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Abstract. We study the Schur polynomial expansion of a family of symmetric poly-
nomials related to the refined enumeration of alternating sign matrices with respect
to their inversion number, complementary inversion number and the position of the
unique 1 in the top row. We prove that the expansion can be expressed as a sum
over totally symmetric plane partitions and we are also able to determine the coeffi-
cients. This establishes a new connection between alternating sign matrices and a class
of plane partitions, thereby complementing the fact that alternating sign matrices are
equinumerous with totally symmetric self-complementary plane partitions as well as
with descending plane partitions. As a by-product we obtain an interesting map from
totally symmetric plane partitions to Dyck paths. The proof is based on a new, quite
general antisymmetrizer-to-determinant formula.
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1 Introduction
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of the last century. Alternating sign matrices (ASMs) on the other hand were introduced by
Robbins and Rumsey [15] in the early 1980s. Together with Mills [12], they conjectured
that the number of n× n ASMs is given by ∏n−1

i=0
(3i+1)!
(n+i)! . Stanley then pointed out to them

that these numbers had appeared before in the work of Andrews [2] as the enumeration
formula for a certain class of plane partitions, called descending plane partitions. Soon
after that Mills, Robbins and Rumsey [13] observed (conjecturally) that this formula also
counts another class of plane partitions, namely totally symmetric self-complementary plane
partitions. Although these conjectures have all been proved since then, see among others
[3, 20], it is mostly agreed that there is no good combinatorial understanding of this re-
lation between ASMs and certain classes of plane partitions since we lack combinatorial
proofs of these results. The purpose of this paper is to relate ASMs to yet another class
of plane partitions, namely totally symmetric plane partitions (TSPPs), in a new way. This
relation is via a certain Schur polynomial expansion. Other known relations between
ASMs and TSPPs are via posets, see [19, Section 8], and the fact, that the number of
symmetric plane partitions inside an (n, n, n)-box is the product of the number of TSPPs
inside an (n, n, n)-box and the number of ASMs of size n, see [5], although it can be
argued that the latter relation is in a sense more between TSPPs and TSSCPPs.

More concretely, the following symmetric functions are studied in this paper

An(u, v; x) :=

ASymx1,...,xn

[
n
∏
i=1

xi−1
i ∏

1≤i<j≤n
(v + (1− u− v)xi + uxixj)

]
∏

1≤i<j≤n
(xj − xi)

,

where ASym denotes the antisymmetrizer, i.e., ASymx1,...,xn
f (x1, . . . , xn) = ∑

σ∈Sn

sgn(σ)

· f (xσ(1), . . . , xσ(n)) and x = (x1, . . . , xn). These symmetric functions have arisen in the

special case t(
n
2)An

(
1
t , 1

t ; x
)

in the work of Fischer and Riegler [7, Corollary 10.2], where
the following connection to ASMs was proved.

Theorem 1.1. The number of n× n ASMs that have the unique 1 in the top row in column i
and with m occurrences of −1 is the coefficient of zi−1tm in t(

n
2)An

(
1
t , 1

t ; z, 1, . . . , 1
)

.

As remarked in [6, Remark 2.1], the above result can be generalized as follows1.

Theorem 1.2. The number of n× n ASMs that have the unique 1 in the top row in column i and
with inversion number a and complementary inversion number b is the coefficient of uavbzi−1 in
An(u, v; z, 1, . . . , 1).

1It is a generalization since, for a given n× n ASM, the number of −1’s and the two inversion numbers
sum to (n

2).



Alternating sign matrices and totally symmetric plane partitions 3

The main result of this paper is the following Schur polynomial expansion of these
functions. It was conjectured independently by the first author together with François
Bergeron and the last three authors. All notions are explained in Section 2.

Theorem 1.3. For all positive integers n, we have

An(u, v; x) = ∑
T∈TSPPn−1

ωπ(T)(u, v)sπ(T)(x), (1.1)

where π(T) = (a1, . . . , al|b1 + 1, . . . , bl + 1) is the modified balanced partition associated to the
TSPP T in Frobenius notation and ωπ(T)(u, v) = u∑l

i=1(ai+1)(1− u− v)∑l
i=1(bi−ai)v(

n
2)−∑l

i=1 bi .

For n = 3 the right hand side of (1.1) is a sum over all totally symmetric plane
partitions inside a (2, 2, 2)-box, which are shown below. Theorem 1.3 then states

An(u, v; x1, x2, x3) = v3 + uv2s1,1(x1, x2, x3)

+ u(1− u− v)vs1,1,1(x1, x2, x3) + u2vs2,1,1(x1, x2, x3) + u3s2,2,2(x1, x2, x3).

T: ∅

π(T): ∅

ωπ(T)(u, v)): v3 uv2 u(1− u− v)v u2v u3

The structure of the paper is as follows. In Section 2, we provide all definitions and
count TSPPs with respect to their diagonal. In Section 3, we provide a lemma that allows
us to express An(u, v; x) using a determinant. In Section 4, we use this other expression
for An(u, v; x) to prove Theorem 1.3.

2 Modified balanced partitions, TSPPs and ASMs

The first important objects are modified balanced partitions. They are a variation of
objects that appear in [17, Example 6.19(bb) p. 223].

Definition 2.1. Let λ be a partition λ = (λ1, . . . , λn), where we allow zero parts. We
call λ a modified balanced of size n if λ1 ≤ n − 1 and λi < λ′i whenever λi ≥ i, where
λ′ = (λ′1, . . . , λ′m) denotes the conjugate partition.
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The modified balanced partitions of n = 3 are displayed next (using French notation),
together with their Frobenius notation which we recall next.

∅

∅

(|)
(1, 1)

(0|1)
(1, 1, 1)

(0|2)
(2, 1, 1)

(1|2)
(2, 2, 2)

(1, 0|2, 1)

Let λ be a partition. Unless otherwise specified, we denote by l the side length
of the Durfee square of λ, which is defined as the largest square that is contained in
the Ferrers diagram, i.e., l = maxi{λi ≥ i}. The Frobenius notation of λ is then (λ1 −
1, λ2 − 2, . . . , λl − l|λ′1 − 1, λ′2 − 2, . . . , λ′l − l). Using the Frobenius notation, a partition
λ = (a1, . . . , al|b1, . . . bl) is a modified balanced partition if ai < bi for 1 ≤ i ≤ l.

Modified balanced partitions of size n are enumerated by the n-th Catalan number
Cn = 1

n+1(
2n
n ) which can be seen easily by the following bijection between modified

balanced partitions and Dyck paths (represented by north and east steps)

(a1, . . . , al|b1, . . . , bl) 7→ Nbl Eal+1Nbl−1−bl Eal−1−al · · ·Nb1−b2 Ea1−a2 Nn−b1 En−a1−1,

for non-zero partitions and (|) 7→ NnEn. For an example see Figure 1.

Figure 1: The Ferrers diagram of the modified balanced partition λ = (3, 2, 2, 2, 1) =
(2, 0|4, 2) of size 5 and its corresponding Dyck path.

Plane partitions are other combinatorial objects that are necessary in our study.

Definition 2.2. A plane partition π = (πi,j)1≤i,j≤n inside an (n, n, n)-box is an array of
non-negative integers less than or equal to n such that the rows and columns are weakly
decreasing, i.e., πi,j ≥ πi+1,j and πi,j ≥ πi,j+1.

We can represent a plane partition π graphically by replacing the (i, j)-th entry by
a stack of πi,j unit cubes, see Figure 2 for an example. From this point of view, a
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4 3 3 1
4 2 1
2

Figure 2: A plane partition and its graphical representation as a pile of cubes.

plane partition π inside an (n, n, n)-box is a subset of {1, . . . , n}3 such that if (i, j, k) is an
element of π then every (i′, j′, k′) with i′ ≤ i, j′ ≤ j, k′ ≤ k is also an element of π.

A plane partition π is totally symmetric if for every (i, j, k) that is an element of π, all
permutations of the coordinates (i, j, k) are also elements of π. We denote by TSPPn
the set of totally symmetric plane partitions (TSPPs) inside an (n, n, n)-box. Given
T = (Ti,j)1≤i,j≤n−1 ∈ TSPPn−1, we associate with T a modified balanced partition2 as
follows: Consider the partition (T1,1, . . . , Tn−1,n−1)

′ =: diag(T), which is just the profile
of the diagonal of T in the y = x plane if interpreted as stacks of cubes. If diag(T) has
Frobenius notation (a1, . . . , al|b1, . . . , bl), we set π(T) := (a1, . . . , al|b1 + 1, . . . , bl + 1), for
an example see Figure 3. It can be checked that π(T) is a modified balanced partition.

T diag(T) π(T)

Figure 3: A TSPP T inside a (4, 4, 4)-box, its diagonal diag(T) and its associated
modified balanced partition π(T) of size 5.

We count TSPPs T with fixed π(T).

Proposition 2.3. Let λ = (a1, . . . , al|b1, . . . , bl) be a modified balanced partition. The number
of TSPPs T with π(T) = λ is equal to det1≤i,j≤l

(
(bj−1

ai
)
)

.

Proof. This is a classical application of the Lindström-Gessel-Viennot theorem [8, 10], see
also [18]. We sketch the proof on the example in Figure 4.

TSPPs of order n clearly correspond to lozenge tilings of a regular hexagon with
side lengths n that are symmetric with respect to the vertical symmetry axis as well as

2This can be regarded as a generalisation of Stanley’s [16] trace statistic which is defined for a plane
partition π as the sum over the parts of its diagonal diag(π).
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rotation of 120◦. By this symmetry, it suffices to know a sixth of the lozenge tiling. In
our example, we choose the sixth that is in the wedge of the red dotted rays.

Figure 4: Running example in the proof of Proposition 2.3.

Now observe that the positions of the horizontal lozenges in the upper half of the vertical
symmetry axis are prescribed by the bi’s, while the positions of the vertical segments in
the lower part of the vertical symmetry axis are prescribed by the ai’s. Both are indicated
in green in Figure 4. By the cyclic symmetry, these green segments have corresponding
segments on the red dotted ray that is not contained on the vertical symmetry axis, again
indicated in green in the figure. Now the lozenge tiling is determined by the family of
non-intersecting lattice paths that connect these segments with the horizontal lozenges
in the upper half of the vertical symmetry axis, indicated in blue in the figure.

The third objects of importance are alternating sign matrices.

Definition 2.4. An alternating sign matrix, or ASM for short, of size n is an n× n matrix
with entries −1, 0, 1 such that all row- and column-sums are equal to 1 and in all rows
and columns the non-zero entries alternate.

It is easy to see that every ASM has a unique 1 in its top row. A product formula
for the refined enumeration of ASMs with respect to the position of the unique 1 in the
top row was conjectured by Mills, Robbins, Rumsey [14] and first proven by Zeilberger
[21]. Following the convention of [6], we define the inversion number and complementary
inversion number of an ASM A = (ai,j)1≤i,j≤n of size n as

inv(A) := ∑
1≤i′<i≤n
1≤j′≤j≤n

ai′,jai,j′ and inv′(A) := ∑
1≤i′<i≤n
1≤j≤j′≤n

ai′,jai,j′ ,

and denote by N (A) the number of −1’s of A. For instance,

A =


0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0


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is an ASM of size 4 with (N (A), inv(A), inv′(A)) = (1, 3, 2). The number of −1 entries,
the inversion number and the complementary inversion number of an ASM A of size n
are connected by N (A) + inv(A) + inv′(A) = (n

2). The weighted enumeration of ASMs,
where each ASM A is weighted by tN (A), is called the t-enumeration. For t ∈ {0, 1, 2, 3},
it turns out that the t-enumeration is given by explicit product formulas, see for example
[1, 9, 14].

3 An antisymmetrizer-to-determinant lemma

The following lemma will be a fundamental tool for the proof of Theorem 1.3. More
applications of it will appear in a forthcoming paper.

Lemma 3.1. Let f (X), g(X) be Laurent series over C such that for every non-zero polynomial
p(X) ∈ C[X] of degree no greater than n, we have p( f (X)) 6= p(g(X)). Then

det
1≤i,j≤n

(
f (Xi)

j − g(Xi)
j
)
= ASymX1,...,Xn

[
∏

1≤i≤j≤n
( f (Xj)− g(Xi))

]
.

Proof. The proof is by induction with respect to n. The result is obvious for n = 1. Let
Ln(X1, . . . , Xn), Rn(X1, . . . , Xn) denote the left and right hand side of the identity in the
statement, respectively. By the induction hypothesis, we can assume Ln−1(X1, . . . , Xn−1)
= Rn−1(X1, . . . , Xn−1). We show that both Ln(X1, . . . , Xn) and Rn(X1, . . . , Xn) can be
computed recursively using Ln−1(X1, . . . , Xn−1) and Rn−1(X1, . . . , Xn−1), respectively,
with the same recursion. For the right hand side, we have

Rn(X1, . . . , Xn) =
n

∑
i=1

(−1)i+1

(
n

∏
k=1

( f (Xk)− g(Xi))

)
Rn−1(X1, . . . , X̂i, . . . , Xn),

where X̂i means that Xi is omitted. For the left hand side, we first observe
n

∑
j=0

( f (Xi)
j − g(Xi)

j)en−j(− f (X1), . . . ,− f (Xn)) = (−1)n−1
n

∏
k=1

( f (Xk)− g(Xi)), (3.1)

where ej(X1, . . . , Xn) denotes the j-th elementary symmetric function. Note that the
summand for j = 0 on the left hand side is actually 0. Now consider the following
system of linear equations with n unknowns cj(X1, . . . , Xn), 1 ≤ j ≤ n, and n equations.

n

∑
j=1

( f (Xi)
j − g(Xi)

j)cj(X1, . . . , Xn) = (−1)n−1
n

∏
k=1

( f (Xk)− g(Xi)), 1 ≤ i ≤ n.

The determinant of this system of equations is obviously Ln(X1, . . . , Xn), which is non-
zero by the assumption. By (3.1), we know that the unique solution of this system is
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given by cj(X1, . . . , Xn) = en−j(− f (X1), . . . ,− f (Xn)). On the other hand, by Cramer’s
rule,

cn(X1, . . . , Xn) =

det
1≤i,j≤n

 f (Xi)
j − g(Xi)

j, if j < n

(−1)n−1
n
∏

k=1
( f (Xk)− g(Xi)), if j = n


Ln(X1, . . . , Xn)

.

The assertion now follows from cn(X1, . . . , Xn) = e0(X1, . . . , Xn) = 1 and expanding the
determinant in the numerator with respect to the last column.

In order to apply the lemma to An(u, v; x), we first observe that it is equal to

n

∏
i=1

(
xn−1

i
v
xi
+ (1− u− v) + uxi

) ASymx1,...,xn

[
∏

1≤i≤j≤n

(
v
xi
+ (1− u− v) + uxj

)]
∏

1≤i<j≤n
(xj − xi)

By the lemma, this is further equal to
det

1≤i,j≤n

(
xn−j

i pj(xi)
)

∏
1≤i<j≤n

(xi−xj)
with pj(x) :=

j−1
∑

k=0
xk(−1 + u + v−

ux)kvj−1−k.

4 Proof of Theorem 1.3

The proof of Theorem 1.3 is split into two parts. First, we derive an explicit expansion of
An(u, v; x) into Schur polynomials. Second we prove that the coefficients of each Schur
polynomial satisfy the same recursion as the right hand side of (1.1).

To emphasise the general principle used to express the determinantal expression of
An(u, v; x) as a sum of Schur polynomials, we consider pj(x) to be a family of polynomi-
als pj(x) := ∑k≥0 aj,kxk. Using the linearity of the determinant in the columns, we have

det
1≤i,j≤n

(
xn−j

i pj(xi)
)

∏
1≤i<j≤n

(xi − xj)
= ∑

k1,...,kn≥0

(
n

∏
j=1

aj,kj

)
s(k1,...,kn)(x), (4.1)

where we used in the last step the well known extension of Schur polynomials to ar-

bitrary sequences L = (L1, . . . , Ln) of non-negative integers via sL(x) :=
det

1≤i,j≤n

(
x

Lj+n−j

i

)
∏

1≤i<j≤n
(xi−xj)

.

It can be checked that the generalised Schur polynomial sL(x) is either equal to 0 or
sL(x) = sgn(σ)sλ(x) where λ = (λ1, . . . , λn) is a partition whose parts are allowed to be
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zero and σ ∈ Sn is a permutation such that Lj = λσ(j) + j − σ(j) for all 1 ≤ j ≤ n. It
follows that (4.1) is equal to

∑
λ

sλ(x)

(
∑

σ∈Sn

sgn(σ)
n

∏
j=1

aj,λσ(j)+j−σ(j)

)
= ∑

λ

sλ(x) det
1≤i,j≤n

(
aj,λi+j−i

)
, (4.2)

where the sum is over all partitions λ. By applying (4.2) to the family of polynomials

pj(x) = ∑
0≤l,k≤j−1

(−1)k
(

k
l

)
xk+lul(1− u− v)k−lvj−1−k,

we obtain

An(u, v; x) = ∑
λ

sλ(x) det
1≤i,j≤n

 ∑
0≤l,k≤j−1

k+l=λi+j−i

(−1)k
(

k
l

)
ul(1− u− v)k−lvj−1−k


= ∑

λ

sλ(x) det
1≤i,j≤n

(
j−1

∑
k=0

(−1)k
(

k
λi + j− i− k

)
uλi+j−i−k(1− u− v)2k−λi−j+ivj−1−k

)
.

We denote by mi,j(λi) the (i, j)-th entry of the matrix in the above determinant. An entry
mi,1(λi) = ( 0

λi+1−i)u
λi+1−i(1− u− v)−λi−1+i in the first column is 1 iff λi = i− 1 and 0

otherwise. Let l be the side length of the Durfee square of λ. The only possible part of
λ satisfying λi = i − 1 is the (l + 1)-st. For λl+1 6= l the partition λ is not a modified
balanced partition and the above determinant is 0. Hence we assume for the rest of the
proof λl+1 = l. By expanding the determinant along the first column, we obtain

det
1≤i,j≤n

(
mi,j(λi)

)
= (−1)l+2 det

1≤i,j≤n−1

(
m′i,j(λi)

)
,

where (m′i,j)1,≤,i,j≤n−1 denotes the matrix obtained by deleting the first column and the
(l + 1)-st row of (mi,j(λi))1≤i,j≤n. For 1 ≤ i ≤ l, i.e., λi > i, we can rewrite m′i,j as

m′i,j =
j

∑
k=0

(−1)k
(

k
λi + (j + 1)− i− k

)
uλi+(j+1)−i−k(1− u− v)2k−λi−(j+1)+iv(j+1)−1−k

=
j−1

∑
k=0

(−1)k+1uλi+j−i−k(1− u− v)2k+1−λi−j+ivj−k−1

×
((

k
λi + j− i− k

)
+

(
k

λi + j− i− k− 1

))
= −(1− u− v)mi,j(λi)− umi,j(λi − 1).
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For i > l on the other hand, i.e. λi+1 < i + 1, we can express m′i,j analogously as

m′i,j =
j

∑
k=0

(−1)k
(

k
λi+1 + (j + 1)− (i + 1)− k

)
× uλi+1+(j+1)−(i+1)−k(1− u− v)2k−λi+1−(j+1)+(i+1)v(j+1)−1−k = vmi,j(λi+1),

since ( j
λi+1−i) = 0. The coefficient cλ of sλ(x) in An(u, v; x) is therefore given by

(−1)l det
1≤i,j≤n−1

({
−(1− u− v)mi,j(λi)− umi,j(λi − 1) i ≤ l,
vmi,j(λi+1) i > l,

)
= ∑

( f1,..., fl)∈{0,1}l

(
u∑l

i=1 fi(1− u− v)l−∑l
i=1 fi vn−1−l

)
c(λ1− f1,...,λl− fl ,λl+2,...,λn),

with c(λ1− f1,...,λl− fl ,λl+2,...,λn) = 0 if (λ1 − f1, . . . , λl − fl, λl+2, . . . , λn) is not a partition,
where the equality follows from the linearity of the determinant in the rows and choos-
ing fi = 0 iff we select the first term in row i. Using Frobenius notation for λ =
(a1, . . . , al|b1, . . . , bl), the above recursion can be rewritten as

c(a1,...,al |b1,...,bl)
= ∑

( f1,..., fl)∈{0,1}l

(
u∑l

i=1 fi(1− u− v)l−∑l
i=1 fi vn−1−l

)
c(a1− f1,...,al− fl |b1−1,...,bl−1),

where c(a1,...,al−1,−1|b1,...,bl−1,0) is defined as c(a1,...,al−1|b1,...,bl−1)
.

Denote by dλ the coefficient of sλ(x) in ∑T∈TSPPn−1
ωπ(T)(u, v)sπ(T)(x). For λ =

(a1, . . . , al|b1, . . . , bl), Proposition 2.3 implies

d(a1,...,al |b1,...,bl)
= u∑l

i=1(ai+1)(1− u− v)∑l
i=1(bi−1−a1)v(

n
2)−∑l

i=1 bi det
1≤i,j≤l

((
bj − 1

ai

))
= u∑l

i=1(ai+1)(1− u− v)∑l
i=1(bi−1−a1)v(

n
2)−∑l

i=1 bi det
1≤i,j≤l

((
bj − 2

ai

)
+

(
bj − 2
ai − 1

))
= ∑

( f1,..., fl)∈{0,1}l

(
u∑l

i=1 fi(1− u− v)l−∑l
i=1 fi vn−1−l

)
d(a1− f1,...,al− fl |b1−1,...,bl−1),

where we used the linearity of the determinant in the last step. The assertion follows by
induction on n since both cλ and dλ satisfy the same recursion and the induction base
can be checked easily by hand.

5 Final remarks

We conclude our article with some brief remarks describing further directions that we
intend to pursue. Drawing upon work of Fischer and Riegler [7] inspired by counting
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monotone triangles with a fixed bottom row, one can obtain a family of symmetric poly-
nomials indexed by a partition λ that contains An(u, v; x) as a special case of the empty
partition. Data reveal that this family still has a nice Schur expansion in the sense that
the coefficients can be written as polynomials in u, v, 1− u− v with positive coefficients.
A next natural step would be to generalize our techniques to a broader framework.

Continuing in this direction, one may consider stable limits of the aforementioned
symmetric polynomials to obtain (inhomogeneous) elements in the ring of symmetric
functions. The lowest degree symmetric function in these expressions is the Schur func-
tion sλ. This is very reminiscent of the stable Grothendieck polynomials of Fomin-
Kirillov, and raises the question whether there is a combinatorially interesting algebra
structure on these functions.

Finally, it is interesting to note that An(u, v; x) already appeared in a six-vertex model
context. More concretely, Xn(x, y; z1, . . . , zn) as defined by Behrend in [4, Equation (70)]
seems to satisfy v(

n
2)Xn(

u
v , 1

v ; x) = An(u, v; x). We plan to examine this connection in
more detail in the full version of this extended abstract.
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