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Abstract

An operator on a complex Banach space is polynomially compact if a non-zero polyno-
mial of the operator is compact, and power compact if a power of the operator is compact.
Theorems on triangularizability of algebras (resp. semigroups) of compact operators are
shown to be valid also for algebras (resp. semigroups) of polynomially (resp. power)
compact operators, provided that pairs of operators have compact commutators.

1 Basic definitions and properties

An operator T on an infinite-dimensional complex Banach space X is called polynomially
compact if there exists a non-zero complex polynomial p such that the operator p(T ) is
compact. If T k is compact for some k we say that T is a power compact operator. Trivial
examples of polynomially compact operators are compact and algebraic operators; the sum
of a compact and an algebraic operator is also a polynomially compact operator: if p(A) = 0
and K is compact, then p(A + K) is obviously compact. A polynomially compact operator
on a Hilbert space is a compact perturbation of an algebraic operator, see Section 4 and [3,
Theorem 2.4].
The monic polynomial p of the smallest degree for which the operator p(T ) is compact is called
the minimal polynomial of the polynomially compact operator T . Note that if A is algebraic
with minimal polynomial p then p is in general only divisible by (and not necessarily equal
to) the minimal polynomial of A as a polynomially compact operator; for example, a non-zero
finite-rank projection is algebraic with a minimal polynomial of degree 2 and polynomially
compact with a minimal polynomial of degree 1. Obviously, the minimal polynomial of a
polynomially compact operator T is the minimal polynomial of the algebraic element π(T )
of the Calkin algebra B(X )/K(X ), where B(X ) denotes the algebra of all bounded linear
operators on X , and K(X ) the ideal of compact operators.
A semigroup S on X is a subset of B(X ) which is closed under multiplication of operators,
and I ⊆ S is an ideal if the implication

A ∈ I, B, C ∈ S ∪ {I} =⇒ BAC ∈ I
holds. An algebra A on X is a linear subset of B(X ) which is also a semigroup.
A closed subspace M of X is said to be invariant (respectively, hyperinvariant) for a family
of operators F if A(M) ⊆ M for every A ∈ F (respectively, B(M) ⊆ M for every B which
commutes with all A ∈ F).
Propositions 1.1 and 1.3 show that polynomially compact operators have many of the well-
known spectral properties of compact operators. We include the proofs for the sake of com-
pleteness.
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Proposition 1.1: Let T be a polynomially compact operator on X and let p(z) = (z −
λ1) · · · (z − λk) be its minimal polynomial. Then the essential spectrum σe(T ) of T is the set
{λ1, . . . , λk}, the spectrum σ(T ) of T consists of at most countably many points, and each
point in σ(T ) \ σe(T ) is an isolated point of the spectrum and an eigenvalue of T .

Proof. The first statement follows from the facts that the essential spectrum of an operator
T is the spectrum of the element π(T ) of the Calkin algebra and that the spectrum of an
algebraic element of a Banach algebra is the set of zeros of its minimal polynomial. The
countability of the spectrum is justified by the inclusion

σ(T ) ⊆
⋃

µ∈σ(p(T ))

p−1(µ),

where the set on the right-hand side is a countable union of finite sets and is hence countable.
Finally, let λ ∈ σ(T ) \ {λ1, . . . , λk}. Since p(λ) is a non-zero element of the spectrum of a
compact operator and is therefore an isolated point of σ(p(T )), λ is an isolated point of σ(T )
by continuity of p and the fact that p(z) = p(λ) has only finitely many solutions. We would
like to prove that λ is an eigenvalue. Isolated points of the spectrum are in the boundary of
the spectrum, and since it is well known that ∂σ(T ) is a subset of the approximative spectrum
σa(T ), we infer that there exists a sequence {xn}∞n=1 of unit vectors such that the sequence
{(λI−T )xn}∞n=1 converges to 0. Let q be the polynomial satisfying p(λ)−p(z) = q(z)(λ−z);
then the sequence of (p(λ)I− p(T ))xn = q(T )(λI−T )xn also converges to 0. By definition of
compactness of an operator, we can choose a subsequence {xnk

}∞k=1 for which {p(T )xnk
}∞k=1

converges. Without loss of generality we may assume that this is already satisfied by the
original sequence. Hence, {p(λ)xn}∞n=1 (and, since p(λ) is non-zero, {xn}∞n=1) also converges.
Let x be the (non-zero) limit of {xn}∞n=1. Then (λI − T )x = lim(λI − T )xn = 0, and we can
conclude that x is an eigenvector for λ. ¤

Remark 1.2: If p(T ) is compact (and p is not necessarily the minimal polynomial of T ), then
σe(T ) is a subset of the set of zeros of p.

Proposition 1.3 (Riesz Decomposition for Polynomially Compact Operators): Let T be
a polynomially compact operator on X and let p(z) = (z − λ1) · · · (z − λk) be its minimal
polynomial. Let λ ∈ σ(T ) \ σe(T ) be an eigenvalue. The following statements hold:

1. The kernel ker(λI − T )n is finite-dimensional for every n, and the image im(λI − T )n

is closed and of finite codimension.

2. There exists N ∈ N with ker(λI−T )n = ker(λI−T )N and im(λI−T )n = im(λI−T )N

for all n ≥ N . Moreover, the subspaces ker(λI−T )N =: Nλ and im(λI−T )N =: Rλ are
complementary hyperinvariant subspaces for T , σ(T |Nλ

) = {λ}, σ(T |Rλ
) = σ(T ) \ {λ}.

3. Any subspace M that is invariant for T can be decomposed as M = N ⊕ R, where
N ⊆ Nλ and R ⊆ Rλ.

Proof. We have already proved 1 in Proposition 1.1. Since the corresponding proposition
holds for compact operators and ker(λI − T )n ⊆ ker(p(λ)I − p(T ))n, {ker(λI − T )n}∞n=1

is an increasing chain of subspaces contained in a finite-dimensional space and attains its
supremum. Similarly, im(λI − T )n ⊇ im(p(λ)I − p(T ))n is a decreasing chain of subspaces
containing a subspace of finite codimension, and attains its infimum. The subspaces Nλ and
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Rλ are obviously hyperinvariant for T and are complementary by a standard argument. The
restriction of λI − T to Nλ is nilpotent, so σ(T |Nλ

) = {λ}. On the other hand, λ cannot be
an eigenvalue of the polynomially compact operator T |Rλ

(since Tx = λx implies x ∈ Nλ),
and the spectrum of a direct sum is the union of the spectra, so σ(T |Rλ

) must be σ(T ) \ {λ}.
This proves 2. The claim 3 follows from 2 if we substitute T |M for T . ¤

The set of compact operators on a Banach space is an ideal of the algebra B(X ). The
next example shows that the set of polynomially compact operators is not closed under either
addition or multiplication.

Example 1.4: The operators T and S on X = `2 defined by

T : (x1, x2, x3, . . .) 7→ (x2, 0, x4, 0, x6, 0, . . .)

and
S : (x1, x2, x3, . . .) 7→ (0, x3, 0, x5, 0, x7, . . .)

are polynomially compact (T 2 = S2 = 0) but the point spectra of

T + S : (x1, x2, x3, . . .) 7→ (x2, x3, x4, . . .)

and
TS : (x1, x2, x3, . . .) 7→ (x3, 0, x5, 0, x7, 0, . . .)

are the uncountably infinite set {λ ∈ C : |λ| < 1}. By Proposition 1.1, T + S and TS are not
polynomially compact.

The following theorem provides a sufficient condition for the polynomial compactness of
a non-commutative polynomial of a given set of polynomially compact operators.
We say that the operators A and B are essentially commuting if the commutator AB − BA
is compact, or equivalently, if the images π(A) and π(B) in the Calkin algebra commute.

Theorem 1.5: Let {T1, . . . , Tn} be a set of essentially commuting polynomially compact op-
erators and let r be a complex non-commutative polynomial in n variables. Then r(T1, . . . , Tn)
is a polynomially compact operator and

σe(r(T1, . . . , Tn)) ⊆ r(σe(T1), . . . , σe(Tn)).

Here r(Λ1, . . . ,Λn) is the set {r(λ1, . . . , λn) : λj ∈ Λj for j = 1, . . . , n}. Theorem 1.5 is a
corollary of the following lemma.

Lemma 1.6: Let t1, . . . , tn be commuting algebraic elements of an arbitrary unital algebra
A and let r be a complex (non-commutative) polynomial in n variables. Then r(t1, . . . , tn) is
an algebraic element of A and the set of zeros of the minimal polynomial of r(t1, . . . , tn) is a
subset of r(Λ1, . . . ,Λn), where Λj is the set of zeros of the minimal polynomial of tj.

Sketch of proof. First, let us assume that n = 2 and r(t, s) = t + s (where t = t1 and s = t2).
Let (z − λ1) · · · (z − λk) and (z − µ1) · · · (z − µl) be the minimal polynomials of t and s
respectively. We claim that q(t + s) is zero, where

q(z) :=
∏

1≤i≤k, 1≤j≤l

(z − λi − µj).
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In the product

q(t + s) =
∏

(t + s− λi − µj) =
∏

((t− λi) + (s− µj))

distributivity can be used: we get a sum of 2kl terms, each of which is a product of kl elements
of the forms t−λi and s−µj . Commutativity of t and s ensures that we can write the elements
in these products in arbitrary order.
If a term lacks any of t−λi for 1 ≤ i ≤ k, that means that it includes all s−µj (for 1 ≤ j ≤ l)
and is hence equal to zero. If a term includes all t− λi for 1 ≤ i ≤ k then it obviously equals
0.
The proof in the general case is more cumbersome, but the reasoning is essentially the same.
Because t + s− (λ + µ) = (t− λ) + (s− µ) and ts− λµ = (t− λ)s + λ(s− µ), we can write
the polynomial r(t1, . . . , tn)− r(λ1, . . . , λn) as the sum

(t1 − λ1)r1(t1, . . . , tn) + . . . + (tn − λn)rn(t1, . . . , tn)

for some non-commutative polynomials r1, . . . , rn (we omit the rather tedious proof by induc-
tion on the degree of the non-commutative polynomial r). In the product of all r(t1, . . . , tn)−
r(λ1, . . . , λn) for λj ∈ Λj we use distributivity and the same conclusion as in the special case
in the first part of the proof. ¤

2 Algebras of polynomially compact operators

Throughout this paper, the term “triangularizability” will mean “simultaneous triangulariz-
ability” as defined by Wojtyński ([7]) and Laurie-Nordgren-Radjavi-Rosenthal ([2]): a family
F of operators on a Banach space X is triangularizable if there is a chain C of closed subspaces
that is maximal as a chain of subspaces of X and has the property that every subspace in
C is invariant under operators in F . In [4], a wide range of results on triangularizability (of
algebras and semigroups) of (especially compact and algebraic) operators is presented.
A family of operators is reducible if there exists a common non-trivial (non-zero and proper)
invariant subspace. A chain of subspaces is complete if it is closed under intersections and
closed linear spans. For a complete chain of subspaces C and M∈ C, the predecessor M− of
M is the closed linear span of

{N ∈ C : N ⊆M,N 6= M}.

A chain of subspaces is maximal if and only if it is complete, it includes {0} and X , and the
quotient spaces M/M− are at most one-dimensional. A property of families of operators is
inherited by quotients if for an arbitrary family of operators F satisfying the property, the
family of all quotient operators F̃ : M/N →M/N for all F ∈ F also satisfies this property
for every pair {M,N} of common invariant subspaces, M ⊇ N . The following lemma
reduces the concept of triangularizability of a family satisfying a certain property inherited
by quotients to reducibility, i.e. to the existence of a common invariant subspace. See [4] for
details and proofs.

Lemma 2.1 (The Triangularization Lemma): If every family of operators satisfying a prop-
erty inherited by quotients has a common invariant subspace, then every family of operators
satisfying this property is triangularizable.
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To prove that a property is inherited by quotients, we need not consider all pairs {M,N}
of invariant subspaces. It suffices to do so for all pairs {0,M} and {M,X}, where M is a
common invariant subspace of the family. The following lemma states that in a number of
important cases the proof of the latter is redundant, and in order to deduce triangularizability
from reducibility it is enough to check that a property is inherited by subspaces, i.e. that if F
is a family satisfying P and M is a common invariant subspace, then F|M = {F |M : F ∈ F}
satisfies P. The proof is based on the proof of [4, Corollary 8.4.2].

Lemma 2.2: Let us assume that the property P fulfills the following two conditions:

1. A family of operators F ⊆ B(X ) satisfies P if and only if the family of adjoints F∗ =
{F ∗ : F ∈ F} ⊆ B(X ∗) satisfies P.

2. If Φ : X → Y is an isometric isomorphism of Banach spaces and the family F ⊆ B(X )
satisfies P, then ΦFΦ−1 = {ΦFΦ−1 : F ∈ F} ⊆ B(Y) satisfies P.

Then the property P is inherited by quotients if and only if it is inherited by subspaces.

Proof. Let us assume that P is inherited by subspaces, and let F be a family of operators on
X satisfying P. In view of the paragraph preceding this lemma, it is enough to show that the
family F̃ = {F̃ ∈ B(X/M) : F ∈ F} satisfies P, where M is a common invariant subspace
of the family F . Let M⊥ ⊆ X ∗ denote the annihilator of M, the space of all bounded linear
functionals on X which are zero on M. By [5, Theorem 4.9 (b)]

Φ: (X/M)∗ → M⊥,

defined by
ϕ 7→ ϕ ◦ π

(here π : X → X/M is the quotient map), is an isometric isomorphism. By condition 1, the
family F∗ satisfies P, and hence the family F∗|M⊥ satisfies P. For an operator F from F ,
F ∗|M⊥ and F̃ ∗ can be identified through the isometric isomorphism Φ:

((F ∗Φ(ϕ))(x) = Φ(ϕ)(Fx) = ϕ(π(Fx))

and
(ΦF̃ ∗(ϕ))(x) = F̃ ∗(ϕ)(π(x)) = ϕ(F̃ (π(x))) = ϕ(π(Fx)).

By condition 2, the family F̃∗ satisfies P. Again by 1, the same holds for the family F̃ . ¤

Note that the hypotheses of the lemma are fulfilled by any properties involving compact-
ness (e.g. polynomial compactness or essential commutativity) and conditions on spectrum
(such as quasinilpotency or sublinearity, cf. Proposition 3.5).
This section will show that the results on algebras of compact operators can be generalized to
algebras of essentially commuting polynomially compact operators. As in the compact case,
the key arguments are the following two results due to Lomonosov (see e.g. [1, 4.9 and 4.13]).

Theorem 2.3 (Lomonosov’s Lemma): Let A be an irreducible subalgebra of B(X ), and let
K be an arbitrary non-zero compact operator in B(X ). Then there exists A ∈ A such that 1
is in the (point) spectrum of AK.
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Corollary 2.4 (Lomonosov’s Theorem): Let T be a non-scalar operator (i.e., an operator
which is not a scalar multiple of identity) which commutes with a non-zero compact operator
K. Then T has a non-trivial hyperinvariant subspace.

Proposition 2.5: A non-scalar polynomially compact operator T has a non-trivial hyperin-
variant subspace.

Proof. If T is algebraic, then any of the subspaces ker(λI −T ) for λ ∈ σ(T ) is hyperinvariant
for T and non-trivial. Otherwise, let K = p(T ) be a non-zero compact operator. Obviously, K
and T commute, and by the preceding corollary T has a non-trivial hyperinvariant subspace.

¤

Corollary 2.6: A commuting family of polynomially compact operators is triangularizable.

Proof. By the Triangularization Lemma and the fact that polynomial compactness is inherited
by quotients, it suffices to prove that there exists a common hyperinvariant subspace for the
family F . If all operators in F are scalar, any subspace will do. Otherwise, such a subspace
is given by the previous proposition. ¤

The proof of Ringrose’s Theorem for compact operators works as well for polynomially
compact operators, with only minor modifications, and this theorem will be of paramount
importance for the remaining results of this paper.

Definition: Let T be polynomially compact, and let C be a triangularizing chain for T (i.e. a
chain of invariant subspaces for T that is maximal as a chain of subspaces; such a chain exists
by the last corollary). Let C′ be the subchain of all M ∈ C with M− 6= M. For M ∈ C′ the
space M/M− is one-dimensional. The diagonal coefficient of T corresponding to M, λM, is
the (only) point in the spectrum of T̃ ∈ B(M/M−).

Theorem 2.7 (Ringrose’s Theorem for Polynomially Compact Operators): Let T be a poly-
nomially compact operator and let p(z) = (z − λ1) · · · (z − λk) be its minimal polynomial. If
C is any triangularizing chain for T , then

σ(T ) = σe(T ) ∪ {λM : M∈ C′},
where σe(T ) = {λ1, . . . , λk}.
Proof. If M ∈ C′ and λM /∈ σe(T ), then (λMI − T )M ⊆M− and λM is an element of the
spectrum of the polynomially compact operator T |M that is not in the essential spectrum,
and is therefore an eigenvalue of this restriction. We conclude that λM is also an eigenvalue
of T , so σe(T ) ∪ {λM : M∈ C′} ⊆ σ(T ).
Let us prove the other inclusion. Let λ ∈ σ(T ) \σe(T ) be an eigenvalue of T ; we want to find
M ∈ C′ for which λM = λ. The set O := {x ∈ X : Tx = λx, ‖x‖ = 1} is compact, so the
subspace M := ∩{N ∈ C : N ∩O 6= ∅} ∈ C has a non-empty intersection with O.
For every proper subspace L ∈ C of M we have ker((λI − T )|L)n = {0} for any n, and by
Proposition 1.3 (claim 3), L ⊆ im(λI − T )N (for some N). Since M− is spanned by proper
subspaces of M, we have M− ⊆ im(λI−T )N , and from M∩ker(λI−T )N 6= {0} we conclude
that M− 6= M.
Choose x ∈M, ‖x‖ = 1, Tx = λx. Then

T̃ (x +M−) = Tx +M− = λx +M− = λ(x +M−)
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and consequently λ = λM. ¤

Theorem 2.8 (Spectral Mapping Theorem): Let {T1, . . . , Tn} be a triangularizable set of
essentially commuting polynomially compact operators. Then for any complex non-commuta-
tive polynomial r in n variables the operator r(T1, . . . , Tn) is polynomially compact and

σ(r(T1, . . . , Tn)) ⊆ r(σ(T1), . . . , σ(Tn)).

Proof. Let C be a triangularizing chain for {T1, . . . , Tn} (and r(T1, . . . , Tn)). By Theorem 1.5,
r(T1, . . . , Tn) is a polynomially compact operator, and we have the inclusion

σe(r(T1, . . . , Tn)) ⊆ r(σe(T1), . . . , σe(Tn)) ⊆ r(σ(T1), . . . , σ(Tn)).

To complete the proof, let λ ∈ σ(r(T1, . . . , Tn)) \ σe(r(T1, . . . , Tn)). By Theorem 2.7, λ =
λM for some M ∈ C′. For any x ∈ M \M−, r(T̃1, . . . , T̃n)(x + M−) = λ(x + M−) and
T̃j(x +M−) = λj(x +M−) for some λj ∈ σ(Tj). Obviously, r(λ1, . . . , λn) = λ. ¤

Proposition 2.9: If T and S are essentially commuting polynomially compact operators,
then the pair {T, S} is triangularizable if and only if r(T, S)(TS − ST ) is quasinilpotent for
every non-commutative polynomial r.

Proof. By the Spectral Mapping Theorem,

σ(r(T, S)(TS − ST )) ⊆ {r(λ, µ)(λµ− µλ) : λ ∈ σ(T ), µ ∈ σ(S)} = {0}
if {T, S} is triangularizable, so the condition is necessary. For the converse, first note that
by the Triangularization Lemma (quasinilpotency is a property inherited by quotients, by
Lemma 2.2 or otherwise), it suffices to prove reducibility. If T and S commute, they have
a common invariant subspace by Corollary 2.6. Otherwise, assume irreducibility; the unital
algebra generated by T and S (the algebra of all non-commutative polynomials in T and S) is
also irreducible, and TS−ST is a non-zero compact operator. By Lomonosov’s Lemma, there
exists a non-commutative polynomial r such that 1 is in the spectrum of r(T, S)(TS − ST ),
which is therefore not quasinilpotent. ¤

Theorem 2.10: An algebra A of essentially commuting polynomially compact operators is
triangularizable if and only if every pair of operators in the algebra is triangularizable.

Proof. Let C be a maximal chain of invariant subspaces for the algebra (such a chain exists
by the Hausdorff Maximality Principle). We have to prove that C is maximal as a chain of
subspaces in X , or equivalently, that the dimension of M/M− is at most 1 for any M∈ C.
Assume dim(M/M−) > 1. The quotient algebra Ã is irreducible by maximality of C and
cannot be commutative. Let T and S be such operators in A that the compact operator
T̃ S̃ − S̃T̃ is non-zero. By Lomonosov’s Lemma, there is an R in A and x ∈ M \M− such
that

R̃(T̃ S̃ − S̃T̃ )(x +M−) = x +M−,

in other words, R(TS−ST )x ∈ x+M−. Let N denote the subspace generated by x and M−.
Obviously we have im(R(TS − ST ) − I)|N ⊆ M−; so 1 is an eigenvalue of R(TS − ST )|N
and of R(TS − ST ). However, the pairs {T, S} and {R, TS − ST} are triangularizable and
by the Spectral Mapping Theorem, σ(TS − ST ) = {0} and σ(R(TS − ST )) = {0}. The
contradiction completes the proof. ¤
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Corollary 2.11: An algebra A of essentially commuting polynomially compact operators is
triangularizable if and only if for every pair {T, S} of operators in A, r(T, S)(TS − ST ) is
quasinilpotent for every non-commutative polynomial r.

3 Semigroups of power compact operators

The theorems on triangularizability of semigroups of compact operators depend heavily on the
following two results: Turovskii’s Theorem, which states that a semigroup of compact qua-
sinilpotents is reducible (triangularizable), and a lemma due to Radjavi ([4, Lemma 7.4.5])
which guarantees the existence of a non-zero finite-rank operator (a nilpotent or an idempo-
tent) in a uniformly closed semigroup of compact operators which is closed under multiplica-
tion by non-negative real numbers and which contains a non-quasinilpotent element.
Example 3.1 shows that the latter does not extend to semigroups of arbitrary essentially
commuting polynomially compact operators.

Example 3.1: Let X = `2 and let T be the projection

T : (x1, x2, x3, . . .) 7→ (0, x2, x3, . . .).

Since T 2 = T , S = {λT : λ ≥ 0} is a semigroup of (essentially) commuting polynomially
compact operators (λT − λI is compact), and there is an element of S (namely, λT for
any λ > 0) with σ(T ) 6= σe(T ). The semigroup is uniformly closed and is also closed under
multiplication by non-negative real numbers, however, it does not contain any non-zero finite-
rank operators.

Therefore, generalizing the results to arbitrary semigroups of (essentially commuting)
polynomially compact operators appears to be quite a formidable task. We will restrict our
attention to semigroups of power compact operators. Lemma 3.2 gives the crucial result of
this section. As an application we prove Theorem 3.3, which gives several powerful sufficient
conditions for the triangularizability of semigroups of essentially commuting power compact
operators.

Lemma 3.2: Let P be a property defined for semigroups of essentially commuting power
compact operators such that the ideal S ∩ K(X ) of a semigroup S satisfying P also satisfies
P. If every semigroup of compact operators satisfying P is reducible, then every semigroup of
essentially commuting power compact operators satisfying P is reducible. If, in addition, P
is inherited by quotients, every semigroup of essentially commuting power compact operators
satisfying P is triangularizable.

Proof. Let S be a semigroup of essentially commuting power compact operators satisfying P.
If S contains non-zero compact operators then the ideal S ∩ K(X ) is non-zero; it satisfies P
and is therefore reducible by hypothesis. It is well known that a semigroup with a non-zero
reducible ideal is also reducible.
Otherwise, S consists of essentially commuting nilpotents. Let T be a non-zero element of S,
without loss of generality we may assume that it is a nilpotent of order 2. For any S in S,
TST = T (ST − TS) is a compact element of S and hence zero. In other words, S maps the
image of T to the kernel of T . If x is a non-zero vector in imT , then the closed linear span of

{Sx : S ∈ S ∪ {I}}
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is a non-zero invariant subspace for S which is contained in the subspace kerT and is therefore
non-trivial. If P is inherited by quotients, Triangularization Lemma yields triangularizability.

¤

Theorem 3.3: Let S be a semigroup of essentially commuting power compact operators.
Then any of the following conditions on S implies reducibility (and, in cases 1, 4, 5 and 6,
triangularizability):

1. All elements of S are quasinilpotents.

2. Spectrum is permutable on S, i.e. for any T1, . . . , Tn in F and any permutation π of
n elements, σ(T1 · · ·Tn) = σ(Tπ(1) · · ·Tπ(n)), or equivalently, for any T , S and R in S,
σ(TSR) = σ(STR).

3. Spectrum is submultiplicative on S, i.e. σ(TS) ⊆ σ(T ) · σ(S) for any T and S in S.

4. Spectrum is sublinear on S, i.e. σ(T + λS) ⊆ σ(T ) + λ · σ(S) for any T , S in S and
λ ∈ C.

5. Spectrum is real-sublinear on S, i.e. σ(T + λS) ⊆ σ(T ) + λ · σ(S) for any T , S in S
and λ ∈ R.

6. Every pair {T, S} in S is triangularizable.

Proof. First, let us prove reducibility in the cases 1–5: by Lemma 3.2, since all the proper-
ties are trivially inherited by all subfamilies, it suffices to know that these conditions imply
reducibility for semigroups of compact operators. The first is given by the well-known result
of Turovskii ([6, Theorem 4]); the rest are Theorems 8.3.1, 8.3.5, 8.4.3, and 8.4.7 from [4]
respectively.
What remains is to prove that conditions 1, 4 and 5 are inherited by quotients. We have
already mentioned that this is true for 1, and the proof for 5 is almost the same as that for 4,
which is given (in a slightly more general form, namely for families of essentially commuting
polynomially – not necessarily power – compact operators) in Proposition 3.5.
The condition 6 implies 4 (by the Spectral Mapping Theorem), and we conclude that a
semigroup of essentially commuting power compact operators with triangularizable pairs is
triangularizable. ¤

Remark 3.4: Note that the conditions 2 – 6 of the last theorem are necessary for the tri-
angularizability of any family of essentially commuting polynomially compact operators: 3,
4 and 5 by the Spectral Mapping Theorem (Theorem 2.8), 6 trivially, and 2 by a simple
argument using Theorem 2.7. Indeed, if a family of essentially commuting polynomially com-
pact operators {T1, . . . , Tn} is triangularizable and π is a permutation of n elements, then
the essential spectra of T1 · · ·Tn and Tπ(1) · · ·Tπ(n) are the same because one is a compact
perturbation of the other; if λ ∈ σ(T1 · · ·Tn)\σe(T1 · · ·Tn), there is a subspace M∈ C′ in the
triangularizing chain C such that λ = λM; λ must be equal to λ1 · · ·λn for some λj ∈ σ(Tj),
and λ = λπ(1) · · ·λπ(n) ∈ σ(Tπ(1) · · ·Tπ(n)).

The proof of Proposition 3.5 follows the steps of the proof of [4, Lemma 8.4.1] but avoids
the use of the Baire Category Theorem.
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Proposition 3.5: Sublinearity of spectrum for essentially commuting polynomially compact
operators is inherited by quotients.

Proof. In view of Lemma 2.2, we have to prove that the property is inherited by subspaces.
Let us suppose that spectrum is sublinear on the pair {T, S}, where T and S are essentially
commuting polynomially compact operators. We want to prove that spectrum is sublinear
on the pair {T |M, S|M} for any common invariant subspace M of T and S.
Let D be the set

{λ ∈ C : σ(T̃ + λS̃) ⊆ σ(T̃ ) + λ · σ(S̃)},
where T̃ = T |M and S̃ = S|M. First, let us prove that D is closed in C. Assume that a
sequence {λn}∞n=1 in D converging to λ ∈ C is given. By Theorem 1.5, T̃ +λS̃ is polynomially
compact and

σe(T̃ + λS̃) ⊆ σe(T̃ ) + λ · σe(S̃) ⊆ σ(T̃ ) + λ · σ(S̃).

If µ ∈ σ(T̃ + λS̃) \ σe(T̃ + λS̃), then it is an isolated point of the spectrum (Proposition 1.1).
This means (e.g. [4, Theorem 7.2.10]) that there is a sequence {µn}∞n=1, µn ∈ σ(T̃ + λnS̃),
that converges to µ. Since λn ∈ D for all n, there exist sequences {αn}∞n=1 and {βn}∞n=1,
αn ∈ σ(T̃ ), βn ∈ σ(S̃), such that µn = αn + λnβn. Without loss of generality we may assume
that {αn}∞n=1 and {βn}∞n=1 converge to α ∈ σ(T̃ ) and β ∈ σ(S̃), respectively. We conclude
that µ = lim µn = α + λβ is in σ(T̃ ) + λ · σ(S̃), and λ is an element of D.
Now we will prove that C \ D is countable (and hence empty). For

(α, β) ∈ (σ(T )× σ(S)) \ (σ(T̃ )× σ(S̃))

(this set is countable by Proposition 1.1), let Eα,β denote the set

{λ ∈ C : α + λβ ∈ σ(T̃ + λS̃)}.
For λ ∈ C\D, the inclusion σ(T̃ +λS̃) ⊆ σ(T̃ )+λ ·σ(S̃) does not hold. In other words, there
exists µ ∈ σ(T̃ + λS̃) ⊆ σ(T + λS) ⊆ σ(T ) + λ · σ(S), µ = α + λβ for α ∈ σ(T ), β ∈ σ(S),
which is not an element of σ(T̃ ) + λ · σ(S̃). We have proved

C \ D ⊆
⋃
Eα,β

and all that remains to be seen is that the sets Eα,β are countable.
One of T̃−αI and S̃−βI is invertible, we can assume that it is T̃−αI. Hence T̃+λS̃−(α+λβ)I
is non-invertible if and only if I + λ(S̃ − βI)(T̃ − αI)−1 is non-invertible. The inverse of an
invertible polynomially compact operator is again polynomially compact (if Rk +ak−1R

k−1 +
. . . + a0I is compact, then so is a0R

−k + a1R
−k+1 + . . . + I), and if polynomially compact R

and Q essentially commute, so do R−1 and Q (since R−1Q−QR−1 = R−1(QR − RQ)R−1),
so (S̃−βI)(T̃ −αI)−1 is a polynomially compact operator by Theorem 1.5, and its spectrum
is countable by Proposition 1.1. In other words, I + λ(S̃ − βI)(T̃ − αI)−1 is non-invertible
only for countably many λ, and therefore Eα,β is countable. ¤

4 A remark on the structure of polynomially compact opera-
tors on Hilbert spaces

The fundamental theorem on the structure of polynomially compact operators was given by
Olsen in [3]: any polynomially compact operator (an operator whose image in the Calkin
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algebra is algebraic) on a separable Hilbert space can be written as a sum of a compact and
an algebraic operator (whose minimal polynomial is equal to the minimal polynomial of the
given polynomially compact operator). This is a complete analog of the well-known West
decomposition, which states that a Riesz operator (an operator whose image in the Calkin
algebra is quasinilpotent) on a (not necessarily separable) Hilbert space can be written as a
sum of a compact and a quasinilpotent operator. A question arises whether the decomposition
given by Olsen’s theorem holds in the general (non-separable) Hilbert-space setting. Let us
offer two proofs that the answer is affirmative; the first is a modification of the proof for
separable spaces (a certain sequence is replaced by a net), and the second uses Olsen’s result
for the restriction of the polynomially compact operator to a separable subspace.
Observe that in the proof of Olsen’s theorem the only time separability is used is in the
proof of [3, Lemma 2.1] where a sequence of finite-rank projections converging strongly to
the given projection is considered. In a non-separable Hilbert space such a sequence does not
necessarily exist. However, the net given by Lemma 4.1 suffices for the completion of the
proof.

Lemma 4.1: Let H be a Hilbert space. Then there exists a net {Pi}i∈I of finite-rank projec-
tions that converges strongly to the identity operator.

Proof. By the Zorn Lemma, there is a maximal orthonormal system {eλ : λ ∈ Λ} in H. Let
I be the set {K ⊆ Λ: K finite} ordered by inclusion and let PK be the projection

x 7→
∑

λ∈K
〈x, eλ〉eλ.

We claim that the net {PK}K∈I converges strongly to identity.
Choose x ∈ H. For any ε > 0, |〈x, eλ〉| ≥ ε for only finitely many λ ∈ Λ by Bessel’s inequality.
Hence, 〈x, eλ〉 = 0 for all λ ∈ Λ \ {λn}∞n=1. The series

∑∞
n=1〈x, eλn〉eλn converges to some

y ∈ H, for any n we have 〈x − y, eλn〉 = 〈x, eλn〉 − 〈y, eλn〉 = 0, and 〈x, eλ〉 = 〈y, eλ〉 = 0 for
λ ∈ Λ\{λn}∞n=1. The maximality of {eλ : λ ∈ Λ} guarantees that x = y. We conclude that for
a positive ε there is a finite set K (K = {λ1, . . . , λn} for some n ∈ N) such that ‖x−PLx‖ < ε
for any set L ∈ I that includes K as a subset. ¤

Alternatively, let K = p(T ) be compact (possibly zero). The image of K is separable, so
H1, the closure of the subspace

{q(T, T ∗)x : q non-commutative polynomial, x ∈ im K},
is also separable, and is invariant for T and T ∗. Therefore, with respect to the decomposition
H = H1⊕H2 (where H2 = H⊥1 ), T can be written as T = T1⊕T2 for T1 ∈ B(H1), T2 ∈ B(H2).
The operator T1 is an operator on a separable Hilbert space, p(T1) is compact, so by Olsen’s
theorem T1 = K1 + A1 for K1 compact and p(A1) = 0. The image of p(T2) ∈ B(H2) is
contained in im p(T ) = imK ⊆ H1 and must be zero. We conclude that T = (K1 ⊕ 0) +
(A1 ⊕ T2), K1 ⊕ 0 is compact, and p(A1 ⊕ T2) = 0. If p is minimal for T , p is also minimal
for A1 ⊕ T2.
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