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DAVID DOLŽAN∗, MATJAŽ KONVALINKA† , AND POLONA OBLAK†

Abstract. In this paper, we calculate diameters of connected components of commuting graphs
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non-prime odd number and S has at least two invertible elements.
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1. Introduction. A semiring is a set S equipped with binary operations + and

· such that (S,+) is a commutative monoid with identity element 0, and (S, ·) is

a monoid with identity element 1. In addition, operations + and · are connected

by distributivity and 0 annihilates S. A semiring is commutative if ab = ba for all

a, b ∈ S.

A semiring S is called antinegative, if a+ b = 0 implies that a = b = 0. Antineg-

ative semirings are also called antirings. A semiring is said to be entire if ab = 0

implies that a = 0 or b = 0. The set of all (multiplicatively) invertible elements of a

semiring S will be denoted by U(S). The centralizer CS(x) of x ∈ S is defined as the

set of all elements of S commuting with x.

The simplest example of an antinegative semiring is the binary Boolean semiring,

the set {0, 1} in which addition and multiplication are the same as in Z except that

1+1 = 1. Moreover, the set of nonnegative integers (or reals) with the usual operations

of addition and multiplication is a commutative antinegative entire semiring. Inclines,

additively idempotent semirings in which products are less than or equal to either

factor, are commutative antinegative semirings. Distributive lattices are inclines, and

thus antinegative semirings. Also, tropical semirings are commutative antinegative

semirings.
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We will denote by Mn(S) the set of all n × n matrices over a semiring S and

by GLn(S) the set of all invertible matrices in Mn(S). The symmetric group of

permutations on a set of n elements will be denoted by Sn. A cycle of Sn of length

n is called a long cycle.

The matrix with the only nonzero entry 1 in the ith row and jth column will be

denoted by Ei,j . Let diag(a1, . . . , an) denote the diagonal matrix
∑n
i=1 aiEi,i. The

n×n identity matrix will be denoted by In. For any σ ∈ Sn we define the permutation

matrix Pσ =
∑n
i=1Ei,σ(i).

For a semigroup G, we denote by Γ(G) the commuting graph of G. The vertex

set V (Γ(G)) of Γ(G) is the set of elements in G \ Z(G), where Z(G) = {g ∈ G : gh =

hg for all h ∈ G} is the centre of G. An unordered pair of vertices x ∼ y is an edge

of Γ(G) if x 6= y and xy = yx.

The sequence of edges x0 ∼ x1, x1 ∼ x2, . . . , xk−1 ∼ xk is called a path of length

k and is denoted by x0 ∼ x1 ∼ . . . ∼ xk. The distance between two vertices is the

length of the shortest path between them. The diameter of the graph is the longest

distance between any two vertices of the graph.

In [5, Theorem 4], it was shown that the diameter of Γ(Sn) is 5 for all n except

when n − 1 or n is a prime. Also, by [7, Theorem 3.1], if n − 1 or n is prime, then

Γ(Sn) is not connected. In [4, Theorem 1], it was shown that if S is a commutative

antinegative entire semiring, then A ∈Mn(S) is invertible if and only if

A = DPσ,

where D is an invertible diagonal matrix and Pσ is a permutation matrix.

Recently, the interplay between various algebraic structures and their commuting

graphs has been studied, see e.g. [1, 2, 3, 5, 6, 7, 8, 9]. For example, it was recently

proved in [8] that a ring is isomorphic to the full matrix ring of 2 × 2 matrices over

a finite field if and only if their commuting graphs are isomorphic. It is conjectured

that this is also true for the algebra of n×n matrices whenever n ≥ 3. Moreover, the

diameters of commuting graphs of rings Mn(F) of n × n matrices have been studied

extensively. It was proved in [1] that if F is an algebraically closed field and n ≥ 3,

then the diameter of Γ(Mn(F)) is always equal to 4. If the field F is not algebraically

closed, then Γ(Mn(F)) need not be connected. In the case the graph is connected,

its diameter is known to be at most 6 and it is conjectured that it is at most 5. The

connectivity and diameters of Γ(GLn(S)) were recently studied in [1] for division rings

S and in [6] for the ring S = Zm; that is, the ring of integers modulo m.
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In this paper, we calculate diameters of connected components of commuting

graphs of GLn(S) for a commutative antinegative entire semiring S, both when S has

only one invertible element, and when it has several such elements. In the first case,

it follows from [4, Theorem 1] that GLn(S) is isomorphic to Sn. Note that when n

is a non-prime odd number and |U(S)| ≥ 2, we state the diameter as a conjecture.

2. The main result. The purpose of our paper is to prove the following.

Theorem 2.1. Let S be a commutative antinegative entire semiring and n ≥
2. We have the following table of diameters of connected components of graphs

Γ(GLn(S)), depending on n and u = |U(S)|:

u = 1 u ≥ 2

n = 2 (0) (1u+1)

n = 3 (1, 03) (3, 1u
2

)

n = 4 (3, 14) (4)

n ≥ 5, n ∈ P (5, 1(n−2)!) (3, 1u
n−1(n−2)!)

n ≥ 6, n− 1 ∈ P (4, 1n(n−3)!) (4)

n /∈ 2N ∪ P (5) (4) or (5)

n ∈ 2N, n− 1 /∈ P (5) (4)

Here, (ak11 , . . . , a
kr
r ) means that the graph has k1 + · · ·+kr connected components such

that ki of them have diameter ai, for i = 1, . . . , r.

Remark 2.2. In [5, Theorem 7], the values for n ≥ 4 even and u ≥ 2 were

erroneously stated to equal 5, since Lemma 6, as stated in [5], does not hold. The

weaker version of Lemma 6 is about to be published in the errata and proves that there

exist two matrices at distance 4, which implies that in the case u ≥ 2, n not prime

and S integral, the diameter of Γ(GLn(S)) is either 4 or 5.

For the proof, we need the following seven propositions. The first one describes

the edges in the commuting graph. The next three establish upper bounds for the

diameter, and the last three establish lower bounds. Conjecture 2.10 would imply

that the diameter of Γ(GLn(S)) is 5 if n is odd and non-prime and u ≥ 2.

Proposition 2.3. Let D = diag(d1, . . . , dn) and E = diag(e1, . . . , en). In

Γ(GLn(S)), we have DPα ∼ EPβ if and only if αβ = βα and

di
dβ(i)

=
ei
eα(i)

.

Proposition 2.4. Take n ≥ 4 even and u ≥ 2. For every two long cycles

α, β ∈ Sn and diagonal invertible matrices D and E, the distance in Γ(GLn(S))
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between DPα and EPβ is at most 4.

Proposition 2.5. Take n ≥ 6 even with n − 1 prime and u = 1. Then the

distance in Γ(GLn(S)) between Pα and Pβ is at most 4 whenever α and β are not

cycles of length n− 1.

Proposition 2.6. Let n ≥ 7 be an odd prime and u = 1. Then the distance in

Γ(GLn(S)) between Pα and Pβ is at most 5 whenever α and β are not long cycles.

Proposition 2.7. [3, Lemma 6.17] Assume that u = 1 and n and n − 1 are

not prime. Then the distance in Γ(GLn(S)) between Pα and Pβ is at least 5, where

α = (1, . . . , n) and β = (1, . . . , n− 1).

Proposition 2.8. Assume that n = 2m ≥ 6 and u = 1. Then the distance

in Γ(GLn(S)) between Pα and Pβ is at least 4, where α = (1, . . . , 2m) and β =

(1,m+ 2, . . . , 2m, 2, . . . ,m+ 1).

Proposition 2.9. Assume that n = 2m + 1 ≥ 5 and u = 1. Then the distance

in Γ(GLn(S)) between Pα and Pβ is at least 5, where α = (1, . . . , 2m)(2m + 1) and

β = (1, ...,m,m+ 2, ..., 2m+ 1)(m+ 1).

Conjecture 2.10. Assume that n = 2m+ 1 ≥ 5 and u ≥ 2. Then the distance

in Γ(GLn(S)) between Pα and Pβ is at least 5, where α = (1, . . . , 2m + 1) and β =

(1, . . . ,m,m+ 2, . . . , 2m+ 1,m+ 1).

Let us see how these propositions prove our main theorem.

Let us start with n = 2. For u = 1, the graph Γ(GL2(S)) consists of a single

vertex. If u ≥ 2, the vertices are diag(d1, d2) for d1, d2 ∈ U(S), d1 6= d2, and

diag(d1, d2)P(12) for arbitrary d1, d2 ∈ U(S). All diagonal matrices commute with

each other. By Proposition 2.3, vertices diag(d1, d2) and diag(e1, e2)P(12) are not

connected (d1/d2 = e1/e1 = 1 would imply d1 = d2), and vertices diag(d1, d2)P(12)

and diag(e1, e2)P(12) are connected if and only if d1/d2 = e1/e2. That means that for

each u ∈ U(S), we get a clique of all matrices diag(d1, d2)P(12) with d1/d2 = u.

Assume n = 3. For u = 1, the graph Γ(GL3(S)) has 5 vertices, corresponding

to S3 \ {id}, and the only edge of the graph connects (123) and (132). If n = 3

and u ≥ 2, then DP(123), where D = diag(d1, d2, d3), is adjacent to aDP(123) for all

a ∈ U(S) \ {1}, and to aD′P(132), where a ∈ U(S) and D′ = diag(d1d2, d2d3, d3d1).

For every a, b ∈ U(S), we get a clique that contains diag(1, a, b)P(123). Furthermore,

for every transposition τ , DPτ is adjacent to some non-scalar diagonal matrix F , and

since all diagonal matrices commute, the diameter of this connected component is at

most 3. There is no non-scalar diagonal matrix that commutes both with P(12) and

P(23), so the diameter equals 3.
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If n = 4 and u = 1, every one of the eight 3-cycles is adjacent only to its inverse.

That gives us four 2-cliques. The rest of the graph is shown in Figure 2.1; the large

triangle contains (12)(34), (13)(24) and (14)(23). It is obvious that the diameter is 3.

Fig. 2.1. The large connected component of S4.

For n = 4 and u ≥ 2, every permutation that is not a long cycle is adjacent to

a diagonal non-identity matrix: if T 6= {1, 2, 3, 4} consists of the elements of some

cycle of π, then DPπ ∼ diag(e1, e2, e3, e4), where ei = 1 if i ∈ T and ei = a if i /∈ T ,

where a ∈ U(S) \ {1} is fixed. Since for a long cycle α, we have DPα ∼ D′Pα2 ∼ F

for some D′, F , DPα is at distance at most 4 from EPβ , where β is not a long cycle.

By Proposition 2.4, two long cycles are at distance at most 4. That means that the

diameter is at most 4. Finally, let us prove that DPα and EPβ are at distance at

least 4, where D = diag(1, a, a, a), α = (1234), E = diag(1, 1, a, a) and β = (1243),

where a ∈ U(S) \ {1}. Then DPα is adjacent to D′Pα for D′ = bdiag(1, a, a, a),

where b ∈ U(S), to D′′Pα2 for D′′ = bdiag(1, a, a, 1), where b ∈ U(S), and to D′′′Pα3

for D′′′ = bdiag(1, a, 1, 1), where b ∈ U(S). Similarly, EPβ is adjacent to E′Pβ for

E′ = bdiag(1, 1, a, a), where b ∈ U(S), to E′′Pβ2 for E′′ = bdiag(1, a, a, a2), where

b ∈ U(S), and to E′′′Pβ3 for E′′′ = bdiag(1, a, a, 1), where b ∈ U(S). Now α and α3

do not commute with either β, β2 or β3, and β and β3 do not commute with either

α, α2 or α3. Furthermore, D′′Pα2 and E′′Pβ2 are not adjacent.

Take n ≥ 5 prime and u = 1. If α is a long cycle, then Pα is adjacent only to

Pαk for k = 2, . . . , n − 1. So we get an (n− 1)-clique for every long cycle that maps

1 to, say, 2, and there are (n − 2)! such cycles. If n = 5, the diameter of the large

connected component (with 95 vertices) is easily verified to be 5. For n ≥ 7, Pα and

Pβ for α and β that are not long cycles are at distance at most 5 by Proposition 2.6.

By Proposition 2.9, the diameter of this connected component is 5.

Suppose that n ≥ 5 is prime and u ≥ 2. If α is a long cycle, then DPα is adjacent

to aDPα for a ∈ U(S) \ {1} and to aD′Pαk , where a ∈ U(S), k = 2, . . . , n − 1 and

D′ is uniquely determined. That means that we get cliques that correspond to DPα,
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where D = diag(1, a1, . . . , an−1) and α is a long cycle that maps 1 to 2. So there are

un−1(n− 2)! such cliques. For α that is not a long cycle, DPα commutes with a non-

scalar diagonal matrix, and diagonal matrices commute, so the rest of the graph is

connected and has diameter at most 3. It is clear that there is no non-scalar diagonal

matrix that commutes both with P(1,...,n−1) and P(2,...,n), so the diameter is 3.

Assume that n ≥ 6, n−1 is prime and u = 1. Every (n−1)-cycle is adjacent only

to its powers, so we get cliques corresponding to (n− 1)-cycles that fix i, 1 ≤ i ≤ n,

and map, say, the smallest element of {1, . . . , i−1, i+1, . . . , n} to the second smallest.

There are n(n − 3)! such cycles. If α, β are not cycles of length n − 1, the distance

between Pα and Pβ is at most 4 by Proposition 2.5. By Proposition 2.8, the diameter

of the large connected component is 4.

Assume that n ≥ 6, n− 1 is prime and u ≥ 2. For α, β long cycles, the distance

between DPα and EPβ is at most 4 by Proposition 2.4. Also, DPα is at distance 2

from a non-scalar diagonal matrix. For all other α, DPα commutes with a non-scalar

diagonal matrix. That means that the diameter is at most 4, It is easy to check that

P(1,...,n) and P(1,...,n−1) are at distance 4, so the diameter is 4. If n ≥ 6 is even, n− 1

is not a prime and u ≥ 2, the proof that the diameter is 4 is exactly the same.

If n, n− 1 are not primes and u = 1, then we know that Γ(GLn(S)) is connected,

with diameter at most 5, see [5, Theorem 7(b)]. By Proposition 2.7, the diameter is

indeed 5.

Assume that n ≥ 9 is odd and not prime and u ≥ 2. Take a long cycle α. For k|n,

1 < k < n, DPα ∼ D′Pαk for some D′, and D′Pαk ∼ F for some non-scalar diagonal

matrix F . If β is not a long cycle, it is adjacent to a non-scalar diagonal matrix.

Therefore the graph Γ(GLn(S)) is connected with diameter ≤ 5. If α = (1, . . . , n)

and β = (1, . . . , n − 2, n, n − 1) are different long cycles and k, l|n, k, l 6= n, then

βl(αk(n)) = βl(k) = k + l and αk(βl(n)) = αk(l − 1) = k + l − 1, so there is no path

of length ≤ 3 between Pα and Pβ . That means that the diameter is at least 4. If

Conjecture 2.10 holds, the diameter is indeed 5.

This completes the proof of the theorem.

3. Proofs of Propositions.

Proof of Proposition 2.3. Write A = DPα, B = EPβ . Then (AB)ij =∑
k aikbkj = 0 unless j = β(α(i)), in which case it is aiα(i)bα(i)β(α(i)) = dieα(i).

Similarly, (BA)ij is nonzero (and equal to eidβ(i)) if j = α(β(i)). Therefore DPα and

EPβ are adjacent in Γ(GLn(S)) if and only if αβ = βα and dieα(i) = eidβ(i).
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Proof of Proposition 2.4. Write n = 2m.

We claim that there exist diagonal matrices D′, E′, F and a permutation τ so

that

DPα ∼ D′Pαm ∼ FPτ ∼ E′Pβm ∼ EPβ ,

where either τ 6= id or F 6= aI.

Note that both αm and βm are products of m 2-cycles. There are two cases.

First, there can be a non-empty proper subset T of {1, . . . , 2m} such that αm(T ) =

βm(T ) = T . In this case, define F = diag(fi), where fi = 1 if i ∈ T and fi = a if

i 6= T , where a ∈ U(S)\{1}. We have D′Pαm ∼ F ∼ E′Pβm for all D′ and E′, and by

Proposition 2.4 there exist such D′ and E′ that DPα ∼ D′Pαm and EPβ ∼ E′Pβm .

If such a T does not exist, then the set {1, βm(1), αmβm(1), βmαmβm(1), . . .},
which is obviously non-empty and closed under αm and βm, must equal {1, . . . , 2m}.
That means that

π = (1, βm(1), αmβm(1), βmαmβm(1), . . .)

is a cycle of length 2m. Define τ = π2. In other words, if i = (αmβm)k(1) for some

k, then τ(i) = αmβm(i), and if i = βm(αmβm)k(1) for some k, then τ(i) = βmαm(i).

Since m ≥ 2, τ 6= id.

We claim that ταm = αmτ . If i = (αmβm)k(1) for some k, then αm(i) =

βm(αmβm)k−1(1) (for i = 1, we can take k = m), and so τ(αm(i)) = βmαm(αm(i)) =

βm(i). On the other hand, τ(i) = αmβm(i), so αm(τ(i)) = βm(i). The proof for

i = βm(αmβm)k(1) for some k is similar, as is the proof that τβm = βmτ .

Since α ∼ αm, the condition DPα ∼ D′Pαm is equivalent to di/dαm(i) = d′i/d
′
α(i).

It is easy to see that one set of d′i’s (and the only one up to scalar) that satisfies the

equations is

d′i =

m−1∏
j=0

dαj(i).

It is clear from these formulas that for every k, 0 ≤ k ≤ m− 1, we have

d′id
′
αm(i) = d1 · · · d2m

In other words, d′id
′
αm(i) is independent of i.
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Similarly, up to a scalar, the only solution of EPβ ∼ E′Pβm is

e′i =

m−1∏
j=0

eβj(i).

and e′ie
′
βm(i) is independent of i.

Our goal is to find F so that D′Pαm ∼ FPτ ∼ E′Pβm . The first condition is

equivalent to d′i/d
′
τ(i) = fi/fαm(i). Now note that since

d′i
d′τ(i)

·
d′αm(i)

d′τ(αm(i))

=
d′id
′
αm(i)

d′τ(i)d
′
αm(τ(i)))

= 1,

the equations for fi/fαm(i) and fαm(i)/fi are equivalent. In other words, it is enough

that we have

fi
fαm(i)

=
d′i
d′τ(i)

for i = (αmβm)k(1)

and similarly

fi
fβm(i)

=
e′i
e′τ(i)

for i = βm(αmβm)k(1).

We have 2m equations for fi’s, and each fi appears exactly once in the numera-

tor and exactly once in the denominator. Furthermore, since τ((αmβm)k(1)) =

(αmβm)k+1(1), the right-hand sides of the first m equations multiply into 1, and

similarly the right-hand sides of the second m equations multiply into 1. In other

words, these equations have a solution (which is unique up to a scalar factor).

We can even be completely explicit: let us prove that one solution to these equa-

tions is

fi =
1

d′αmβm(i)e
′
βm(i)

if i = (αmβm)k(1),

fi =
1

d′αm(i)e
′
βmαm(i)

if i = βm(αmβm)k(1).

If i = (αmβm)k(1) (without loss of generality, k ≥ 1), then αm(i) = βm(αmβm)k−1(1)

and fαm(i) = (d′αm(αm(i))e
′
βmαm(αm(i)))

−1 = (d′ie
′
βm(i))

−1 and so

fi
fαm(i)

=
d′ie
′
βm(i)

d′αmβm(i)e
′
βm(i)

=
d′i
d′τ(i)

.
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The proof that fi/fβm(i) = e′i/e
′
τ(i) for i = βm(αmβm)k(1) is completely analogous.

This completes the proof of Proposition 2.4.

Example 3.1. Take n = 8, α = (15386724), β = (16823754). We have α4 =

(16)(23)(48)(57), β4 = (13)(24)(58)(67), π = (13248576) and τ = (1287)(3456).

To better understand where τ comes from, let the 2-cycles of αm and βm be vertices

of a regular octagon so that (1, α4(1)) is the left-most vertex, so that two 2-cycles are

adjacent if and only if one of them is a cycle of α4 and the other one is a cycle of β4

and they have a common element. Furthermore, choose such an order of the elements

of a 2-cycle that neighbours have the common element in the same place.

(84)

(24)

(23)

(13)

(16)

(76)

(75)

(85)

Fig. 3.1. Constructing τ .

The first elements of 2-cycles form one cycle of τ (in, say, clockwise direction),

and second elements form the other cycle of τ . Clearly, conjugating with τ shifts the

2-cycles clockwise by 2, so both α4 and β4 are preserved under conjugation with τ .

See Figure 3.1.

We have

d′1 = d1d5d3d8, d′5 = d5d3d8d6, d′3 = d3d8d6d7, d′8 = d8d6d7d2,

d′6 = d6d7d2d4, d′7 = d7d2d4d1, d′2 = d2d4d1d5, d′4 = d4d1d5d3

and similarly

e′1 = e1e6e8e2, e′6 = e6e8e2e3, e′8 = e8e2e3e7, e′2 = e2e3e7e5,

e′3 = e3e7e5e4, e′7 = e7e5e4e1, e′5 = e5e4e1e6, e′4 = e4e1e6e8.

The equations for fi’s (after removing half the equations as described above) are

f1/f6 = d′1/d
′
2, f2/f3 = d′2/d

′
8, f8/f4 = d′8/d

′
7, f7/f5 = d′7/d

′
1
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and

f3/f1 = e′3/e
′
4, f4/f2 = e′4/e

′
5, f5/f8 = e′5/e

′
6, f6/f7 = e′6/e

′
3.

If we set f1 = (d′2e
′
3)−1, the only solution is

f1 =
1

d′2e
′
3

, f3 =
1

d′2e
′
4

, f2 =
1

d′8e
′
4

, f4 =
1

d′8e
′
5

,

f8 =
1

d′7e
′
5

, f5 =
1

d′7e
′
6

, f7 =
1

d′1e
′
6

, f6 =
1

d′1e
′
3

.

Proof of Proposition 2.5. Again, write n = 2m. Suppose that α and β are

long cycles. It is enough to find τ 6= id that commutes with αm and βm. One

such τ is the involution that maps (αmβm)k(1) to (αmβm)kαm(1), (βmαm)kβm(1) to

(βmαm)k+1(1), and preserves all elements that cannot by reached from 1 by applying

αm and βm. Compare with the construction of τ in the proof of Proposition 2.4.

Then τ is a well-defined involution that commutes with αm and βm. We leave the

details for the reader.

Assume that neither α nor β is a long cycle. Let us first examine the case where

α is a cycle of length less than n− 1, or α decomposes as a product of disjoint cycles,

where at least one cycle has length less than m. Then α commutes with a permutation

π with at least m+1 fixed points. Now, β either also commutes with a permutation ρ

with at least m+ 1 fixed points, in which case π and ρ have a common transposition

in their centralizers, or β = ρ1ρ2 is a product of two disjoint m-cycles. In the latter

case, β commutes with both ρ1 and ρ2 and we can choose the one that has more

of its fixed points in common with π. If α and β are both products of two disjoint

m-cycles, we can also always choose one m-cycle from each permutation such that

they have at least two common fixed points and therefore a common transposition in

their centralizers.

Let α be a long cycle. If β = ρ1 . . . ρr, where there exists i such that the length

of ρi is at least 2 and at most m − 1, then β commutes with ρi which has at least

m + 1 fixed points. Thus, ρi commutes with at least one transposition in the cyclic

decomposition of αm. Suppose now β = ρ1ρ2 is a product of two m-cycles. If the

cycle ρj is disjoint from some transposition τ in the cyclic decomposition of αm, then

α ∼ αm ∼ τ ∼ ρj ∼ β is a path in Γ(GLn(S)), thus the distance between α and β

is at most 4. Otherwise, each transposition in the cyclic decomposition of αm has

one element from ρ1 = (a1, . . . , am) and one element from ρ2 = (b1, . . . , bm). We

can assume that τ = (a1, b1) is a transposition in the cyclic decomposition of αm,

since we can cyclically permute the elements of ρ2. Now, β ∼ (a1, b1) · · · (am, bm) ∼
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τ ∼ αm ∼ α is a path of length 4 in Γ(GLn(S)) between α and β. It only remains

to show that α and β = ρ1 are also at distance at most 4, where ρ1 is a cycle of

length at most n − 2. In this case, β has at least 2 fixed points, say b1, b2, so it

commutes with the transposition τ = (b1, b2). Since τ has n − 2 > m fixed points,

it commutes with at least one transposition σ in the cyclic decomposition of αm.

Therefore, α ∼ αm ∼ σ ∼ τ ∼ β is a path of length 4 in Γ(GLn(S)) between α and

β.

Proof of Proposition 2.6. Since n is prime, we can write n = 2m + 1, where

m ≥ 3. Assume first that α is a cycle. If α is a cycle of length n − 1, then αm is

a product of m disjoint transpositions, therefore α is at distance 2 to the disjoint

transpositions π1, . . . , πm. If α is a cycle of length less than n− 1, then α commutes

with at least one transposition (consisting of two fixed points of α), so α is also at

distance 2 to at least m disjoint transpositions. Now, if β is also a cycle, we can

similarly see that it is at distance 2 to m disjoint transpositions ρ1, . . . , ρm, but since

m ≥ 3 there exist i and j such that πi and ρj are disjoint and therefore commute,

proving that α and β are at distance 5 or less. Otherwise, we have a decomposition

β = ρ1 · · · ρr into a product of disjoint cycles of increasing length. Note that the

length of ρ1 has to be at most m, so ρ1 commutes with every transposition with

elements from the set of at least m + 1 ≥ 4 elements, so one of these transpositions

has to be disjoint with, say, π1. Now, the only remaining case is when neither α nor

β are cycles. But then both α and β are at distance two to a set of all transpositions

consisting of elements from some sets of size at least 4, so we can always choose

two disjoint transpositions that commute, which proves that α and β are indeed at

distance 5 or less.

Proof of Proposition 2.8. Suppose otherwise, i.e. there exists a path α ∼
αk ∼ βl ∼ β in Γ(GLn(S)) for some integers 1 ≤ k, l ≤ 2m. Since commuting

with a permutation is equivalent to commuting with its inverse, we can suppose that

1 ≤ k, l ≤ m. So,

αkβl(1) =

{
m+ l + k + 1 (mod 2m), l ≤ m− 1

k + 2, l = m.

Since αk and βl commute, we have that αkβl(1) = βlαk(1). If l ≤ m− 1, we have

m+l+k+1 (mod 2m) = βlαk(1) = βl(k+1) =


k + l + 1, l ≤ m− k
1, l = m− k + 1

k + l, m− k + 2 ≤ l ≤ m− 1,
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a contradiction. In the latter case, l = m, we obtain that

k + 2 = βmαk(1) = βm(k + 1) =

{
k +m k > 1

1 k = 1
,

which is again a contradiction.

Proof of Proposition 2.9. We have to prove that there is no path of length

4 or less between α and β. Note that α and β commute only with the powers of

themselves, so suppose there exists γ such that γ commutes with αk and βl for some

k and l. First, we prove that we can assume that k divides 2m. Let d = gcd(k, 2m).

Let s and t be integers such that ks+ 2mt = d. Since α ∼ αk ∼ γ is a path in Γ(Sn),

α ∼ αsk ∼ γ is also a path in Γ(Sn). Since αsk = αd(1−2mt) = αd(α2m)−t = αd,

α ∼ αd ∼ γ is a path in Γ(Sn). We can similarly assume that l divides 2m.

Suppose first that k ≤ l. Since 2m+ 1 is the only fixed point of the permutation

αk and αk(γ(2m + 1)) = γ(αk(2m + 1)) = γ(2m + 1), we see that 2m + 1 is also a

fixed point of γ. Similarly, m+ 1 is a fixed point of β and thus also a fixed point of γ.

If f ≤ m is a fixed point for γ, then by applying αak for a suitable integer a, we

can achieve that f + ak, 1 ≤ f + ak ≤ m, is also a fixed point of γ. We can choose a

such that f+ak ≤ m and f+(a+1)k > m. This implies that βl(f+ak) = f+ak+l+1

is also a fixed point for γ. But similarly, for any fixed point f ≥ m we can choose b

such that f+bk ≤ 2m+1 and f+(b+1)k > 2m+1, so βl(f+bk) = f+bk+ l−2m−1

is also a fixed point for γ. Since we can repeat either of these two steps arbitrarily

many times, by also applying αk (and thus getting rid of 2m, ak and bk), we arrive

at the conclusion that f + c(l + 1) + d(l − 1) is a fixed point for γ for any c and d.

If l is even, this implies that γ is an identity. If l is odd, all odd numbers are fixed

points for γ, since βl(2m+ 1) = l is a fixed point. If m is odd, all even numbers are

also fixed points, since m+ 1 is an even fixed point for γ. On the other hand, if m is

even, then l < m and βl(1) = l + 1 is an even fixed point.

Let us now look at the case l < k. Since αk commutes with γ and γ commutes

with βl, for each τ also (τατ−1)k commutes with γ′ = τγτ−1 and γ′ commutes with

(τβτ−1)l. If we choose τ = (m+1, . . . , 2m+1), we get α′ = τατ−1 = (1, . . . ,m, 2m+

1,m + 1, . . . , 2m − 1)(2m) and β′ = τβτ−1 = (1, . . . , 2m)(2m + 1). We can now

proceed similarly as above. Namely, let f ≤ m be a fixed point for γ′. By applying

β′al for a suitable integer a, we can achieve that f + al, 1 ≤ f + al ≤ m, is also a

fixed point of γ′. We can choose a such that f + al ≤ m and f + (a+ 1)l > m. This

implies that α′k(f + al) = f + al+ k− 1 (since k > l, α′k(f + al) 6= 2m+ 1) is also a

fixed point for γ′. But similarly, for any fixed point f ≥ m we can choose b such that
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f + bl ≤ 2m and f + (b+ 1)l > 2m, so α′k(f + bl) = f + bl+ k+ 1− 2m is also a fixed

point for γ′. Since we can repeat either of these two steps arbitrarily many times, by

also applying βl (and thus getting rid of 2m, al and bl), we arrive at the conclusion

that f + c(k+ 1) + d(k− 1) is a fixed point for γ′ for any c and d. But since both 2m

and 2m+ 1 are fixed points for γ′, γ′ has to be an identity.
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[3] J. Araújo, W. Bentz, and J. Konieczny. The commuting graph of the symmetric inverse semi-

group. arXiv:1205.1664, May 2012.
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