s},∅) if s ∈ S+

(∅,{s}) if s ∈ S−
.

The disjoint union of signed sets S and T is the signed set

S ⊔ T = (S × ({0},∅)) ∪ (T × ({1},∅))

with elements (s,0) for s ∈ S and (t,1) for t ∈ T . If S and T are signed sets with (S+ ∪S−)∩
(T + ∪ T −) = ∅, we can identify S ∪ T and S ⊔ T .
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More generally, we can define the disjoint union of a family of signed sets St, where the
family is indexed with a signed set T :

⊔
t∈T

St = ⋃
t∈T

(St × {t}).

We get ⊔t∈[0,1] St = S0 ⊔ S1. For a, b ∈ Z, we may also write ⊔bi=a Si instead of ⊔i∈[a,b] Si. As

for the size, we have

∣⊔
t∈T

St∣ =∑
t∈T

∣St∣ ⋅ ∣{t}∣.

The usual properties such as associativity (S ⊔ T ) ⊔ U = S ⊔ (T ⊔ U) and distributivity
(S ⊔T )×U = S ×U ⊔T ×U also hold. Strictly speaking, the = sign here and sometimes later
on indicates that there is an obvious and natural sign-preserving bijection between the two
signed sets. We summarize a few more basic properties that will be needed in the following
and that are easy to prove.

(1)

⊔
l∈[a1,b1]×...×[an,bn]

Sl1+c1,...,ln+cn = ⊔
l∈[a1+c1,b1+c1]×...×[an+cn,bn+cn]

Sl1,...,ln

(2)

⊔
t∈T
⊔
u∈U

St,u = ⊔
(u,t)∈U×T

St,u = ⊔
(t,u)∈T×U

St,u = ⊔
u∈U
⊔
t∈T

St,u

(3)

⊔
t∈⊔u∈U Tu

St = ⊔
u∈U

⊔
t∈Tu

St

(4)
−⊔
t∈T

St = ⊔
t∈T

−St = ⊔
t∈−T

St.

Sijections. The role of bijections for signed sets is played by “signed bijections”, which we
call sijections. A sijection ϕ from S to T ,

ϕ∶S ⇒ T ,

is an involution on the set (S+ ∪ S−) ⊔ (T + ∪ T −) with the property ϕ(S+ ⊔ T −) = S− ⊔ T +,
where ⊔ refers to the disjoint union for ordinary (“unsigned”) sets. It follows that also
ϕ(S− ⊔ T +) = S+ ⊔ T −. There is an obvious sijection idS ∶S ⇒ S.

We can think of a sijection as a collection of a sign-reversing involution on a subset of
S, a sign-reversing involution on a subset of T , and a sign-preserving matching between the
remaining elements of S with the remaining elements of T . When S− = T − = ∅, the signed
sets can be identified with ordinary sets, and a sijection in this case is simply a bijection.

A sijection is a manifestation of the fact that two signed sets have the same size. Indeed,
if there exists a sijection ϕ∶S ⇒ T , we have ∣S+∣ + ∣T −∣ = ∣S+ ⊔ T −∣ = ∣S− ⊔ T +∣ = ∣S−∣ + ∣T +∣ and
therefore ∣S∣ = ∣S+∣ − ∣S−∣ = ∣T +∣ − ∣T −∣ = ∣T ∣. A sijection ϕ∶S ⇒ T has an inverse ϕ−1∶T ⇒ S
that we obtain by identifying (T + ∪ T −) ⊔ (S+ ∪ S−) with (S+ ∪ S−) ⊔ (T + ∪ T −).

For a signed set S, there is a natural sijection ϕ from S⊔(−S) to the empty signed set ∅ =

(∅,∅). Indeed, the involution should be defined on (S+×{0}∪S−×{1})∪(S−×{0}∪S+×{1})
and map S+×{0}∪S−×{1} to S+×{1}∪S−×{0}, and so we can take ϕ((s,0),0) = ((s,1),0),
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ϕ((s,1),0) = ((s,0),0). Note that in general, a sijection from a signed set S to ∅ is simply
a sign-reversing involution on S, in other words, a bijection between S+ and S−.

If we have a sijection ϕ∶S ⇒ T , there is a natural sijection −ϕ∶ −S ⇒ −T (as a map, it is
actually precisely the same).

If we have sijections ϕi∶Si ⇒ T i for i = 0,1, then there is a natural sijection ϕ∶S0 ⊔ S1 ⇒

T 0 ⊔ T 1. More interesting ways to create new sijections are described below in Proposition
2, but we will need this in our first construction for the special case S0 = T 0 and ϕ0 = idS0

.

To motivate our first result, note that if a ≤ b ≤ c or c < b < a, then [a, c] = [a, b]∪[b + 1, c] =

[a, b]⊔[b + 1, c]. Of course, this does not hold in general; for a = 1, b = 8, c = 5, we have [1,5] =

({1,2,3,4,5},∅), ([1,8]⊔[9,5])+ = ({(1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0)} and

([1,8] ⊔ [9,5])− = {(6,1), (7,1), (8,1)}). The following, however, tells us that there is in

general a sijection between [a, c] and [a, b] ⊔ [b + 1, c]. This map will be the crucial building
block for more complicated sijections.

Problem 1. Given a, b, c ∈ Z, construct a sijection

α = αa,b,c∶ [a, c]⇒ [a, b] ⊔ [b + 1, c].

Construction. For a ≤ b ≤ c and c < b < a, there is nothing to prove. For, say, a ≤ c < b, we
have

[a, b] ⊔ [b + 1, c] = ([a, c] ⊔ [c + 1, b]) ⊔ [b + 1, c] = [a, c] ⊔ ([c + 1, b] ⊔ (−[c + 1, b]))

and since there is a sijection [c + 1, b]⊔(−[c + 1, b])⇒ ∅, we get a sijection [a, b]⊔ [b + 1, c]⇒

[a, c]. The cases b < a ≤ c, b ≤ c < a, and c < a ≤ b are analogous. �

The following proposition describes composition, Cartesian product, and disjoint union of
sijections. The composition is a variant of the well-known Garsia-Milne involution principle.
All the statements are easy to prove, and the proofs are left to the reader.

Proposition 2.

(1) (Composition) Suppose that we have sijections ϕ∶S ⇒ T and ψ∶T ⇒ U . For s ∈ S
(resp. u ∈ U), define ψ ○ ϕ(s) (resp. ψ ○ ϕ(u)) as the last well-defined element in the
sequence s,ϕ(s), ψ(ϕ(s)), ϕ(ψ(ϕ(s))), . . . (resp. u,ψ(u), ϕ(ψ(u)), ψ(ϕ(ψ(u))), . . .).
Then ψ ○ ϕ is a well-defined sijection from S to U .

(2) (Cartesian product) Suppose we have sijections ϕi∶Si ⇒ T i, i = 1, . . . , k. Then ϕ =

ϕ1 ×⋯ × ϕk, defined by

ϕ(s1, . . . , sk) = {
(ϕ1(s1), . . . , ϕk(sk)) if ϕi(si) ∈ T i for i = 1, . . . , k

(s1, . . . , sj−1, ϕj(sj), sj+1, . . . , sk) if ϕj(sj) ∈ Sj, ϕi(si) ∈ T i for i < j

if (s1, . . . , sk) ∈ S1 × ⋅ ⋅ ⋅ × Sk and

ϕ(t1, . . . , tk) = {
(ϕ1(t1), . . . , ϕk(tk)) if ϕi(ti) ∈ Si for i = 1, . . . , k

(t1, . . . , tj−1, ϕj(tj), tj+1, . . . , tk) if ϕj(tj) ∈ T j, ϕi(ti) ∈ Si for i < j

if (t1, . . . , tk) ∈ T 1× ⋅ ⋅ ⋅ ×T k, is a well-defined sijection from S1×⋯×Sk to T 1×⋯×T k.
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(3) (Disjoint union) Suppose we have signed sets T , T̃ and a sijection ψ∶T ⇒ T̃ . Further-

more, suppose that for every t ∈ T ⊔ T̃ , we have a signed set St and a sijection
ϕt∶St⇒ Sψ(t) satisfying ϕψ(t) = ϕ

−1
t . Then ϕ = ⊔t∈T⊔T̃ ϕt, defined by

ϕ(st, t) = {
(ϕt(st), t) if t ∈ T ⊔ T̃ , st ∈ St, ϕt(st) ∈ St
(ϕt(st), ψ(t)) if t ∈ T ⊔ T̃ , st ∈ St, ϕt(st) ∈ Sψ(t)

is a sijection ⊔t∈T St⇒ ⊔t∈T̃ S̃t.

One important special case of Proposition 2 (3) is T = T̃ and ψ = id. We have two sets
of signed sets indexed by T , S(t,0) =∶ S

0
t and S(t,1) =∶ S

1
t , and sijections ϕt∶S

0
t ⇒ S1

t . By the

proposition, these sijections have a disjoint union that is a sijection ⊔t∈T S
0
t ⇒ ⊔t∈T S

1
t .

By the proposition, the relation

S ≈ T ⇐⇒ there exists a sijection from S to T

is an equivalence relation.

Elementary signed sets and normal sijections. Often, we will be interested in disjoint
unions of Cartesian products of signed intervals. An element of such a signed set is a pair,
consisting of a tuple of integers and an element of the indexing signed set. Intuitively, the
first one is “more important”, as the second one serves just as an index. We formalize this
notion in the following definition.

Definition 3. A signed set A is elementary of dimension n and depth 0 if its elements are
in Zn. A signed set A is elementary of dimension n and depth d, d ≥ 1, if it is of the form

⊔
t∈T

St,

where T is a signed set, and St are all signed sets of dimension n and depth at most d−1, with
the depth of at least one of them equal to d− 1. A signed set A is elementary of dimension n
if it is an elementary signed set of dimension n and depth d for some d ∈ N.
The projection map on an elementary set of dimension n is the map

ξ∶A→ Zn

defined as follows. If the depth of A is 0, then ξ is simply the inclusion map. Once ξ is
defined on elementary signed sets of depth < d, and the depth of A is d, then A = ⊔t∈T St,
where ξ is defined on all St. Then define ξ(s, t) = ξ(s) for (s, t) ∈ A.

A sijection ψ∶T ⇒ T̃ between elementary signed sets T and T̃ of the same dimension is
normal if ξ(ψ(t)) = ξ(t) for all t ∈ T ⊔ T̃ .

Simple examples of elementary signed sets are [a, c], [a, b] ⊔ [b + 1, c] and [a, c] ⊔ ([a, b] ⊔

[b + 1, c]). They are all of dimension 1 and depth 0, 1 and 2, respectively.4 It is easy to see
that the sijection αa,b,c from Problem 1 is normal.

4To avoid ambiguity, we should consider signed intervals in this case to be subsets of Z1 (1-tuples of
integers), not Z. Otherwise, [0,1]⊔ [2,3] = ({(0,0), (1,0), (2,1), (3,1)},∅), and this can be seen either as an

elementary set of dimension 1 and depth 1, or as an elementary signed set of dimension 2 and depth 0. So the
interpretation depends on the “representation” of the set as disjoint union. Instead, we should understand
[0,1]⊔ [2,3] to mean ({((0),0), ((1),0), ((2),1), ((3),1)},∅), with dimension 1 and depth 1. For coding, the

distinction is important, but in the paper we nevertheless think of elements of signed intervals as integers.
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Let us illustrate this with the example a = 1, b = 5, c = 3. We have [a, c] = ({1,2,3},∅)

and [a, b] ⊔ [b + 1, c] = ({(1,0), (2,0), (3,0), (4,0), (5,0)},{(4,1), (5,1)}). The sijection α1,5,3

is the involution on [1,3] ⊔ ([1,5] ⊔ [6,3]) defined by

(1,0)↔ ((1,0),1), (2,0)↔ ((2,0),1), (3,0)↔ ((3,0),1),

((4,0),1)↔ ((4,1),1), ((5,0),1)↔ ((5,1),1).

Since ξ(i,0) = i for i = 1,2,3, ξ((i,0),1) = i for i = 1,2,3,4,5 and ξ((i,1),1) = i for i = 4,5,
α1,5,3 is indeed normal.

Other examples of elementary signed sets appear in the statements of Problems 2 and 3
(in both cases, they are of dimension n − 1).

Normality is preserved under Cartesian product, disjoint union etc. For example, the
sijection

[a1, c1] × [a2, c2]⇒

[a1, b1] × [a2, b2] ⊔ [a1, b1] × [b2 + 1, c2] ⊔ [b1 + 1, c1] × [a2, b2] ⊔ [b1 + 1, c1] × [b2 + 1, c2],

obtained by using αa1,b1,c1 × αa2,b2,c2 and distributivity on disjoint unions, is normal.

The main reason normal sijections are important is that they give a very natural special
case of Proposition 2 (3). Suppose that T and T̃ are elementary signed sets of dimension n,

and that ψ∶T ⇒ T̃ is a normal sijection. Furthermore, suppose that we have a signed set Sk

for every k ∈ Zn. Then we have a sijection

⊔
t∈T

Sξ(t) ⇒ ⊔
t∈T̃

Sξ(t).

Indeed, Proposition 2 gives us a sijection provided that we have a sijection ϕt∶Sξ(t) ⇒ Sξ(ψ(t))
satisfying ϕψ(t) = ϕ

−1
t for every t ∈ T ⊔ T̃ . But since ξ(ψ(t)) = ξ(t), we can take ϕt to be the

identity.

3. Some sijections on signed boxes

The first sijection in this section will serve as the base of induction for Problem 5.

Example 4. For a, b ∈ Z, we have a normal sijection

⊔
(l1,l2)∈[a+1,b+1]×[a,b]

[l1, l2]⇒ ∅

defined by ϕ((x, (l1, l2)),0) = ((x, (l2 + 1, l1 − 1)),0). It is well defined because (l1, l2) ∈

[a + 1, b + 1] × [a, b] if and only if (l2 + 1, l1 − 1) ∈ [a + 1, b + 1] × [a, b], and because x ∈ [l1, l2]

if and only if x ∈ [l2 + 1, l1 − 1].

Note that the 0 as the second coordinate in the example comes from the fact that a
sijection in question is an involution on the disjoint union

⎛

⎝
⊔

(l1,l2)∈[a+1,b+1]×[a,b]

[l1, l2]
⎞

⎠
⊔ ∅ =

⎛

⎝
⊔

(l1,l2)∈[a+1,b+1]×[a,b]

[l1, l2]
⎞

⎠
× {0} ∪ ∅ × {1}.

We could be a little less precise and write ϕ(x, (l1, l2)) = (x, (l2 + 1, l1 − 1)) without causing
confusion.
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The following generalizes the construction of Problem 1; indeed, for n = 2 the construction
gives a sijection from [a1, b1] to [a1, x] ⊔ (−[b1 + 1, x]).

Problem 2. Given a = (a1, . . . , an−1) ∈ Zn−1, b = (b1, . . . , bn−1) ∈ Zn−1, x ∈ Z, construct a
normal sijection

β = βa,b,x∶ [a1, b1]×⋯×[an−1, bn−1]⇒ ⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

[l1, l2]×[l2, l3]×⋯×[ln−2, ln−1]×[ln−1, x],

where Si = ({ai},∅) ⊔ (∅,{bi + 1})

Note that ({ai},∅) ⊔ (∅,{bi + 1}) can be identified with ({ai},{bi + 1}) if ai /= bi + 1.

Construction. The proof is by induction, with the case n = 1 being trivial and the case n = 2
was constructed in Problem 1. Now, for n ≥ 3,

[a1, b1] ×⋯ × [an−1, bn−1] ≈ [a1, b1] × ⊔
(l2,...,ln−1)∈S2×⋯×Sn−1

[l2, l3] ×⋯ × [ln−2, ln−1] × [ln−1, x]

≈
⎛

⎝
[a1, b1] × ⊔

(l3,...,ln−1)∈S3×⋯×Sn−1

[a2, l3] ×⋯ × [ln−1, x]
⎞

⎠

⊔
⎛

⎝
[a1, b1] × ⊔

(l3,...,ln−1)∈S3×⋯×Sn−1

(−[b2 + 1, l3]) ×⋯ × [ln−1, x]
⎞

⎠
,

where we used induction for the first equivalence, and distributivity and the fact that S2 =

({a2},∅) ⊔ (∅,{b2 + 1}) for the second equivalence. By Problem 1 and Proposition 2 (2),
there exists a sijection from the last expression to

⎛

⎝
([a1, a2] ⊔ (−[b1 + 1, a2])) × ⊔

(l3,...,ln−1)∈S3×⋯×Sn−1

[a2, l3] ×⋯ × [ln−1, x]
⎞

⎠

⊔
⎛

⎝
([a1, b2 + 1] ⊔ (−[b1 + 1, b2 + 1])) × ⊔

(l3,...,ln−1)∈S3×⋯×Sn−1

(−[b2 + 1, l3]) ×⋯ × [ln−1, x]
⎞

⎠

≈ ⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

[l1, l2] × [l2, l3] ×⋯⋯[ln−2, ln−1] × [ln−1, x],

where for the last equivalence we have again used distributivity. Normality follows from the
normality of all the sijections involved in the construction. �

Problem 3. Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a normal sijection

γ = γk,x∶ [k1, k2] ×⋯ × [kn−1, kn]

⇒
n

⊔
i=1

[k1, k2] ×⋯ × [ki−1, x + n − i] × [x + n − i, ki+1] ×⋯ × [kn−1, kn]

⊔
n−2

⊔
i=1

⋯× [ki−1, ki] × [ki+1 + 1, x + n − i − 1] × [ki+1, x + n − i − 2] × [ki+2, ki+3] ×⋯.

Construction. The proof is by induction with respect to n. The case n = 1 is trivial, and
n = 2 is Problem 1. Now take n > 2. By the induction hypothesis (for (k1, . . . , kn−1) and
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x + 1), we have

[k1, k2]×⋯× [kn−1, kn] ≈ (
n−1

⊔
i=1

[k1, k2]×⋯× [ki−1, x + n − i]× [x + n − i, ki+1]×⋯× [kn−2, kn−1]

⊔
n−3

⊔
i=1

[k1, k2]×⋯× [ki+1 + 1, x + n − i − 1]× [ki+1, x + n − i − 2]×⋯× [kn−2, kn−1])× [kn−1, kn].

We use distributivity. We keep all terms except the one corresponding to i = n−1 in the first
part. Because

[kn−2, x + 1] × [kn−1, kn] ≈ [kn−2, x + 1] × ([kn−1, x] ⊔ [x + 1, kn])

≈ ([kn−2, kn−1] ⊔ [kn−1 + 1, x + 1]) × [kn−1, x] ⊔ [kn−2, x + 1] × [x + 1, kn]

≈ [kn−2, kn−1] × [kn−1, x] ⊔ [kn−1 + 1, x + 1] × [kn−1, x] ⊔ [kn−2, x + 1] × [x + 1, kn],

we obtain the required Cartesian products for the first term on the right-hand side at i = n,
the second term at i = n − 2, and the first term at i = n − 1. Again, normality follows from
the fact that α is normal. �

4. Gelfand-Tsetlin patterns

Using our definition of a disjoint union of signed sets, it is easy to define generalized
Gelfand-Tsetlin patterns, or GT patterns for short (compare with [Fis05]).

Definition 5. For k ∈ Z, define GT(k) = ({⋅},∅), and for k = (k1, . . . , kn) ∈ Zn, define
recursively

GT(k) = GT(k1, . . . , kn) = ⊔
l∈[k1,k2]×⋯×[kn−1,kn]

GT(l1, . . . , ln−1).

In particular, GT(a, b) ≈ [a, b].

Of course, one can think of an element of GT(k) in the usual way, as a triangular array
A = (Ai,j)1≤j≤i≤n of (

n+1
2
) numbers, arranged as

A1,1

A2,1 A2,2

A3,1 A3,2 A3,3

. .
.

⋮ ⋱ ⋮ . .
.

⋮ ⋱

An,1 An,2 . . . . . . An,n,

so that Ai+1,j ≤ Ai,j ≤ Ai+1,j+1 or Ai+1,j > Ai,j > Ai+1,j+1 for 1 ≤ j ≤ i < n, and An,i = ki. The
sign of such an array is (−1)m, where m is the number of (i, j) with ai,j > ai,j+1.

Some crucial sijections for GT patterns are given by the following constructions.

Problem 4. Given a = (a1, . . . , an−1) ∈ Zn−1, b = (b1, . . . , bn−1) ∈ Zn−1, x ∈ Z, construct a
sijection

ρ = ρa,b,x∶ ⊔
l∈[a1,b1]×⋯×[an−1,bn−1]

GT(l)⇒ ⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

GT(l1, . . . , ln−1, x),

where Si = ({ai},∅) ⊔ (∅,{bi + 1}).
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Construction. In Problem 2, we constructed a normal sijection

[a1, b1] ×⋯ × [an−1, bn−1]⇒ ⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

[l1, l2] × [l2, l3] ×⋯ × [ln−2, ln−1] × [ln−1, x].

By Proposition 2 (3) (see the comment at the end of Section 2), this gives a sijection

⊔
l∈[a1,b1]×⋯×[an−1,bn−1]

GT(l)⇒ ⊔
m∈⊔(l1,...,ln−1)∈S1×⋯×Sn−1 [l1,l2]×[l2,l3]×⋯×[ln−2,ln−1]×[ln−1,x]

GT(m).

By basic sijection constructions, we get that this is equivalent to

⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

⊔
m∈[l1,l2]×[l2,l3]×⋯×[ln−2,ln−1]×[ln−1,x]

GT(m),

and by definition of GT, this is equal to ⊔(l1,...,ln−1)∈S1×⋯×Sn−1 GT(l1, . . . , ln−1, x). �

The result is important because while it adds a dimension to GT patterns, it (typically)
greatly reduces the size of the indexing signed set. In fact, there is an analogy to the
fundamental theorem of calculus: instead of extending the disjoint union over the entire
signed box, it suffices to consider the boundary; x corresponds in a sense to the constant of
integration.

Problem 5. Given k = (k1, . . . , kn) ∈ Zn and i, 1 ≤ i ≤ n − 1, construct a sijection

π = πk,i∶GT(k1, . . . , kn)⇒ −GT(k1, . . . , ki−1, ki+1 + 1, ki − 1, ki+2, . . . , kn).

Given a = (a1, . . . , an) ∈ Zn, b = (b1, . . . , bn) ∈ Zn such that for some i, 1 ≤ i ≤ n − 1, we have
ai+1 = ai − 1 and bi+1 = bi − 1, construct a sijection

σ = σa,b,i∶ ⊔
l∈[a1,b1]×⋯×[an,bn]

GT(l)⇒ ∅.

Construction. The proof is by induction, with the induction step for π using σ and vice versa.
For n = 1, there is nothing to prove. For n = 2 and i = 1, the existence of π follows from
the statement [k1, k2] = −[k2 + 1, k1 − 1], and σ was constructed in Example 4. Assume that
n > 2 and 1 < i < n − 1. We have

GT(k1, . . . , kn) = ⊔
l∈[k1,k2]×⋯×[ki−1,ki]×[ki+1+1,ki−1]×[ki+1,ki+2]×⋯×[kn−1,kn]

−GT(l1, . . . , ln−1).

By using id×⋯ × id×αki−1,ki+1+1,ki × id×αki+1,ki−2,ki+2 × id×⋯ × id and distributivity, we get a
normal sijection

[k1, k2] ×⋯ × [ki−1, ki] × [ki+1 + 1, ki − 1] × [ki+1, ki+2] ×⋯ × [kn−1, kn]⇒

[k1, k2] ×⋯ × [ki−1, ki+1 + 1] × [ki+1 + 1, ki − 1] × [ki − 1, ki+2] ×⋯ × [kn−1, kn]

⊔ [k1, k2] ×⋯ × [ki−1, ki+1 + 1] × [ki+1 + 1, ki − 1] × [ki+1, ki − 2] ×⋯ × [kn−1, kn]

⊔ [k1, k2] ×⋯ × [ki+1 + 2, ki] × [ki+1 + 1, ki − 1] × [ki − 1, ki+2] ×⋯ × [kn−1, kn]

⊔ [k1, k2] ×⋯ × [ki+1 + 2, ki] × [ki+1 + 1, ki − 1] × [ki+1, ki − 2] ×⋯ × [kn−1, kn]
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By Proposition 2 (3), this gives a sijection

⊔
l∈[k1,k2]×⋯×[ki−1,ki]×[ki+1+1,ki−1]×[ki+1,ki+2]×⋯×[kn−1,kn]

−GT(l1, . . . , ln−1)⇒

⊔
l∈[k1,k2]×⋯×[ki−1,ki+1+1]×[ki+1+1,ki−1]×[ki−1,ki+2]×⋯×[kn−1,kn]

−GT(l1, . . . , ln−1)

⊔ ⊔
l∈[k1,k2]×⋯×[ki−1,ki+1+1]×[ki+1+1,ki−1]×[ki+1,ki−2]×⋯×[kn−1,kn]

−GT(l1, . . . , ln−1)

⊔ ⊔
l∈[k1,k2]×⋯×[ki+1+2,ki]×[ki+1+1,ki−1]×[ki−1,ki+2]×⋯×[kn−1,kn]

−GT(l1, . . . , ln−1)

⊔ ⊔
l∈[k1,k2]×⋯×[ki+1+2,ki]×[ki+1+1,ki−1]×[ki+1,ki−2]×⋯×[kn−1,kn]

−GT(l1, . . . , ln−1).

By definition, the first signed set on the right-hand side is −GT(k1, . . . , ki−1, ki+1 + 1, ki −
1, ki+2, . . . , kn). The other three disjoint unions all satisfy the condition needed for the ex-
istence of σ (for i, for i − 1 and for both, i − 1 and i, respectively), and hence we can siject
them to ∅.
If i = 1 or i = n− 1, the proof is similar but easier (as we only have to use α once, and we get
only two factors after using distributivity). Details are left to the reader.
Now take l = (l1, . . . , ln) and l′ = (l1, . . . , li−1, li+1 + 1, li − 1, li+2, . . . , ln). The sijection σ can
then be defined as

σa,b,i(A, l) = {
(πl,i(A), l) if πl,i(A) ∈ GT(l)

(πl,i(A), l′) if πl,i(A) ∈ GT(l′)
.

It is easy to check that this is a sijection. Compare with Example 4. �

Problem 6. Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a sijection

τ = τk,x∶GT(k1, . . . , kn)⇒
n

⊔
i=1

GT(k1, . . . , ki−1, x + n − i, ki+1, . . . , kn).

Construction. In Problem 3, we constructed a normal sijection

[k1, k2] ×⋯ × [kn−1, kn]⇒
n

⊔
i=1

[k1, k2] ×⋯ × [ki−1, x + n − i] × [x + n − i, ki+1] ×⋯ × [kn−1, kn]

⊔
n−2

⊔
i=1

⋯× [ki−1, ki] × [ki+1 + 1, x + n − i − 1] × [ki+1, x + n − i − 2] × [ki+2, ki+3] ×⋯,

which gives a sijection

⊔
l∈[k1,k2]×⋯×[kn−1,kn]

GT(l)⇒
n

⊔
i=1

⊔
l∈[k1,k2]×⋯×[ki−1,x+n−i]×[x+n−i,ki+1]×⋯×[kn−1,kn]

GT(l)

⊔
n−2

⊔
i=1

⊔
l∈[k1,k2]×⋯×[ki−1,ki]×[ki+1+1,x+n−i−1]×[ki+1,x+n−i−2]×[ki+2,ki+3]×⋯×[kn−1,kn]

GT(l).

All disjoint unions in the second term satisfy the conditions for the existence of σ from
Problem 5, so we can siject them to ∅. This gives a sijection

⊔
l∈[k1,k2]×⋯×[kn−1,kn]

GT(l)⇒
n

⊔
i=1

⊔
l∈[k1,k2]×⋯×[ki−1,x+n−i]×[x+n−i,ki+1]×⋯×[kn−1,kn]

GT(l),
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which is, by the definition of GT, a sijection GT(k1, . . . , kn) ⇒ ⊔
n
i=1 GT(k1, . . . , ki−1, x + n −

i, ki+1, . . . , kn). �

5. Combinatorics of the monotone triangle recursion

Monotone triangles. Suppose that k = (k1, . . . , kn) and l = (l1, . . . , ln−1) are two sequences
of integers. We say that l interlaces k, l ≺ k, if the following holds:

(1) for every i, 1 ≤ i ≤ n − 1, li is in the closed interval between ki and ki+1;
(2) if ki−1 ≤ ki ≤ ki+1 for some i, 2 ≤ i ≤ n − 1, then li−1 and li cannot both be ki;
(3) if ki > li = ki+1, then i ≤ n − 2 and li+1 = li = ki+1;
(4) if ki = li > ki+1, then i ≥ 2 and li−1 = li = ki.

For example, if k1 < k2 < . . . < kn, then li ∈ [ki, ki+1] and l1 < l2 < . . . < ln−1.

A monotone triangle of size n is a map T ∶{(i, j)∶1 ≤ j ≤ i ≤ n} → Z so that line i − 1
(i.e. the sequence Ti−1,1, . . . , Ti−1,i−1) interlaces line i (i.e. the sequence Ti,1, . . . , Ti,i).

Example 6. The following is a monotone triangles of size 5:

4
3 5

3 4 5
3 3 4 5

5 3 1 4 6

This notion of (generalized) monotone triangle was introduced in [Rie13]. Other notions
appeared in [Fis12].

The sign of a monotone triangle T is (−1)r, where r is the sum of:

● the number of strict descents in the rows of T , i.e. the number of pairs (i, j) so that
1 ≤ j < i ≤ n and Ti,j > Ti,j+1, and

● the number of (i, j) so that 1 ≤ j ≤ i−2, i ≤ n and Ti,j > Ti−1,j = Ti,j+1 = Ti−1,j+1 > Ti,j+2.

The sign of our example is −1.

We denote the signed set of all monotone triangles with bottom row k by MT(k).

It turns out that MT(k) satisfies a recursive “identity”. Let us define the signed set of
arrow rows of order n as

ARn = ({↗,↖},{↖↗})n.

Alternatively, we can think of them as rows of length n with elements ↖,↗,↖↗, where the
positive elements are precisely those with an even number of ↖↗’s.

The role of an arrow row µ of order n is that it induces a deformation of [k1, k2]×[k2, k3]×

⋯ × [kn−1, kn] as follows. Consider

[k1, k2] [k2, k3] . . . [kn−2, kn − 1] [kn−1, kn]

µ1 µ2 µ3 . . . µn−1 µn,

and if µi ∈ {↖,↖↗} (that is we have an arrow pointing towards [ki−1, ki]) then ki is decreased

by 1 in [ki−1, ki], while there is no change for this ki if µi =↗. If µi ∈ {↗,↖↗} (that is we have

an arrow pointing towards [ki, ki+1]) then ki is increased by 1 in [ki, ki+1], while there is no
change for this ki if µi =↖.
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For a more formal description, we let δ↖(↖) = δ↖(↖↗) = δ↗(↗) = δ↗(↖↗) = 1 and δ↖(↗) =

δ↗(↖) = 0, and we define

e(k, µ) = [k1 + δ↗(µ1), k2 − δ↖(µ2)] × . . . × [kn−1 + δ↗(µn−1), kn − δ↖(µn)].

for k = (k1, . . . , kn) and µ ∈ ARn.

Problem 7. Given k = (k1, . . . , kn), construct a sijection

Ξ = Ξk∶MT(k)⇒ ⊔
µ∈ARn

⊔
l∈e(k,µ)

MT(l).

Construction. All elements on the left are mapped to the right with Ξ, while there are quite
a few cancellations on the right-hand side. More specifically, take a monotone triangle T
with bottom row k. Then Ξ(T ) = ((T ′, l), µ), where T ′ is the monotone triangle we obtain
from T by deleting the last row, l is the bottom row of T ′, and µ = (µ1, . . . , µn) is the arrow
row defined as follows:

● µ1 =↖;
● µn =↗;
● for 1 < i < n, µi is determined as follows:

(1) if ki−1 ≤ li−1 = ki, take µi =↗;
(2) if ki−1 > li−1 = ki = li > ki+1, take µi =↖↗;
(3) otherwise, take µi =↖.

It is easy to check that l is indeed in e(k, µ). Note that in (1) and (2) of the third bullet
point, µi is forced if we require l ∈ e(k, µ). In (3), µi =↖↗ would also be possible if and only
if µi =↗ would also be possible.
On the other hand, for ((T ′, l), µ), define Ξ((T ′, l), µ) as follows. For the construction it
is useful to keep in mind that l ∈ e(k, µ) implies that conditions (1) and (2) for l ≺ k are
satisfied.

● if µ1 ≠↖, take Ξ((T ′, l), µ) = ((T ′, l), µ′), where we obtain µ′ from µ by replacing ↖↗
in position 1 by ↗ and vice versa;

● if µ1 =↖ and µn ≠↗, take Ξ((T ′, l), µ) = ((T ′, l), µ′), where we obtain µ′ from µ by
replacing ↖↗ in position n by ↖ and vice versa;

● if µ1 =↖ and µn =↗, and l /≺ k, find the smallest i between 2 and n − 1 such that:
– condition (3) of l ≺ k is not satisfied at i, i.e. ki−1 > li−1 = ki /= li (which implies
µi ∈ {↖,↖↗}), or

– condition (4) of l ≺ k is not satisfied at i, i.e. li−1 /= ki = li > ki+1 (which implies
µi ∈ {↗,↖↗}).

Then take Ξ((T ′, l), µ) = ((T ′, l), µ′), where we obtain µ′ from µ by replacing ↖↗ in
position i by ↖ and vice versa in the first case, and replacing ↖↗ in position i by ↗
and vice versa in the second case;

● if µ1 =↖ and µn =↗, and l ≺ k, find the smallest i for an instance of (3) of the third
bullet point in the first paragraph of the proof with µi /=↖ (if such an i exists). Then
take Ξ((T ′, l), µ) = ((T ′, l), µ′), where we obtain µ′ from µ by replacing ↖↗ in position
i by ↖ and vice versa.

If no such i exists, we take Ξ((T ′, l), µ) = T , where we obtain T from T ′ by adding k as the
last row. It is easy to see that this is a well-defined sijection. �

Remark 7. The previous construction could have been avoided by using alternative extensions
of monotone triangles provided in [Fis12]. However, the advantage of the definition used in
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this paper is that it is more reduced than the others in the sense that it can obtained from
these by cancelling elements using certain sign-reversing involutions.

Arrow patterns and shifted GT patterns. Define the signed set of arrow patterns of
order n as

APn = ({↙,↘},{↙↘})(
n
2
).

Alternatively, we can think of an arrow pattern of order n as a triangular array T =

(tp,q)1≤p<q≤n arranged as

T =

t1,n
t1,n−1 t2,n

t1,n−2 t2,n−1 t3,n
⋰ ⋮ ⋱ ⋮ ⋰ ⋮ ⋱

t1,2 t2,3 ... ... tn−1,n

,

with tp,q ∈ {↙,↘,↙↘}, and the sign of an arrow pattern is 1 if the number of ↙↘’s is even and
−1 otherwise.

The role of an arrow pattern of order n is that it induces a deformation of (k1, . . . , kn),
which can be thought of as follows. Add k1, . . . , kn as bottom row of T (i.e., ti,i = ki),
and for each ↙ or↙↘ which is in the same ↙-diagonal as ki add 1 to ki, while for each ↘
or ↙↘ which is in the same ↘-diagonal as ki subtract 1 from ki. More formally, letting
δ↙(↙) = δ↙(↙↘) = δ↘(↘) = δ↘(↙↘) = 1 and δ↙(↘) = δ↘(↙) = 0, we set

ci(T ) =
n

∑
j=i+1

δ↙(ti,j) −
i−1

∑
j=1

δ↘(tj,i) and d(k, T ) = (k1 + c1(T ), k2 + c2(T ), . . . , kn + cn(T ))

for k = (k1, . . . , kn) and T ∈ APn.

For k = (k1, . . . , kn) define shifted Gelfand-Tsetlin patterns, or SGT patterns for short, as
the following disjoint union of GT patterns over arrow patterns of order n:

SGT(k) = ⊔
T ∈APn

GT(d(k, T ))

Considering that ∣({↙,↘},{↙↘})∣ = 1 and therefore ∣APn ∣ = 1, the following is not sur-
prising.

Problem 8. Given n and i, 1 ≤ i ≤ n, construct a sijection

Ψ = Ψn,i∶APn−1 ⇒ APn .

Construction. For T ∈ APn−1, take Ψ(T ) = (t′p,q)1≤p<q≤n to be the arrow pattern defined by

t′p,q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tp,q if p < q < i

tp,q−1 if p < i < q

tp−1,q−1 if i < p < q

↘ if p < q = i

↙ if i = p < q

.

An example for n = 6 and i = 4 is

↘

↙ ↙↘

↙↘ ↙ ↙

↘ ↙↘ ↘ ↙

Ψ
⇒

↘

↙ ↙↘

↘ ↙ ↙

↙↘ ↘ ↘ ↙

↙ ↙↘ ↘ ↙ ↙

,
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where the new arrows are indicated in red. If T ∈ APn, tp,i =↘ for p = 1, . . . , i − 1, ti,q =↙ for
q = i + 1, . . . , n, take Ψ(T ) = (t′p,q)1≤p<q≤n−1, where

t′p,q =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

tp,q if p < q < i

tp,q+1 if p < i ≤ q

tp+1,q+1 if i ≤ p < q

.

Otherwise, there either exists p so that tp,i ≠↘, or there exists q so that ti,q ≠↙. In the first
case, define Ψ(T ) = (t′p,q)1≤p<q≤n, where t′p,i =↙ if tp,i =↙↘ and t′p,i =↙↘ if tp,i =↙, and all other
array elements are equal. In the second case, define Ψ(T ) = (t′p,q)1≤p<q≤n, where t′i,q =↘ if
ti,q =↙↘ and t′i,q =↙↘ if ti,q =↘, and all other array elements are equal. It is easy to see that
this is a sijection. �

The difficult part of this paper is to prove that SGT satisfies the same “recursion” as
MT. While the proof of the recursion was easy for monotone triangles, it is very involved
for shifted GT patterns, and needs almost all the sijections we have constructed in this and
previous sections.

Problem 9. Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a sijection

Φ = Φk,x∶ ⊔
µ∈ARn

⊔
l∈e(k,µ)

SGT(l)⇒ SGT(k).

Construction. To make the construction of Φ a little easier, we will define it as the compo-
sition of several sijections. The first one will reduce the indexing sets (from a signed box to
its “corners”) using Problem 4. The second one increases the order of the arrow patterns
using the sijection from Problem 8. The third one further reduces the indexing set (from a
signed set with 2n−1 elements to [1, n]). The last one gets rid of the arrow row and then uses
Problem 6.
For µ ∈ ARn, define Si = ({ki + δ↗(µi)},∅)⊔ (∅,{ki+1 − δ↖(µi+1)+ 1}). Then Φ is the compo-
sition of sijections

⊔
µ∈ARn

⊔
l∈e(k,µ)

SGT(l)

Φ1
Ô⇒ ⊔

µ∈ARn

⊔
T ∈APn−1

⊔
m∈S1×⋯×Sn−1

GT(m1 + c1(T ), . . . ,mn−1 + cn−1(T ), x)

Φ2
Ô⇒ ⊔

µ∈ARn

⊔
T ∈APn

⊔
m∈S1×⋯×Sn−1

GT(m1 + c1(T ), . . . ,mn−1 + cn−1(T ), x)

Φ3
Ô⇒ ⊔

µ∈ARn

⊔
T ∈APn

n

⊔
i=1

GT(. . . , ki−1 + δ↗(µi−1) + ci−1(T ), x + n − i, ki+1 − δ↖(µi+1) + ci(T ), . . .)

Φ4
Ô⇒ SGT(k),

where Φ1, Φ2, Φ3, and Φ4 are constructed as follows.
Construction of Φ1. By definition of SGT, we have

⊔
µ∈ARn

⊔
l∈e(k,µ)

SGT(l) = ⊔
µ∈ARn

⊔
l∈e(k,µ)

⊔
T ∈APn−1

GT(d(l, T )).

By switching the inner disjoint unions, we get a sijection to

⊔
µ∈ARn

⊔
T ∈APn−1

⊔
l∈e(k,µ)

GT(d(l, T )).
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There is an obvious sijection from this signed set to

⊔
µ∈ARn

⊔
T ∈APn−1

⊔
l∈d(e(k,µ),T )

GT(l),

by abuse of notation setting

d([x1, y1] × . . . [xn−1, yn−1], T ) = [x1 + c1(T ), y1 + c1(T )] ×⋯ × [xn−1 + cn−1(T ), yn−1 + cn−1(T )].

Now for each µ and T , use the map ρ from Problem 4 for ai = ki + δ↗(µi) + ci(T ), bi =
ki+1 − δ↖(µi+1) + ci(T ), and x. We get a sijection to

⊔
µ∈ARn

⊔
T ∈APn−1

⊔
m∈S′1×⋯S

′
n−1

GT(m1, . . . ,mn−1, x),

where S′i = ({ki + δ↗(µi) + ci(T )},∅) ⊔ (∅,{ki+1 − δ↖(µi+1) + ci(T ) + 1}). Finally, there is an
obvious sijection from this signed set to

⊔
µ∈ARn

⊔
T ∈APn−1

⊔
m∈S1×⋯Sn−1

GT(m1 + c1(T ), . . . ,mn−1 + cn−1(T ), x).

Construction of Φ2. In Problem 8, we constructed sijections Ψn,i∶APn−1 ⇒ APn. We con-

struct Φ2 by using Proposition 2 (3) for ψ = Ψn,n, T = APn−1, T̃ = APn,

ST = ⊔
m∈S1×⋯Sn−1

GT(m1 + c1(T ), . . . ,mn−1 + cn−1(T ), x) for T ∈ APn−1 ⊔APn

and ϕT = id. This is well defined because ci(T ) = ci(Ψn,n(T )) for T ∈ APn−1 ⊔APn and
i = 1, . . . , n − 1.
Construction of Φ3. Let η be the involution that maps ↙↔↗,↘↔↖,↙↘↔↖↗. The elements
of the signed set S = S1 × ⋯ × Sn−1 are (n − 1)-tuples of elements that are either (ki +
δ↗(µi),0) or (ki+1 − δ↖(µi+1) + 1,1). Define S′ as the subset of S containing tuples of the
form (. . . , (mi,1), (mi+1,0), . . .), i.e. the ones where we choose ki+1 − δ↖(µi+1) + 1 in position
i and ki+1 + δ↗(µi+1) in position i + 1 for some i. Then we can define a sijection

⊔
µ∈ARn

⊔
T ∈APn

⊔
m∈S′

GT(m1 + c1(T ), . . . ,mn−1 + cn−1(T ), x)⇒ ∅

as follows: given µ ∈ ARn, T ∈ APn, m = (. . . , ki+1 − δ↖(µi+1) + 1, ki+1 + δ↗(µi+1), . . .) (and i
is the smallest index where this happens), A ∈ GT(m1 + c1(T ), . . . ,mn−1 + cn−1(T ), x), map
(((A,m), T ), µ) to (((A′,m′), T ′), µ′), where:

● A′ = πi,n(A);
● T ′ is T if A′ has the same bottom row as A; otherwise, T ′ is obtained from T by

interchanging ti,j and ti+1,j for j > i + 1 as well as tj,i and tj,i+1 for j < i, and setting
t′i,i+1 = η(µi+1);

● µ′ is µ if A′ has the same bottom row as A; otherwise, µ′ is obtained from µ by
replacing µi+1 with η(ti,i+1);

● m′ = (. . . , ki+1 − δ↖(µ′i+1) + 1, ki+1 + δ↗(µ′i+1), . . .).

What remains is

⊔
µ∈ARn

⊔
T ∈APn

n

⊔
i=1

(−1)n−i GT(. . . , ki−1 + δ↗(µi−1) + ci−1(T ), ki+1 − δ↖(µi+1) + ci(T ) + 1, . . . , x),

and we can now apply πi,n ○ πi,n ○ ⋅ ⋅ ⋅ ○ πn−1,n to obtain what is claimed.



20 ILSE FISCHER AND MATJAŽ KONVALINKA

Construction of Φ4. By switching the order in which we do disjoint unions, we arrive at

⊔
T ∈APn

n

⊔
i=1

⊔
µ∈ARn

GT(. . . , ki−1 + δ↗(µi−1) + ci−1(T ), x + n − i, ki+1 − δ↖(µi+1) + ci(T ), . . .).

Let us define a sijection Λn,i∶ARn ⇒ ({⋅},{}). For µ′ = (↖, . . . ,↖,↗, . . . ,↗) (with i ↖’s),
take Λn,i(µ′) = ⋅ and Λn,i(⋅) = µ′. For every other µ, take the smallest p so that µp ≠ µ′p.
If p ≤ i, replace ↗ with ↖↗ and vice versa in position p to get Λn,i(µ) from µ, and if
p > i, replace ↖ with ↖↗ and vice versa in position p to get Λn,i(µ) from µ. If µ ≠ µ′,
(δ↗(µ1), . . . , δ↗(µi−1), δ↖(µi+1), . . . , δ↖(µn)) are unaffected by this sijection, so it induces a
sijection

⊔
µ∈ARn

GT(. . . , ki−1 + δ↗(µi−1) + ci−1(T ), x + n − i, ki+1 − δ↖(µi+1) + ci(T ), . . .)

⇒ GT(. . . , ki−1 + ci−1(T ), x + n − i, ki+1 + ci(T ), . . .).

We switch disjoint unions again, and we get
n

⊔
i=1

⊔
T ∈APn

GT(k1 + c1(T ), . . . , ki−1 + ci−1(T ), x + n − i, ki+1 + ci(T ), . . . , kn + cn−1(T )).

For chosen i, use Proposition 2 (3) for ψ = Ψn,i ○Ψ−1
n,n and ϕt = id. We get a sijection to

n

⊔
i=1

⊔
T ∈APn

GT(k1 + c1(T ), . . . , ki−1 + ci−1(T ), x + n − i, ki+1 + ci+1(T ), . . . , kn + cn(T )).

If we switch disjoint unions one last time, we can use the sijection τ−1 (see Problem 6), and
we get

⊔
T ∈APn

GT(d(k, T )) = SGT(k).

This completes the construction of Φ4 and therefore of Φ. �

Problem 10. Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a sijection

Γ = Γk,x∶MT(k)⇒ SGT(k).

Construction. The proof is by induction on n. For n = 1, both sides consist of one (positive)
element, and the sijection is obvious. Once we have constructed Γ for all lists of length less
than n, we can construct Γk,x as the composition of sijections

MT(k)
Ξk
Ô⇒ ⊔

µ∈ARn

⊔
l∈e(k,µ)

MT(l)
⊔⊔Γ
Ô⇒ ⊔

µ∈ARn

⊔
l∈e(k,µ)

SGT(l)
Φk,x

Ô⇒ SGT(k),

where ⊔ ⊔ Γ means ⊔µ∈ARn
⊔l∈e(k,µ) Γl,x. �

Running the code shows that the main sijection Γ indeed depends on the choice x. As an
example, take k = (1,2,3). In this case, MT(k) has 7 positive elements, and SGT(k) has 10
positive and 3 negative elements. For x = 0, the sijection is given by

1
1 2

1 2 3
↔

⎛
⎜
⎝

1
1 1

1 1 1
,
↘

↘↘

⎞
⎟
⎠

2
1 2

1 2 3
↔

⎛
⎜
⎝

2
1 2

1 2 2
,
↘

↘↙

⎞
⎟
⎠

1
1 3

1 2 3
↔

⎛
⎜
⎝

1
1 2

1 2 2
,
↘

↘↙

⎞
⎟
⎠

2
1 3

1 2 3
↔

⎛
⎜
⎝

2
2 3

2 2 3
,
↙

↘↙

⎞
⎟
⎠

3
1 3

1 2 3
↔

⎛
⎜
⎝

3
2 3

2 2 3
,
↙

↘↙

⎞
⎟
⎠

2
2 3

1 2 3
↔

⎛
⎜
⎝

2
2 2

3 1 2
,
↙

↙↘↘

⎞
⎟
⎠
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3
2 3

1 2 3
↔

⎛
⎜
⎝

3
3 3

3 3 3
,
↙

↙↙

⎞
⎟
⎠

⎛
⎜
⎝

2
2 2

2 2 3
,
↙

↘↙

⎞
⎟
⎠
↔

⎛
⎜
⎝

2
2 2

2 2 2
,
↙↘

↘↙

⎞
⎟
⎠

⎛
⎜
⎝

2
2 2

2 3 1
,
↘

↙↙↘

⎞
⎟
⎠
↔

⎛
⎜
⎝

2
2 2

2 2 2
,
↙

↘↙↘

⎞
⎟
⎠

⎛
⎜
⎝

2
2 2

1 2 2
,
↘

↘↙

⎞
⎟
⎠
↔

⎛
⎜
⎝

2
2 2

2 2 2
,
↘

↙↘↙

⎞
⎟
⎠

while for x = 1, it is given by

1
1 2

1 2 3
↔

⎛
⎜
⎝

1
1 1

1 1 1
,
↘

↘↘

⎞
⎟
⎠

2
1 2

1 2 3
↔

⎛
⎜
⎝

2
2 2

2 2 3
,
↙

↘↙

⎞
⎟
⎠

1
1 3

1 2 3
↔

⎛
⎜
⎝

1
1 2

1 2 2
,
↘

↘↙

⎞
⎟
⎠

2
1 3

1 2 3
↔

⎛
⎜
⎝

2
2 3

2 2 3
,
↙

↘↙

⎞
⎟
⎠

3
1 3

1 2 3
↔

⎛
⎜
⎝

3
2 3

2 2 3
,
↙

↘↙

⎞
⎟
⎠

2
2 3

1 2 3
↔

⎛
⎜
⎝

2
2 2

1 2 2
,
↘

↘↙

⎞
⎟
⎠

3
2 3

1 2 3
↔

⎛
⎜
⎝

3
3 3

3 3 3
,
↙

↙↙

⎞
⎟
⎠

⎛
⎜
⎝

2
1 2

1 2 2
,
↘

↘↙

⎞
⎟
⎠
↔

⎛
⎜
⎝

2
2 2

2 2 2
,
↙↘

↘↙

⎞
⎟
⎠

⎛
⎜
⎝

2
2 2

3 1 2
,
↙

↙↘↘

⎞
⎟
⎠
↔

⎛
⎜
⎝

2
2 2

2 2 2
,
↙

↘↙↘

⎞
⎟
⎠

⎛
⎜
⎝

2
2 2

2 3 1
,
↘

↙↙↘

⎞
⎟
⎠
↔

⎛
⎜
⎝

2
2 2

2 2 2
,
↘

↙↘↙

⎞
⎟
⎠

6. Concluding remarks

Future work. In this article, we have presented the first bijective proof of the operator
formula. The operator formula is the main tool for non-combinatorial proofs of several
results where alternating sign matrix objects are related to plane partition objects, or simply
for showing that n × n ASMs are enumerated by (1).

● The operator formula was used in [Fis07] to show that n × n ASMs are counted by
(1) and, more generally, to count ASMs with respect to the position of the unique 1
in the top row.

● While working on this project, we actually realized that the final calculation in [Fis07]
also implies that ASMs are equinumerous with DPPs without having to use Andrews’
result [And79] on the number of DPPs; more generally, we can even obtain the equiv-
alence of the refined count of n × n ASMs with respect to the position of the unique
1 in the top row and the refined count of DPPs with parts no greater than n with
respect to the number of parts equal to n. This was conjectured in [MRR83] and first
proved in [BDFZJ12].

● In [Fis19b], the operator formula was used to show that ASTs with n rows are equinu-
merous with TSSCPPs in a 2n×2n×2n-box. Again we do not rely on Andrews’ result
[And94] on the number of TSSCPPs and we were actually able to deal with a refined
count again (which has also the same distribution as the position of the unique 1 in
the top row of an ASM).

● In [Fis19a], we have considered alternating sign trapezoids (which generalize ASTs)
and, using the operator formula, we have shown that they are equinumerous with
objects generalizing DPPs. These objects were already known to Andrews and he
actually enumerated them in [And79]. Later Krattenthaler [Kra06] realized that
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these more general objects are (almost trivially) equivalent to cyclically symmetric
lozenge tilings of a hexagon with a triangular hole in the center. Again we do not
rely on Andrews’ enumeration of these generalized DPPs, and in this case we were
able to include three statistics.

We plan to work on converting the proofs just mentioned into bijective proofs. For those
mentioned in the first and second bullet point, this has already been worked out. The
attentive reader will have noticed that working out all of them will link all four known
classes of objects that are enumerated by (1).

Computer code. As mentioned before, we consider computer code for the constructed si-
jections an essential part of this project. The code (in python) is available at https://www.
fmf.uni-lj.si/~konvalinka/asmcode.html. All the constructed sijections are quite effi-
cient. If run with pypy, checking that Γ(1,2,3,4,5),0 is a sijection between MT(1,2,3,4,5) (with
429 positive elements and no negative elements) and SGT(1,2,3,4,5) (with 18913 positive
elements and 18484 negative elements) takes less than a minute. Of course, the sets involved
can be huge, so checking that Γ(1,2,3,4,5,6),0 is a sijection between MT(1,2,3,4,5,6) (with 7436
positive elements and no negative elements) and SGT(1,2,3,4,5,6) (with 11167588 positive
elements and 11160152 negative elements) took almost 20 hours.
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University of Vienna, Austria
URL: https://www.mat.univie.ac.at/~ifischer/

Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathe-
matics, Physics and Mechanics, Slovenia

URL: http://www.fmf.uni-lj.si/~konvalinka/


	1. Introduction
	The operator formula
	Outline of the bijective proof
	Outline of the paper

	2. Signed sets and sijections
	Signed sets
	Sijections
	Elementary signed sets and normal sijections

	3. Some sijections on signed boxes
	4. Gelfand-Tsetlin patterns
	5. Combinatorics of the monotone triangle recursion
	Monotone triangles
	Arrow patterns and shifted GT patterns

	6. Concluding remarks
	Future work
	Computer code

	References

