
A NOTE ON QUANTUM IMMANANTS AND THE CYCLE BASIS OF
THE QUANTUM PERMUTATION SPACE

MATJAŽ KONVALINKA

Abstract. There are many combinatorial expressions for evaluating characters of the
Hecke algebra of type A. However, with rare exceptions, they give simple results only for
permutations that have minimal length in their conjugacy class. For other permutations,
a recursive formula has to be applied. Consequently, quantum immanants are complicated
objects when expressed in the standard basis of the quantum permutation space.
In this paper, we introduce another natural basis of the quantum permutation space, and
we prove that coefficients of quantum immanants in this basis are class functions.

1. The symmetric group and immanants

Denote by Sn the symmetric group of n, i.e. the group of permutations of the set {1, . . . , n}.
We write permutations in the one-line notation: v = v1v2 · · · vn means that v(i) = vi. We
multiply permutations from the right: 24315 · 53241 = 53412. We will often use the cycle
notation 24315 = (124)(35). We will always write the smallest element of the cycle first,
and order the cycles so that the first elements form an increasing sequence. We define the
cycle type µ(v) as the sequence of lengths of these cycles. Note that it is a composition,
not a partition; permutations (124)(35) and (14)(253) have a different cycle type. An
inversion of a permutation v is a pair (i, j) satisfying i < j and vi > vj. Denote by inv(v)
the number of inversions of v. We denote the identity permutation by id.

The symmetric group Sn is generated by simple transpositions si = (i, i+1), 1 ≤ i ≤ n−1,
which satisfy the relations

s2
i = 1 for i = 1, . . . , n− 1,

sisi+1si = si+1sisi+1 if |i− j| = 1,

sisj = sjsi if |i− j| ≥ 2.

An expression v = si1si2 · · · sik , 1 ≤ ij ≤ n−1, is reduced if it is the shortest such expression
for v, and we have k = inv(v). We call k the length of v. All reduced expressions contain
the same generators, see [BB05, Corollary 1.4.8 (ii)].

A (virtual) character of a group G is a linear function χ : G → C for which χ(ab) = χ(ba)
for all a, b ∈ G. For example, the trace of a representation ρ : G → GLn is a character.
The simplest character is the trivial character η(v) = 1. In the symmetric group, another
important character is the sign character ε(v) = (−1)inv(v).

Choose commutative variables xij, 1 ≤ i, j ≤ n. Denote by An the vector space of
all polynomials in xij generated by monomials of the form xv = x1v1x2v2 · · · xnvn for a
permutation v ∈ Sn, and call An the permutation space. We will also use notation
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xu,v = xu1v1xu2v2 · · ·xunvn , where u, v ∈ Sn. For a character χ : Sn → C, define the
χ-immanant Immλ X ∈ An by

Immχ X =
∑

v∈Sn

χ(v)xv.

For example, Immη X is the permanent per X of the matrix X = (xij)n×n, and Immε X is
the determinant det X.

2. The Hecke algebra and quantum immanants

A beautiful quantization of the symmetric group is Hn(q), the Hecke algebra of type A.
Here q ∈ C \ {0}. It is defined as the C-algebra generated by the set of modified natural

generators {T̃sj
: 1 ≤ j ≤ n− 1} subject to the relations

T̃ 2
si

= 1 + (q1/2 − q−1/2)T̃si
for i = 1, . . . , n− 1,

T̃si
T̃si+1

T̃si
= T̃si+1

T̃si
T̃si+1

for i = 1, . . . , n− 2,

T̃si
T̃sj

= T̃sj
T̃si

for |i− j| ≥ 2

Remark 1 In other contexts, natural generators Tw = q1/2T̃w are often used instead of

T̃w.

If si1 · · · sik is a reduced expression for v of length k = inv(v), we define

T̃v = T̃si1
· · · T̃sik

.

This is well defined (say, by Matsumoto’s theorem, see [GP00, Theorem 1.2.2]). The

elements T̃v, v ∈ Sn, form a basis of the algebra Hn(q) by Bourbaki’s theorem, see for
example [GP00, Theorem 4.4.6].

If inv(siw) = inv(w)− 1, we have w = si(siw) and therefore

T̃si
T̃w = T̃si

T̃si(siw) = T̃ 2
si
T̃siw = (1 + (q1/2 − q−1/2)T̃si

)T̃siw = T̃siw + (q1/2 − q−1/2)T̃w.

Thus

T̃si
T̃w =

{
T̃siw : inv(siw) = inv(w) + 1

T̃siw + (q1/2 − q−1/2)T̃w : inv(siw) = inv(w)− 1
,

and similarly

T̃wT̃si
=

{
T̃wsi

: inv(wsi) = inv(w) + 1

T̃wsi
+ (q1/2 − q−1/2)T̃w : inv(wsi) = inv(w)− 1

.

A character of Hn(q) is a linear functional χ : Hn(q) → C satisfying

(1) χ(T̃wT̃v) = χ(T̃vT̃w).

Example 2 Let us prove that the linear map η : Hn(q) → C defined by η(T̃v) = qinv(v)/2 is

a character by showing that η(T̃wT̃v) = q(inv(w)+inv(v))/2 for all w, v. This is obviously true
if v = id, assume that it holds for all w, v with inv(v) = k− 1, and assume inv(v) = k. We
have v = sv′ for some s ∈ {s1, . . . , sn−1}, inv(v′) = k − 1. If inv(ws) = inv(w) + 1, then

η(T̃wT̃v) = η(T̃wT̃sT̃v′) = η(T̃wsT̃v′) = q(inv(ws)+inv(v′))/2 = q(inv(w)+inv(v))/2,
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and if inv(ws) = inv(w)− 1, then

η(T̃wT̃v) = η(T̃wT̃sT̃v′) = η((T̃ws + (q1/2 − q−1/2)T̃w)T̃v′) =

= η(T̃wsT̃v′) + (q1/2 − q−1/2)η(T̃wT̃v′) = q(inv(ws)+inv(v′))/2 + (q1/2 − q−1/2)q(inv(w)+inv(v′))/2 =

= q(inv(w)+inv(v))/2−1 + (q1/2 − q−1/2)q(inv(w)+inv(v)−1)/2 = q(inv(w)+inv(v))/2.

This character is called trivial. We can similarly prove that ε : Hn(q) → C, defined by

ε(T̃v) = (−q−1/2)inv(v), is a character, we call it the sign character.

We have the following relation for characters of Hn(q).

Proposition 3 Take v ∈ Sn, s = si for some i ∈ {1, . . . , n − 1}, and a character χ of
Hn(q). Then:

(a) if inv(svs) = inv(v), then χ(T̃svs) = χ(T̃v);

(b) if inv(svs) = inv(v) + 2, then χ(T̃svs) = χ(T̃v) + (q1/2 − q−1/2)χ(T̃sv) = χ(T̃v) +

(q1/2 − q−1/2)χ(T̃vs);

(c) if inv(svs) = inv(v) − 2, then χ(T̃svs) = χ(T̃v) − (q1/2 − q−1/2)χ(T̃sv) = χ(T̃v) −
(q1/2 − q−1/2)χ(T̃vs);

Proof. Assume that inv(sv) = inv(v)− 1 and inv(svs) = inv(v). Then

χ(T̃sT̃vT̃s) = χ((T̃sv + (q1/2 − q−1/2)T̃v)T̃s) = χ(T̃svs) + (q1/2 − q−1/2)χ(T̃vT̃s)

and, by (1),

χ(T̃sT̃vT̃s) = χ(T̃vT̃sT̃s) = χ(T̃v(1 + (q1/2 − q−1/2)T̃s)) = χ(T̃v) + (q1/2 − q−1/2)χ(T̃vT̃s),

so χ(T̃svs) = χ(T̃v). If inv(sv) = inv(v) + 1 and inv(svs) = inv(v), then

χ(T̃sT̃vT̃s) = χ(T̃svT̃s) = χ(T̃svs) + (q1/2 − q−1/2)χ(T̃sv)

and, by (1),

χ(T̃sT̃vT̃s) = χ(T̃sT̃sT̃v) = χ((1 + (q1/2 − q−1/2)T̃s)T̃v) = χ(T̃v) + (q1/2 − q−1/2)χ(T̃sv).

This proves (a). Let us prove (b). If inv(svs) = inv(v) + 2, then inv(sv) = inv(vs) =
inv(v) + 1, and so

χ(T̃sT̃vT̃s) = χ(T̃svs) = χ(T̃vT̃sT̃s) =

= χ(T̃v(1 + (q1/2 − q−1/2)T̃s)) = χ(T̃v) + (q1/2 − q−1/2)χ(T̃vs),

and since χ(T̃sT̃v) = χ(T̃vT̃s), we have χ(T̃svs) = χ(T̃v) + (q1/2 − q−1/2)χ(T̃sv). Swapping
the roles of v and svs, we get (c) from (b). ¤
The quantum polynomial ring is generated by n2 variables xij, 1 ≤ i, j ≤ n, subject to the
relations

(2)

xilxik = q1/2xikxil,

xjkxik = q1/2xikxjk,

xjkxil = xilxjk,

xjlxik = xikxjl + (q1/2 − q−1/2)xilxjk

for all indices i < j, k < l. Denote by An(q) the subspace generated by monomials
xu,v = xu1v1xu2v2 · · · xunvn , where u, v ∈ Sn, and call it the quantum permutation space.
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We will also use notation xv = x1v1x2v2 · · · xnvn , where v ∈ Sn. The set {xv : v ∈ Sn} is
a basis of An(q), we call it the natural basis. For a character χ : Hn(q) → C, define the
modified χ-immanant Immλ X ∈ An(q) by

Immχ X =
∑

v∈Sn

χ(T̃v)xv.

We call

Immη X =
∑

v∈Sn

qinv(v)/2xv

the modified quantum permanent, and

Immε X =
∑

v∈Sn

(−q−1/2)inv(v)xv

is the modified quantum determinant.

Remark 4 We use the word modified to distinguish this object from the sum
∑

v∈Sn

χ(Tv)xv.

See [KS] for other results on quantum immanants and for further references.

3. Cycle basis of the quantum permutation space and the main results

Given a permutation v, write it in cycle notation

v = (i11, . . . , i
1
µ1

)(i21, . . . , i
2
µ2

) · · · (ir1, . . . , irµr
)

so that ij1 is the smallest element of the j-th cycle and so that i11 < i21 < . . . < ir1. Define
the v cycle monomial, denoted xv, to be the product

(xi11i12
xi12i13

· · · xi1µ1
i11
)(xi21i22

xi22i23
· · · xi2µ2

i21
) · · · (xir1ir2

xir2ir3
· · · xirµr ir1

).

For example, consider the permutation 45213, which is (14)(253) in cycle notation. Then
x45213 = x14x25x32x41x53 and x45213 = x14x41x25x53x32.

Proposition 5 The monomials {xv : v ∈ Sn} form a basis of An(q). Furthermore, the
transition matrix relating this basis to the natural basis {xv : v ∈ Sn} is unitriangular.

We will give the proof in the next section.

There are several results that give combinatorial descriptions of families of characters of
the Hecke algebra Hn(q) (see [Ram91], [RR97] and [Kon, §3]. However, neither of these

results gives a description of χ(Tv) or χ(T̃v) for all v ∈ Sn except in the simplest of cases
(namely, the trivial and sign characters). For v which is not of minimal length in its

conjugacy class, we have to use Proposition 3 to find χ(T̃v). Consequently, there are no
simple formulas for immanants, with the exception of the modified quantum permanent
and determinant.

The main result of this paper gives the expansion of modified quantum immanants in the
cycle basis.
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Example 6 Take the modified quantum permanent for n = 3. Since

x21x32 + q1/2x22x31 = x32x21 + q−1/2x22x31 = x32x21 + q−1/2x31x22,

we have

x11x22x33 + q1/2x11x23x32 + q1/2x12x21x33 + qx12x23x31 + qx13x21x32 + q3/2x13x22x31 =

= x11x22x33 + q1/2x11x23x32 + q1/2x12x21x33 + qx12x23x31 + qx13x32x21 + q1/2x13x31x22.

Note that in this case, the coefficients of the cycle basis elements in the modified quantum
permanent depend solely on the cycle type of the permutation. This is, in fact, true for
all modified quantum immanants, as the main theorem shows.

Choose a composition µ = (µ1, . . . , µp) of n. Denote the permutation

(1, 2, . . . , µ1)(µ1 + 1, µ1 + 2, . . . , µ1 + µ2) · · ·
by γµ. Recall that if v is a permutation, we denote by µ(v) its cycle type (see the first
paragraph of Section 1).

The following is obvious.

Proposition 7 A permutation v is of the form γµ for some µ if and only if v(i) ≤ i + 1
for all i. ¤

The main theorem tells us that the set {xv : v ∈ Sn}, which is, by Proposition 5, a basis,
is in a certain sense superior to the usual basis {xv : v ∈ Sn}.
Main theorem For a character χ of Hn(q), we have

Immλ X =
∑

v∈Sn

χ(T̃γµ(v)
)xv.

Remark 8 The quantum permutation space is isomorphic as a vector space to the Hecke

algebra of type A via the isomorphism xα,β 7→ T̃βT̃α−1 . Therefore the main theorem gives
us a new basis of the Hecke algebra of type A.

4. Proofs

We will make use of the following procedure, which takes a permutation v as an input and
produces three sequences αv

k, βv
k and γv

k of permutations and two sequences ivk and jv
k of

integers.

(1) Set αv
0 = id, βv

0 = v, k = 0.
(2) Repeat the following. Take πv

k = (αv
k)
−1βv

k and let ivk be the least index for which
πv

k(i
v
k) > ivk + 1. If no such index exists, set αv

k+1 = αv
k, βv

k+1 = βv
k , πv

k+1 = πv
k, and

terminate the sequences iv and jv. Otherwise
(a) Set jv

k = πv
k(i

v
k)− 1.

(b) Set αv
k+1 = αv

ksjv
k
, βv

k+1 = βv
ksjv

k
.

(c) Increment k.

We will denote by pv the smallest index for which πv
pv(i) ≤ i+1 for all i; note that we have

αv
pv = αv

pv+1 = αv
pv+2 = . . ., βv

k = βv
pv+1 = βv

pv+2 = . . ., πv
pv = πv

pv+1 = πv
pv+2 = . . . In theory,

we could have pv = ∞, but we will prove in Lemma 9 that this is not the case. Also note
that

πv
k+1 = (αv

k+1)
−1βv

k+1 = sjv
k
(αv

k)
−1βv

ksjv
k

= sjv
k
πv

ksjv
k
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if k < pv.

As an example, consider the permutation v = 45132. Applying the procedure, we have

k 0 1 2 3 4
αv

k 12345 12435 14235 14325 14325
βv

k 45132 45312 43512 43152 43152
πv

k 45132 35412 24513 23154 23154
πv

k, cycle notation (143)(25) (134)(25) (124)(35) (123)(45) (123)(45)
ivk 1 1 2
jv
k 3 2 3

Let us prove a series of lemmas about these sequences.

Lemma 9 For every permutation v, the sequence iv0, i
v
1, i

v
2, . . . is weakly increasing. Fur-

thermore, if ivk−1 = ivk for some k < pv, then jv
k−1 = jv

k + 1. Consequently, pv ≤ (
n−1

2

)
.

Proof. Throughout the proof, we will omit the superscript v.
We want to prove that ik−1 ≤ ik. Since ik is the smallest index for which πk(ik) > ik + 1,
it is enough to prove that πk(i) ≤ i+1 when i < ik−1. For such i, we have i < ik−1 < jk−1,
so sjk−1

(i) = i. Furthermore, πk−1(i) ≤ i + 1 by definition of ik−1. But then πk−1(i) ≤
i + 1 ≤ ik−1 < jk−1 and sjk−1

πk−1(i) = πk−1(i). In other words, we have proved that

πk(i) = sjk−1
πk−1sjk−1

(i) = sjk−1
πk−1(i) = πk−1(i) ≤ i + 1.

Assume that ik−1 = ik. Then

jk+1 = πk(ik) = πk(ik−1) = sjk−1
πk−1sjk−1

(ik−1) = sjk−1
πk−1(ik−1) = sjk−1

(jk−1+1) = jk−1,

where we used the fact that jk−1 > ik−1 and therefore sjk−1
(ik−1) = ik−1.

That means that (ivk, j
v
k) 6= (ivl , j

v
l ) if k 6= l. Since 1 ≤ ik < jk < n, we have at most

(
n−1

2

)
such pairs. ¤

Lemma 10 Take v ∈ Sn and k < pv. If i > ivk and l ≤ k, then sjv
l
sjv

l+1
· · · sjv

k−1
(i) > ivl .

Proof. Throughout the proof, we will omit the superscript v.
By induction, it is enough to prove this statement for l = k − 1. By the previous lemma,
we have ik ≥ ik−1. If ik > ik−1, then i ≥ ik−1 + 2. Multiplicating a permutation π
by a simple transposition changes the value π(i) by at most 1 for any i; in particular,
sjk−1

(i) ≥ ik−1 + 1 > ik−1. If ik = ik−1 and i ≥ ik + 2, the reasoning is the same. So it
remains to prove that if ik = ik−1, then sjk−1

(ik + 1) > ik−1. But jk−1 = jk + 1 by the
previous lemma and jk + 1 > ik + 1, so

sjk−1
(ik + 1) = sjk+1(ik + 1) = ik + 1 = ik−1 + 1 > ik−1,

which finishes the proof. ¤

Lemma 11 For all v and k < pv, we have αv
k(j

v
k) < αv

k(j
v
k +1). Furthermore, if i < j and

αv
k(i) > αv

k(j), then αv
k(i) = βv

l (ivl ) for some l < k.

Proof. Throughout the proof, we will omit the superscript v.
Let us first prove the second statement by induction on k. For k = 0, αk = id and there is
nothing to prove. Now assume that the statement holds for k−1. We have αk = αk−1sjk−1

.
Take i < j with αk(i) > αk(j). We have the following possible cases:
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• i, j 6= jk−1, jk−1 + 1. Then αk(i) = αk−1(i) and αk(j) = αk−1(j) and, by the
induction hypothesis, αk(i) = βl(il) for some l < k − 1 < k.

• i < jk−1, j = jk−1 or i < jk−1, j = jk−1 +1. Then αk(i) = αk−1(i), αk(j) = αk−1(j +
1) (respectively, αk(j) = αk−1(j − 1)) and αk(i) = βl(il) for some l < k − 1 < k by
the induction hypothesis.

• i = jk−1, j > jk−1 + 1 or i = jk−1 + 1, j > jk−1 + 1. Then αk(i) = αk−1(i +
1) (respectively, αk(i) = αk−1(i − 1)) and αk(j) = αk−1(j). By the induction
hypothesis, αk−1(i + 1) = αk(i) = βl(il) for some l < k − 1 < k (respectively,
αk−1(i− 1) = αk(i) = βl(il) for some l < k − 1 < k).

• i = jk−1, j = jk−1 + 1. In this case, αk(i) = αk−1(i + 1) = αk−1(jk−1 + 1) =
αk−1(πk−1(ik−1)) = βk−1(ik−1).

Now assume that αk(jk) > αk(jk + 1). We now know that this implies that αk(jk) = βl(il)
for some l < k. Furthermore, βk(il) = βlsjl

· · · sjk−1
(il) = βl(il) because jl > il, jl+1 >

il+1 ≥ il, etc. If il < ik, then jk = α−1
k βl(il) = α−1

k βk(il) = πk(il) =≤ il + 1 < ik + 1 ≤ jk,
a contradiction. On the other hand, il = ik implies jk = α−1

k βl(il) = α−1
k βk(il) = πk(ik) =

jk + 1, again a contradiction. Therefore we must have αk(jk) < αk(jk + 1). ¤

Lemma 12 For all v and k < pv, we have (πv
k)
−1(jv

k) > (πv
k)
−1(jv

k + 1). Furthermore,
βv

k(jv
k) < βv

k(jv
k + 1) if and only if sjv

k
πv

k(j
v
k) < sjv

k
πv

k(j
v
k + 1), and if and only if πv

k(j
v
k) <

πv
k(j

v
k + 1).

Proof. Throughout the proof, we will omit the superscript v.
We know that (πk)

−1(jk + 1) = ik. Therefore (πk)
−1(jk) < ik would, by definition of ik,

imply jk = πk((πk)
−1(jk)) ≤ (πk)

−1(jk) + 1 ≤ ik < jk, a contradiction. That proves the
first statement.
Denote sjk

πk(jk) = sjk
α−1

k βk(jk) = α−1
k+1βk(jk) by i and sjk

πk(jk + 1) = α−1
k+1βk(jk + 1) by

j. If i < j and αk+1(i) = βk(jk) > αk+1(j) = βk(jk + 1), then Lemma 11 implies that
αk+1(i) = βk(jk) = βl(il) for some l < k + 1. Like in the proof of the previous lemma,
βk(il) = βl(il). Then βk(jk) = βk(il) implies jk = il ≤ ik < jk, a contradiction. Similarly,
i > j and αk+1(i) = βk(jk) < αk+1(j) = βk(jk + 1) implies αk+1(j) = βk(jk + 1) = βl(il) =
βk(il) for some l < k + 1, and jk + 1 = il ≤ ik < jk gives the desired contradiction.
Therefore βv

k(jv
k) < βv

k(jv
k + 1) if and only if sjv

k
πv

k(j
v
k) < sjv

k
πv

k(j
v
k + 1).

The proof of the last statement is almost the same (with αk+1 replaced by αk, and l < k+1
replaced by l < k). ¤

Lemma 13 For every permutation v, we have πv
k = γµ(v) for k ≥ pv.

Proof. Throughout the proof, we will omit the superscript v.
We claim that for every k, πk and πk+1 have the same cycle type. If k ≥ p, πk = πk+1 and
the statement is obvious. Otherwise, we have

πk = (1, . . . , µ1)(µ1 + 1, . . . , µ1 + µ2) · · · (. . . , ik − 1, ik, jk + 1, . . .

[
) · · · (

]
. . . , jk, . . .) · · ·

for jk > ik, where the part in brackets either appears (if jk and jk + 1 are in different
cycles) or not. Then

πk+1 = sjk
πksjk

= (1, . . . , µ1) · · · (. . . , ik − 1, ik, jk, . . .

[
) · · · (

]
. . . , jk + 1, . . .) · · ·
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has the same type as πk. Indeed, jk + 1 is not the first element of its cycle in πk; jk is the
first element of its cycle in πk if and only jk + 1 is the first element of its cycle in πk+1,
and if this is the case, the relative position of the cycle starting with jk in πk is the same
as the relative position of the cycle starting with jk + 1 in πk+1.
This implies that v = π0 and πp have the same cycle type. Furthermore, πp(i) ≤ i + 1 for
all i, so πp = γµ(πp) = γµ(v). Since πk = πp for k ≥ p, πv

k = γµ(v) for k ≥ p. ¤

Lemma 14 For every permutation v, we have xαv
k,βv

k
= xv for k ≥ pv.

Proof. Obviously, it is enough to prove the statement for k = pv. Throughout the proof,
we will omit the superscript v.
For every k < p, βk+1α

−1
k+1 = βksjk

sjk
α−1

k = βkα
−1
k . That implies that βα−1 = v, where we

write α = αp and β = βp. That means that the monomial xα,β is a rearrangement of the
monomial x.
On the other hand, π(i) = α−1β(i) ≤ i+1 (where π = πp) means that in xα,β, the variable
xiv(i) appears either immediately before or after xv(i)v2(i). That means that xα,β is indeed
a product of “cycles” xiv(i)xv(i)v2(i) · · · xvc−1(i)i, and it remains to show that for every such
monomial, i < v(i), v2(i), . . ., and that if xiv(i)xv(i)v2(i) · · · xvc−1(i)i appears to the left of
xi′v(i′)xv(i′)v2(i′) · · · xvc′−1(i′)i′ , then i < i′.
Note that for every k < p, jk > ik ≥ 1. Therefore α(1) = sj0sj1 · · · sjp−1(1) = 1. In other
words, the first variable of xα,β is indeed x1v(1). That means that the first “cycle” of xα,β

is x1v(1)xv(1)v2(1) · · · xvc−1(1)1, which satisfies the above conditions. Furthermore, if ik ≤ c,
i < j and αk(i) > αk(j), then by Lemma 11 we have αk(i) = βl(il) for some l < k. Then

βl(il) = vαl(il) = vαlπl(il − 1) = v2αl(il − 1) = . . . = vil(1).

That means that in the one-line notation of αk for ik ≤ c, the elements that are not in
{1, v(1), v2(1), . . . , vl(1)} are written in increasing order. Induction on the number of cycles
of v finishes the proof. ¤

Lemma 15 Take v ∈ Sn and k < pv. Then there exists (a unique) w ∈ Sn such that:

• k < pw

• iwl = ivl for l = 0, 1, . . . , k
• jw

l = jv
l for l = 0, 1, . . . , k

• αw
k = αv

k

• βw
k = βv

ksjv
k

Proof. In the previous lemma, we proved that βv
k(αv

k)
−1 = v for every v and k. Therefore

the only possible candidate for such w is w = βv
ksjv

k
(αv

k)
−1. Let us prove that this permu-

tation indeed satisfies all the conditions of the lemma.
We want to prove that k < pw, iwl = ivl and jw

l = jv
l for all 0 ≤ l ≤ k. Note that it is

enough to prove that for all l = 0, . . . , k, we have πw
l (i) = πv

l (i) for i ≤ ivl . Assume by
induction that this holds for 0, . . . , l − 1. Then

πw
l = sjw

l−1
· · · sjw

0
βv

ksjv
k
(αv

k)
−1sjw

0
· · · sjw

l−1
= sjv

l−1
· · · sjv

0
βv

ksjv
k
(αv

k)
−1sjv

0
· · · sjv

l−1

and

πv
l = sjv

l−1
· · · sjv

0
βv

k(αv
k)
−1sjv

0
· · · sjv

l−1
,
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so we have to prove that

sjv
k
(αv

k)
−1sjv

0
· · · sjv

l−1
(i) = (αv

k)
−1sjv

0
· · · sjv

l−1
(i)

for i ≤ ivl . This is equivalent to

(αv
k)
−1sjv

0
· · · sjv

l−1
(i) 6= jv

k , j
v
k + 1

for i ≤ ivl , and this is equivalent to

ivl < sjv
l−1
· · · sjv

0
αv

k(j
v
k), sjv

l−1
· · · sjv

0
αv

k(j
v
k + 1).

Since αv
k = sjv

0
· · · sjv

k−1
, this is equivalent to

sjv
l
sjv

l+1
· · · sjv

k−1
(jv

k), sjv
l
sjv

l+1
· · · sjv

k−1
(jv

k + 1) > ivl .

Since jv
k > ivk, this follows from Lemma 10.

Also, αw
k = sjw

0
· · · sjw

k−1
= sjv

0
· · · sjv

k−1
= αv

k and βw
k = wαw

k = βv
ksjv

k
(αv

k)
−1αw

k = βv
ksjv

k
.

That means that w has all the necessary properties. ¤

Lemma 16 For every character χ of Hn(q) and all indices k ≥ 0, we have

(3)
∑

v∈Sn

χ(T̃πv
k
)xαv

k,βv
k

=
∑

v∈Sn

χ(T̃πv
k+1

)xαv
k+1,βv

k+1
.

Proof. Fix k in and consider the left-hand side

(4)
∑

v∈Sn

χ(T̃πv
k
)xαv

k,βv
k
.

Take v ∈ Sn. If k ≥ pv, then αv
k+1 = αv

k, βv
k+1 = βv

k and πv
k+1 = πv

k. Therefore

χ(T̃πv
k+1

)xαv
k+1,βv

k+1
= χ(T̃πv

k
)xαv

k,βv
k
.

On the other hand, if k < pv, take w from the last lemma. Write α = αv
k, β = βv

k , π = πk
v ,

j = jv
k . We know that αw

k = α, βw
k = βsj, πw

k = (αw
k )−1βw

k = πsj, αv
k+1 = αsj, βv

k+1 = βsj,
πv

k+1 = (αv
k+1)

−1βv
k+1 = sjπsj, αw

k+1 = αw
k sjw

k
= αsj, βw

k+1 = βw
k sjw

k
= (βsj)sj = β and

πw
k+1 = (αw

k+1)
−1βw

k+1 = sjπ. We also know that both xαv
k,βv

k
= xα,β and xαw

k ,βw
k

= xα,βsj

appear in (4), the former with coefficient χ(T̃π) and the latter with coefficient χ(T̃πsj
).

Note that inv(σsj) = inv(σ) + 1 if and only if σ(j) < σ(j + 1). Since, by Lemma 12, we
have π−1(j) > π−1(j + 1), that implies that inv(sjπ) = inv(π−1sj) = inv(π)− 1.
If β(j) < β(j + 1), we have sjπ(j) < sjπ(j + 1) by Lemma 12 and therefore inv(sjπsj) =
inv(sjπ)+1 = inv(π). Also by Lemma 12, we have π(j) < π(j+1) and inv(πsj) = inv(π)+
1. If, on the other hand, β(j) > β(j + 1), we have sjπ(j) > sjπ(j + 1) and π(j) > π(j + 1)
by the same lemma and inv(sjπsj) = inv(sjπ) − 1 = inv(π) − 2, inv(πsj) = inv(π) − 1.
Note that the first statement of Lemma 11 tells us that α(j) < α(j + 1). Let us study the
two possible cases individually:

• α(j) < α(j + 1), β(j) < β(j + 1), inv(sjπ) = inv(π) − 1, inv(πsj) = inv(π) + 1,
inv(sjπsj) = inv(π). By Proposition 3, inv(πsj) = inv(sj(sjπ)sj) = inv(sjπ) + 2
implies

χ(T̃πsj
) = χ(T̃sjπ) + (q1/2 − q−1/2)χ(T̃π).

Therefore

χ(T̃π)xαjβj
xαj+1βj+1

+ χ(T̃πsj
)xαjβj+1

xαj+1βj
=
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= χ(T̃π)xαjβj
xαj+1βj+1

+
(
χ(T̃sjπ) + (q1/2 − q−1/2)χ(T̃π)

)
xαjβj+1

xαj+1βj
=

= χ(T̃π)
(
xαjβj

xαj+1βj+1
+ (q1/2 − q−1/2)xαjβj+1

xαj+1βj

)
+ χ(T̃sjπ)xαjβj+1

xαj+1βj
.

By (2), and because, by Proposition 3, χ(T̃π) = χ(T̃sjπsj
), this is equal to

χ(T̃sjπsj
)xαj+1βj+1

xαjβj
+ χ(T̃sjπ)xαj+1βj

xαjβj+1
.

If we multiply the equality

χ(T̃π)xαjβj
xαj+1βj+1

+ χ(T̃πsj
)xαjβj+1

xαj+1βj
=

= χ(T̃sjπsj
)xαj+1βj+1

xαjβj
+ χ(T̃sjπ)xαj+1βj

xαjβj+1

on the left by xα1β1 · · ·xαj−1βj−1
and on the right by xαj+2βj+2

· · ·xαnβn , we get

χ(T̃π)xα,β + χ(T̃πsj
)xα,βsj

= χ(T̃sjπsj
)xαsj ,βsj

+ χ(T̃sjπ)xαsj ,β.

But this can also be written as

χ(T̃πv
k
)xαv

k,βv
k

+ χ(T̃πw
k
)xαw

k ,βw
k

= χ(T̃πv
k+1

)xαv
k+1,βv

k+1
+ χ(T̃πw

k+1
)xαw

k+1,βw
k+1

.

• α(j) < α(j + 1), β(j) > β(j + 1), inv(sjπ) = inv(π) − 1, inv(πsj) = inv(π) − 1,
inv(sjπsj) = inv(π) − 2. If we reverse the roles of v and w, we get the previous
case. Therefore we also have

χ(T̃πv
k
)xαv

k,βv
k

+ χ(T̃πw
k
)xαw

k ,βw
k

= χ(T̃πv
k+1

)xαv
k+1,βv

k+1
+ χ(T̃πw

k+1
)xαw

k+1,βw
k+1

.

This finishes the proof. ¤

Proof of Proposition 5. Recall that the Bruhat order on Sn is the partial order generated
by the relations v < v · (i, j) for inv(v) < inv(v · (i, j)) (see [BB05, Chapter 2]). Let us
prove by induction on k that for every v ∈ Sn,

xαv
k,βv

k
= xv +

∑
z>v

cv,k
z xz

for some cv,k
z ∈ C. We have xαv

0 ,βv
0

= xv, so this is true for k = 0, assume that the statement
holds for k. Write α = αv

k, β = βv
k , j = jv

k . By definition, αv
k+1 = αsj, βv

k+1 = βsj. We
know (see Lemma 11) that α(j) < α(j + 1). There are two possible cases:

• β(j) < β(j + 1). By (2), we have

xαj+1βj+1
xαjβj

= xαjβj
xαj+1βj+1

+ (q1/2 − q−1/2)xαjβj+1
xαj+1βj

,

if we multiply this equation on the left by xα1β1 · · · xαj−1βj−1
and on the right by

xαj+2βj+2
· · ·xαnβn , we get

xαv
k+1,βv

k+1
= xα,β + (q1/2 − q−1/2)xα,βsj

.

By Lemma 15, we have α = αw
k and βsj = βw

k for w = βsjα
−1. Since w =

v · (α(j), α(j + 1)), α(j) < α(j + 1) and v(α(j)) = β(j) < β(j + 1) = v(α(j + 1)),
we have w > v and by induction

xαv
k+1,βv

k+1
= xv +

∑
z>v

cv,k
z xz +(q1/2− q−1/2)xw +(q1/2− q−1/2)

∑
z>w

cw,k
z xz = xv +

∑
z>v

cv,k+1
z xz.
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• β(j) > β(j + 1). By (2), we have

xαj+1βj+1
xαjβj

= xαjβj
xαj+1βj+1

and hence

xαv
k+1,βv

k+1
= xα,β = xv +

∑
z>v

cv,k
z xz = xv +

∑
z>v

cv,k+1
z xz.

by the induction hypothesis.

Lemma 14 states that xv = xαv
pv ,βv

pv
, so

xv = xv +
∑
z>v

cv,pv

z xz.

Take any linear extension of the Bruhat order. The matrix corresponding to the linear
transformation xv 7→ xv is square, lower triangular, and has 1’s on the diagonal. This proves
that {xv : v ∈ Sn} is a basis, and that the change of basis matrix is unitriangular. ¤

Proof of the main theorem. We have

Immχ X =
∑

v∈Sn

χ(T̃v)xv =
∑

v∈Sn

χ(T̃πv
0
)xαv

0 ,βv
0

by construction of αv
0, β

v
0 . By the last lemma, we have

∑

v∈Sn

χ(T̃πv
0
)xαv

0 ,βv
0

=
∑

v∈Sn

χ(T̃πv
1
)xαv

1 ,βv
1

= . . . =
∑

v∈Sn

χ(T̃πv
k
)xαv

k,βv
k

for every k ≥ 0. If k ≥ maxv pv, then
∑

v∈Sn

χ(T̃πv
k
)xαv

k,βv
k

=
∑

v∈Sn

χ(T̃γµ(v)
)xv

by Lemmas 13 and 14. ¤

Acknowledgments

The author would like to thank Mark Skandera for suggesting to write up these results in
a separate paper, and for many helpful comments.

References

[BB05] A. Björner and F. Brenti. Combinatorics of Coxeter groups, Graduate Texts in Mathematics,
vol. 231, Springer, New York (2005)

[GP00] M. Geck and G. Pfeiffer. Characters of finite Coxeter groups and Iwahori-Hecke algebras,
vol. 21 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford Uni-
versity Press, New York (2000).

[Kon] M. Konvalinka On combinatorial formulas for the characters of Hecke algebras. Preprint (2008)
[KS] M. Konvalinka and M. Skandera Generating functions for Hecke algebra characters. to appear

in Canadian J. Math.
[Ram91] A. Ram. A Frobenius formula for the characters of the Hecke algebras. Invent. Math., 106, 3

(1991) pp. 461–488.
[RR97] A. Ram, J. Remmel. Applications of the Frobenius formulas for the characters of the symmetric

group and the Hecke algebras of type A. J. Algebraic Combin., 6 (1997), no. 1, pp. 59–87
[Sta99] R. P. Stanley, Enumerative combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999
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