A NOTE ON QUANTUM IMMANANTS AND THE CYCLE BASIS OF
THE QUANTUM PERMUTATION SPACE

MATJAZ KONVALINKA

ABSTRACT. There are many combinatorial expressions for evaluating characters of the
Hecke algebra of type A. However, with rare exceptions, they give simple results only for
permutations that have minimal length in their conjugacy class. For other permutations,
a recursive formula has to be applied. Consequently, quantum immanants are complicated
objects when expressed in the standard basis of the quantum permutation space.

In this paper, we introduce another natural basis of the quantum permutation space, and
we prove that coefficients of quantum immanants in this basis are class functions.

1. THE SYMMETRIC GROUP AND IMMANANTS

Denote by &,, the symmetric group of n, i.e. the group of permutations of the set {1,...,n}.
We write permutations in the one-line notation: v = vjvs - - - v, means that v(i) = v;. We
multiply permutations from the right: 24315 - 53241 = 53412. We will often use the cycle
notation 24315 = (124)(35). We will always write the smallest element of the cycle first,
and order the cycles so that the first elements form an increasing sequence. We define the
cycle type u(v) as the sequence of lengths of these cycles. Note that it is a composition,
not a partition; permutations (124)(35) and (14)(253) have a different cycle type. An
inversion of a permutation v is a pair (4, j) satisfying ¢ < j and v; > v;. Denote by inv(v)
the number of inversions of v. We denote the identity permutation by id.

The symmetric group &,, is generated by simple transpositions s; = (i,i+1),1 <i <n—1,
which satisfy the relations

2 .
s;=1 fori=1,...,n—1,
Si8i415i = Si+15iSi41 if ’Z - j’ =1,
SiSj = S;j8; if |Z —j| Z 2.

An expression v = 8;, 8, - -+ 8;,, 1 < i; < n—1,1is reduced if it is the shortest such expression
for v, and we have k = inv(v). We call k the length of v. All reduced expressions contain
the same generators, see [BB05, Corollary 1.4.8 (ii)].

A (virtual) character of a group & is a linear function y: & — C for which x(ab) = x(ba)
for all a,b € &. For example, the trace of a representation p: & — GL, is a character.
The simplest character is the trivial character n(v) = 1. In the symmetric group, another
important character is the sign character e(v) = (—1)™v(®),

Choose commutative variables z;;, 1 < 4,5 < n. Denote by A, the vector space of
all polynomials in z;; generated by monomials of the form z, = 1,22y, - - - Ty, for a

permutation v € &,,, and call A, the permutation space. We will also use notation
1
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Tup = TuyoyLTugvs *** Lunv,, Where u,v € &,. For a character x: &, — C, define the
x-immanant Immy X € A, by

Imm, X = Z X(v)xy.
Ueen

For example, Imm, X is the permanent per X of the matrix X = (2;j)nxn, and Imm, X is
the determinant det X.
2. THE HECKE ALGEBRA AND QUANTUM IMMANANTS

A beautiful quantization of the symmetric group is H,(q), the Hecke algebra of type A.
Here ¢ € C\ {0}. It is defined as the C-algebra generated by the set of modified natural

generators {ij : 1 < j <n—1} subject to the relations
TQZ_ =1+ (ql/2 —q_l/g)ii fori=1,...,n—1,

T, T, T, = Ty, T, T, fori=1,...,n -2,
Tsiij = Tsjii for [i — 5] > 2

REMARK 1 In other contexts, natural generators T, = q'/ 27, w are often used instead of
Ty.

If s;, - -84, is a reduced expression for v of length &k = inv(v), we define

k
This is well defined (say, by Matsumoto’s theorem, see [GP00, Theorem 1.2.2]). The
elements T, v € &, form a basis of the algebra H,(¢q) by Bourbaki’s theorem, see for

example [GP00, Theorem 4.4.6].

If inv(s;w) = inv(w) — 1, we have w = s;(s;w) and therefore

TsiTw - Tsifsi(siw) - Tifsiw - (1 + (QUQ - q_l/Q)fsi)Tsiw = Tsiw + (q1/2 - q_1/2)fw‘
Thus

FE o T o inv(s;w) = inv(w) + 1
sitw = T 1/2 _ —1/2\7 . o) — i _ !
Tow + (q ¢ YHT, : inv(s;w) =inv(w) —1
and similarly

~ =~ Tws, o oinv(ws;) = inv(w) + 1
T,Ts, = = ’ =~ . . .
' Tws, + (@2 — ¢ V)T, : inv(ws;) = inv(w) — 1

A character of H,(q) is a linear functional x: H,(q) — C satisfying
(1) X(fwfv) = X(vaw)-

EXAMPLE 2 Let us prove that the linear map n: H,(q) — C defined by n(fv) = ¢"™v)/2 ig
a character by showing that 1(T,,T,) = ¢@@)+nv@)/2 for all w,v. This is obviously true
if v = id, assume that it holds for all w,v with inv(v) = k — 1, and assume inv(v) = k. We
have v = sv’ for some s € {s1,...,8,-1}, inv(¢v') = k — 1. If inv(ws) = inv(w) + 1, then

n(fwfv) = n(fwfs,fv’) = n(fwsfv’) = q(inV(ws)+iHV(v/))/2 = q(inv(w)+inv(v))/2’
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and if inv(ws) = inv(w) — 1, then
U(vafv) = U(vafsfv’) = n((fws + (q1/2 - q_l/Q)va)Tvv’) =
_ n(TwsTv’) + (q1/2 . q_1/2)n(TwTv’) — q(inv(ws)+inv(v'))/2 + (ql/Q o q—1/2)q(inv(w)—i-inv(v’))/Q —
— q(lnv(w)erv(v))/Qfl + (q1/2 i q71/2)q(1nv(w)+mv(v)71)/2 _ q(lnv(w)+1nv(v))/2.

This character is called trivial. We can similarly prove that e: H,(q¢) — C, defined by
e(T,) = (—q~ /2™ is a character, we call it the sign character.

We have the following relation for characters of H,(q).
Proposition 3 Take v € &,,, s = s; for some i € {1,...,n — 1}, and a character x of
H,(q). Then:
(a) if inv(svs) = inv(v), then x(Thys) = x(T,); N N
(b) if inv(svs) = inv(v) + 2, then X(Tws) = x(T0) + (¢'* — ¢7*)x(Tw) = X(T,) +
(a2 = V2)X(Tos); ~ ~
(C) Zf iIlV(SUS) = IIlV( ) — 2, then X(Tsvs) = X(Tv) - (q1/2 - qil/z)X(Tm) = X(Tv) -
(62 = ¢ 2)x(To);
Proof. Assume that inv(sv) = inv(v) — 1 and inv(svs) = inv(v). Then
X(TsTvTS) = X((Tsv + (q1/2 - q71/2)ﬁ,)fs) = X(Tsvs»’) + (q1/2 - qil/Q)X(TvTS)
and, by (1),
(T T, T‘S) = X(fvTSfS) = X(lfv(l + (¢ Y2 q_l/Q)TS)) X(T ) + (q1/2 q_1/2))((i,f9),
50 X(Tuws) = x(T,,). If inv(sv) = inv(v) 4 1 and inv(svs) = inv(v), then
X(fSTVUTS) = X(TsvTS) = X(TsvS) + (¢ 2 —gq 1/2) ( v)
and, by (1),

X(Tsfvfs} = X(Tsfsfv) = x((1+ (q1/2 - q71/2)f8>fv> = X(Tvv) + <q1/2 - qil/Q)X(Tst)-
This proves (a). Let us prove (b). If inv(svs) = inv(v) + 2, then inv(sv) = inv(vs) =
inv(v) 4+ 1, and so L

XNTTT) = X(Tows) = X(TTL) =
= X(T.(1+ (4" = ¢7))T) = X(To) + (¢° = ¢ V*)x(Tos),
and since X(ﬁi,) = X(i)i), we have X(Tsvs) X(T )+ (g% — q*1/2)x(iv). Swapping
the roles of v and svs, we get (c) from (b). O

The quantum polynomial ring is generated by n? variables z;;, 1 < ,j < n, subject to the
relations

TiTik = q1/213ikl‘z'la

TikTik = q1/2$ik$jk>

Tjplil = Tk,

(2)

12 —1/2
TiTik = T + (g 2 g )Tk

for all indices i < j, kK < [. Denote by A,(q) the subspace generated by monomials
Tup = Tuywy Tugy * *° Tupwn, Where u,v € G, and call it the quantum permutation space.
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We will also use notation z, = X1y, Toy, * * * Tny,, Where v € &,,. The set {z,: v € &,} is
a basis of A, (q), we call it the natural basis. For a character x: H,(q) — C, define the
modified x-immanant Tmmy X € A,(q) by

Imm, X = Z (T,
'UGG’VL
We call
ImmnX — Z qinv(v)/QxU

vVES,
the modified quantum permanent, and

Imm, X = E —1/2 inv v)xv
vVES,

is the modified quantum determinant.

REMARK 4 We use the word modified to distinguish this object from the sum

> X(T)a.

’U€6n
See [KS] for other results on quantum immanants and for further references.

3. CYCLE BASIS OF THE QUANTUM PERMUTATION SPACE AND THE MAIN RESULTS

Given a permutation v, write it in cycle notation
1 .1 .2 .2 o 0
v =iy, (00 dy) e (i)

so that 4/ is the smallest element of the j-th cycle and so that i} < i? < ... < 4. Define
the v cycle monomial, denoted x", to be the product

(T @i - T ) (Tealae o T 2) - (TipigTigy - Tar, i)
(2 22 (2 13 74/‘111 (2 7,2 3 ZHQZl 74112 127/3 ZH’I"Zl

For example, consider the permutation 45213, which is (14)(253) in cycle notation. Then
45213

L4513 = T14T25L32041 %53 and @ = 11474122553 L32-
Proposition 5 The monomials {z": v € &,} form a basis of A,(q). Furthermore, the
transition matriz relating this basis to the natural basis {z,: v € &,} is unitriangular.

We will give the proof in the next section.

There are several results that give combinatorial descriptions of families of characters of
the Hecke algebra H,(q) (see [Ram91], [RR97] and [Kon, §3]. However, neither of these
results gives a description of x(7},) or X(Tv) for all v € &,, except in the simplest of cases
(namely, the trivial and sign characters). For v which is not of minimal length in its
conjugacy class, we have to use Proposition 3 to find X( »). Consequently, there are no
simple formulas for immanants, with the exception of the modified quantum permanent
and determinant.

The main result of this paper gives the expansion of modified quantum immanants in the
cycle basis.
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ExaMPLE 6 Take the modified quantum permanent for n = 3. Since

1/2

1/2 - ~1/2
T21T32 + ¢ / T9oX31 = T32X21 + ¢ T9oX31 = T32X21 + ¢ / 31222,

we have

/2

1/2 1/2 3
T11T22%33 + ¢ / T11T23%32 + ¢ / T12T21%33 + qT12T23T31 + qT13T21232 + §°/ "T13T22T31 =

1/2 1/2 1/2
= T11%22T33 + ¢ / T11T23%32 + ¢ / T12221T33 + qT12223T31 + qT13T32T21 + ¢ /

Note that in this case, the coefficients of the cycle basis elements in the modified quantum
permanent depend solely on the cycle type of the permutation. This is, in fact, true for
all modified quantum immanants, as the main theorem shows.

X13L31L22-

Choose a composition p = (p1,. .., ip) of n. Denote the permutation

(1727"‘7M1)(M1+17M1+27"'7/~L1+:u2>”'

by 7,. Recall that if v is a permutation, we denote by u(v) its cycle type (see the first
paragraph of Section 1).

The following is obvious.

Proposition 7 A permutation v is of the form ~, for some p if and only if v(i) <i+1
for all i. O

The main theorem tells us that the set {zV: v € &,,}, which is, by Proposition 5, a basis,
is in a certain sense superior to the usual basis {z,: v € &, }.

Main theorem For a character x of H,(q), we have

Imm) X = Z X(Tv,yu(v))x”.

Ueen

REMARK 8 The quantum permutation space is isomorphic as a vector space to the Hecke
algebra of type A via the isomorphism x, 3 +— T31T,-1. Therefore the main theorem gives
us a new basis of the Hecke algebra of type A.

4. PROOFS

We will make use of the following procedure, which takes a permutation v as an input and
produces three sequences oy, By and 7} of permutations and two sequences i} and j; of
integers.

(1) Set oy =1id, By =v, k= 0.

(2) Repeat the following. Take 7y = (a}) '8y and let i} be the least index for which
mp(iy) > iy, + 1. If no such index exists, set o}, = of, By, = By, T = 7}, and
terminate the sequences ¥ and j”. Otherwise

() Set jy = m(ip) — 1.
(b) Set oy = sy, B = Bisyy-
(c) Increment k.
We will denote by p” the smallest index for which 7}, (i) < i+ 1 for all i; note that we have

v — v — v — v v —_ v R v v J— v N
Qpo = Qpuyy = Qpuyg = ..., B = Bhoyy = Bpoyo = .o, Tpo = Mgy = Tpuyp = ... In theory,

we could have p¥ = oo, but we will prove in Lemma 9 that this is not the case. Also note
that

-1 —1
Ther = (1) Bipr = sjp(ag) ™ Bisjy = sjpmys;p
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if & < p".
As an example, consider the permutation v = 45132. Applying the procedure, we have
k 0 1 2 3 4
ay) 12345 12435 14235 14325 14325
By 45132 45312 43512 43152 43152
u 45132 35412 24513 23154 23154
7y, cycle notation | (143)(25) (134)(25) (124)(35) (123)(45) (123)(45)
i 1 1 2
Jr 3 2 3

Let us prove a series of lemmas about these sequences.

Lemma 9 For every permutation v, the sequence i,17,15, ... 15 weakly increasing. Fur-
thermore, if i}_, = 1} for some k < p’, then j;_, = ji + 1. Consequently, p* < (”;1).

Proof. Throughout the proof, we will omit the superscript v.

We want to prove that i,_; < ig. Since iy is the smallest index for which 7y (ix) > 7 + 1,
it is enough to prove that (i) < i+ 1 when ¢ < i5_1. For such 4, we have i < ix_1 < ji_1,
so s;,_, (1) = i. Furthermore, m,_1(i) < ¢+ 1 by definition of i;_;. But then m;_(i) <
i+ 1 <ip_y < jg—1 and s;,_, m—1(i) = m,_1(7). In other words, we have proved that

(i) = Sj Th-155,, (1) = 85 M1 () = M1 (1) < i+ 1.
Assume that 7;,_; = ;. Then

g+l = m(in) = mii—1) = 85, Te—185,_, (Ie—1) = S5, Th—1(ik—1) = 8, Je—1+1) = Jr—1,
where we used the fact that ji_1 > i,y and therefore s;,_ (ix—1) = ix_1.

That means that (i}, jr) # (i}, 77) if k # 1. Since 1 < i < jp < n, we have at most ("51)
such pairs. O

Lemma 10 Take v € &, and k <p". Ifi >} and I <k, then sjpsj - sjp

kfl(z) > 7.
Proof. Throughout the proof, we will omit the superscript v.

By induction, it is enough to prove this statement for [ = k£ — 1. By the previous lemma,
we have 1 > ip_q. If i > ix_q, then ¢ > i1 + 2. Multiplicating a permutation 7
by a simple transposition changes the value 7(i) by at most 1 for any ¢; in particular,
Sju_y (1) > ig—1 + 1 > ip_y. If iy = 4y and @ > i), + 2, the reasoning is the same. So it
remains to prove that if iy, = 454, then s;,_, (i + 1) > dp_1. But jy_1 = ji + 1 by the
previous lemma and ji + 1 > 4, + 1, so

Sjpi (i + 1) = sj1(te + 1) =i + 1 =gy +1 > i,
which finishes the proof. U

Lemma 11 For allv and k < p*, we have a(j;) < ap(jp+1). Furthermore, if i < j and
ap(i) > ap(j), then aj(i) = B (i}) for some | < k.

Proof. Throughout the proof, we will omit the superscript v.

Let us first prove the second statement by induction on k. For £ = 0, o, = id and there is
nothing to prove. Now assume that the statement holds for k —1. We have oy, = a_15j, ;.
Take i < j with ay (i) > ax(j). We have the following possible cases:
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® i, j # jr1,Jk—1 + 1. Then ap(i) = ag_1(7) and ag(j) = ax_1(j) and, by the
induction hypothesis, ay(i) = §;(4;) for some | < k — 1 < k.
® i < ji1,] = Jk—1 0T @ < jrp_1,] = Je—1+1. Then ay(i) = ap_1(7), i (j) = arp—1(j +
1) (respectively, ag(j) = ag_1(j — 1)) and ag(i) = 5,(4;) for some | < k — 1 < k by
the induction hypothesis.
®i = ji1,J > jr1+1lori=jr1+1,7 > 1 +1. Then ap(i) = ap_1(i +
1) (respectively, ax(i) = agp_1(i — 1)) and ag(j) = ax_1(j). By the induction
hypothesis, ax_1(i + 1) = ax(i) = Fi(i;) for some | < k — 1 < k (respectively,
ag—1(i — 1) = ag(i) = Gi(4;) for some | < k —1 < k).
i = ji1,7 = Jk1 + 1. In this case, ay(i) = ax_1(1 + 1) = ax_1(jx—1 + 1) =
1 (Tr—1(k=1)) = Br—1(ik—1)-
Now assume that ay(jx) > ag(jr +1). We now know that this implies that ax(jr) = Gi(4)
for some | < k. Furthermore, Gi(i;) = Bisj, - - - Sj,_, (i) = Bi(0) because j;, > i, jiz1 >
il+1 > il, ete. If 1y < ik, then Jk = Oélzlﬁl(il) = Oélzlﬂk(il) = Tk(il) =< il +1< Zk +1< jk:,
a contradiction. On the other hand, i; = i) implies j, = a; ' B(i)) = a; ' Bi(is) = m(ix) =
Jr + 1, again a contradiction. Therefore we must have a(jx) < ax(jx + 1). O

Lemma 12 For all v and k < p¥, we have (73)7'(52) > (7})"'(ji + 1). Furthermore,
BeGr) < BiGk +1) if and only if s;mi(ji)) < s;pmi (g + 1), and if and only if m;(ji) <
(g + 1)

Proof. Throughout the proof, we will omit the superscript v.

We know that (m3) ' (jx + 1) = ix. Therefore (m;) ' (jx) < ix would, by definition of iy,
imply jx = m.((71) " () < (m6) " (k) + 1 < 4p, < Ji, a contradiction. That proves the
first statement.

Denote s, (ji) = sj.0% Br(jk) = a1 B() by i and s;, m,(jk + 1) = o} Be(ji + 1) by
Jg. i < jand ag(d) = Be(jr) > apr1(j) = Br(jr + 1), then Lemma 11 implies that
ag+1(i) = Be(jr) = Bi(4;) for some | < k4 1. Like in the proof of the previous lemma,
Bi(iy) = 6i(3;). Then Br(jx) = Br(i;) implies jx = ; < ix < jg, a contradiction. Similarly,
i > j and ogi1(i) = Bre(f) < ars1(j) = Be(jr + 1) implies api1(j) = Br(jr + 1) = Bilir) =
Bi(i;) for some | < k+ 1, and jr + 1 = 4; < i < ji gives the desired contradiction.
Therefore 3 (57) < B¢ (jp + 1) if and only if s;7p(57) < sjpmp(jp +1).

The proof of the last statement is almost the same (with a1 replaced by oy, and [ < k+1
replaced by [ < k). O

Lemma 13 For every permutation v, we have w, = v, for k > p°.

Proof. Throughout the proof, we will omit the superscript v.
We claim that for every k, 7, and 7,1 have the same cycle type. If k > p, m, = 71 and
the statement is obvious. Otherwise, we have

ﬂ-k:(177:u1)(/'61+177:u1+:uZ)<7Zk_177/k7jk+17|)(:|n7k;)

for jp > i, where the part in brackets either appears (if j, and jx + 1 are in different
cycles) or not. Then

7rk’+1:8jk7rksjk:(17"'7M1)"'("';ik‘_1aik‘7jk7"'|:)"'(:|"'7jk+17"')"'
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has the same type as m,. Indeed, jir + 1 is not the first element of its cycle in m; 7, is the
first element of its cycle in 7 if and only ji + 1 is the first element of its cycle in w4,
and if this is the case, the relative position of the cycle starting with 7, in 7 is the same
as the relative position of the cycle starting with jr + 1 in 7.

This implies that v = my and 7, have the same cycle type. Furthermore, m,(i) < i+ 1 for
all 7, 80 T, = Vu(r,) = Vu(w)- Since 1, = m, for k > p, 7, = Y, for k > p. U

Lemma 14 For every permutation v, we have Top gv = " for k > p.

Proof. Obviously, it is enough to prove the statement for k = p”. Throughout the proof,
we will omit the superscript v.

For every k < p, 5k+1a,;i1 = @Csjksjka,;l = Bkoz,;l. That implies that Ba~! = v, where we
write o = «, and 3 = 3,. That means that the monomial z, g is a rearrangement of the
monomial x.

On the other hand, 7(i) = a™'3(7) < i+1 (where 7 = m,) means that in z, g, the variable
Ti(;) appears either immediately before or after x,(;),2(;). That means that x, s is indeed
a product of “cycles” @y, ;)Ty(iyw2(i) * * * Twe-1(3i)i, and it remains to show that for every such
monomial, i < v(¢),v%(i),..., and that if @@)Zu@ye) - Tee-1i appears to the left of
Lir(ir) Lo (iry2(ir) * ** Lye'—1 iy, then @ < i

Note that for every k < p, jx > i > 1. Therefore a(1) = 5,5, ---5;,_,(1) = 1. In other
words, the first variable of x, s is indeed x,(;). That means that the first “cycle” of z, g
IS T10(1)Tu(1)02(1) * * * Toe-1(1)1, Which satisfies the above conditions. Furthermore, if i, < ¢,
i < 7 and ag(i) > ag(j), then by Lemma 11 we have ay(i) = 5,(4;) for some [ < k. Then

ﬁl(il) = UOél(il) = UOélﬂ'l(il — 1) = UZOél(Z'l — 1) =...= Uil<1).

That means that in the one-line notation of ay for 7, < ¢, the elements that are not in
{1,v(1),v%(1),...,0v'(1)} are written in increasing order. Induction on the number of cycles
of v finishes the proof. O

Lemma 15 Take v € &, and k < p¥. Then there exists (a unique) w € &,, such that:

o k< p¥

o' =1 forl=0,1,... )k
o iV =g forl=0,1,... k
o af =aj

o By = DBisjy

Proof. In the previous lemma, we proved that 8¢(a%)™! = v for every v and k. Therefore
the only possible candidate for such w is w = ﬁ};sjz(a};)_l. Let us prove that this permu-
tation indeed satisfies all the conditions of the lemma.

We want to prove that k < p¥, ¢’ = 4 and j;* = j; for all 0 < [ < k. Note that it is
enough to prove that for all [ = 0,...,k, we have 7"(i) = 7/ (i) for i < ¢}. Assume by
induction that this holds for 0,...,/ — 1. Then

w f— . o .. . v - v 1 -1 ... -1 p— - DY . v -7 v 71 - .« .. .
= S, S]g)uﬁksjg (ak) Sjw Sjw = Sjr Sjgﬂksjfé (ak) Sjy Sjv .
and

v o v vy—1
m o= s S B(ag) T s s
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so we have to prove that
-1 . -1 .
sip(ag) ™ sgg s, (1) = ()™ 85y -~ s, (4)
for « <4j. This is equivalent to
v)—1 . VU
(o)™ sjy - sjp (1) # Jiy Jiy + 1
for + <1}, and this is equivalent to
i < sjp o sjpag(gy), s e sjpag (G + 1),
Since oy, = sju - -+ ;0 this is equivalent to
v " "
SjpSitey Sip k) sipsipy, o sip, Uk 1) >
Since j; > i}, this follows from Lemma 10.

N w o Que (ov\=low Qo
Also, aff = sjw -+ sjw = sjpesp = ap and Y = way = Bks]k(ak) ay = Bisjy.
That means that w has all the necessary properties. O

Lemma 16 For every character x of H,(q) and all indices k > 0, we have

(3) Z X(TWIZ)ZBO‘Z?/BZ - Z X(T“Z+1)$O‘Z+1’ﬁlg+1'

vEG, veEG,

Proof. Fix k in and consider the left-hand side

(4) > X(T)ay -
UGG’VL
Take v € 6,,. If k > p”, then oj | = of, B, = B and 7, = 7. Therefore

X(Try, %oy, 8y, = X(Tay)Tay gy
On the other hand, if k < p®, take w from the last lemma. Write o = ¥, 3 = 3¢, 7 = 7*

v
J = ji. We know that o) = o, By = Bs;, T} = () 1B = TS;, . = asj, By = Bs;,
Thy1 = (CYZH)A@?H = §jTSj, Qg = O'Sjw = asj, B = 51?33'}5 = (Bsj)s; = B and
T = (ak“’ﬂ)*lﬁ}é’+1 = s;m. We also know that both Tay gr = Tap and Taw gr = Tqbs;

appear in (4), the former with coefficient x(7%) and the latter with coefficient x (7%, ).
Note that inv(os;) = inv(o) + 1 if and only if o(j) < o(j + 1). Since, by Lemma 12, we
have 71(j) > 7~ !(j + 1), that implies that inv(s;7) = inv(7's;) = inv(7) — 1.
If B(j) < B(j + 1), we have s;m(j) < s;m(j + 1) by Lemma 12 and therefore inv(s;ms;) =
inv(s;m)+1 = inv(m). Also by Lemma 12, we have 7(j) < 7(j+1) and inv(7s;) = inv(7)+
1. If, on the other hand, 8(j5) > B(j + 1), we have s;7(j) > s;7m(j +1) and 7(j) > n(j+ 1)
by the same lemma and inv(s;7s;) = inv(s;7) — 1 = inv(7) — 2, inv(7s;) = inv(r) — 1.
Note that the first statement of Lemma 11 tells us that a(j) < «(j +1). Let us study the
two possible cases individually:
o a(j) < alj+1), B(j) < B(j+ 1), inv(s;m) = inv(m) — 1, inv(ws;) = inv(m) + 1,
inv(s;ms;) = inv(w). By Proposition 3, inv(ws;) = inv(s;(s;m)s;) = inv(s;m) + 2
implies

X(Trs,) = X(Ta,x) + (0" = ¢ )X(T5).

X(Tr)Tay8,%azsr 01 + X(Trs; ) T840 Tay 08, =

Therefore
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= X(Tﬂ)xajﬂjxaj+lﬂj+l + (X(TS]W) + (q1/2 - q_1/2>X(Tﬂ')> xajﬂj+1xaj+1ﬁj -

1/2 —1/2)

q xajﬁj-&-lxaj-&-lﬁj) + X(Tsﬂ)x%ﬁjﬂxaﬁlﬂj'

= x(T%) (xo‘jﬁjxaj-&-lﬂj-k—l + (¢
By (2), and because, by Proposition 3, x(7,) = X(ijﬂsj), this is equal to

X(TSjﬂ'Sj)xOéj+lﬂj+1xO‘jﬁj + X(Tsﬂ)x%ﬂﬁjaj%ﬁjﬂ‘
If we multiply the equality

X(Te)Tos;% s 408510+ X(Tres;) Ty ;40 %as 08 =
= X(Tsjms; )Tas118;11%as; + X(Tsjn) a0, %as6 41
on the left by xa,s, -+ Ta,_,5,, and on the right by x4, ,5.,, " Ta,p,, We get

X(TW)‘/EO(,,B + X(Trrsj)«raﬂsj - X(Tsjwsj)xasj,ﬂsj + X(Tsjw)xasj,ﬁ‘

But this can also be written as

X(Tp) oy + X (T ) v g = X(Try, )og y,, + X (Trp, )Tap, e, -
o a(j) < alj+1), B(j) > B(j + 1), inv(s;m) = inv(m) — 1, inv(ws;) = inv(m) — 1,
inv(s;ms;) = inv(mw) — 2. If we reverse the roles of v and w, we get the previous
case. Therefore we also have

X(Tp) oy + X (T ) wog g = X(Try, Vo, + X (Trp, VTap, e, -
This finishes the proof. O
Proof of Proposition 5. Recall that the Bruhat order on G,, is the partial order generated

by the relations v < v - (4,7) for inv(v) < inv(v - (4,7)) (see [BB05, Chapter 2]). Let us
prove by induction on k that for every v € G,,,

k
Tap gy = Ty + E :Cg, Lz
z>v

for some 2% € C. We have 243 g2 = &y, so this is true for k = 0, assume that the statement
holds for k. Write a = oy, 8 = , j = ji. By definition, o}, = as;, B, = Bs;. We
know (see Lemma 11) that a(j) < a(j + 1). There are two possible cases:

e 3(j) < B(j+1). By (2), we have
Toji1Bi1Ta;f; = Ta;BjTaji i T (q1/2 - q_l/z)xaj5j+lxaj+1gj,

if we multiply this equation on the left by 4,p, - Za,_,5,_, and on the right by

Taj 0B " Lanpy, We get
12 —1/2
Tay, By = Tap + (07 = V) w0 s,
By Lemma 15, we have o = af and fs; = G for w = fsja~!. Since w =

v-(a(j), a(j+1)), a(j) <a(j+1) and v(a(j)) = 6(j) < B0 + 1) = v(a(j +1)),
we have w > v and by induction

Tap v, =Tot > Fra (g7 =g Py + (07— 7)Y = ay Y

zZ2>v zZ>w zZ>v
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e 5(j) > B(j +1). By (2), we have

LajyiBjrLa;By = LaBilajiifiv

and hence

_ _ v,k _ v,k+1
xazﬂﬁzﬂ =Tap = Ty + E C,"T, = Ty + E C, X,.

zZ>v Z2>v
by the induction hypothesis.

Lemma 14 states that 2 = x40, g, , 50

v
' =z, + g )V x,.

z>v

Take any linear extension of the Bruhat order. The matrix corresponding to the linear
transformation x, — z" is square, lower triangular, and has 1’s on the diagonal. This proves
that {zV: v € G,,} is a basis, and that the change of basis matrix is unitriangular. O

Proof of the main theorem. We have

Imm, X = Z X(Ty)x, = Z X(ng)zaa’ﬂéj

vEG, vEG,

by construction of af, 3j. By the last lemma, we have

> x(T)ragoy = Y X(Ter)aayrgy = .. = > x(Tep)Tap s

VEG, vES, veES,

for every k > 0. If k£ > max, p¥, then

Z X(irz)xocz,ﬁk = Z X(T‘m(u))xv

UEGn vEGn

by Lemmas 13 and 14. Il
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