A NOTE ON QUANTUM IMMANANTS AND THE CYCLE BASIS OF THE QUANTUM PERMUTATION SPACE

MATJAŽ KONVALINKA

Abstract

There are many combinatorial expressions for evaluating characters of the Hecke algebra of type A. However, with rare exceptions, they give simple results only for permutations that have minimal length in their conjugacy class. For other permutations, a recursive formula has to be applied. Consequently, quantum immanants are complicated objects when expressed in the standard basis of the quantum permutation space. In this paper, we introduce another natural basis of the quantum permutation space, and we prove that coefficients of quantum immanants in this basis are class functions.

1. The symmetric group and immanants

Denote by \mathfrak{S}_{n} the symmetric group of n, i.e. the group of permutations of the set $\{1, \ldots, n\}$. We write permutations in the one-line notation: $v=v_{1} v_{2} \cdots v_{n}$ means that $v(i)=v_{i}$. We multiply permutations from the right: $24315 \cdot 53241=53412$. We will often use the cycle notation $24315=(124)(35)$. We will always write the smallest element of the cycle first, and order the cycles so that the first elements form an increasing sequence. We define the cycle type $\mu(v)$ as the sequence of lengths of these cycles. Note that it is a composition, not a partition; permutations $(124)(35)$ and $(14)(253)$ have a different cycle type. An inversion of a permutation v is a pair (i, j) satisfying $i<j$ and $v_{i}>v_{j}$. Denote by $\operatorname{inv}(v)$ the number of inversions of v. We denote the identity permutation by id.

The symmetric group \mathfrak{S}_{n} is generated by simple transpositions $s_{i}=(i, i+1), 1 \leq i \leq n-1$, which satisfy the relations

$$
\begin{aligned}
s_{i}^{2} & =1 & & \text { for } i=1, \ldots, n-1, \\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & & \text { if }|i-j|=1, \\
s_{i} s_{j} & =s_{j} s_{i} & & \text { if }|i-j| \geq 2 .
\end{aligned}
$$

An expression $v=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}, 1 \leq i_{j} \leq n-1$, is reduced if it is the shortest such expression for v, and we have $k=\operatorname{inv}(v)$. We call k the length of v. All reduced expressions contain the same generators, see [BB05, Corollary 1.4.8 (ii)].

A (virtual) character of a group \mathfrak{G} is a linear function $\chi: \mathfrak{G} \rightarrow \mathbb{C}$ for which $\chi(a b)=\chi(b a)$ for all $a, b \in \mathfrak{G}$. For example, the trace of a representation $\rho: \mathfrak{G} \rightarrow G L_{n}$ is a character. The simplest character is the trivial character $\eta(v)=1$. In the symmetric group, another important character is the sign character $\epsilon(v)=(-1)^{\operatorname{inv}(v)}$.

Choose commutative variables $x_{i j}, 1 \leq i, j \leq n$. Denote by \mathcal{A}_{n} the vector space of all polynomials in $x_{i j}$ generated by monomials of the form $x_{v}=x_{1 v_{1}} x_{2 v_{2}} \cdots x_{n v_{n}}$ for a permutation $v \in \mathfrak{S}_{n}$, and call \mathcal{A}_{n} the permutation space. We will also use notation
$x_{u, v}=x_{u_{1} v_{1}} x_{u_{2} v_{2}} \cdots x_{u_{n} v_{n}}$, where $u, v \in \mathfrak{S}_{n}$. For a character $\chi: \mathfrak{S}_{n} \rightarrow \mathbb{C}$, define the χ-immanant $\operatorname{Imm}_{\lambda} X \in \mathcal{A}_{n}$ by

$$
\operatorname{Imm}_{\chi} X=\sum_{v \in \mathfrak{S}_{n}} \chi(v) x_{v}
$$

For example, $\operatorname{Imm}_{\eta} X$ is the permanent per X of the matrix $X=\left(x_{i j}\right)_{n \times n}$, and $\operatorname{Imm}_{\epsilon} X$ is the determinant $\operatorname{det} X$.

2. The Hecke algebra and quantum immanants

A beautiful quantization of the symmetric group is $H_{n}(q)$, the Hecke algebra of type A. Here $q \in \mathbb{C} \backslash\{0\}$. It is defined as the \mathbb{C}-algebra generated by the set of modified natural generators $\left\{\widetilde{T}_{s_{j}}: 1 \leq j \leq n-1\right\}$ subject to the relations

$$
\begin{aligned}
\widetilde{T}_{s_{i}}^{2} & =1+\left(q^{1 / 2}-q^{-1 / 2}\right) \widetilde{T}_{s_{i}} & & \text { for } i=1, \ldots, n-1, \\
\widetilde{T}_{s_{i}} \widetilde{T}_{s_{i+1}} \widetilde{T}_{s_{i}} & =\widetilde{T}_{s_{i+1}} \widetilde{T}_{s_{i}} \widetilde{T}_{s_{i+1}} & & \text { for } i=1, \ldots, n-2, \\
\widetilde{T}_{s_{i}} \widetilde{T}_{s_{j}} & =\widetilde{T}_{s_{j}} \widetilde{T}_{s_{i}} & & \text { for }|i-j| \geq 2
\end{aligned}
$$

REMARK 1 In other contexts, natural generators $T_{w}=q^{1 / 2} \widetilde{T}_{w}$ are often used instead of \widetilde{T}_{w}.

If $s_{i_{1}} \cdots s_{i_{k}}$ is a reduced expression for v of length $k=\operatorname{inv}(v)$, we define

$$
\widetilde{T}_{v}=\widetilde{T}_{s_{i_{1}}} \cdots \widetilde{T}_{s_{i_{k}}}
$$

This is well defined (say, by Matsumoto's theorem, see [GP00, Theorem 1.2.2]). The elements $\widetilde{T}_{v}, v \in \mathfrak{S}_{n}$, form a basis of the algebra $H_{n}(q)$ by Bourbaki's theorem, see for example [GP00, Theorem 4.4.6].
If $\operatorname{inv}\left(s_{i} w\right)=\operatorname{inv}(w)-1$, we have $w=s_{i}\left(s_{i} w\right)$ and therefore

$$
\widetilde{T}_{s_{i}} \widetilde{T}_{w}=\widetilde{T}_{s_{i}} \widetilde{T}_{s_{i}\left(s_{i} w\right)}=\widetilde{T}_{s_{i}}^{2} \widetilde{T}_{s_{i} w}=\left(1+\left(q^{1 / 2}-q^{-1 / 2}\right) \widetilde{T}_{s_{i}}\right) \widetilde{T}_{s_{i} w}=\widetilde{T}_{s_{i} w}+\left(q^{1 / 2}-q^{-1 / 2}\right) \widetilde{T}_{w}
$$

Thus

$$
\widetilde{T}_{s_{i}} \widetilde{T}_{w}=\left\{\begin{array}{cl}
\widetilde{T}_{s_{i} w} & : \operatorname{inv}\left(s_{i} w\right)=\operatorname{inv}(w)+1 \\
\widetilde{T}_{s_{i} w}+\left(q^{1 / 2}-q^{-1 / 2}\right) \widetilde{T}_{w} & : \quad \operatorname{inv}\left(s_{i} w\right)=\operatorname{inv}(w)-1
\end{array},\right.
$$

and similarly

$$
\widetilde{T}_{w} \widetilde{T}_{s_{i}}=\left\{\begin{array}{cl}
\widetilde{T}_{w s_{i}} & : \operatorname{inv}\left(w s_{i}\right)=\operatorname{inv}(w)+1 \\
\widetilde{T}_{w s_{i}}+\left(q^{1 / 2}-q^{-1 / 2}\right) \widetilde{T}_{w} & : \operatorname{inv}\left(w s_{i}\right)=\operatorname{inv}(w)-1
\end{array} .\right.
$$

A character of $H_{n}(q)$ is a linear functional $\chi: H_{n}(q) \rightarrow \mathbb{C}$ satisfying

$$
\begin{equation*}
\chi\left(\widetilde{T}_{w} \widetilde{T}_{v}\right)=\chi\left(\widetilde{T}_{v} \widetilde{T}_{w}\right) \tag{1}
\end{equation*}
$$

Example 2 Let us prove that the linear map $\eta: H_{n}(q) \rightarrow \mathbb{C}$ defined by $\eta\left(\widetilde{T}_{v}\right)=q^{\operatorname{inv}(v) / 2}$ is a character by showing that $\eta\left(\widetilde{T}_{w} \widetilde{T}_{v}\right)=q^{(\operatorname{inv}(w)+\operatorname{inv}(v)) / 2}$ for all w, v. This is obviously true if $v=\mathrm{id}$, assume that it holds for all w, v with $\operatorname{inv}(v)=k-1$, and assume $\operatorname{inv}(v)=k$. We have $v=s v^{\prime}$ for some $s \in\left\{s_{1}, \ldots, s_{n-1}\right\}, \operatorname{inv}\left(v^{\prime}\right)=k-1$. If $\operatorname{inv}(w s)=\operatorname{inv}(w)+1$, then

$$
\eta\left(\widetilde{T}_{w} \widetilde{T}_{v}\right)=\eta\left(\widetilde{T}_{w} \widetilde{T}_{s} \widetilde{T}_{v^{\prime}}\right)=\eta\left(\widetilde{T}_{w s} \widetilde{T}_{v^{\prime}}\right)=q^{\left(\operatorname{inv}(w s)+\operatorname{inv}\left(v^{\prime}\right)\right) / 2}=q^{(\operatorname{inv}(w)+\operatorname{inv}(v)) / 2}
$$

and if $\operatorname{inv}(w s)=\operatorname{inv}(w)-1$, then

$$
\begin{gathered}
\eta\left(\widetilde{T}_{w} \widetilde{T}_{v}\right)=\eta\left(\widetilde{T}_{w} \widetilde{T}_{s} \widetilde{T}_{v^{\prime}}\right)=\eta\left(\left(\widetilde{T}_{w s}+\left(q^{1 / 2}-q^{-1 / 2}\right) \widetilde{T}_{w}\right) \widetilde{T}_{v^{\prime}}\right)= \\
=\eta\left(\widetilde{T}_{w s} \widetilde{T}_{v^{\prime}}\right)+\left(q^{1 / 2}-q^{-1 / 2}\right) \eta\left(\widetilde{T}_{w} \widetilde{T}_{v^{\prime}}\right)=q^{\left(\operatorname{inv}(w s)+\operatorname{inv}\left(v^{\prime}\right)\right) / 2}+\left(q^{1 / 2}-q^{-1 / 2}\right) q^{\left(\operatorname{inv}(w)+\operatorname{inv}\left(v^{\prime}\right)\right) / 2}= \\
=q^{(\operatorname{inv}(w)+\operatorname{inv}(v)) / 2-1}+\left(q^{1 / 2}-q^{-1 / 2}\right) q^{(\operatorname{inv}(w)+\operatorname{inv}(v)-1) / 2}=q^{(\operatorname{inv}(w)+\operatorname{inv}(v)) / 2} .
\end{gathered}
$$

This character is called trivial. We can similarly prove that $\epsilon: H_{n}(q) \rightarrow \mathbb{C}$, defined by $\epsilon\left(\widetilde{T}_{v}\right)=\left(-q^{-1 / 2}\right)^{\operatorname{inv}(v)}$, is a character, we call it the sign character.

We have the following relation for characters of $H_{n}(q)$.
Proposition 3 Take $v \in \mathfrak{S}_{n}, s=s_{i}$ for some $i \in\{1, \ldots, n-1\}$, and a character χ of $H_{n}(q)$. Then:
(a) if $\operatorname{inv}(s v s)=\operatorname{inv}(v)$, then $\chi\left(\widetilde{T}_{\text {svs }}\right)=\chi\left(\widetilde{T}_{v}\right)$;
(b) if $\operatorname{inv}(s v s)=\operatorname{inv}(v)+2$, then $\chi\left(\widetilde{T}_{s v s}\right)=\chi\left(\widetilde{T}_{v}\right)+\left(q^{1 / 2}-q^{-1 / 2}\right) \chi\left(\widetilde{T}_{s v}\right)=\chi\left(\widetilde{T}_{v}\right)+$ $\left(q^{1 / 2}-q^{-1 / 2}\right) \chi\left(\widetilde{T}_{v s}\right) ;$
(c) if $\operatorname{inv}($ svs $)=\operatorname{inv}(v)-2$, then $\chi\left(\widetilde{T}_{s v s}\right)=\chi\left(\widetilde{T}_{v}\right)-\left(q^{1 / 2}-q^{-1 / 2}\right) \chi\left(\widetilde{T}_{s v}\right)=\chi\left(\widetilde{T}_{v}\right)-$ $\left(q^{1 / 2}-q^{-1 / 2}\right) \chi\left(\widetilde{T}_{v s}\right) ;$

Proof. Assume that $\operatorname{inv}(s v)=\operatorname{inv}(v)-1$ and $\operatorname{inv}(s v s)=\operatorname{inv}(v)$. Then

$$
\chi\left(\widetilde{T}_{s} \widetilde{T}_{v} \widetilde{T}_{s}\right)=\chi\left(\left(\widetilde{T}_{s v}+\left(q^{1 / 2}-q^{-1 / 2}\right) \widetilde{T}_{v}\right) \widetilde{T}_{s}\right)=\chi\left(\widetilde{T}_{s v s}\right)+\left(q^{1 / 2}-q^{-1 / 2}\right) \chi\left(\widetilde{T}_{v} \widetilde{T}_{s}\right)
$$

and, by (1),

$$
\chi\left(\widetilde{T}_{s} \widetilde{T}_{v} \widetilde{T}_{s}\right)=\chi\left(\widetilde{T}_{v} \widetilde{T}_{s} \widetilde{T}_{s}\right)=\chi\left(\widetilde{T}_{v}\left(1+\left(q^{1 / 2}-q^{-1 / 2}\right) \widetilde{T}_{s}\right)\right)=\chi\left(\widetilde{T}_{v}\right)+\left(q^{1 / 2}-q^{-1 / 2}\right) \chi\left(\widetilde{T}_{v} \widetilde{T}_{s}\right)
$$

so $\chi\left(\widetilde{T}_{s v s}\right)=\chi\left(\widetilde{T}_{v}\right)$. If $\operatorname{inv}(s v)=\operatorname{inv}(v)+1$ and $\operatorname{inv}(s v s)=\operatorname{inv}(v)$, then

$$
\chi\left(\widetilde{T}_{s} \widetilde{T}_{v} \widetilde{T}_{s}\right)=\chi\left(\widetilde{T}_{s v} \widetilde{T}_{s}\right)=\chi\left(\widetilde{T}_{s v s}\right)+\left(q^{1 / 2}-q^{-1 / 2}\right) \chi\left(\widetilde{T}_{s v}\right)
$$

and, by (1),

$$
\chi\left(\widetilde{T}_{s} \widetilde{T}_{v} \widetilde{T}_{s}\right)=\chi\left(\widetilde{T}_{s} \widetilde{T}_{s} \widetilde{T}_{v}\right)=\chi\left(\left(1+\left(q^{1 / 2}-q^{-1 / 2}\right) \widetilde{T}_{s}\right) \widetilde{T}_{v}\right)=\chi\left(\widetilde{T}_{v}\right)+\left(q^{1 / 2}-q^{-1 / 2}\right) \chi\left(\widetilde{T}_{s v}\right)
$$

This proves (a). Let us prove (b). If $\operatorname{inv}(s v s)=\operatorname{inv}(v)+2$, then $\operatorname{inv}(s v)=\operatorname{inv}(v s)=$ $\operatorname{inv}(v)+1$, and so

$$
\begin{gathered}
\chi\left(\widetilde{T}_{s} \widetilde{T}_{v} \widetilde{T}_{s}\right)=\chi\left(\widetilde{T}_{s v s}\right)=\chi\left(\widetilde{T}_{v} \widetilde{T}_{s} \widetilde{T}_{s}\right)= \\
=\chi\left(\widetilde{T}_{v}\left(1+\left(q^{1 / 2}-q^{-1 / 2}\right) \widetilde{T}_{s}\right)\right)=\chi\left(\widetilde{T}_{v}\right)+\left(q^{1 / 2}-q^{-1 / 2}\right) \chi\left(\widetilde{T}_{v s}\right),
\end{gathered}
$$

and since $\chi\left(\widetilde{T}_{s} \widetilde{T}_{v}\right)=\chi\left(\widetilde{T}_{v} \widetilde{T}_{s}\right)$, we have $\chi\left(\widetilde{T}_{s v s}\right)=\chi\left(\widetilde{T}_{v}\right)+\left(q^{1 / 2}-q^{-1 / 2}\right) \chi\left(\widetilde{T}_{s v}\right)$. Swapping the roles of v and $s v s$, we get (c) from (b).

The quantum polynomial ring is generated by n^{2} variables $x_{i j}, 1 \leq i, j \leq n$, subject to the relations

$$
\begin{align*}
x_{i l} x_{i k} & =q^{1 / 2} x_{i k} x_{i l} \\
x_{j k} x_{i k} & =q^{1 / 2} x_{i k} x_{j k} \tag{2}\\
x_{j k} x_{i l} & =x_{i l} x_{j k} \\
x_{j l} x_{i k} & =x_{i k} x_{j l}+\left(q^{1 / 2}-q^{-1 / 2}\right) x_{i l} x_{j k}
\end{align*}
$$

for all indices $i<j, k<l$. Denote by $\mathcal{A}_{n}(q)$ the subspace generated by monomials $x_{u, v}=x_{u_{1} v_{1}} x_{u_{2} v_{2}} \cdots x_{u_{n} v_{n}}$, where $u, v \in \mathfrak{S}_{n}$, and call it the quantum permutation space.

We will also use notation $x_{v}=x_{1 v_{1}} x_{2 v_{2}} \cdots x_{n v_{n}}$, where $v \in \mathfrak{S}_{n}$. The set $\left\{x_{v}: v \in \mathfrak{S}_{n}\right\}$ is a basis of $\mathcal{A}_{n}(q)$, we call it the natural basis. For a character $\chi: H_{n}(q) \rightarrow \mathbb{C}$, define the modified χ-immanant $\operatorname{Imm}_{\lambda} X \in \mathcal{A}_{n}(q)$ by

$$
\operatorname{Imm}_{\chi} X=\sum_{v \in \mathfrak{S}_{n}} \chi\left(\widetilde{T}_{v}\right) x_{v}
$$

We call

$$
\operatorname{Imm}_{\eta} X=\sum_{v \in \mathfrak{S}_{n}} q^{\operatorname{inv}(v) / 2} x_{v}
$$

the modified quantum permanent, and

$$
\operatorname{Imm}_{\epsilon} X=\sum_{v \in \mathfrak{S}_{n}}\left(-q^{-1 / 2}\right)^{\operatorname{inv}(v)} x_{v}
$$

is the modified quantum determinant.
Remark 4 We use the word modified to distinguish this object from the sum

$$
\sum_{v \in \mathfrak{S}_{n}} \chi\left(T_{v}\right) x_{v}
$$

See $[\mathrm{KS}]$ for other results on quantum immanants and for further references.

3. Cycle basis of the quantum permutation space and the main results

Given a permutation v, write it in cycle notation

$$
v=\left(i_{1}^{1}, \ldots, i_{\mu_{1}}^{1}\right)\left(i_{1}^{2}, \ldots, i_{\mu_{2}}^{2}\right) \cdots\left(i_{1}^{r}, \ldots, i_{\mu_{r}}^{r}\right)
$$

so that i_{1}^{j} is the smallest element of the j-th cycle and so that $i_{1}^{1}<i_{1}^{2}<\ldots<i_{1}^{r}$. Define the v cycle monomial, denoted x^{v}, to be the product

$$
\left(x_{i_{1}^{1} i_{2}^{1}} x_{i_{2}^{1} i_{3}^{1}} \cdots x_{i_{\mu_{1}}^{1} i_{1}}\right)\left(x_{i_{1}^{2} 2_{2}^{2}} x_{i_{2}^{2} i_{3}^{2}} \cdots x_{i_{\mu_{2}}^{2} i_{1}^{2}}\right) \cdots\left(x_{i_{1}^{r} r_{2}^{r}} x_{i_{2}^{r} i_{3}^{r}} \cdots x_{i_{\mu_{r}}^{r} i_{1}^{r}}\right) .
$$

For example, consider the permutation 45213, which is (14)(253) in cycle notation. Then $x_{45213}=x_{14} x_{25} x_{32} x_{41} x_{53}$ and $x^{45213}=x_{14} x_{41} x_{25} x_{53} x_{32}$.

Proposition 5 The monomials $\left\{x^{v}: v \in \mathfrak{S}_{n}\right\}$ form a basis of $\mathcal{A}_{n}(q)$. Furthermore, the transition matrix relating this basis to the natural basis $\left\{x_{v}: v \in \mathfrak{S}_{n}\right\}$ is unitriangular.

We will give the proof in the next section.
There are several results that give combinatorial descriptions of families of characters of the Hecke algebra $H_{n}(q)$ (see [Ram91], [RR97] and [Kon, $\left.\S 3\right]$. However, neither of these results gives a description of $\chi\left(T_{v}\right)$ or $\chi\left(\widetilde{T}_{v}\right)$ for all $v \in \mathfrak{S}_{n}$ except in the simplest of cases (namely, the trivial and sign characters). For v which is not of minimal length in its conjugacy class, we have to use Proposition 3 to find $\chi\left(\widetilde{T}_{v}\right)$. Consequently, there are no simple formulas for immanants, with the exception of the modified quantum permanent and determinant.

The main result of this paper gives the expansion of modified quantum immanants in the cycle basis.

Example 6 Take the modified quantum permanent for $n=3$. Since

$$
x_{21} x_{32}+q^{1 / 2} x_{22} x_{31}=x_{32} x_{21}+q^{-1 / 2} x_{22} x_{31}=x_{32} x_{21}+q^{-1 / 2} x_{31} x_{22},
$$

we have

$$
\begin{aligned}
& x_{11} x_{22} x_{33}+q^{1 / 2} x_{11} x_{23} x_{32}+q^{1 / 2} x_{12} x_{21} x_{33}+q x_{12} x_{23} x_{31}+q x_{13} x_{21} x_{32}+q^{3 / 2} x_{13} x_{22} x_{31}= \\
& =x_{11} x_{22} x_{33}+q^{1 / 2} x_{11} x_{23} x_{32}+q^{1 / 2} x_{12} x_{21} x_{33}+q x_{12} x_{23} x_{31}+q x_{13} x_{32} x_{21}+q^{1 / 2} x_{13} x_{31} x_{22} .
\end{aligned}
$$

Note that in this case, the coefficients of the cycle basis elements in the modified quantum permanent depend solely on the cycle type of the permutation. This is, in fact, true for all modified quantum immanants, as the main theorem shows.

Choose a composition $\mu=\left(\mu_{1}, \ldots, \mu_{p}\right)$ of n. Denote the permutation

$$
\left(1,2, \ldots, \mu_{1}\right)\left(\mu_{1}+1, \mu_{1}+2, \ldots, \mu_{1}+\mu_{2}\right) \cdots
$$

by γ_{μ}. Recall that if v is a permutation, we denote by $\mu(v)$ its cycle type (see the first paragraph of Section 1).
The following is obvious.
Proposition 7 A permutation v is of the form γ_{μ} for some μ if and only if $v(i) \leq i+1$ for all i.

The main theorem tells us that the set $\left\{x^{v}: v \in \mathfrak{S}_{n}\right\}$, which is, by Proposition 5 , a basis, is in a certain sense superior to the usual basis $\left\{x_{v}: v \in \mathfrak{S}_{n}\right\}$.
Main theorem For a character χ of $H_{n}(q)$, we have

$$
\operatorname{Imm}_{\lambda} X=\sum_{v \in \mathfrak{S}_{n}} \chi\left(\widetilde{T}_{\gamma_{\mu(v)}}\right) x^{v}
$$

REmark 8 The quantum permutation space is isomorphic as a vector space to the Hecke algebra of type A via the isomorphism $x_{\alpha, \beta} \mapsto \widetilde{T}_{\beta} \widetilde{T}_{\alpha^{-1}}$. Therefore the main theorem gives us a new basis of the Hecke algebra of type A.

4. Proofs

We will make use of the following procedure, which takes a permutation v as an input and produces three sequences $\alpha_{k}^{v}, \beta_{k}^{v}$ and γ_{k}^{v} of permutations and two sequences i_{k}^{v} and j_{k}^{v} of integers.
(1) Set $\alpha_{0}^{v}=\mathrm{id}, \beta_{0}^{v}=v, k=0$.
(2) Repeat the following. Take $\pi_{k}^{v}=\left(\alpha_{k}^{v}\right)^{-1} \beta_{k}^{v}$ and let i_{k}^{v} be the least index for which $\pi_{k}^{v}\left(i_{k}^{v}\right)>i_{k}^{v}+1$. If no such index exists, set $\alpha_{k+1}^{v}=\alpha_{k}^{v}, \beta_{k+1}^{v}=\beta_{k}^{v}, \pi_{k+1}^{v}=\pi_{k}^{v}$, and terminate the sequences i^{v} and j^{v}. Otherwise
(a) Set $j_{k}^{v}=\pi_{k}^{v}\left(i_{k}^{v}\right)-1$.
(b) Set $\alpha_{k+1}^{v}=\alpha_{k}^{v} s_{j}^{v}, \beta_{k+1}^{v}=\beta_{k}^{v} s_{j_{k}^{v}}$.
(c) Increment k.

We will denote by p^{v} the smallest index for which $\pi_{p^{v}}^{v}(i) \leq i+1$ for all i; note that we have $\alpha_{p^{v}}^{v}=\alpha_{p^{v}+1}^{v}=\alpha_{p^{v}+2}^{v}=\ldots, \beta_{k}^{v}=\beta_{p^{v}+1}^{v}=\beta_{p^{v}+2}^{v}=\ldots, \pi_{p^{v}}^{v}=\pi_{p^{v}+1}^{v}=\pi_{p^{v}+2}^{v}=\ldots$ In theory, we could have $p^{v}=\infty$, but we will prove in Lemma 9 that this is not the case. Also note that

$$
\pi_{k+1}^{v}=\left(\alpha_{k+1}^{v}\right)^{-1} \beta_{k+1}^{v}=s_{j_{k}^{v}}\left(\alpha_{k}^{v}\right)^{-1} \beta_{k}^{v} s_{j_{k}^{v}}=s_{j_{k}^{v}} \pi_{k}^{v} s_{j_{k}^{v}}
$$

if $k<p^{v}$.
As an example, consider the permutation $v=45132$. Applying the procedure, we have

k	0	1	2	3	4
α_{k}^{v}	12345	12435	14235	14325	14325
β_{k}^{v}	45132	45312	43512	43152	43152
π_{k}^{v}	45132	35412	24513	23154	23154
π_{k}^{v}, cycle notation	$(143)(25)$	$(134)(25)$	$(124)(35)$	$(123)(45)$	$(123)(45)$
i_{k}^{v}	1	1	2		
j_{k}^{v}	3	2	3		

Let us prove a series of lemmas about these sequences.
Lemma 9 For every permutation v, the sequence $i_{0}^{v}, i_{1}^{v}, i_{2}^{v}, \ldots$ is weakly increasing. Furthermore, if $i_{k-1}^{v}=i_{k}^{v}$ for some $k<p^{v}$, then $j_{k-1}^{v}=j_{k}^{v}+1$. Consequently, $p^{v} \leq\binom{ n-1}{2}$.
Proof. Throughout the proof, we will omit the superscript v.
We want to prove that $i_{k-1} \leq i_{k}$. Since i_{k} is the smallest index for which $\pi_{k}\left(i_{k}\right)>i_{k}+1$, it is enough to prove that $\pi_{k}(i) \leq i+1$ when $i<i_{k-1}$. For such i, we have $i<i_{k-1}<j_{k-1}$, so $s_{j_{k-1}}(i)=i$. Furthermore, $\pi_{k-1}(i) \leq i+1$ by definition of i_{k-1}. But then $\pi_{k-1}(i) \leq$ $i+1 \leq i_{k-1}<j_{k-1}$ and $s_{j_{k-1}} \pi_{k-1}(i)=\pi_{k-1}(i)$. In other words, we have proved that

$$
\pi_{k}(i)=s_{j_{k-1}} \pi_{k-1} s_{j_{k-1}}(i)=s_{j_{k-1}} \pi_{k-1}(i)=\pi_{k-1}(i) \leq i+1
$$

Assume that $i_{k-1}=i_{k}$. Then
$j_{k}+1=\pi_{k}\left(i_{k}\right)=\pi_{k}\left(i_{k-1}\right)=s_{j_{k-1}} \pi_{k-1} s_{j_{k-1}}\left(i_{k-1}\right)=s_{j_{k-1}} \pi_{k-1}\left(i_{k-1}\right)=s_{j_{k-1}}\left(j_{k-1}+1\right)=j_{k-1}$, where we used the fact that $j_{k-1}>i_{k-1}$ and therefore $s_{j_{k-1}}\left(i_{k-1}\right)=i_{k-1}$.
That means that $\left(i_{k}^{v}, j_{k}^{v}\right) \neq\left(i_{l}^{v}, j_{l}^{v}\right)$ if $k \neq l$. Since $1 \leq i_{k}<j_{k}<n$, we have at most $\binom{n-1}{2}$ such pairs.

Lemma 10 Take $v \in \mathfrak{S}_{n}$ and $k<p^{v}$. If $i>i_{k}^{v}$ and $l \leq k$, then $s_{j_{l}^{v}} s_{j_{l+1}^{v}} \cdots s_{j_{k-1}^{v}}(i)>i_{l}^{v}$.
Proof. Throughout the proof, we will omit the superscript v.
By induction, it is enough to prove this statement for $l=k-1$. By the previous lemma, we have $i_{k} \geq i_{k-1}$. If $i_{k}>i_{k-1}$, then $i \geq i_{k-1}+2$. Multiplicating a permutation π by a simple transposition changes the value $\pi(i)$ by at most 1 for any i; in particular, $s_{j_{k-1}}(i) \geq i_{k-1}+1>i_{k-1}$. If $i_{k}=i_{k-1}$ and $i \geq i_{k}+2$, the reasoning is the same. So it remains to prove that if $i_{k}=i_{k-1}$, then $s_{j_{k-1}}\left(i_{k}+1\right)>i_{k-1}$. But $j_{k-1}=j_{k}+1$ by the previous lemma and $j_{k}+1>i_{k}+1$, so

$$
s_{j_{k-1}}\left(i_{k}+1\right)=s_{j_{k}+1}\left(i_{k}+1\right)=i_{k}+1=i_{k-1}+1>i_{k-1},
$$

which finishes the proof.
Lemma 11 For all v and $k<p^{v}$, we have $\alpha_{k}^{v}\left(j_{k}^{v}\right)<\alpha_{k}^{v}\left(j_{k}^{v}+1\right)$. Furthermore, if $i<j$ and $\alpha_{k}^{v}(i)>\alpha_{k}^{v}(j)$, then $\alpha_{k}^{v}(i)=\beta_{l}^{v}\left(i_{l}^{v}\right)$ for some $l<k$.

Proof. Throughout the proof, we will omit the superscript v.
Let us first prove the second statement by induction on k. For $k=0, \alpha_{k}=\mathrm{id}$ and there is nothing to prove. Now assume that the statement holds for $k-1$. We have $\alpha_{k}=\alpha_{k-1} s_{j_{k-1}}$. Take $i<j$ with $\alpha_{k}(i)>\alpha_{k}(j)$. We have the following possible cases:

- $i, j \neq j_{k-1}, j_{k-1}+1$. Then $\alpha_{k}(i)=\alpha_{k-1}(i)$ and $\alpha_{k}(j)=\alpha_{k-1}(j)$ and, by the induction hypothesis, $\alpha_{k}(i)=\beta_{l}\left(i_{l}\right)$ for some $l<k-1<k$.
- $i<j_{k-1}, j=j_{k-1}$ or $i<j_{k-1}, j=j_{k-1}+1$. Then $\alpha_{k}(i)=\alpha_{k-1}(i), \alpha_{k}(j)=\alpha_{k-1}(j+$ 1) (respectively, $\alpha_{k}(j)=\alpha_{k-1}(j-1)$) and $\alpha_{k}(i)=\beta_{l}\left(i_{l}\right)$ for some $l<k-1<k$ by the induction hypothesis.
- $i=j_{k-1}, j>j_{k-1}+1$ or $i=j_{k-1}+1, j>j_{k-1}+1$. Then $\alpha_{k}(i)=\alpha_{k-1}(i+$ 1) (respectively, $\alpha_{k}(i)=\alpha_{k-1}(i-1)$) and $\alpha_{k}(j)=\alpha_{k-1}(j)$. By the induction hypothesis, $\alpha_{k-1}(i+1)=\alpha_{k}(i)=\beta_{l}\left(i_{l}\right)$ for some $l<k-1<k$ (respectively, $\alpha_{k-1}(i-1)=\alpha_{k}(i)=\beta_{l}\left(i_{l}\right)$ for some $\left.l<k-1<k\right)$.
- $i=j_{k-1}, j=j_{k-1}+1$. In this case, $\alpha_{k}(i)=\alpha_{k-1}(i+1)=\alpha_{k-1}\left(j_{k-1}+1\right)=$ $\alpha_{k-1}\left(\pi_{k-1}\left(i_{k-1}\right)\right)=\beta_{k-1}\left(i_{k-1}\right)$.
Now assume that $\alpha_{k}\left(j_{k}\right)>\alpha_{k}\left(j_{k}+1\right)$. We now know that this implies that $\alpha_{k}\left(j_{k}\right)=\beta_{l}\left(i_{l}\right)$ for some $l<k$. Furthermore, $\beta_{k}\left(i_{l}\right)=\beta_{l} s_{j_{l}} \cdots s_{j_{k-1}}\left(i_{l}\right)=\beta_{l}\left(i_{l}\right)$ because $j_{l}>i_{l}, j_{l+1}>$ $i_{l+1} \geq i_{l}$, etc. If $i_{l}<i_{k}$, then $j_{k}=\alpha_{k}^{-1} \beta_{l}\left(i_{l}\right)=\alpha_{k}^{-1} \beta_{k}\left(i_{l}\right)=\pi_{k}\left(i_{l}\right)=\leq i_{l}+1<i_{k}+1 \leq j_{k}$, a contradiction. On the other hand, $i_{l}=i_{k}$ implies $j_{k}=\alpha_{k}^{-1} \beta_{l}\left(i_{l}\right)=\alpha_{k}^{-1} \beta_{k}\left(i_{l}\right)=\pi_{k}\left(i_{k}\right)=$ $j_{k}+1$, again a contradiction. Therefore we must have $\alpha_{k}\left(j_{k}\right)<\alpha_{k}\left(j_{k}+1\right)$.

Lemma 12 For all v and $k<p^{v}$, we have $\left(\pi_{k}^{v}\right)^{-1}\left(j_{k}^{v}\right)>\left(\pi_{k}^{v}\right)^{-1}\left(j_{k}^{v}+1\right)$. Furthermore, $\beta_{k}^{v}\left(j_{k}^{v}\right)<\beta_{k}^{v}\left(j_{k}^{v}+1\right)$ if and only if $s_{j_{k}^{v}} \pi_{k}^{v}\left(j_{k}^{v}\right)<s_{j_{k}^{v}} \pi_{k}^{v}\left(j_{k}^{v}+1\right)$, and if and only if $\pi_{k}^{v}\left(j_{k}^{v}\right)<$ $\pi_{k}^{v}\left(j_{k}^{v}+1\right)$.

Proof. Throughout the proof, we will omit the superscript v.
We know that $\left(\pi_{k}\right)^{-1}\left(j_{k}+1\right)=i_{k}$. Therefore $\left(\pi_{k}\right)^{-1}\left(j_{k}\right)<i_{k}$ would, by definition of i_{k}, imply $j_{k}=\pi_{k}\left(\left(\pi_{k}\right)^{-1}\left(j_{k}\right)\right) \leq\left(\pi_{k}\right)^{-1}\left(j_{k}\right)+1 \leq i_{k}<j_{k}$, a contradiction. That proves the first statement.
Denote $s_{j_{k}} \pi_{k}\left(j_{k}\right)=s_{j_{k}} \alpha_{k}^{-1} \beta_{k}\left(j_{k}\right)=\alpha_{k+1}^{-1} \beta_{k}\left(j_{k}\right)$ by i and $s_{j_{k}} \pi_{k}\left(j_{k}+1\right)=\alpha_{k+1}^{-1} \beta_{k}\left(j_{k}+1\right)$ by j. If $i<j$ and $\alpha_{k+1}(i)=\beta_{k}\left(j_{k}\right)>\alpha_{k+1}(j)=\beta_{k}\left(j_{k}+1\right)$, then Lemma 11 implies that $\alpha_{k+1}(i)=\beta_{k}\left(j_{k}\right)=\beta_{l}\left(i_{l}\right)$ for some $l<k+1$. Like in the proof of the previous lemma, $\beta_{k}\left(i_{l}\right)=\beta_{l}\left(i_{l}\right)$. Then $\beta_{k}\left(j_{k}\right)=\beta_{k}\left(i_{l}\right)$ implies $j_{k}=i_{l} \leq i_{k}<j_{k}$, a contradiction. Similarly, $i>j$ and $\alpha_{k+1}(i)=\beta_{k}\left(j_{k}\right)<\alpha_{k+1}(j)=\beta_{k}\left(j_{k}+1\right)$ implies $\alpha_{k+1}(j)=\beta_{k}\left(j_{k}+1\right)=\beta_{l}\left(i_{l}\right)=$ $\beta_{k}\left(i_{l}\right)$ for some $l<k+1$, and $j_{k}+1=i_{l} \leq i_{k}<j_{k}$ gives the desired contradiction. Therefore $\beta_{k}^{v}\left(j_{k}^{v}\right)<\beta_{k}^{v}\left(j_{k}^{v}+1\right)$ if and only if $s_{j_{k}^{v}} \pi_{k}^{v}\left(j_{k}^{v}\right)<s_{j_{k}^{v}} \pi_{k}^{v}\left(j_{k}^{v}+1\right)$.
The proof of the last statement is almost the same (with α_{k+1} replaced by α_{k}, and $l<k+1$ replaced by $l<k$).

Lemma 13 For every permutation v, we have $\pi_{k}^{v}=\gamma_{\mu(v)}$ for $k \geq p^{v}$.
Proof. Throughout the proof, we will omit the superscript v.
We claim that for every k, π_{k} and π_{k+1} have the same cycle type. If $k \geq p, \pi_{k}=\pi_{k+1}$ and the statement is obvious. Otherwise, we have

$$
\pi_{k}=\left(1, \ldots, \mu_{1}\right)\left(\mu_{1}+1, \ldots, \mu_{1}+\mu_{2}\right) \cdots\left(\ldots, i_{k}-1, i_{k}, j_{k}+1, \ldots[) \cdots(] \ldots, j_{k}, \ldots\right) \cdots
$$

for $j_{k}>i_{k}$, where the part in brackets either appears (if j_{k} and $j_{k}+1$ are in different cycles) or not. Then

$$
\pi_{k+1}=s_{j_{k}} \pi_{k} s_{j_{k}}=\left(1, \ldots, \mu_{1}\right) \cdots\left(\ldots, i_{k}-1, i_{k}, j_{k}, \ldots[) \cdots(] \ldots, j_{k}+1, \ldots\right) \cdots
$$

has the same type as π_{k}. Indeed, $j_{k}+1$ is not the first element of its cycle in $\pi_{k} ; j_{k}$ is the first element of its cycle in π_{k} if and only $j_{k}+1$ is the first element of its cycle in π_{k+1}, and if this is the case, the relative position of the cycle starting with j_{k} in π_{k} is the same as the relative position of the cycle starting with $j_{k}+1$ in π_{k+1}.
This implies that $v=\pi_{0}$ and π_{p} have the same cycle type. Furthermore, $\pi_{p}(i) \leq i+1$ for all i, so $\pi_{p}=\gamma_{\mu\left(\pi_{p}\right)}=\gamma_{\mu(v)}$. Since $\pi_{k}=\pi_{p}$ for $k \geq p, \pi_{k}^{v}=\gamma_{\mu(v)}$ for $k \geq p$.

Lemma 14 For every permutation v, we have $x_{\alpha_{k}^{v}, \beta_{k}^{v}}=x^{v}$ for $k \geq p^{v}$.
Proof. Obviously, it is enough to prove the statement for $k=p^{v}$. Throughout the proof, we will omit the superscript v.
For every $k<p, \beta_{k+1} \alpha_{k+1}^{-1}=\beta_{k} s_{j_{k}} s_{j_{k}} \alpha_{k}^{-1}=\beta_{k} \alpha_{k}^{-1}$. That implies that $\beta \alpha^{-1}=v$, where we write $\alpha=\alpha_{p}$ and $\beta=\beta_{p}$. That means that the monomial $x_{\alpha, \beta}$ is a rearrangement of the monomial x.
On the other hand, $\pi(i)=\alpha^{-1} \beta(i) \leq i+1$ (where $\pi=\pi_{p}$) means that in $x_{\alpha, \beta}$, the variable $x_{i v(i)}$ appears either immediately before or after $x_{v(i) v^{2}(i)}$. That means that $x_{\alpha, \beta}$ is indeed a product of "cycles" $x_{i v(i)} x_{v(i) v^{2}(i)} \cdots x_{v^{c-1}(i) i}$, and it remains to show that for every such monomial, $i<v(i), v^{2}(i), \ldots$, and that if $x_{i v(i)} x_{v(i) v^{2}(i)} \cdots x_{v^{c-1}(i) i}$ appears to the left of $x_{i^{\prime} v\left(i^{\prime}\right)} x_{v\left(i^{\prime}\right) v^{2}\left(i^{\prime}\right)} \cdots x_{v^{c^{\prime}-1}\left(i^{\prime}\right) i^{\prime}}$, then $i<i^{\prime}$.
Note that for every $k<p, j_{k}>i_{k} \geq 1$. Therefore $\alpha(1)=s_{j_{0}} s_{j_{1}} \cdots s_{j_{p-1}}(1)=1$. In other words, the first variable of $x_{\alpha, \beta}$ is indeed $x_{1 v(1)}$. That means that the first "cycle" of $x_{\alpha, \beta}$ is $x_{1 v(1)} x_{v(1) v^{2}(1)} \cdots x_{v^{c-1}(1) 1}$, which satisfies the above conditions. Furthermore, if $i_{k} \leq c$, $i<j$ and $\alpha_{k}(i)>\alpha_{k}(j)$, then by Lemma 11 we have $\alpha_{k}(i)=\beta_{l}\left(i_{l}\right)$ for some $l<k$. Then

$$
\beta_{l}\left(i_{l}\right)=v \alpha_{l}\left(i_{l}\right)=v \alpha_{l} \pi_{l}\left(i_{l}-1\right)=v^{2} \alpha_{l}\left(i_{l}-1\right)=\ldots=v^{i_{l}}(1) .
$$

That means that in the one-line notation of α_{k} for $i_{k} \leq c$, the elements that are not in $\left\{1, v(1), v^{2}(1), \ldots, v^{l}(1)\right\}$ are written in increasing order. Induction on the number of cycles of v finishes the proof.

Lemma 15 Take $v \in \mathfrak{S}_{n}$ and $k<p^{v}$. Then there exists (a unique) $w \in \mathfrak{S}_{n}$ such that:

- $k<p^{w}$
- $i_{l}^{w}=i_{l}^{v}$ for $l=0,1, \ldots, k$
- $j_{l}^{w}=j_{l}^{v}$ for $l=0,1, \ldots, k$
- $\alpha_{k}^{w}=\alpha_{k}^{v}$
- $\beta_{k}^{w}=\beta_{k}^{v} s_{j_{k}^{v}}$

Proof. In the previous lemma, we proved that $\beta_{k}^{v}\left(\alpha_{k}^{v}\right)^{-1}=v$ for every v and k. Therefore the only possible candidate for such w is $w=\beta_{k}^{v} s_{j_{k}^{v}}^{v}\left(\alpha_{k}^{v}\right)^{-1}$. Let us prove that this permutation indeed satisfies all the conditions of the lemma.
We want to prove that $k<p^{w}, i_{l}^{w}=i_{l}^{v}$ and $j_{l}^{w}=j_{l}^{v}$ for all $0 \leq l \leq k$. Note that it is enough to prove that for all $l=0, \ldots, k$, we have $\pi_{l}^{w}(i)=\pi_{l}^{v}(i)$ for $i \leq i_{l}^{v}$. Assume by induction that this holds for $0, \ldots, l-1$. Then

$$
\pi_{l}^{w}=s_{j_{l-1}^{w}} \cdots s_{j_{0}^{w}} \beta_{k}^{v} s_{j_{k}^{v}}\left(\alpha_{k}^{v}\right)^{-1} s_{j_{0}^{w}} \cdots s_{j_{l-1}^{w}}=s_{j_{l-1}^{v}} \cdots s_{j_{0}^{v}} \beta_{k}^{v} s_{j_{k}^{v}}\left(\alpha_{k}^{v}\right)^{-1} s_{j_{0}^{v}} \cdots s_{j_{l-1}^{v}}
$$

and

$$
\pi_{l}^{v}=s_{j_{l-1}^{v}} \cdots s_{j_{0}^{j}} \beta_{k}^{v}\left(\alpha_{k}^{v}\right)^{-1} s_{j_{0}^{v}} \cdots s_{j_{l-1}^{v}},
$$

so we have to prove that

$$
s_{j_{k}^{v}}\left(\alpha_{k}^{v}\right)^{-1} s_{j_{0}^{v}} \cdots s_{j_{l-1}^{v}}(i)=\left(\alpha_{k}^{v}\right)^{-1} s_{j_{0}^{v}} \cdots s_{j_{l-1}^{v}}(i)
$$

for $i \leq i_{l}^{v}$. This is equivalent to

$$
\left(\alpha_{k}^{v}\right)^{-1} s_{j_{0}^{v}} \cdots s_{j_{l-1}^{v}}(i) \neq j_{k}^{v}, j_{k}^{v}+1
$$

for $i \leq i_{l}^{v}$, and this is equivalent to

$$
i_{l}^{v}<s_{j_{l-1}^{v}}^{v} \cdots s_{j_{0}^{v}} \alpha_{k}^{v}\left(j_{k}^{v}\right), s_{j_{l-1}^{v}} \cdots s_{j_{0}^{v}} \alpha_{k}^{v}\left(j_{k}^{v}+1\right)
$$

Since $\alpha_{k}^{v}=s_{j_{0}^{v}} \cdots s_{j_{k-1}^{v}}^{v}$, this is equivalent to

$$
s_{j_{l}^{v}} s_{j_{l+1}^{v}} \cdots s_{j_{k-1}^{v}}\left(j_{k}^{v}\right), s_{j_{l}^{v}} s_{j_{l+1}^{v}} \cdots s_{j_{k-1}^{v}}\left(j_{k}^{v}+1\right)>i_{l}^{v}
$$

Since $j_{k}^{v}>i_{k}^{v}$, this follows from Lemma 10.
Also, $\alpha_{k}^{w}=s_{j_{0}^{w}} \cdots s_{j_{k-1}^{w}}^{w}=s_{j_{0}^{v}} \cdots s_{j_{k-1}^{v}}=\alpha_{k}^{v}$ and $\beta_{k}^{w}=w \alpha_{k}^{w}=\beta_{k}^{v} s_{j_{k}^{v}}\left(\alpha_{k}^{v}\right)^{-1} \alpha_{k}^{w}=\beta_{k}^{v} s_{j_{k}^{v}}$. That means that w has all the necessary properties.

Lemma 16 For every character χ of $H_{n}(q)$ and all indices $k \geq 0$, we have

$$
\begin{equation*}
\sum_{v \in \mathfrak{S}_{n}} \chi\left(\widetilde{T}_{\pi_{k}^{v}}\right) x_{\alpha_{k}^{v}, \beta_{k}^{v}}=\sum_{v \in \mathfrak{S}_{n}} \chi\left(\widetilde{T}_{\pi_{k+1}^{v}}\right) x_{\alpha_{k+1}^{v}, \beta_{k+1}^{v}} \tag{3}
\end{equation*}
$$

Proof. Fix k in and consider the left-hand side

$$
\begin{equation*}
\sum_{v \in \mathfrak{S}_{n}} \chi\left(\widetilde{T}_{k}^{v}\right) x_{\alpha_{k}^{v}, \beta_{k}^{v}} \tag{4}
\end{equation*}
$$

Take $v \in \mathfrak{S}_{n}$. If $k \geq p^{v}$, then $\alpha_{k+1}^{v}=\alpha_{k}^{v}, \beta_{k+1}^{v}=\beta_{k}^{v}$ and $\pi_{k+1}^{v}=\pi_{k}^{v}$. Therefore

$$
\chi\left(\widetilde{T}_{\pi_{k+1}^{v}}\right) x_{\alpha_{k+1}^{v}, \beta_{k+1}^{v}}=\chi\left(\widetilde{T}_{\pi_{k}^{v}}\right) x_{\alpha_{k}^{v}, \beta_{k}^{v}} .
$$

On the other hand, if $k<p^{v}$, take w from the last lemma. Write $\alpha=\alpha_{k}^{v}, \beta=\beta_{k}^{v}, \pi=\pi_{v}^{k}$, $j=j_{k}^{v}$. We know that $\alpha_{k}^{w}=\alpha, \beta_{k}^{w}=\beta s_{j}, \pi_{k}^{w}=\left(\alpha_{k}^{w}\right)^{-1} \beta_{k}^{w}=\pi s_{j}, \alpha_{k+1}^{v}=\alpha s_{j}, \beta_{k+1}^{v}=\beta s_{j}$, $\pi_{k+1}^{v}=\left(\alpha_{k+1}^{v}\right)^{-1} \beta_{k+1}^{v}=s_{j} \pi s_{j}, \alpha_{k+1}^{w}=\alpha_{k}^{w} s_{j_{k}^{w}}=\alpha s_{j}, \beta_{k+1}^{w}=\beta_{k}^{w} s_{j}^{w}=\left(\beta s_{j}\right) s_{j}=\beta$ and $\pi_{k+1}^{w}=\left(\alpha_{k+1}^{w}\right)^{-1} \beta_{k+1}^{w}=s_{j} \pi$. We also know that both $x_{\alpha_{k}^{v}, \beta_{k}^{v}}=x_{\alpha, \beta}$ and $x_{\alpha_{k}^{w}, \beta_{k}^{w}}=x_{\alpha, \beta s_{j}}$ appear in (4), the former with coefficient $\chi\left(\widetilde{T}_{\pi}\right)$ and the latter with coefficient $\chi\left(\widetilde{T}_{\pi s_{j}}\right)$.
Note that $\operatorname{inv}\left(\sigma s_{j}\right)=\operatorname{inv}(\sigma)+1$ if and only if $\sigma(j)<\sigma(j+1)$. Since, by Lemma 12, we have $\pi^{-1}(j)>\pi^{-1}(j+1)$, that implies that $\operatorname{inv}\left(s_{j} \pi\right)=\operatorname{inv}\left(\pi^{-1} s_{j}\right)=\operatorname{inv}(\pi)-1$.
If $\beta(j)<\beta(j+1)$, we have $s_{j} \pi(j)<s_{j} \pi(j+1)$ by Lemma 12 and therefore $\operatorname{inv}\left(s_{j} \pi s_{j}\right)=$ $\operatorname{inv}\left(s_{j} \pi\right)+1=\operatorname{inv}(\pi)$. Also by Lemma 12, we have $\pi(j)<\pi(j+1)$ and $\operatorname{inv}\left(\pi s_{j}\right)=\operatorname{inv}(\pi)+$ 1. If, on the other hand, $\beta(j)>\beta(j+1)$, we have $s_{j} \pi(j)>s_{j} \pi(j+1)$ and $\pi(j)>\pi(j+1)$ by the same lemma and $\operatorname{inv}\left(s_{j} \pi s_{j}\right)=\operatorname{inv}\left(s_{j} \pi\right)-1=\operatorname{inv}(\pi)-2, \operatorname{inv}\left(\pi s_{j}\right)=\operatorname{inv}(\pi)-1$. Note that the first statement of Lemma 11 tells us that $\alpha(j)<\alpha(j+1)$. Let us study the two possible cases individually:

- $\alpha(j)<\alpha(j+1), \beta(j)<\beta(j+1), \operatorname{inv}\left(s_{j} \pi\right)=\operatorname{inv}(\pi)-1, \operatorname{inv}\left(\pi s_{j}\right)=\operatorname{inv}(\pi)+1$, $\operatorname{inv}\left(s_{j} \pi s_{j}\right)=\operatorname{inv}(\pi)$. By Proposition 3, $\operatorname{inv}\left(\pi s_{j}\right)=\operatorname{inv}\left(s_{j}\left(s_{j} \pi\right) s_{j}\right)=\operatorname{inv}\left(s_{j} \pi\right)+2$ implies

$$
\chi\left(\widetilde{T}_{\pi s_{j}}\right)=\chi\left(\widetilde{T}_{s_{j} \pi}\right)+\left(q^{1 / 2}-q^{-1 / 2}\right) \chi\left(\widetilde{T}_{\pi}\right)
$$

Therefore

$$
\chi\left(\widetilde{T}_{\pi}\right) x_{\alpha_{j} \beta_{j}} x_{\alpha_{j+1} \beta_{j+1}}+\chi\left(\widetilde{T}_{\pi s_{j}}\right) x_{\alpha_{j} \beta_{j+1}} x_{\alpha_{j+1} \beta_{j}}=
$$

$$
\begin{gathered}
=\chi\left(\widetilde{T}_{\pi}\right) x_{\alpha_{j} \beta_{j}} x_{\alpha_{j+1} \beta_{j+1}}+\left(\chi\left(\widetilde{T}_{s_{j} \pi}\right)+\left(q^{1 / 2}-q^{-1 / 2}\right) \chi\left(\widetilde{T}_{\pi}\right)\right) x_{\alpha_{j} \beta_{j+1}} x_{\alpha_{j+1} \beta_{j}}= \\
=\chi\left(\widetilde{T}_{\pi}\right)\left(x_{\alpha_{j} \beta_{j}} x_{\alpha_{j+1} \beta_{j+1}}+\left(q^{1 / 2}-q^{-1 / 2}\right) x_{\alpha_{j} \beta_{j+1}} x_{\alpha_{j+1} \beta_{j}}\right)+\chi\left(\widetilde{T}_{s_{j} \pi}\right) x_{\alpha_{j} \beta_{j+1}} x_{\alpha_{j+1} \beta_{j}} .
\end{gathered}
$$

By (2), and because, by Proposition $3, \chi\left(\widetilde{T}_{\pi}\right)=\chi\left(\widetilde{T}_{s_{j} \pi s_{j}}\right)$, this is equal to

$$
\chi\left(\widetilde{T}_{s_{j} \pi s_{j}}\right) x_{\alpha_{j+1} \beta_{j+1}} x_{\alpha_{j} \beta_{j}}+\chi\left(\widetilde{T}_{s_{j} \pi}\right) x_{\alpha_{j+1} \beta_{j}} x_{\alpha_{j} \beta_{j+1}} .
$$

If we multiply the equality

$$
\begin{aligned}
& \chi\left(\widetilde{T}_{\pi}\right) x_{\alpha_{j} \beta_{j}} x_{\alpha_{j+1} \beta_{j+1}}+\chi\left(\widetilde{T}_{\pi s_{j}}\right) x_{\alpha_{j} \beta_{j+1}} x_{\alpha_{j+1} \beta_{j}}= \\
= & \chi\left(\widetilde{T}_{s_{j} \pi s_{j}}\right) x_{\alpha_{j+1} \beta_{j+1}} x_{\alpha_{j} \beta_{j}}+\chi\left(\widetilde{T}_{s_{j} \pi}\right) x_{\alpha_{j+1} \beta_{j}} x_{\alpha_{j} \beta_{j+1}}
\end{aligned}
$$

on the left by $x_{\alpha_{1} \beta_{1}} \cdots x_{\alpha_{j-1} \beta_{j-1}}$ and on the right by $x_{\alpha_{j+2} \beta_{j+2}} \cdots x_{\alpha_{n} \beta_{n}}$, we get

$$
\chi\left(\widetilde{T}_{\pi}\right) x_{\alpha, \beta}+\chi\left(\widetilde{T}_{\pi s_{j}}\right) x_{\alpha, \beta s_{j}}=\chi\left(\widetilde{T}_{s_{j} \pi s_{j}}\right) x_{\alpha s_{j}, \beta s_{j}}+\chi\left(\widetilde{T}_{s_{j} \pi}\right) x_{\alpha s_{j}, \beta} .
$$

But this can also be written as

$$
\chi\left(\widetilde{T}_{\pi_{k}^{v}}\right) x_{\alpha_{k}^{v}, \beta_{k}^{v}}+\chi\left(\widetilde{T}_{\pi_{k}^{w}}\right) x_{\alpha_{k}^{w}, \beta_{k}^{w}}=\chi\left(\widetilde{T}_{\pi_{k+1}^{v}}\right) x_{\alpha_{k+1}^{v}, \beta_{k+1}^{v}}+\chi\left(\widetilde{T}_{\pi_{k+1}^{w}}\right) x_{\alpha_{k+1}^{w}, \beta_{k+1}^{w}} .
$$

- $\alpha(j)<\alpha(j+1), \beta(j)>\beta(j+1), \operatorname{inv}\left(s_{j} \pi\right)=\operatorname{inv}(\pi)-1, \operatorname{inv}\left(\pi s_{j}\right)=\operatorname{inv}(\pi)-1$, $\operatorname{inv}\left(s_{j} \pi s_{j}\right)=\operatorname{inv}(\pi)-2$. If we reverse the roles of v and w, we get the previous case. Therefore we also have

$$
\chi\left(\widetilde{T}_{\pi_{k}^{v}}\right) x_{\alpha_{k}^{v}, \beta_{k}^{v}}+\chi\left(\widetilde{T}_{\pi_{k}^{w}}\right) x_{\alpha_{k}^{w}, \beta_{k}^{w}}=\chi\left(\widetilde{T}_{\pi_{k+1}^{v}}\right) x_{\alpha_{k+1}^{v}, \beta_{k+1}^{v}}+\chi\left(\widetilde{T}_{\pi_{k+1}^{w}}\right) x_{\alpha_{k+1}^{w}, \beta_{k+1}^{w}} .
$$

This finishes the proof.
Proof of Proposition 5. Recall that the Bruhat order on \mathfrak{S}_{n} is the partial order generated by the relations $v<v \cdot(i, j)$ for $\operatorname{inv}(v)<\operatorname{inv}(v \cdot(i, j))$ (see [BB05, Chapter 2]). Let us prove by induction on k that for every $v \in \mathfrak{S}_{n}$,

$$
x_{\alpha_{k}^{v}, \beta_{k}^{v}}=x_{v}+\sum_{z>v} c_{z}^{v, k} x_{z}
$$

for some $c_{z}^{v, k} \in \mathbb{C}$. We have $x_{\alpha_{0}^{v}, \beta_{0}^{v}}=x_{v}$, so this is true for $k=0$, assume that the statement holds for k. Write $\alpha=\alpha_{k}^{v}, \beta=\beta_{k}^{v}, j=j_{k}^{v}$. By definition, $\alpha_{k+1}^{v}=\alpha s_{j}, \beta_{k+1}^{v}=\beta s_{j}$. We know (see Lemma 11) that $\alpha(j)<\alpha(j+1)$. There are two possible cases:

- $\beta(j)<\beta(j+1)$. By (2), we have

$$
x_{\alpha_{j+1} \beta_{j+1}} x_{\alpha_{j} \beta_{j}}=x_{\alpha_{j} \beta_{j}} x_{\alpha_{j+1} \beta_{j+1}}+\left(q^{1 / 2}-q^{-1 / 2}\right) x_{\alpha_{j} \beta_{j+1}} x_{\alpha_{j+1} \beta_{j}},
$$

if we multiply this equation on the left by $x_{\alpha_{1} \beta_{1}} \cdots x_{\alpha_{j-1} \beta_{j-1}}$ and on the right by $x_{\alpha_{j+2} \beta_{j+2}} \cdots x_{\alpha_{n} \beta_{n}}$, we get

$$
x_{\alpha_{k+1}^{v}, \beta_{k+1}^{v}}=x_{\alpha, \beta}+\left(q^{1 / 2}-q^{-1 / 2}\right) x_{\alpha, \beta s_{j}}
$$

By Lemma 15, we have $\alpha=\alpha_{k}^{w}$ and $\beta s_{j}=\beta_{k}^{w}$ for $w=\beta s_{j} \alpha^{-1}$. Since $w=$ $v \cdot(\alpha(j), \alpha(j+1)), \alpha(j)<\alpha(j+1)$ and $v(\alpha(j))=\beta(j)<\beta(j+1)=v(\alpha(j+1))$, we have $w>v$ and by induction
$x_{\alpha_{k+1}^{v}, \beta_{k+1}^{v}}=x_{v}+\sum_{z>v} c_{z}^{v, k} x_{z}+\left(q^{1 / 2}-q^{-1 / 2}\right) x_{w}+\left(q^{1 / 2}-q^{-1 / 2}\right) \sum_{z>w} c_{z}^{w, k} x_{z}=x_{v}+\sum_{z>v} c_{z}^{v, k+1} x_{z}$.

- $\beta(j)>\beta(j+1)$. By (2), we have

$$
x_{\alpha_{j+1} \beta_{j+1}} x_{\alpha_{j} \beta_{j}}=x_{\alpha_{j} \beta_{j}} x_{\alpha_{j+1} \beta_{j+1}}
$$

and hence

$$
x_{\alpha_{k+1}^{v}, \beta_{k+1}^{v}}=x_{\alpha, \beta}=x_{v}+\sum_{z>v} c_{z}^{v, k} x_{z}=x_{v}+\sum_{z>v} c_{z}^{v, k+1} x_{z} .
$$

by the induction hypothesis.
Lemma 14 states that $x^{v}=x_{\alpha_{p^{v}}^{v}, \beta_{p}^{v}}^{v}$, so

$$
x^{v}=x_{v}+\sum_{z>v} c_{z}^{v, p^{v}} x_{z}
$$

Take any linear extension of the Bruhat order. The matrix corresponding to the linear transformation $x_{v} \mapsto x^{v}$ is square, lower triangular, and has 1 's on the diagonal. This proves that $\left\{x^{v}: v \in \mathfrak{S}_{n}\right\}$ is a basis, and that the change of basis matrix is unitriangular.

Proof of the main theorem. We have

$$
\operatorname{Imm}_{\chi} X=\sum_{v \in \mathfrak{S}_{n}} \chi\left(\widetilde{T}_{v}\right) x_{v}=\sum_{v \in \mathfrak{S}_{n}} \chi\left(\widetilde{T}_{\pi_{0}^{v}}\right) x_{\alpha_{0}^{v}, \beta_{0}^{v}}
$$

by construction of $\alpha_{0}^{v}, \beta_{0}^{v}$. By the last lemma, we have

$$
\sum_{v \in \mathfrak{S}_{n}} \chi\left(\widetilde{T}_{\pi_{0}^{v}}\right) x_{\alpha_{0}^{v}, \beta_{0}^{v}}=\sum_{v \in \mathfrak{S}_{n}} \chi\left(\widetilde{T}_{\pi_{1}^{v}}\right) x_{\alpha_{1}^{v}, \beta_{1}^{v}}=\ldots=\sum_{v \in \mathfrak{S}_{n}} \chi\left(\widetilde{T}_{\pi_{k}^{v}}\right) x_{\alpha_{k}^{v}, \beta_{k}^{v}}
$$

for every $k \geq 0$. If $k \geq \max _{v} p^{v}$, then

$$
\sum_{v \in \mathfrak{S}_{n}} \chi\left(\widetilde{T}_{\pi_{k}^{v}}\right) x_{\alpha_{k}^{v}, \beta_{k}^{v}}=\sum_{v \in \mathfrak{S}_{n}} \chi\left(\widetilde{T}_{\gamma_{\mu(v)}}\right) x^{v}
$$

by Lemmas 13 and 14.

Acknowledgments

The author would like to thank Mark Skandera for suggesting to write up these results in a separate paper, and for many helpful comments.

References

[BB05] A. Björner and F. Brenti. Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York (2005)
[GP00] M. GEck and G. Pfeiffer. Characters of finite Coxeter groups and Iwahori-Hecke algebras, vol. 21 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, New York (2000).
[Kon] M. Konvalinka On combinatorial formulas for the characters of Hecke algebras. Preprint (2008)
[KS] M. Konvalinka and M. Skandera Generating functions for Hecke algebra characters. to appear in Canadian J. Math.
[Ram91] A. Ram. A Frobenius formula for the characters of the Hecke algebras. Invent. Math., 106, 3 (1991) pp. 461-488.
[RR97] A. Ram, J. Remmel. Applications of the Frobenius formulas for the characters of the symmetric group and the Hecke algebras of type A. J. Algebraic Combin., 6 (1997), no. 1, pp. 59-87
[Sta99] R. P. Stanley, Enumerative combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999

Department of Mathematics, Vanderbilt University, Nashville, TN 37240
matjaz.konvalinka@vanderbilt.edu
http://www.math. vanderbilt.edu/people/konvalinka

