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Abstract. This paper is the second in a series of planned papers which provide first
bijective proofs of alternating sign matrix results. Based on the main result from the
first paper, we construct a bijective proof of the enumeration formula for alternating sign
matrices and of the fact that alternating sign matrices are equinumerous with descending
plane partitions. We are also able to refine these bijections by including the position of the
unique 1 in the top row of the matrix. Our constructions rely on signed sets and related
notions. The starting point for these constructions were known “computational” proofs,
but the combinatorial point of view led to several drastic modifications. We also provide
computer code where all of our constructions have been implemented.

1. Introduction

Bijective combinatorics is an area of mathematics merely concerned with proving that
two finite sets have the same cardinality by constructing explicit bijections between the two
sets. Such proofs can be particularly satisfying, especially when the construction is elegant,
but often they also reveal many more details about the relation between the two sets than
just equinumerosity. A famous set of problems that has resisted numerous attempts to find
bijective proofs for about 40 years now is concerned with alternating sign matrices (ASMs)
and their relations to certain classes of plane partitions. In his collection of bijective proof
problems (which is available from his webpage) Stanley says the following about the problem
of finding these bijections: “This is one of the most intriguing open problems in the area of
bijective proofs.” The current paper is now the second in a planned series of papers that seek
to give first bijective proofs of ASM results.

Alternating sign matrices were introduced by Robbins and Rumsey in [RR86] as square
matrices with entries in {0,1,−1} such that, in each row and each column, the non-zero
entries alternate and sum to 1. They conjectured that the number of n×n ASMs is given by

n−1

∏
j=0

(3j + 1)!
(n + j)!

,

which was then proved by Zeilberger in [Zei96] and a bit later also by Kuperberg [Kup96].
For a more extensive account on the history of ASMs, see the first part [FK]. In this second
part we will use the main result from the first paper [FK] to give a bijective proof of the
enumeration formula for n × n ASMs as well as of the enumeration formula for n × n ASMs
with fixed position of the unique 1 in the top row. Secondly, we will provide a bijective proof
of the fact that there is the same number of descending plane partitions (DPPs) with parts
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less than or equal to n as there is of n×n alternating sign matrices, and also here we will be
able to refine the bijection to include one parameter.

In order to define DPPs, recall that a strict partition is a partition λ = (λ1, . . . , λl) with
distinct parts, i.e., λ1 > λ2 > . . . > λl > 0. The shifted Young diagram of shape λ is an array
of cells with λi cells in row i and where each row is indented by one cell to the right with
respect to the previous row. The shifted Young diagram of shape (5,3,2) is displayed next.

A column strict shifted plane partition (CSSPP) is a filling of a shifted Young diagram with
positive integers such that rows decrease weakly and columns decrease strictly. A descending
plane partition (DPP) is a CSSPP such that the first part in each row is greater than the
length of its row and less than or equal to the length of the previous row, see [And79]. An
example is given next.

6 6 5 5 2

5 4 4

3 1

The ASM enumeration. The bijection that underlies the bijective proof of the enumeration
formula of ASMs as well as the one of the refined enumeration formula involves the following
sets:

● Let ASMn denote the set of ASMs of size n × n, and, for 1 ≤ i ≤ n, let ASMn,i denote
the subset of ASMn of matrices that have the unique 1 in the first row in column i.
There is an obvious bijection ASMn,1 → ASMn−1 which consists of deleting the first
row and first column.

● Let Bn denote the set of (2n−1)-subsets of [3n−2] = {1,2, . . . ,3n−2} and, for 1 ≤ i ≤ n,
let Bn,i denote the subset of Bn of those subsets whose median is n + i − 1. Clearly,

∣Bn ∣ = (3n−2
2n−1

) and ∣Bn,i ∣ = (n+i−2
n−1

)(2n−i−1
n−1

).
● Let DPPn denote the set of descending plane partitions with parts no greater than
n; let DPPn,i denote the subset of descending plane partitions with i − 1 occurrences
of n. We clearly have DPPn,1 = DPPn−1.

One main achievement of this paper is the construction of the following bijections. To
emphasize that we are not merely interested in the fact that two signed sets have the same
size, but want to use the constructed signed bijection later on, we will be using a convention
that is slightly unorthodox in our field. Instead of listing our results as lemmas and theorems
with their corresponding proofs, we will be using the Problem–Construction terminology as
in [FK]. See for instance [Voe] and [Bau].

Problem 1. Given n ∈ N, 1 ≤ i ≤ n, construct a bijection

DPPn−1 ×Bn,1 ×ASMn,i Ð→ DPPn−1 ×ASMn,1 ×Bn,i .
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Assume that we have constructed such bijections. Then we also have a bijection

DPPn−1 ×Bn,1 ×ASMn =⋃
i

(DPPn−1 ×Bn,1 ×ASMn,i)

Ð→⋃
i

(DPPn−1 ×ASMn,1 ×Bn,i) = DPPn−1 ×ASMn,1 ×Bn Ð→ DPPn−1 ×ASMn−1 ×Bn

for every n. But by induction, that gives a bijection

DPP0 × ⋅ ⋅ ⋅ ×DPPn−1 ×B1,1 ×⋯ ×Bn,1 ×ASMn Ð→ DPP0 × ⋅ ⋅ ⋅ ×DPPn−1 ×B1 ×⋯ ×Bn,

which proves the ASM theorem

∣ASMn ∣ =
∏n
j=1 ∣Bj ∣

∏n
j=1 ∣Bj,1 ∣

=
∏n
j=1 (

3j−2
2j−1

)

∏n
j=1 (

2j−2
j−1

)
=
n−1

∏
j=0

(3j + 1)!
(n + j)!

and also the refined ASM theorem

∣ASMn,i ∣ =
∣ASMn−1 ∣ ⋅ ∣Bn,i ∣

∣Bn,1 ∣
=

(n+i−2
n−1

)(2n−i−1
n−1

)
(3n−2
2n−1

)

n−1

∏
j=0

(3j + 1)!
(n + j)!

,

using the fact that DPPi is non-empty (as it contains the empty DPP).
The bijections from Problem 1 have been implemented in Python and the code is available

at https://www.fmf.uni-lj.si/~konvalinka/asmcode.html. In fact, the bijection depends
on an integer parameter x and we provide the case n = 3, i = 2, x = 0 next.

(∅,12345,
0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,23457) (∅,12345,
0 1 0
1 −1 1
0 1 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,23456) (∅,12345,
0 1 0
0 0 1
1 0 0

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,23456)

(∅,12346,
0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,13457) (∅,12346,
0 1 0
1 −1 1
0 1 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,13456) (∅,12346,
0 1 0
0 0 1
1 0 0

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,13456)

(∅,12347,
0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,12457) (∅,12347,
0 1 0
1 −1 1
0 1 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,12456) (∅,12347,
0 1 0
0 0 1
1 0 0

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,12456)

(∅,12356,
0 1 0
1 0 0
0 0 1

) ↔ (2,
1 0 0
0 1 0
0 0 1

,13456) (∅,12356,
0 1 0
1 −1 1
0 1 0

) ↔ (2,
1 0 0
0 0 1
0 1 0

,12456) (∅,12356,
0 1 0
0 0 1
1 0 0

) ↔ (2,
1 0 0
0 1 0
0 0 1

,12456)

(∅,12357,
0 1 0
1 0 0
0 0 1

) ↔ (2,
1 0 0
0 1 0
0 0 1

,13457) (∅,12357,
0 1 0
1 −1 1
0 1 0

) ↔ (2,
1 0 0
0 0 1
0 1 0

,12457) (∅,12357,
0 1 0
0 0 1
1 0 0

) ↔ (2,
1 0 0
0 1 0
0 0 1

,12457)

(∅,12367,
0 1 0
1 0 0
0 0 1

) ↔ (2,
1 0 0
0 1 0
0 0 1

,13467) (∅,12367,
0 1 0
1 −1 1
0 1 0

) ↔ (2,
1 0 0
0 0 1
0 1 0

,12467) (∅,12367,
0 1 0
0 0 1
1 0 0

) ↔ (2,
1 0 0
0 1 0
0 0 1

,12467)

(2,12345,
0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,23467) (2,12345,
0 1 0
1 −1 1
0 1 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,23467) (2,12345,
0 1 0
0 0 1
1 0 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,23457)

(2,12346,
0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,13467) (2,12346,
0 1 0
1 −1 1
0 1 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,13467) (2,12346,
0 1 0
0 0 1
1 0 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,13457)

(2,12347,
0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,12467) (2,12347,
0 1 0
1 −1 1
0 1 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,12467) (2,12347,
0 1 0
0 0 1
1 0 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,12457)

(2,12356,
0 1 0
1 0 0
0 0 1

) ↔ (2,
1 0 0
0 1 0
0 0 1

,23456) (2,12356,
0 1 0
1 −1 1
0 1 0

) ↔ (2,
1 0 0
0 0 1
0 1 0

,23456) (2,12356,
0 1 0
0 0 1
1 0 0

) ↔ (2,
1 0 0
0 0 1
0 1 0

,13456)

(2,12357,
0 1 0
1 0 0
0 0 1

) ↔ (2,
1 0 0
0 1 0
0 0 1

,23457) (2,12357,
0 1 0
1 −1 1
0 1 0

) ↔ (2,
1 0 0
0 0 1
0 1 0

,23457) (2,12357,
0 1 0
0 0 1
1 0 0

) ↔ (2,
1 0 0
0 0 1
0 1 0

,13457)

(2,12367,
0 1 0
1 0 0
0 0 1

) ↔ (2,
1 0 0
0 1 0
0 0 1

,23467) (2,12367,
0 1 0
1 −1 1
0 1 0

) ↔ (2,
1 0 0
0 0 1
0 1 0

,23467) (2,12367,
0 1 0
0 0 1
1 0 0

) ↔ (2,
1 0 0
0 0 1
0 1 0

,13467)

The ASM-DPP relation. We also construct an explicit bijection that proves ∣ASMn ∣ =
∣DPPn ∣ and more generally ∣ASMn,j ∣ = ∣DPPn,j ∣.

Problem 2. Given n ∈ N, 1 ≤ i ≤ n, construct a bijection

DPPn−1 ×ASMn,i Ð→ ASMn,1 ×DPPn,i .

Indeed, once this is proven it follows that ∣DPPn−1 ∣ ⋅ ∣ASMn,i ∣ = ∣ASMn,1 ∣ ⋅ ∣DPPn,i ∣ =
∣ASMn−1 ∣ ⋅ ∣DPPn,i ∣. By induction, we can assume ∣DPPn−1 ∣ = ∣ASMn−1 ∣ and so ∣ASMn,i ∣ =
∣DPPn,i ∣. Summing this over all i implies ∣DPPn ∣ = ∣ASMn ∣.

The bijections from Problem 2 have also been implemented, see the above mentioned
webpage. Again the bijection depends on an integer parameter x and the case n = 4, i = 2,
x = 0 is as follows.

https://www.fmf.uni-lj.si/~konvalinka/asmcode.html
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(∅,
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, 4 2 1 ) (∅,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

, 4 1 1 ) (∅,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

, 4 1 ) (∅,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, 4 2 )

(∅,
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, 4 1 ) (∅,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, 4 ) (∅,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

, 4 ) (∅,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, 4 1 1 )

(∅,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, 4 1 1 ) (∅,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, 4 ) (∅,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, 4 2 ) (∅,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, 4 )

(∅,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

, 4 1 ) (∅,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, 4 1 ) ( 2 ,
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, 4 3 ) ( 2 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, 4 3 )

( 2 ,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, 4 2 ) ( 2 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, 4 3 ) ( 2 ,
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

, 4 3 ) ( 2 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

, 4 3 )

( 2 ,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

, 4 2 ) ( 2 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

, 4 2 ) ( 2 ,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

, 4 3 ) ( 2 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, 4 3 )

( 2 ,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

, 4 2 ) ( 2 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, 4 2 ) ( 2 ,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

, 4 1 ) ( 2 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, 4 1 )

( 3 3 ,
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, 4 2 1 ) ( 3 3 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,
4 3 1

2
) ( 3 3 ,

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

,
4 3 2

2
) ( 3 3 ,

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, 4 2 2 )

( 3 3 ,
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,
4 3 2

2
) ( 3 3 ,

0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,
4 3 3

2
) ( 3 3 ,

0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

,
4 3 3

2
) ( 3 3 ,

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

,
4 3 3

2
)

( 3 3 ,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

,
4 3 2

2
) ( 3 3 ,

0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

,
4 3 3

2
) ( 3 3 ,

0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

,
4 3 1

2
) ( 3 3 ,

0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

,
4 3 3

2
)

( 3 3 ,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

,
4 3 2

2
) ( 3 3 ,

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

,
4 3 2

2
) ( 3 3

2
,
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,
4 3

2
) ( 3 3

2
,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

,
4 3

2
)

( 3 3
2
,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

,
4 3 1

2
) ( 3 3

2
,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

,
4 3

2
) ( 3 3

2
,
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

,
4 3

2
) ( 3 3

2
,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

,
4 3

2
)

( 3 3
2
,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

,
4 3 1

2
) ( 3 3

2
,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

,
4 3 1

2
) ( 3 3

2
,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

,
4 3

2
) ( 3 3

2
,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

,
4 3

2
)

( 3 3
2
,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

,
4 3 1

2
) ( 3 3

2
,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

,
4 3 1

2
) ( 3 3

2
,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

,
4 3 2

2
) ( 3 3

2
,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

,
4 3 2

2
)

( 3 2 ,
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, 4 3 3 ) ( 3 2 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, 4 3 3 ) ( 3 2 ,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

, 4 ) ( 3 2 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, 4 3 3 )

( 3 2 ,
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

, 4 3 3 ) ( 3 2 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

, 4 3 3 ) ( 3 2 ,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, 4 2 2 ) ( 3 2 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

, 4 1 1 )

( 3 2 ,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

, 4 3 3 ) ( 3 2 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, 4 3 3 ) ( 3 2 ,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, 4 1 1 ) ( 3 2 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

,
4 3 3

2
)

( 3 2 ,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, 4 1 ) ( 3 2 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

,
4 3 3

2
) ( 3 1 ,

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, 4 3 2 ) ( 3 1 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, 4 3 2 )

( 3 1 ,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, 4 2 2 ) ( 3 1 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, 4 3 2 ) ( 3 1 ,
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

, 4 3 2 ) ( 3 1 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

, 4 3 2 )

( 3 1 ,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

, 4 2 2 ) ( 3 1 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

, 4 2 2 ) ( 3 1 ,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

, 4 3 2 ) ( 3 1 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, 4 3 2 )

( 3 1 ,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

, 4 2 2 ) ( 3 1 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, 4 2 2 ) ( 3 1 ,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, 4 ) ( 3 1 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

, 4 )

( 3 ,
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, 4 3 1 ) ( 3 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, 4 3 1 ) ( 3 ,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, 4 2 1 ) ( 3 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, 4 3 1 )

( 3 ,
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

, 4 3 1 ) ( 3 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

, 4 3 1 ) ( 3 ,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

, 4 2 1 ) ( 3 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ (
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

, 4 2 1 )

( 3 ,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

, 4 3 1 ) ( 3 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, 4 3 1 ) ( 3 ,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

, 4 2 1 ) ( 3 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, 4 2 1 )

( 3 ,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ (
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

, 4 1 1 ) ( 3 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, 4 1 1 )

The process of finding our bijections started by translating known “computational” proofs
(see [Fis06, Fis07] for the original proof and [Fis16] for the most concise version so far)
into bijective proofs. However, the combinatorial point of view led to several interesting
modifications so that the original proofs are not always apparent.

Structure of the paper. We start by a short introduction on signed sets and sijections
in Section 2. Note that these are a special case of traced monoidal categories, see [JSV96].
In Section 3 we apply some of these notions to obtain a sijection on Bn,i, which serves also
as a good warm-up. In Section 4 we “sijectify” known results on determinants such as the
multiplicativity and Cramer’s rule. In Section 5, we summarize some prerequisites needed
from [FK] before we finish the construction in the final two sections.

2. Signed sets and sijections

Our constructions rely heavily on the notion of signed sets. We use the terminology that
was developed in [FK]. We repeat the key points here, and refer the reader to [FK, §2] for
all the details and examples.
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A signed set is a pair of disjoint finite sets: S = (S+, S−) with S+ ∩S− = ∅. Equivalently, a
signed set is a finite set S together with a sign function sign∶S → {1,−1}, but we will mostly
avoid the use of the sign function. Signed sets are usually underlined throughout the paper
with the following exception: an ordinary set S always induces a signed set S = (S,∅), and
in this case we identify S with S. We summarize related notions.

● The size of a signed set S is ∣S∣ = ∣S+∣ − ∣S−∣.
● The opposite signed set of S is −S = (S−, S+).
● The Cartesian product of signed sets S and T is

S × T = (S+ × T + ∪ S− × T −, S+ × T − ∪ S− × T +).

● The disjoint union of signed sets S and T is

S ⊔ T = (S × ({0},∅)) ∪ (T × ({1},∅)).

● The disjoint union of a family of signed sets St indexed with a signed set T is

⊔
t∈T

St = ⋃
t∈T

(St × {t}).

Here {t} is ({t},∅) if t ∈ T + and (∅,{t}) if t ∈ T −.

Most of the usual properties of Cartesian products and disjoint unions of ordinary sets extend
to signed sets.

An important type of signed sets are signed intervals: for a, b ∈ Z, define

[a, b] = {([a, b],∅) if a ≤ b
(∅, [b + 1, a − 1]) if a > b

.

Here [a, b] stands for the usual interval in Z. The signed sets that are of relevance in this
paper are usually constructed from signed intervals using Cartesian products and disjoint
unions.

The generalization of bijections to signed sets is played by “signed bijections”, which we
call sijections. A sijection ϕ from S to T ,

ϕ∶S ⇒ T ,

is an involution on the set (S+ ∪ S−) ⊔ (T + ∪ T −) with the property ϕ(S+ ⊔ T −) = S− ⊔ T +. It
follows that also ϕ(S− ⊔T +) = S+ ⊔T −. A sijection can also be thought of as a collection of a
sign-reversing involution on a subset of S, a sign-reversing involution on a subset of T , and a
sign-preserving matching between the remaining elements of S with the remaining elements
of T . The existence of a sijection ϕ∶S ⇒ T clearly implies ∣S∣ = ∣S+∣ − ∣S−∣ = ∣T +∣ − ∣T −∣ = ∣T ∣.

In Proposition 2 of [FK] it is explained how to construct the Cartesian product and
the disjoint union of sijections, and also how to compose two sijections using a variant of
the Garsia-Milne involution principle. These constructions are fundamental for most of the
constructions in this paper. It follows that the existence of a sijection between S and T is
an equivalence relation; it is denoted by “≈”.

The sijection that is underlying most of our constructions is the following.

Problem 3. ([FK, Problem 1]) Given a, b, c ∈ Z, construct a sijection

α = αa,b,c∶ [a, c]⇒ [a, b] ⊔ [b + 1, c].
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Construction. For a ≤ b ≤ c and c < b < a, there is nothing to prove. For, say, a ≤ c < b, we
have

[a, b] ⊔ [b + 1, c] = ([a, c] ⊔ [c + 1, b]) ⊔ [b + 1, c] = [a, c] ⊔ ([c + 1, b] ⊔ (−[c + 1, b]))

and since there is a sijection [c + 1, b]⊔(−[c + 1, b])⇒ ∅, we get a sijection [a, b]⊔ [b + 1, c]⇒
[a, c]. The cases b < a ≤ c, b ≤ c < a, and c < a ≤ b are analogous. �

It has been speculated by combinatorialists working on bijections between ASMs and
classes of plane partitions such as DPPs or totally symmetric self-complementary plane
partitions that these bijections will involve some sort of jeu de taquin. We are wondering
whether the application of αa,b,c has anything to do with such a jeu de taquin move.

In [FK], the notion of elementary signed sets and normal sijections turned out to be useful
to simplify the description of several sijections.

Definition 4. A signed set A is elementary of dimension n and depth 0 if its elements are
in Zn. A signed set A is elementary of dimension n and depth d, d ≥ 1, if it is of the form

⊔
t∈T

St,

where T is a signed set, and St are all signed sets of dimension n and depth at most d−1, with
the depth of at least one of them equal to d− 1. A signed set A is elementary of dimension n
if it is an elementary signed set of dimension n and depth d for some d ∈ N.
The projection map on an elementary set of dimension n is the map

ξ∶A→ Zn

defined as follows. If the depth of A is 0, then ξ is simply the inclusion map. Once ξ is
defined on elementary signed sets of depth < d, and the depth of A is d, then A = ⊔t∈T St,
where ξ is defined on all St. Then define ξ(s, t) = ξ(s) for (s, t) ∈ A.

A sijection ψ∶T ⇒ T̃ between elementary signed sets T and T̃ of the same dimension is
normal if ξ(ψ(t)) = ξ(t) for all t ∈ T ⊔ T̃ .

The sijection α from Problem 3 is normal.
The main reason normal sijections are important is that they give a very natural special

case for disjoint unions of sijections (see [FK, Proposition 2 (3)]). Suppose that T and T̃ are

elementary signed sets of dimension n, and that ψ∶T ⇒ T̃ is a normal sijection. Furthermore,
suppose that we have a signed set Sk for every k ∈ Zn. Then we have a sijection

⊔
t∈T

Sξ(t) ⇒ ⊔
t∈T̃

Sξ(t).

Indeed, [FK, Proposition 2 (3)] gives us a sijection provided that we have a sijection ϕt∶Sξ(t) ⇒
Sξ(ψ(t)) satisfying ϕψ(t) = ϕ−1t for every t ∈ T ⊔ T̃ . But since ξ(ψ(t)) = ξ(t), we can take ϕt to
be the identity.

3. A sijection on Bn,i

For a set A and n ∈ N, denote by (A
n
) the set of all n-element subsets of A.

Problem 5. For a, b, c ∈ N, construct a bijection

([a + b + c]
a

) × ([b + c]
b

)Ð→ ([a + b + c]
b

) × ([a + c]
c

).
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Construction. An element on the left can be interpreted as a pair (A,B) of disjoint subsets
of [a + b + c] with ∣A∣ = a and ∣B∣ = b, and an element on the right can be interpreted as a
pair (B,C) of disjoint subsets of [a + b + c] with ∣B∣ = b and ∣C ∣ = c. The bijection is then
(A,B)↦ (B, [a + b + c] ∖ (A ∪B)). �

The following construction gives a sijective proof of a variation of the Chu-Vandermonde
identity.

Problem 6. For a, b, c ∈ N, construct a sijection

c

⊔
j=0

(−1)j([b]
j
) × ([a + c − j − 1]

a − 1
)Ô⇒ {

([a+c−b−1]
c

) if a ≥ b
(−1)c([b−a]c

) if a < b
.

Construction. By the standard bijection between weak compositions1 of n with k summands
and ([n+k−1]

k−1
), an element of the signed set on the left can be interpreted as a pair (J, π),

where J is a subset of [b], π is a weak composition of c − ∣J ∣ with a parts, and the sign of
such a pair is (−1)∣J ∣.
Assume first that a ≥ b. The pairs with J = ∅ and π1 = . . . = πb = 0 are clearly in bijection with
weak compositions of c with a− b parts, and therefore with c-element subsets of [a+ c− b−1].
And we have a sign-reversing involution on the remaining pairs: if i is the smallest element
with i ∈ J or πi > 0, then remove i from J and add 1 to πi if i ∈ J , and add i to J and subtract
1 from πi if i ∉ J .
If a < b, the pairs with J ∩ [a] = ∅ and π = 0 (and therefore necessarily ∣J ∣ = c) have sign

(−1)c and are clearly in bijection with subsets in ([b−a]
c

). On the remaining pairs, we have
the same sign-reversing involution as before. �

If a < b ≤ a + c, both sets ([a+c−b−1]
c

) and ([b−a]
c

) are empty. Note that the sijection proves
the (obvious) equality

(1 − x)b 1

(1 − x)a
=
⎧⎪⎪⎨⎪⎪⎩

1
(1−x)a−b if a ≥ b
(1 − x)b−a if a < b

.

Problem 7. For n, i ∈ N, construct a sijection

n

⊔
j=1

(−1)j+1([2n − i − 1]
n − i − j + 1

) ×Bn,j Ô⇒ Bn,i .

Construction. By definition, we have a bijection Bn,i → ([n+i−2]
n−1

) × ([2n−i−1]
n−1

). So

n

⊔
j=1

(−1)j+1([2n − i − 1]
n − i − j + 1

) ×Bn,j ⇒
n

⊔
j=1

(−1)j+1([2n − i − 1]
n − i − j + 1

) × ([n + j − 2]
n − 1

) × ([2n − j − 1]
n − 1

)

=
n−1

⊔
j=0

(−1)j([2n − i − 1]
n − i − j

) × ([n + j − 1]
n − 1

) × ([2n − j − 2]
n − 1

).

By using the bijection from Problem 5 for a = n − i − j, b = n − 1, c = j, we get a sijection to

n−1

⊔
j=0

(−1)j([2n − i − 1]
n − 1

) × ([n − i]
j

) × ([2n − j − 2]
n − 1

).

1In weak compositions, 0 is allowed as a summand.
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Now if use the sijection from Problem 6 for a = n, b = n− i, c = n− 1, we obtain a sijection to

([2n − i − 1]
n − 1

) × ([n + i − 2]
n − 1

),

which is equivalent to Bn,i. �

The next goal is to prove that the sets ASMn,i satisfy the same “equalities” as Bn,i, i.e. to
construct a sijection

n

⊔
j=1

(−1)j+1([2n − i − 1]
n − i − j + 1

) ×ASMn,j Ô⇒ ASMn,i .

An important part of the remainder of the construction will then be played by “bijective
linear algebra” adapted to signed sets.

4. Bijective linear algebra

Denote by Sm the signed set of permutations (with the usual sign). Given signed sets
P i,j, 1 ≤ i, j ≤m, define the determinant of P = [P ij]mi,j=1 as the signed set

det(P) = ⊔
π∈Sm

P 1,π(1) ×⋯ × Pm,π(m).

Let us prove some classical properties.

Problem 8. Given P = [P ij]mi,j=1, Q = [Q
ij
]mi,j=1, construct a sijection

det(R)Ô⇒ det(P) × det(Q),

where R = [Rij]mi,j=1, Ri,j = ⊔mp=1P i,p ×Qp,j
.

Construction. On the left, we get (after using commutativity) signed sets

signπ ⋅ P 1,l1
×⋯ × Pm,lm

×Q
l1,π(1)

×⋯ ×Q
lm,π(m)

for a permutation π ∈Sm and l1, . . . , lm ∈ [m]. If there exist i, j, i ≠ j, li = lj (and i, j are the
smallest such indices), then we have

signπ ⋅ P 1,l1
×⋯ × Pm,lm

×Q
l1,π(1)

×⋯ ×Q
lm,π(m)

= − signσ ⋅ P 1,l1
×⋯ × Pm,lm

×Q
l1,σ(1)

×⋯ ×Q
lm,σ(m)

,

where σ = π ⋅ (i, j). If (l1, . . . , lm) form a permutation of [m], then these are precisely the
signed sets that appear in the Cartesian product det(P)×det(Q), with the correct sign. �

Problem 9. Given P = [P p,q]mp,q=1, signed sets X i, Y i and sijections

m

⊔
q=1

P i,q ×Xq Ô⇒ Y i

for all i ∈ [m], construct sijections

det(P) ×Xj Ô⇒ det(Pj),

where Pj = [P j
p,q]mp,q=1, P

j
p,q = P p,q if q ≠ j, P j

p,j = Y p, for all j ∈ [m].
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Construction. For a given permutation π and fixed i ∈ [m], we have sijections

(1)
m

⊔
q=1

P 1,π(1) ×⋯ × P i−1,π(i−1) × P i,q × P i+1,π(i+1) ×⋯ × Pm,π(m) ×Xq

Ô⇒ P 1,π(1) ×⋯ × P i−1,π(i−1) × Y i × P i+1,π(i+1) ×⋯ × Pm,π(m)

by assumption. In the disjoint union over all permutations π with π(i) = j and over all
i ∈ [m] of the domains of these sijections, we obviously get the term det(P)×Xj for q = j. If
q ≠ j, then

signπ ⋅ P 1,π(1) ×⋯ × P i−1,π(i−1) × P i,q × P i+1,π(i+1) ×⋯ × Pm,π(m)

= − (signσ ⋅ P 1,σ(1) ×⋯ × P p−1,σ(p−1) × P p,q × P p+1,σ(p+1) ×⋯ × Pm,σ(m)) ,
where p is chosen so that π(p) = q, and σ = π ⋅ (i, p). In other words, there is a sijection from
the coefficient at Xq to ∅. On the other hand, the disjoint union over all permutations π

with π(i) = j and over all i ∈ [m] of the codomains of the sijections in (1) is just det(Pj). �

The following is implied immediately, as det(Pj) is clearly ∅ if Y 1 = . . . = Y m = ∅.

Problem 10. Given P = [P ij]mi,j=1, signed sets Xj for j ∈ [m], and sijections

m

⊔
j=1

P i,j ×Xj Ô⇒ ∅,

construct a sijection
det(P) ×Xj Ô⇒ ∅.

5. Prerequisites from Part I

In this section, we summarize definitions and results from Part I that are necessary for
the constructions that will follow.

The following objects extend the classical Gelfand-Tsetlin patterns, see [Sta99, p. 313] or
[GC50, (3)] for the original reference.

Definition 11. For k ∈ Z, define GT(k) = ({⋅},∅), and for k = (k1, . . . , kn) ∈ Zn, define
recursively

GT(k) = GT(k1, . . . , kn) = ⊔
l∈[k1,k2]×⋯×[kn−1,kn]

GT(l1, . . . , ln−1).

In [FK], we have constructed the following sijections.

Problem 12. ([FK, Problem 5]) Given k = (k1, . . . , kn) ∈ Zn and i, 1 ≤ i ≤ n − 1, construct a
sijection

π = πk,i∶GT(k1, . . . , kn)⇒ −GT(k1, . . . , ki−1, ki+1 + 1, ki − 1, ki+2, . . . , kn).
In the case that k1 ≤ k2 ≤ . . . ≤ kn, Gelfand-Tsetlin patterns can be thought of triangular

arrays of integers of the following form

a1,1
a2,1 a2,2

. . . . . . . . .
an−2,1 . . . . . . an−2,n−2

an−1,1 an−1,2 . . . . . . an−1,n−1
an,1 an,2 an,3 . . . . . . an,n

,



10 ILSE FISCHER AND MATJAŽ KONVALINKA

such that an,i = ki for i ∈ [n], and the entries increase weakly along ↗-diagonals and
along ↘-diagonals. In this classical case, we speak of a monotone triangle if the rows are
strictly increasing. Monotone triangles with bottom row (1,2, . . . , n) are in easy bijective
correspondence with ASMs of size n × n, see, for instance, [FK].

The notion of monotone triangles can also be extended to the case when k = (k1, . . . , kn)
is not weakly increasing as is explained next.

Definition 13. (1) Suppose that k = (k1, . . . , kn) and l = (l1, . . . , ln−1) are two sequences
of integers. We say that l interlaces k, l ≺ k, if the following holds:
(a) for every i, 1 ≤ i ≤ n − 1, li is in the closed interval between ki and ki+1;
(b) if ki−1 ≤ ki ≤ ki+1 for some i, 2 ≤ i ≤ n − 1, then li−1 and li cannot both be ki;
(c) if ki > li = ki+1, then i ≤ n − 2 and li+1 = li = ki+1;
(d) if ki = li > ki+1, then i ≥ 2 and li−1 = li = ki.

(2) A monotone triangle of size n is a map T ∶{(i, j)∶1 ≤ j ≤ i ≤ n} → Z so that line i − 1
(i.e. the sequence Ti−1,1, . . . , Ti−1,i−1) interlaces line i (i.e. the sequence Ti,1, . . . , Ti,i).

(3) The sign of a monotone triangle T is (−1)r, where r is the sum of:
● the number of strict descents in the rows of T , i.e. the number of pairs (i, j) so

that 1 ≤ j < i ≤ n and Ti,j > Ti,j+1, and
● the number of (i, j) so that 1 ≤ j ≤ i − 2, i ≤ n and Ti,j > Ti−1,j = Ti,j+1 = Ti−1,j+1 >
Ti,j+2.

The following is a monotone triangles of size 5 with sign −1.

4
3 5

3 4 5
3 3 4 5

5 3 1 4 6

The purpose of [FK] was to construct a sijection between monotone triangles and yet
another type of objects, namely shifted Gelfand-Tsetlin patterns, to be defined next. These
new objects involve arrow patterns, which are triangular arrays T = (tp,q)1≤p<q≤n arranged as

T =
t1,n

t1,n−1 t2,n
t1,n−2 t2,n−1 t3,n

⋰ ⋮ ⋱ ⋮ ⋰ ⋮ ⋱
t1,2 t2,3 ... ... tn−1,n

,

with tp,q ∈ {↙,↘,↙↘}. The sign of an arrow pattern is 1 if the number of ↙↘’s is even and −1
otherwise, and the signed set of arrow patterns of order n is denoted by APn.

The role of an arrow pattern of order n is that it induces a deformation of (k1, . . . , kn),
which can be thought of as follows. Add k1, . . . , kn as bottom row of T (i.e., ti,i = ki),
and for each ↙ or↙↘ which is in the same ↙-diagonal as ki add 1 to ki, while for each ↘
or ↙↘ which is in the same ↘-diagonal as ki subtract 1 from ki. More formally, letting
δ↙(↙) = δ↙(↙↘) = δ↘(↘) = δ↘(↙↘) = 1 and δ↙(↘) = δ↘(↙) = 0, we set

ci(T ) =
n

∑
j=i+1

δ↙(ti,j) −
i−1

∑
j=1

δ↘(tj,i) and d(k, T ) = (k1 + c1(T ), k2 + c2(T ), . . . , kn + cn(T ))

for k = (k1, . . . , kn) and T ∈ APn.
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Definition 14. For k = (k1, . . . , kn), define shifted Gelfand-Tsetlin patterns, or SGT patterns
for short, as the following disjoint union of GT patterns over arrow patterns of order n:

SGT(k) = ⊔
T ∈APn

GT(d(k, T ))

The main result of [FK] is a construction that solves the following problem.

Problem 15. ([FK, Problem 10]) Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a sijection

Γ = Γk,x∶MT(k)⇒ SGT(k).

A computer code for this construction is also available at the webpage mentioned in the
introduction, and the concrete example k = (1,2,3) and x = 0 is provided in [FK].

6. Rotation of monotone triangles

The purpose of this section is solve the following problem.

Problem 16. Given k = (k1, . . . , kn), construct a sijection

MT(k)Ô⇒ (−1)n−1 MT(rot(k)),

where rot(k) = (k2, . . . , kn, k1 − n).

For a set U ⊆ N, define εj(U) = 1 if j ∈ U and 0 otherwise. For k = (k1, . . . , kn) and j ≥ 1,
define

Ej(k) = ⊔
V ∈([n]

j
)

⊔
U⊆V

(−1)∣U ∣ GT(k1 + ε1(U), k2 + ε2(U), . . . , kn + εn(U))

and

F j(k) = ⊔
V ∈([n]

j
)

⊔
U⊆V

(−1)∣U ∣ GT(k1 − ε1(U), k2 − ε2(U), . . . , kn − εn(U)).

Problem 17. Given k = (k1, . . . , kn) and j ≥ 0, construct a normal sijection

⊔
V ∈([n]

j
)

⊔
U⊆V

(−1)∣U ∣[k1 + ε1(U), k2 + ε2(U)] ×⋯ × [kn−1 + εn−1(U), kn + εn(U)]

Ô⇒ ⊔
V ∈([n−1]

j
)

⊔
U⊆V

⊔
I⊆[n−2]

I∩(I+1)=∅

(−1)∣U ∣
n−1

∏
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{ki+1 + 1} i ∈ I
{ki} i − 1 ∈ I
[ki + εi(U), ki+1 + εi(U)] i − 1, i ∉ I

.

Construction. Construction is by induction with respect to n. Consider n = 2. Both sides
are empty if j > 2, and both sides are also obviously equal if j = 0. The cases j = 1,2 follow
easily from the construction in Problem 3.
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Suppose n ≥ 3. Then there exist normal sijections

⊔
V ∈([n]

j
)

⊔
U⊆V

(−1)∣U ∣
n−1

∏
i=1

[ki + εi(U), ki+1 + εi+1(U)]

Ô⇒ ⊔
V ∈([n−1]

j
)

⊔
U⊆V

(−1)∣U ∣ (
n−2

∏
i=1

[ki + εi(U), ki+1 + εi+1(U)]) × [kn−1 + εn−1(U), kn]

⊔ ⊔
V ∈([n−1]

j−1 )

⊔
U⊆V

(−1)∣U ∣+1 (
n−2

∏
i=1

[ki + εi(U), ki+1 + εi+1(U)]) × [kn−1 + εn−1(U), kn + 1]

Ô⇒ ⊔
V ∈([n−1]

j
)

⊔
U⊆V

(−1)∣U ∣ (
n−2

∏
i=1

[ki + εi(U), ki+1 + εi+1(U)]) × [kn−1, kn]

⊔ ⊔
V ∈([n−1]

j
)

⊔
U⊆V

(−1)∣U ∣+1 (
n−2

∏
i=1

[ki + εi(U), ki+1 + εi+1(U)]) × [kn−1, kn−1 + εn−1(U) − 1]

⊔ ⊔
V ∈([n−1]

j−1 )

⊔
U⊆V

(−1)∣U ∣+1 (
n−2

∏
i=1

[ki + εi(U), ki+1 + εi+1(U)]) × [kn−1 + 1, kn + 1]

⊔ ⊔
V ∈([n−1]

j−1 )

⊔
U⊆V

(−1)∣U ∣ (
n−2

∏
i=1

[ki + εi(U), ki+1 + εi+1(U)]) × [kn−1 + 1, kn−1 + εn−1(U) − 1],

using α from Problem 3 twice as well as [a, b] = −[b + 1, a − 1]. By induction, the first and
the third term can be combined to obtain the terms in the codomain with n − 2 ∉ I.

The second term is equal to ∅ unless εn−1(U) = 1, while the fourth term is equal to ∅
unless εn−1(U) = 0. Combining these terms we get

⊔
V ∈([n−2]

j−1 )

⊔
U⊆V

(−1)∣U ∣ (
n−3

∏
i=1

[ki + εi(U), ki+1 + εi+1(U)]) × [kn−2 + εn−2(U), kn−1 + 1] × {kn−1}

⊔ ⊔
V ∈([n−2]

j−1 )

⊔
U⊆V

(−1)∣U ∣+1 (
n−3

∏
i=1

[ki + εi(U), ki+1 + εi+1(U)]) × [kn−2 + εn−2(U), kn−1] × {kn−1}

Ô⇒ ⊔
V ∈([n−2]

j−1 )

⊔
U⊆V

(−1)∣U ∣ (
n−3

∏
i=1

[ki + εi(U), ki+1 + εi+1(U)]) × {kn−1 + 1} × {kn−1},

using α to obtain the sijection. By induction, the codomain of this sijection is the term of
the codomain in the problem with n − 2 ∈ I.

The combination of the sijections is normal because α is normal. �

Problem 18. Given k = (k1, . . . , kn) and j ≥ 1, construct sijections

Ej(k)Ô⇒ ∅ and F j(k)Ô⇒ ∅.

Construction. It is clear that Ej(k) = ∅ if j > n, so it is enough to construct a sijection

Ej(k)Ô⇒ ⊔
l∈[k1,k2]×⋯×[kn−1,kn]

Ej(l).
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We obtain such a sijection using the normal sijections from Problem 17: Observe that Ej(k) is
the disjoint union of the family GT(l1, . . . , ln−1) over the domain of the sijection in Problem 17,
while ⊔l∈[k1,k2]×⋯×[kn−1,kn]Ej(l) is the disjoint union of the same family over the part of the

codomain where I = ∅. For the part of the codomain where I /= ∅, GT(l1, . . . , ln−1) = ∅ as
GT(l1, . . . , ln−1) = ∅ whenever li = li+1 + 1 for some i since [x + 1, x] = ∅. The sijection is then
the disjoint union of the identity sijections as discussed at the end of Section 2.

The construction of the sijection F j(k)Ô⇒ ∅ is analogous. �

Let us also define

E′
j(k) = ⊔

V ∈([2,n]
j

)

⊔
U⊆V

(−1)∣U ∣ GT(k1, k2 + ε2(U), . . . , kn + εn(U))

and

F ′
j(k) = ⊔

V ∈([2,n]
j

)

⊔
U⊆V

(−1)∣U ∣ GT(k1, k2 − ε2(U), . . . , kn − εn(U)).

The previous problem can be rephrased as follows.

Problem 19. Given k = (k1, . . . , kn) and j ≥ 0, construct sijections

E′
j(k)Ô⇒

j

⊔
i=0

(−1)j−i([j]
i
) ×GT(k1 + i, k2, . . . , kn)

and

F ′
j(k)Ô⇒

j

⊔
i=0

(−1)j−i([j]
i
) ×GT(k1 − i, k2, . . . , kn).

Construction. The sijections are trivial for j = 0. For j > 0, we can split pairs (U,V ),
U ⊆ V ∈ ([n]

j
), that appear in Ej(k) into three groups: 1 ∉ V , 1 ∈ U , and 1 ∈ V,1 ∉ U . This

gives an equivalence Ej(k) ≈ E
′
j(k)⊔ (−E′

j−1(k1 +1, k2, . . . , kn))⊔E′
j−1(k) and, together with

Problem 18, an equivalence E′
j(k) ≈ E

′
j−1(k1 + 1, k2, . . . , kn) ⊔ (−E′

j−1(k)). The first sijection
is now constructed inductively, and the second construction is analogous. �

The following problem involves arrow patterns (see Section 5) as well as arrow rows, which
are defined as follows: An arrow row of order n is a row of length n with elements ↖,↗,↖↗,
where the positive elements are precisely those with an even number of↖↗’s. The signed set of
arrow rows of length n is denoted by ARn. Given T ′ ∈ APn−1 and µ ∈ ARn, write µT ′ (resp.,
T ′µ) for the arrow pattern of size n that we obtain if we add µ (with all arrows reflected
along the horizontal axis) to T ′ as the leftmost ↗-diagonal (resp., rightmost ↘-diagonal) in
such a way that the first element of the arrow row is the bottom (resp., top) element of the
added diagonal.

Problem 20. Given k = (k1, . . . , kn) and T ′ ∈ APn−1, construct a sijection

⊔
µ∈ARn−1

GT(k1 + c1(µT ′), k2 + c2(µT ′), . . . , kn + cn(µT ′))

Ô⇒ ⊔
µ∈ARn−1

GT(k1 + cn(T ′µ), k2 + c1(T ′µ), . . . , kn + cn−1(T ′µ)).
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Construction. Write li = ki + ci−1(T ′) for i = 2, . . . , n, and define

F =
n−1

⊔
j=0

(−1)n−1−j
n−1−j

⊔
p=0

(−1)p([n − j − 1]
p

) × F ′
n−j−1(k1 + p, l2, . . . , ln).

By the definition of F ′
j, this signed set is equivalent to

⊔
p,ε

(−1)p (
n−1−p

⊔
j=0

⊔
V

(−1)n−1−j+q([n − j − 1]
p

)) ×GT(k1 + p, l2 − ε2, . . . , ln − εn),

where the outer disjoint union is over p ∈ [0, n − 1] and ε = (ε2, . . . , εn) ∈ [0,1]n, the innermost

disjoint union is over V ∈ ( [2,n]
n−j−1

) that contain all i with εi = 1, and we set q = ε2 + . . . + εn.
Clearly, this is equivalent to

⊔
p,ε

(−1)p (
n−1−p

⊔
j=0

(−1)n−1−j+q( [n − 1 − q]
n − 1 − q − j

) × ([n − j − 1]
p

)) ×GT(k1 + p, l2 − ε2, . . . , ln − εn),

and Problem 6 for a = p + 1, b = n − 1 − q and c = n − p − 1 gives us the equivalence

F ≈⊔
p,ε

(−1)n+p+q−1( [q]
n − p − 1

) ×GT(k1 + p, l2 − ε2, . . . , ln − εn).

On the other hand, note that k1+c1(µT ′) = k1+∑n−1
i=1 δ↖(µi) and ki+ci(µT ′) = li−δ↗(µi−1) for

i = 2, . . . , n. Let us see how many times GT(k1 + p, l2 − ε2, . . . , ln − εn) appears in the disjoint
union ⊔µ∈ARn−1 GT(k1 + c1(µT ′), k2 + c2(µT ′), . . . , kn + cn(µT ′)). Whenever εi = 1, we must
have µi−1 ∈ {↗,↖↗}, and whenever εi = 0, we must have µi−1 =↖. That means that among
the q i’s with εi = 1, we have to select p − (n − 1 − q) ↖↗’s. That gives an equivalence

F ≈ ⊔
µ∈ARn−1

GT(k1 + c1(µT ′), k2 + c2(µT ′), . . . , kn + cn(µT ′)).

In an analogous way, we prove that

E ≈ ⊔
µ∈ARn−1

GT(k1 + cn(T ′µ), k2 + c1(T ′µ), . . . , kn + cn−1(T ′µ)),

where

E =
n−1

⊔
j=0

(−1)n−1−j
n−1−j

⊔
p=0

(−1)p([n − j − 1]
p

) ×E′
n−j−1(k1 − p, l2, . . . , ln).

The sijection E ⇒ F easily follows from Problem 19. �

Now we are in the position to give a sijective proof of the rotational invariance up to sign.

Construction for Problem 16. We use the sijection Γ from Problem 15 (which depends on a
parameter x).

MT(k)Ô⇒ SGT(k) = ⊔
T ∈APn

GT(k1 + c1(T ), . . . , kn + cn(T ))

= ⊔
T ′∈APn−1

⊔
µ∈ARn−1

GT(k1 + c1(µT ′), k2 + c2(µT ′), . . . , kn + cn(µT ′)).
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Apply the sijection from Problem 20, and then rotation of GT patterns (using the sijections
from Problem 12). We get

⊔
T ′∈APn−1

⊔
µ∈ARn−1

GT(k1 + cn(T ′µ), k2 + c1(T ′µ), . . . , kn + cn−1(T ′µ))

Ô⇒ (−1)n−1 ⊔
T ′∈APn−1

⊔
µ∈ARn−1

GT(k2 + c1(T ′µ) + 1, . . . , kn + cn−1(T ′µ) + 1, k1 + cn(T ′µ) − n + 1)

= (−1)n−1 ⊔
T ∈APn

GT(k2 + c1(T ) + 1, . . . , kn + cn−1(T ) + 1, k1 + cn(T ) − n + 1).

We subtract 1 from all GT patterns and apply Γ−1, and obtain (−1)n−1 MT(rot(k)). �

7. Equalities determining ASMn,i

Suppose that we are given a weakly increasing sequence k = (k1, . . . , kn) and i ∈ N. We
define

MTi(k) = {T ∈ MT(k)∶Tn−i+1,1 = . . . = Tn,1 = k1, Tn−i,1 ≠ k1}
as the signed subset of monotone triangles with k1 in the first position in exactly the last i
rows. Similarly, we define

MTi(k) = {T ∈ MT(k)∶Tn−i+1,n−i+1 = . . . = Tn,n = kn, Tn−i,n−i ≠ kn}
as the signed subset of monotone triangles with kn in the last position in exactly the last i
rows.

Problem 21. Given a weakly increasing k = (k1, . . . , kn) and i ≥ 1, construct sijections

MTi(k)Ô⇒
i−1

⊔
j=0

(−1)j([i − 1]
j

) ×MT(k1 + j + 1, k2, . . . , kn)

and

MTi(k)Ô⇒
i−1

⊔
j=0

(−1)j([i − 1]
j

) ×MT(k1, k2, . . . , kn − j − 1).

Construction. The signed sets MT1(k) and MT(k1 + 1, k2, . . . , kn) are obviously equivalent:
just increase/decrease the first element of the bottom row of a monotone triangle to get a
sijection. For i > 1, we have

MTi(k) =⊔
l

MTi−1(k1, l2, . . . , ln−1),

where the disjoint union is over all l = (l2, . . . , ln−1) that interlace (k2, . . . , kn). By induction,
we have a sijection to

⊔
l

i−2

⊔
j=0

(−1)j([i − 2]
j

) ×MT(k1 + j + 1, l2, . . . , ln),

and it remains to find a sijection from this signed set to
i−1

⊔
j=0

(−1)j([i − 1]
j

) ×MT(k1 + j + 1, k2, . . . , kn).

An element of this signed set is ((A,T ), j) for a subset A of [i − 1], j = ∣A∣, and T a
monotone triangle with bottom row (k1 + j + 1, k2, . . . , kn). Let the second-to-last row be
(k1+p+1, l2, . . . , ln−1), where (l2, . . . , ln−1) interlaces (k2, . . . , kn). If k1+p+1 < k2 or k1+p+1 =
k2 < l2, we must have k1 + j + 1 ≤ k1 + p + 1, so we have two options. If ∣A∣ = p and i − 1 ∉ A,
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the element (((A,T ), p), l) appears in the signed set on the left. The elements with ∣A∣ < p
or i − 1 ∈ A cancel each other: simply add or remove i − 1 from A. On the other hand, if
k1 + p + 1 > k2 or k1 + p + 1 = k2 = l2, we have k1 + j + 1 > k1 + p + 1, and we again have two
options. If ∣A∣ = p+ 1 and i− 1 ∈ A, the element (((A∖ {i− 1}, T ), p), l) appears in the signed
set on the left, and the elements with ∣A∣ > p + 1 or i − 1 ∉ A cancel each other. �

Problem 22. Given n ∈ N and i ∈ [n], construct a sijection

n

⊔
j=1

(−1)j+1([2n − i − 1]
n − i − j + 1

) ×ASMn,j Ô⇒ ASMn,i .

Construction. Using the obvious bijection ASMn,i → ASMn,n+1−i obtained by reflecting along
the vertical axis and complementation, we get a sijection

n

⊔
j=1

(−1)j+1([2n − i − 1]
n − i − j + 1

) ×ASMn,j Ô⇒
n

⊔
j=1

(−1)j+1([2n − i − 1]
n − i − j + 1

) ×ASMn,n+1−j

=
∞

⊔
j=1

(−1)n−j([2n − i − 1]
j − i

) ×ASMn,j Ô⇒⊔
j

(−1)n−j([2n − i − 1]
2n − j − 1

) ×ASMn,j

=⊔
j

(−1)n−j−1([2n − i − 1]
j

) ×ASMn,2n−j−1 .

By rotating the alternating sign matrix by 90○ counterclockwise and using the usual bijection
between ASMs and monotone triangles with bottom row 1, . . . , n, we get a sijection ASMn,i →
MTi(1, . . . , n), and by reflecting along the vertical axis of symmetry and rotation by 90○

clockwise, we get a sijection ASMn,i → MTi(1, . . . , n). The first sijection constructed in
Problem 21 gives us a sijection

⊔
j

(−1)n−j−1([2n − i − 1]
j

) ×ASMn,2n−j−1

Ô⇒⊔
j

(−1)n−j−1([2n − i − 1]
j

) × (⊔
p
(−1)p([2n − j − 2]

p
) ×MT(2 + p,2, . . . , n))

Ô⇒⊔
p
(−1)n+p−1 (⊔

j

(−1)j([2n − i − 1]
j

) × ([2n − j − 2]
p

)) ×MT(2 + p,2, . . . , n).

The sijection from Problem 6 for a = p + 1, b = 2n − i − 1, c = 2n − p − 2 gives a sijection to

⊔
p
(−1)n+p−1( [i − 1]

2n − p − 2
) ×MT(2 + p,2, . . . , n) =⊔

p
(−1)n+p−1([i − 1]

p
) ×MT(2n − p,2, . . . , n).

Now note that rot(2n − p,2, . . . , n) = (2, . . . , n, n − p) and use the sijection from Problem 16
to get a sijection to

⊔
p
(−1)p([i − 1]

p
) ×MT(2, . . . , n, n − p)Ô⇒⊔

p
(−1)p([i − 1]

p
) ×MT(1, . . . , n − 1, n − 1 − p).

The second sijection from Problem 21 now gives a sijection to MTi(1, . . . , n) ≈ ASMn,i. �

Problem 23. Given n, construct a sijection

det(P)Ô⇒ (−1)n−1 DPPn−1,
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where P = [P i,j]ni,j=2 with

P i,j = (−1)j+1([2n − i − 1]
n − i − j + 1

) ⊔
⎧⎪⎪⎨⎪⎪⎩

−[0,0] i = j
∅ otherwise

.

Construction. We define signed sets Si,j = (−1)i+j([n]j−i
) and S = [Si,j]n−1i,j=1. It is clear that

det(S) is a signed set with one positive element and no negative elements, so, by Problem 8,
we have a sijection

det(P)Ô⇒ det(S) × det(P)Ô⇒ det(R),
where R = [Rij]n−1i,j=1, Ri,j = ⊔n−1p=1 Si,p × P p+1,j+1. By using Problem 6 for a = n + j, b = n, c =
n − i − j − 1,

Rij =
n−1

⊔
p=1

(−1)i+j+p( [n]
p − i

)([2n − p − 2]
n − p − j − 1

)Ð→
n−1

⊔
p=1

(−1)i+j+p( [n]
p − i

)([2n − p − 2]
n + j − 1

)

=
n

⊔
k=0

(−1)k+j([n]
k

)([2n − i − k − 2]
n + j − 1

)Ô⇒ (−1)j( [n − i − 2]
n − i − j − 1

)Ð→ (−1)j([n − i − 2]
j − 1

),

we get a sijection to det(T ), where T i,j = (−1)j([n−i−2]j−1
) ⊔ (−1)i+j+1([n]j−i

) for 1 ≤ i, j ≤ n − 1.

We can also start with a matrix W = [W i,j]n−1i,j=1, W i,j = ([i+j]
j−1

) if i ≠ j, and W i,i = ([2i]
i−1

)⊔ [0,0].
Its determinant can be, by the Lindström-Gessel-Viennot lemma [Lin73, GV85], interpreted
as a collection of non-intersecting lattice paths between (0, i + 1) and (i − 1,0) for i in a
subset of [n − 2]. By adding the step (−1, i + 1) → (0, i + 1), ignoring the steps at height 0,
and recording the heights of all steps, we indeed get descending plane partitions with parts
≤ n − 1. Again, we have sijections

det(W)Ô⇒ det(W) × det(S)Ô⇒ det(U),
where U i,j = ⊔n−1p=1 W i,p × Sp,j. Now we use Problem 6 for a = i + 2, b = n, c = j − 1,

U i,j =
n−1

⊔
p=1

(−1)p+j([i + p]
p − 1

)( [n]
j − p

)Ð→
n−1

⊔
p=1

(−1)p+j([i + p]
i + 1

)( [n]
j − p

)

=
n

⊔
k=0

(−1)k([i + j − k]
i + 1

)([n]
k

)Ô⇒ (−1)j−1([n − i − 2]
j − 1

),

which gives a sijection to (−1)n−1 det(T ). This finishes the construction. �

Now we have to put all the ingredients in place.

Construction for Problem 1. By Problems 10 and 23, it is enough to construct sijections
n

⊔
j=2

P i,j × (Bn,1 ×ASMn,j ⊔ −ASMn,1 ×Bn,j)⇒ ∅,

where P i,j was defined in Problem 23. But this is done by adding the signed set P i,1 ×
(Bn,1 ×ASMn,1 ⊔−ASMn,1 ×Bn,1), which has size 0, and using Problems 7 and 22 on the two
terms of the resulting disjoint union. �

Construction for Problem 2. Using Problem 22, there are sijections
n

⊔
j=2

−P i,j ×ASMn,j Ô⇒ ([2n − i − 1]
n − i

) ×ASMn,1
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for all i = 1,2, . . . , n, where P i,j is defined as in Problem 23. Using Problem 9 and Problem 23,
it follows that there are sijections

DPPn−1 ×ASMn,j Ô⇒ det(P j),

where P j is obtained from P by replacing the j-th column by (([2n−i−1]
n−i

) ×ASMn,1)
T

2≤i≤n
.

Equivalently, with Q
i
= ([2n−i−1]

n−i
) ×ASMn,1 and Qj the (n − 1) × (n − 1) matrix of all empty

sets, except for the j-th column, 2 ≤ j ≤ n, which is [Q
i
]ni=2, there is a sijection

DPPn−1 ×ASMn,j Ô⇒ det(P ⊔Qj) ⊔ −det(P).
Using S from Problem 23, we obtain

det(P ⊔Qj) ⊔ −det(P)Ô⇒ det(S) × (det(P ⊔Qj) ⊔ −det(P)) .
Using Problem 6 for a = n, b = n, c = n − i − 1,

n−1

⊔
p=1

Si,p ×Qp+1
=
n−1

⊔
p=1

(−1)i+p( [n]
p − i

) × ([2n − p − 2]
n − 1

) ×ASMn,1

=
n

⊔
k=0

(−1)k([n]
k

) × ([2n − i − k − 2]
n − 1

) ×ASMn,1Ô⇒ {ASMn,1 i = n − 1

∅ i < n − 1
.

Using T from Problem 6, we obtain a sijection to

(−1)n+j det(T j) ×ASMn,1,

where T j is obtain from T by deleting the last row and (j − 1)-st column.
On the other hand, let Wj = [W p,q]n−1i,j=1 with

W p,q =
⎧⎪⎪⎨⎪⎪⎩

([p+q]
q−1

) p < n − 1

([n+q−j]
n−1

) p = n − 1
⊔ {[0,0] p = q < n − 1

∅ otherwise
.

By refining the considerations from Problem 23, there is a sijection from det(Wj) to DPPn,j

using the Lindström-Gessel-Viennot lemma. Again we have sijections

det(Wj)Ô⇒ det(Wj) × det(S)Ô⇒ det(U j),
with U j = [Up,q]n−1p,q=1 such that U j coincides on the top n − 2 rows to T up to sijections. As
for the bottom row, we have

n−1

⊔
p=1

(−1)p+q([n + p − j]
n − 1

)( [n]
q − p

) =
n

⊔
k=0

(−1)k([n + q − k − j]
n − 1

)([n]
k

) =
⎧⎪⎪⎨⎪⎪⎩

[0,0] q = j − 1

∅ otherwise
,

and we obtain a sijection to (−1)n+j det(T j).
�

8. Concluding remarks

In this paper, we present the first bijective proof of the enumeration formula for alternating
sign matrices. The bijection is by no means simple; the construction is based on [FK], and
combined the two papers have about 40 pages, with the technical constructions taking about
20 pages. We also needed more than 2000 lines to produce a working Python code. However,
note that the first proof of the ASM theorem by Zeilberger was 84 pages long. We certainly
hope that our proof will be simplified and shortened in the future.
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On the other hand, this successful translation of a computational proof into a bijective
proof also raises questions as to the relation between these two types of proofs. Under
what circumstances is such a translation possible? If there exists a simple explicit bijection
between, say, ASMs and DPPs, can it be converted into a (simple) computational proof?
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