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Abstract. We extend recent results of Assaf and McNamara on a skew Pieri rule and a skew Murnaghan-

Nakayama rule to a more general identity, which gives an elegant expansion of the product of a skew Schur

function with a quantum power sum function in terms of skew Schur functions. We give two proofs, one
completely bijective in the spirit of Assaf-McNamara’s original proof, and one via Lam-Lauve-Sotille’s

skew Littlewood-Richardson rule. We end with some conjectures for skew rules for Hall-Littlewood

polynomials.
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1. Introduction

Schur functions {sλ : λ a partition} form the most important basis of the algebra of symmetric functions.
They are not only interesting in their own right, but they appear in many areas of mathematics, such
as the representation theory of the symmetric group and general linear groups, the cohomology ring of
the Grassmanian etc. It is only natural that the formula for the product of two Schur functions, the
celebrated Littlewood-Richardson rule, is of paramount importance in the theory. The rule says that the
coefficient of sλ in the product sµsν is the number of certain (easily described) objects; in particular, all
these coefficients are non-negative integers. For general λ, µ, ν the exact enumeration of these objects is
still a difficult task.

The rule, however, becomes very simple if one of the Schur functions in the product is of a special form,
namely, if ν a partition with either one row or one column. The (conjugate) Pieri rule states that in this
case, all coefficients are either 0 or 1, and the coefficient is 1 only if we can obtain λ from µ in a certain way.
The Pieri rule has many generalizations. Surprisingly, a generalization to skew Schur functions was proved
only very recently by Assaf and McNamara in [1] (see §1 in that paper for a sample of other generalizations
of the Pieri rule and references). Assaf and McNamara also proved a skew version of another important
special case of the Littlewood-Richardson rule, the Murnaghan-Nakayama rule, which gives an expansion
of the product of a Schur function with a power sum function.

The authors provide a beautiful combinatorial proof of the skew Pieri rule (and Thomas Lam gives an alge-
braic proof in the appendix), but they were unable to find a combinatorial proof for the skew Murnaghan-
Nakayama rule, and they challenged their readers to find one. Our paper does more than that: it gives
an involutive proof of the following generalization of both the skew Pieri rule and the skew Murnaghan-
Nakayama rule.

Main Theorem (Skew Quantum Murnaghan-Nakayama Rule) For partitions λ, µ, µ ⊆ λ, and r ≥ 0, we
have

sλ/µ · p̃r =

r∑
j=0

(−1)r+1−j
∑
λ+,µ−

(−1)wt(λ+/λ)+ht(µ/µ−)qht(λ+/λ)+wt(µ/µ−)(q − 1)rib(λ+/λ)+rib(µ/µ−)−1sλ+/µ− ,

where the internal sum on the right is over λ+, µ− such that λ+/λ is a broken ribbon of size r − j, and
µ/µ− is a broken ribbon of size j.

Here p̃r are certain symmetric functions with the parameter q that specialize to the power sum functions
for q = 1 and to the Schur function sr for q = 0. See the next section for a precise definition of all terms.
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The paper is structured as follows. In Section 2, we give all necessary definitions and background, and
state all our results. In Section 3, we describe the sign-reversing involution of Assaf and McNamara that
was used to prove their skew Pieri rule. Furthermore, we show a variant of this involution that proves the
conjugate skew Pieri rule. Note that this involution is actually much simpler than the one in [1]. In Section
4, we present an extension of these involutions that proves the skew quantum Murnaghan-Nakayama rule.
There is quite some work involved to interpret the right-hand side of SQMNR in an appropriate way,
but once this is done the involution is just a natural combination of the two involutions in Section 3. In
Section 5, we present another proof of SQMNR, via the skew Littlewood-Richardson rule of Lam-Lauve-
Sotille [4]; since their result (at the moment) only has an algebraic proof, this proof of SQMNR is not
completely combinatorial. In Section 6, we give some conjectured skew Pieri-type rules for Hall-Littlewood
polynomials, for which our combinatorial methods seem to fail. We finish with some concluding remarks
in Section 7.

2. Preliminaries and results

A partition λ of n is a sequence of integers (λ1, λ2, . . . , λ`) satisfying λ1 ≥ λ2 ≥ . . . ≥ λ` > 0 and
λ1 + λ2 + . . . + λ` = n; we use the notation λ ` n, ` = `(λ) (length of λ), n = |λ| (size of λ), λi = 0 if

i > `(λ). We sometimes write (λk11 , λ
k2
2 , . . .) if λ1 is repeated k1 times, λ2 < λ1 is repeated k2 times etc.

We write mj(λ) for the number of parts of λ equal to j. The conjugate partition of λ, denoted λc, is the
partition µ = (µ1, µ2, . . . , µλ1) defined by µi = max{j : λj ≥ i}. The Young diagram [λ] of a partition λ
is the set {(i, j) : 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi}. For partitions λ, µ we say that µ ⊆ λ if µi ≤ λi for all i. If
µ ⊆ λ, the skew Young diagram [λ/µ] of λ/µ is the set {(i, j) : 1 ≤ i ≤ `(λ), µi < j ≤ λi}. We denote
|λ| − |µ| by |λ/µ|. The elements of [λ/µ] are called cells. We treat λ and λ/∅ as identical.

We say that λ/µ is a horizontal strip (respectively vertical strip) if [λ/µ] is non-empty, contains no 2× 1
(respectively 1× 2) block, equivalently, if λci ≤ µci + 1 (respectively λi ≤ µi + 1) for all i. We say that λ/µ
is a ribbon if [λ/µ] is non-empty, connected and if it contains no 2 × 2 block, and that λ/µ is a broken
ribbon if [λ/µ] contains no 2 × 2 block, equivalently, if λi ≤ µi−1 + 1 for i ≥ 2. The Young diagram
of a broken ribbon is a disjoint union of rib(λ/µ) number of ribbons. The height ht(λ/µ) (respectively
width wt(λ/µ)) of a ribbon is the number of non-empty rows (respectively columns) of [λ/µ], minus 1.
The height (respectively width) of a broken ribbon is the sum of heights (respectively widths) of the
components. Clearly, λ/µ is a horizontal (respectively vertical) strip if and only if it is a broken ribbon of
height (respectively width) 0. Figure 1 shows examples of a horizontal strip, vertical strip, ribbon (with
ht(λ/µ) = 8 and wt(λ/µ) = 7) and broken ribbon (with ht(λ/µ) = 6, wt(λ/µ) = 6 and rib(λ/µ) = 3).

Figure 1

A map T : [λ/µ] → N is called a skew semistandard Young tableau of shape λ/µ if, for all i and j,
T (i, j1) ≤ T (i, j2) for j1 < j2, and T (i1, j) < T (i2, j) for i1 < i2. If T is a skew semistandard Young
tableau, we denote by ti(T ) the number of cells that map to i. If T is a bijection into [n], we call T a
standard Young tableau. Define the skew Schur function

(1) sλ/µ =
∑
T

x
t1(T )
1 x

t2(T )
2 · · · ,

where the sum is over all semistandard Young tableaux of shape λ/µ. A skew Schur function is a formal
power series in x1, x2, . . ., and it is not hard to see that it is a symmetric function. Moreover, the set of



SKEW QUANTUM MURNAGHAN-NAKAYAMA RULE 3

Schur functions {sλ : λ partition} is a basis of the space of symmetric functions. For more details, and for
some of the amazing properties of Schur functions, see [8, §7].

There are several other bases of the space of symmetric functions. For the purposes of this paper, the
most important one is the power sum basis {pλ : λ partition}, defined by

pr = xr1 + xr2 + . . . ,

pλ = pλ1
pλ2
· · · pλ` .

Let us also mention the monomial basis {mλ : λ partition}, defined by

mλ =
∑

xλ1

π(1) · · ·x
λ`
π(`),

where the sum is over all injective maps π : {1, . . . , `} → N.

The product of Schur functions can be (uniquely) expressed as a linear combination of Schur functions:

sλsµ =
∑

cνλ,µsν .

The coefficients cνλ,µ are called Littlewood-Richardson coefficients and can be computed using the celebrated

Littlewood-Richardson rule, see [8, Appendix A1.3]. This rule is quite complicated, but it is very simple if
µ has only one row or column. Namely, we have the Pieri rule:

(2) sλsr =
∑

sλ+ ,

where the sum on the right is over all λ+ such that λ+/λ is a horizontal strip of size r. Similarly, the
conjugate Pieri rule says that

(3) sλs1r =
∑

sλ+ ,

where the sum on the right is over all λ+ such that λ+/λ is a vertical strip of size r.

We also have a rule for the product of a Schur function with a power sum symmetric function, the
Murnaghan-Nakayama rule:

(4) sλpr =
∑

(−1)ht(λ+/λ)sλ+ ,

where the sum on the right is over all λ+ such that λ+/λ is a ribbon of size r. See [8, Theorems 7.15.7
and 7.17.1].

In [1] and [2], Assaf and McNamara found a beautiful extension of both the Pieri rule and the Murnaghan-
Nakayama rule.

Theorem 1 (Skew Pieri Rule – SPR) For any partitions λ, µ, µ ⊆ λ, we have

sλ/µ · sr =
∑
j

(−1)j
∑

sλ+/µ− ,

where the inner sum on the right is over all λ+, µ− such that λ+/λ is a horizontal strip of size r− j, and
µ/µ− is a vertical strip of size j.

The skew Pieri rule has an equivalent conjugate form.

Corollary 2 (Conjugate skew Pieri rule – CSPR) For any partitions λ, µ, µ ⊆ λ, we have

sλ/µ · s1r =
∑
j

(−1)j
∑

sλ+/µ− ,

where the inner sum on the right is over all λ+, µ− such that λ+/λ is a vertical strip of size r − j, and
µ/µ− is a horizontal strip of size j

CSPR can be proved from SPR via the involution ω on the algebra of symmetric functions, which maps
sλ/µ to sλc/µc and is an algebra homomorphism. See [8, §7.6 and §7.14] for details.
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Theorem 3 (Skew Murnaghan-Nakayama Rule – SMNR) For any partitions λ, µ, µ ⊆ λ, we have

sλ/µ · pr =
∑

(−1)ht(λ+/λ)sλ+/µ −
∑

(−1)ht(µ/µ−)sλ/µ− ,

where the first (respectively second) sum on the right is over all λ+ (respectively µ−) such that λ+/λ
(respectively µ/µ−) is a ribbon of size r.

Example By SPR, we have

s322/11 · s2 = s522/11 + s432/11 + s4221/11 + s3321/11 + s3222/11 − s422/1 − s332/1 − s3221/1 + s322,

as shown by Figure 2.

Figure 2

By CSPR, we have

s322/11 · s11 = s432/11 + s4221/11 + s333/11 + s3321/11 + s32211/11 − s422/1 − s332/1 − s3221/1,

as shown by Figure 3.

Figure 3

By SMNR, we have

s433/22 · p3 = s733/22 − s553/22 + s4333/22 − s43321/22 + s433111/22 + s433/1,

as shown by Figure 4.

Figure 4

Note that while the Pieri rule and the Murnaghan-Nakayama rule expand products in terms of a basis, their
skew versions give only one possible (but obviously special) expansion in terms of skew Schur functions,
which are not a basis of the space of symmetric functions.

Assaf and McNamara provide an elegant bijective proof of their skew Pieri rule (but not of the skew
Murnaghan-Nakayama rule; see Section 7). We describe this rule in detail in Section 3 since an extension
of it proves our main result.

Define quantum power sum symmetric functions by

p̃r =
∑
τ`r

(−1)`(τ)−1(q − 1)`(τ)−1mτ ,
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p̃µ = p̃µ1 p̃µ2 · · · .
For example,

p̃4 = m4 − (q − 1)m31 − (q − 1)m22 + (q − 1)2m211 − (q − 1)3m1111

and
p̃22 = m4 − 2(q − 1)m31 + (q2 − 2q + 3)m22 + 2(q − 1)(q − 2)m211 + 6(q − 1)2m1111.

The functions p̃µ have connections with representation theory (more precisely, characters of the Hecke
algebra of type A; see for example [3, Theorem 6.5.3]). See also [6] and [5, Chapter III.2].

We have

p̃r|q=1 = mr = pr, p̃r|q=0 =
∑
τ`r

mτ = sr, lim
q→∞

p̃r
qr−1

= (−1)r−1m1r = (−1)r−1s1r .

There exists a natural generalization of the Murnaghan-Nakayama rule, the quantum Murnaghan-Naka-
yama rule (QMNR):

sλ · p̃r = (−1)r+1
∑
λ+

(−1)wt(λ+/λ)qht(λ+/λ)(q − 1)rib(λ+/λ)−1sλ+ ,

where the internal sum on the right is over λ+ such that λ+/λ is a broken ribbon of size r. See for example
[3, Theorem 6.5.2] for a slightly different version.

The following is our main result, the skew quantum Murnaghan-Nakayama rule.

Theorem 4 (SQMNR) For partitions λ, µ, µ ⊆ λ, and r ≥ 0, we have

sλ/µ · p̃r =

r∑
j=0

(−1)r+1−j
∑
λ+,µ−

(−1)wt(λ+/λ)+ht(µ/µ−)qht(λ+/λ)+wt(µ/µ−)(q − 1)rib(λ+/λ)+rib(µ/µ−)−1sλ+/µ− ,

where the internal sum on the right is over λ+, µ− such that λ+/λ is a broken ribbon of size r − j, and
µ/µ− is a broken ribbon of size j.

There is another version of the statement that will be slightly more useful for our purposes.

Theorem 5 (SQMNR′) For partitions λ, µ, µ ⊆ λ, and r ≥ 0, we have

sλ/µ · p̃r =
∑
λ+,µ−

(−1)|µ/µ
−|(−q)ht(λ+/λ)+wt(µ/µ−)(1− q)rib(λ+/λ)+rib(µ/µ−)−1sλ+/µ− ,

where the sum on the right is over λ+, µ− such that λ+/λ and µ/µ− are broken ribbons with |λ+/λ| +
|µ/µ−| = r.

To see that these two versions are equivalent, note that

qht(λ+/λ)+wt(µ/µ−)(q − 1)rib(λ+/λ)+rib(µ/µ−)−1 =

= (−1)ht(λ+/λ)+wt(µ/µ−)+rib(λ+/λ)+rib(µ/µ−)−1(−q)ht(λ+/λ)+wt(µ/µ−)(1− q)rib(λ+/λ)+rib(µ/µ−)−1,

which means that the sign of (−q)ht(λ+/λ)+wt(µ/µ−)(1− q)rib(λ+/λ)+rib(µ/µ−)−1 of a term on the right-hand
side of SQMNR is

(−1)r+1−j+wt(λ+/λ)+ht(µ/µ−)+ht(λ+/λ)+wt(µ/µ−)+rib(λ+/λ)+rib(µ/µ−)−1.

If π/σ is a ribbon, we have wt(π/σ) + ht(π/σ) + 1 = |π/σ|. Therefore if π/σ is a broken ribbon,

(5) wt(π/σ) + ht(π/σ) + rib(π/σ) = |π/σ|.
That means that the sign above is equal to

(−1)r+1−j+|λ+/λ|+|µ/µ−|−1 = (−1)2r+j = (−1)|µ/µ
−|.

The main theorem is a generalization of several statements. The following is a sample:



6 MATJAŽ KONVALINKA

• q = 0: a term on the right-hand side of SQMNR′ is non-zero if and only if ht(λ+/λ)+wt(µ/µ−) = 0.
In this case, λ+/λ has height 0 (and is a horizontal strip) and µ/µ− has width 0 (and is a vertical
strip). As noted above, p̃r|q=0 = sr. SQMNR′ specializes to the skew Pieri rule due to Assaf-
McNamara [1].

• q = 1: a term on the right-hand side of SQMNR′ is non-zero if and only if rib(λ+/λ)+rib(µ/µ−)−
1 = 0. In this case, one of λ+/λ and µ/µ− is empty, and the other one is a ribbon. As noted
above, p̃r|q=1 = pr. SQMNR′ therefore states

sλ/µ · pr =
∑
λ+

(−1)ht(λ+/λ)sλ+/µ +
∑
µ−

(−1)k(−1)wt(µ/µ−)sλ/µ− =

=
∑
λ+

(−1)ht(λ+/λ)sλ+/µ −
∑
µ−

(−1)ht(µ/µ−)sλ/µ− ,

where the first sum is over λ+ so that λ+/λ is a ribbon, and the second sum is over µ− so that
µ/µ− is a ribbon. This is the skew Murnaghan-Nakayama rule due to Assaf-McNamara [2].

• q →∞: divide SQMNR by qr−1 and send q →∞. The limit of the left-hand side is (−1)r−1sλ/µs1r .
The coefficient of sλ+/µ− on the right is

lim
q→∞

(−1)r+1−j(−1)wt(λ+/λ)+ht(µ/µ−) q
ht(λ+/λ)+wt(µ/µ−)(q − 1)rib(λ+/λ)+rib(µ/µ−)−1

qr−1
=

= (−1)r+1−j(−1)wt(λ+/λ)+ht(µ/µ−) lim
q→∞

q−(wt(λ+/λ)+ht(µ/µ−)),

where we used (5). This is non-zero if and only if wt(λ+/λ) + ht(µ/µ−) = 0, i.e. if λ+/λ is a
vertical strip and µ/µ− is a horizontal strip, and the limit is (−1)r−1(−1)j . SQMNR therefore
implies the conjugate skew Pieri rule.

• µ = ∅: SQMNR is obviously the quantum Murnaghan-Nakayama rule.
• µ = ∅, q = 0: this is the classical Pieri rule.
• µ = ∅, q = 1: this is the classical Murnaghan-Nakayama rule.
• µ = ∅, q →∞: this implies the classical conjugate Pieri rule.
• λ = µ = ∅: this gives the expansion of quantum power sum functions in the basis of Schur

functions. The only Young diagrams of size r that are also broken ribbons are hooks, i.e. diagrams
of partitions of the type (k, 1r−k) for 1 ≤ k ≤ r. Therefore (as we verify independently in Lemma
10),

p̃r =

r∑
k=1

(−q)r−ksk,1r−k .

Define a broken ribbon tableau of shape λ/µ and type τ (respectively, reverse broken ribbon tableau of shape
λ/µ and type τ) as an assignment of positive integers to the cells of [λ/µ] satisfying the following;

• every row and column is weakly increasing (respectively, weakly decreasing);
• the integer i appear τi times;
• the set Ti of cells occupied by i forms a broken ribbon.

For a (reverse) broken ribbon tableau T we define ht(T ) =
∑

ht(Ti), wt(T ) =
∑

wt(Ti), rib(T ) =∑
rib(Ti).

The main theorem implies the following corollary; compare to [8, Theorem 7.17.3].

Corollary 6 We have

sλ/µ · p̃τ =
∑
λ+⊇λ
µ−⊆µ

(−1)|µ/µ
−|χ(λ+, λ, µ, µ−; τ)sλ+/µ− ,

where

χ(λ+, λ, µ, µ−; τ) =
∑

(−q)ht(T ′)+wt(T ′′)(1− q)rib(T ′)+rib(T ′′)−1
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with the sum over all pairs (T ′, T ′′) of a broken ribbon tableau and a reverse broken ribbon tableau of shapes
λ+/λ and µ/µ−, respectively, and types τ ′ and τ ′′, respectively, so that τ ′ + τ ′′ = τ .

3. Proofs of the skew Pieri rule and its conjugate

One of the most important algorithms on semistandard Young tableaux is the Robinson-Schensted row
insertion. Given a semistandard Young tableau T of shape λ and an integer k, we can insert k into T
as follows. Define k1 = k. Find the smallest j so that T1j > k1, replace T1j by k1, and define k2 to be
the previous value of T1j . Then find the smallest j so that T2j > k2, replace T2j by k2, and define k3 to
be the previous value of T2j . Continue until, for some i′, all elements of row i′ are ≤ ki′ . Then define
Ti′,λ′i+1 = ki′ , and finish the algorithm. The result is again a semistandard Young tableau. We say that

the insertion of k into T exits in row i′. See [8, §7.11] for details.

Example Inserting 1 into the tableau on the left of Figure 5 produces the tableau on the right.

4

4

1 1 2

332

4

4 1 1 1

322

3

Figure 5

Now assume we have a skew semistandard Young tableau T of some shape λ/µ. We can insert k into T
for some integer k in almost exactly the same way. Define k1 = k. Find the smallest j, µ1 < j ≤ λ1, so
that T1j > k1, replace T1j by k1, and define k2 to be the previous value of T1j . Then find the smallest j,
µ2 < j ≤ λ2, so that T2j > k2, replace T2j by k2, and define k3 to be the previous value of T2j . Continue
until, for some i′, all elements of row i′ are ≤ ki′ . Then define Ti′,λi′+1 = ki′ , and finish the algorithm.
The result is again a semistandard Young tableau. We say that the insertion of k into T exits in row i′.

There is, however, another natural kind of insertion. Take i0 so that either i0 = 1 or µi0−1 > µi0 , and take
ki0+1 = Ti0,µi0+1. We can insert from row i0 in T as follows. Erase the entry Ti0,µi0+1. Find the smallest
j, µi0+1 < j ≤ λi0+1, so that Ti0+1,j > ki0+1, replace Ti0+1,j by ki0+1, and define ki0+2 to be the previous
value of Ti0+1,j . Then find the smallest j, µi0+2 < j ≤ λi0+2, so that Ti0+2,j > ki0+2, replace Ti0+2,j by
ki0+2, and define ki0+3 to be the previous value of Ti0+2,j . Continue until, for some i′, all elements of
row i′ are ≤ ki′ . Then define Ti′,λi′+1 = ki′ , and finish the algorithm. The result is again a semistandard
Young tableau. We say that the insertion from row i0 in T exits in row i′.

Example In the following figures, we have an insertion of 1 into a tableau, and insertion from row 2 in a
tableau.

3

2

31

2

4

4

2

3

2

31

2

4

4

2

33

3

2

1

21

2

4

4

2

2

3

1

4

4

2

Figure 6
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Note that insertion into T is in a way a special case of insertion from a row in T . Indeed, take µ0 = λ1,
λ0 = λ1 + 1, and define T0,λ1 = k. Then insertion from row 0 in the new tableau gives the same result as
insertion of k into the original tableau.

Insertion has an inverse operation, reverse insertion. Say we are given a semistandard Young tableau T of
shape λ/µ. Take i′ so that λi′+1 < λi′ . We reverse insert from row i′ in T as follows. Define ki′−1 = Ti′,λi′ .
Erase the entry Ti′,λi′ . Find the largest j, µi′−1 < j ≤ λi′−1, so that Ti′−1,j < ki′−1, replace Ti′−1,j by
ki′−1, and define ki′−2 to be the previous value of Ti′−1,j . Then find the largest j, µi′−2 < j ≤ λi′−2, so
that Ti′−2,j < ki′−2, replace Ti′−2,j by ki′−2, and define ki′−3 to be the previous value of Ti′−2,j . Continue
until we have ki0 , where either i0 = 0 or all elements of row i0 are ≥ ki0 . If i0 = 0, the result is a pair
(S, k), where S is a semistandard Young tableau and k = k0. We call k the exiting integer. If i0 ≥ 1 and
all elements of row i0 are ≥ ki0 , define Ti0,µi0 = ki0 . The result is a semistandard Young tableau S. We

say that the reverse insertion from row i′ in T exits in row i0.

Example In the following figures, we have reverse insertion from rows 2 (which exits in row 0 with exiting
integer 2) and 4 (which exits in row 1).

12

31

2

4

4

2

3

2

31

2

4

4

2

3 3

3

1

2

4

4

2

3

2

32

2

4

4

Figure 7

In [1], the operations of insertion and reverse insertion are proved to be inverses of one another in the
following sense. If the insertion of an integer k into a semistandard Young tableau T exits in row i′ and
the resulting tableau is S, then the reverse insertion from row i′ in S exits in row 0 and the result is (T, k).
If the insertion from row i0 into T exits in row i′ and the resulting tableau is S, then the reverse insertion
from row i′ in S exits in row i0 and the result is T . Similarly, if the reverse insertion from row i′ in T exits
in row 0 and the result is (S, k), then the insertion of k into S exits in row i′ and the result is T . And if
the reverse insertion from row i′ in T exits in row i0 ≥ 1 and the result is S, then the insertion from row
i0 into S exits in row i′ and the result is T .

We will also need the following property of insertion and reverse insertion. The lemma essentially states
that insertion paths never cross.

Lemma 7 Say we are given a semistandard Young tableau T .

(a) If S is obtained by reverse insertion from row i′ in T that exits in row i0 > 0, and R is obtained
by reverse insertion from row i′′ < i′ in S that exits in row i′0, then i′0 < i0.

(b) If S is obtained by reverse insertion from row i′ in T that exits in row 0 with exiting integer k′,
and R is obtained by reverse insertion from row i′′ < i′ in S that exits in row i′0, then i′0 = 0 and
the reverse insertion exits with exiting integer k′′ > k′.

(c) If reverse insertion from row i′ in T exits in i0 and insertion from row i′0 > i0 in T exits in i′′,then
i′′ > i′.

Proof. (a) If i0 ≥ i′′, then i′0 < i′′ ≤ i0 and the claim follows. Assume i0 < i′′. We claim that if the reverse
insertion from row i′ in T passes through (i, j′) and the reverse insertion from row i′′ in S passes through
(i, j′′), then j′′ ≥ j′; in other words, reverse insertion from T lies weakly to the left of the reverse insertion
from S. The statement is true for i = i′′ because in this case, j′′ = λi. If the statement holds for i and
j′ < j′′, the reverse insertion from row i′ in T bumps the entry T (i, j′) into row i − 1; then the reverse
insertion from row i′′ in S bumps the entry T (i, j′′) ≥ T (i, j′) into a position which cannot be the left of
the new position of T (i, j′) in row i− 1. If, on the other hand, j′ = j′′, the reverse insertion from row i′ in
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T again bumps the entry T (i, j′) into row i− 1 and the entry T (i, j′) is itself replaced by a strictly larger
entry. Then reverse insertion from row i′′ in S bumps this strictly larger entry into the next row into a
position which cannot be the the left of the new position of T (i, j′) in row i− 1.
This means that the reverse insertion from row i′′ in S passes through row i0 and so it exits in row < i0.
(b) By the reasoning in (a), the reverse insertion from S is weakly to the right of the reverse insertion
from T . In particular, reverse insertion from S reaches row 1, and if the exiting integer k′ is bumped from
position (1, j′), then the exiting integer k′′ is bumped from (1, j′′) for j′′ ≥ j′. In particular, k′′ > k′.
(c) We claim that if reverse insertion from row i′ in T passes through (i, j′, where i′0 ≤ i ≤ i′, then insertion
from i′0 in T passes through the cell (i, j′′) for some j′′ ≤ j′. The statement is true for i = i′0 because in
that case, j′′ = µi + 1 ≤ j′. If it holds for i, then the entry from row i+ 1, say a, that was bumped into
row i during the reverse insertion from row i′ in T , must be < a, and lies in position (i, j′) in T . Therefore
T (i, j′′) < a and cannot be bumped into a position to the right of a in row i+ 1 in T .
In particular, insertion from row i′0 in T passes through row i′, and so the insertion exits in row i′′ > i′. �

The involution by Assaf and McNamara that proves the skew Pieri rule works as follows. Say we are given
a skew shape λ/µ and a semistandard Young tableau T of shape λ+/µ−, where λ+/λ is a horizontal strip
and µ/µ− is a vertical strip. Let v be the empty word. Let i =∞ if µ = µ−, and let i be the top row of
µ/µ− otherwise.

While λ+ 6= λ and the reverse insertion from row i′, the top row of λ+/λ, in T exits in row 0 and results
in (S, k), attach k to the beginning of v, let T = S, and let λ+/µ− be the shape of the new T (note that
λ+
i′ is decreased by 1 and µ− remains the same).

If the while loop stops when λ+ 6= λ and the reverse insertion from row i′ in T exits in row i0, 0 < i0 < i,
and results in S, let T = S.

If the while loop stops when λ+ = λ, µ 6= µ−, or when λ+ 6= λ and the reverse insertion from row i′ in T
would exit in row i0, i0 ≥ i, insert from row i into T and call the resulting tableau T .

Finish the algorithm by inserting the entries of v from left to right into T . The final result is a semistandard
Young tableau, we denote it Φλ,µ,λ+,µ−(T ).

Example (Consult Figure 8.) The left drawing shows a skew semistandard Young tableau with λ+ =
8855432, λ = 855533, µ = 43222, µ− = 42111. The while loop changes v to 2445 and it stops because after
four reverse insertions, the next reverse insertion (from row 7) exits in row 1 (see the second drawing).
Since this is strictly above the top row of µ/µ−, i.e. 2, we also perform this reverse insertion from row 7
(see the third drawing). Then we insert the integers 2, 4, 4, 5 and we get the skew semistandard Young
tableau pictured on the right, with λ+ = 8855431, λ = 855533, µ = 43222, µ− = 32111.
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(Consult Figure 9.) In the second example, we start with λ+ = 8855431, λ = 855533, µ = 43222,
µ− = 42111, see the left drawing. The while loop again changes v to 2445 and it stops because after four
reverse insertions, the next reverse insertion (from row 7) exits in row 5 (see the second drawing). Since
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this is not above the top row of µ/µ−, we do not perform this reverse insertion. Instead, we insert from
the top row of µ/µ−, i.e. 2 (see the third drawing). Then we insert the integers 2, 4, 4 and 5 and we get
the skew semistandard Young tableau pictured on the right, with λ+ = 8855432, λ = 855533, µ = 43222,
µ− = 43111.
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(Consult Figure 10.) In the third example, we start with λ+ = 9855331, λ = 855533, µ = 43222,
µ− = 43222, see the left drawing. The while loop changes v to 11245 and it stops because after five reverse
insertions, λ+ = λ and µ = µ−. So we insert the integers 1, 1, 2, 4 and 5 and we get the original skew
semistandard Young tableau, pictured on the right.
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It turns out that Φ is an involution, and T is a fixed point if and only if µ = µ− and the while loop
stops when λ+ = λ. Such fixed points are in one-to-one correspondence with pairs (S, v), where S is
a semistandard Young tableau of shape λ/µ and v is a weakly increasing word. Indeed, if we stop the
algorithm after the while loop, we have exactly such a pair, and given a pair (S, v), we can insert the
entries of v from left to right into S to get the corresponding T . Furthermore, if T is not a fixed point,
then |µ−−| = |µ−|±1. It is easy to see that this shows the skew Pieri rule. See [1] for details and a precise
proof.

As mentioned in Section 2, the conjugate skew Pieri rule follows from SPR by applying the involution ω
on the algebra of symmetric functions. There is, however, an involution in the spirit of Assaf-McNamara
that proves CSPR.

Fix λ, µ, r. A term on the right-hand side of CSPR is represented by a semistandard skew Young tableau
of shape λ+/µ−, where λ+/λ is a vertical strip, µ/µ− is a horizontal strip, and |λ+/λ|+ |µ/µ−| = r. Such

a tableau T is weighted by (−1)|µ/µ
−|. Let i denote the bottom row of µ/µ− (unless µ = µ−, in which case

take i = 0). Now reverse insert from row i′, the bottom row of λ+/λ, in T (unless λ+ = λ). If the reverse
insertion exits the diagram in row ≥ i (except in the case when µ = µ− and the reverse insertion exits in
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row 0), call this new diagram Ψ(T ) = Ψλ,µ,λ+,µ−(T ). See Figure 11, left. If this reverse insertion exits the
diagram in row < i, or if λ+ = λ, insert from row i in T and call the result Ψ(T ) = Ψλ,µ,λ+,µ−(T ). See
Figure 11, middle. When µ = µ− and the reverse insertion exits in row 0, take Ψ(T ) = Ψλ,µ,λ+,µ−(T ) = T .
See Figure 11, right.

Example For the skew semistandard Young tableau on the left in Figure 11, reverse insertion from row
9 (the bottom row of λ+/λ) exits in row 5, which is weakly below the bottom row of µ/µ−. Therefore we
perform this reverse insertion, and the result is the left picture of Figure 12. For the skew semistandard
Young tableau in the middle of Figure 11, reverse insertion from row 9 (the bottom row of λ+/λ) exits
in row 4, which is strictly above the bottom row of µ/µ−. Therefore we insert from row 5 (the bottom
row of µ/µ−), the result is the middle picture of Figure 12. For the skew semistandard Young tableau on
the right of Figure 11, reverse insertion from row 9 (the bottom row of λ+/λ) exits in row 0. This means
that the tableau is a fixed point of Ψ. The right picture in Figure 12 shows the skew semistandard Young
tableau that we get if we repeatedly reverse insert from the bottom row of λ+/λ; the exiting integers are
1, 2, 3, 4, 5, 6.
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Proposition 8 The map Ψλ,µ,λ+,µ− is an involution that is sign-reversing except on fixed points. Fur-
thermore, the fixed points are in a natural bijective correspondence with elements on the left-hand side of
CSPR.

Proof. Say that λ+ 6= λ and the reverse insertion from row i′, the bottom row of λ+/λ, exits in row i0,
0 6= i0 ≥ i, where i is the bottom row of µ/µ−, and results in S of shape λ++/µ−−. Recall that in this
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case, Ψ(T ) = S. The partition µ−− differs from µ− only in row i0, and µ−−i0 = µ−i0 − 1. Also, λ++ differs

from λ+ only in row i′, and λ++
i′ = λ+

i′ − 1. Note that the bottom row of µ/µ−− is i0. If λ++ = λ, then
Ψ(S) is obtained by inserting from row i0 in S, which is T (because insertion and reverse insertion are
inverse operations). If λ++ 6= λ, then the bottom row of λ++/λ is strictly above i′; furthermore, reverse
insertion from this row exits in row < i0 by Lemma 7, part (a). So we also obtain Ψ(S) by inserting from
row i0 in S, and we get T .
Now assume that λ+ 6= λ and the reverse insertion from row i′, the bottom row of λ+/λ, exits in row < i.
Then S = Ψ(T ) of shape λ++/µ−− is the result of inserting from row i in T , assume that this insertion
exits in row i′′. We know that µ−− differs from µ− only in row i, µ−−i = µ−i + 1, and λ++ differs from
λ+ only in row i′′, λ++

i′′ = λ+
i′′ + 1. By Lemma 7, part (c), i′′ > i′. That means that when we perform Ψ

on S, we reverse insert from row i′′ in S. The reverse insertion results in T and exits in row i, which is
weakly below the bottom row of µ/µ−−, so Ψ(S) = T .
If λ+ = λ, we obtain S = Ψ(T ) of shape λ++/µ−− by inserting from row i in T , say that the insertion
exits in row i′. In S, λ+/λ has only one cell, which is in row i′. Furthermore, reverse insertion from row i′

in S exits in row i, which is weakly below the bottom row of µ/µ−−. So the result of this reverse insertion,
T , is also Ψ(S).
Finally, assume that T is a fixed point, i.e. that µ = µ− and that the reverse insertion from row i′, the
bottom row of λ+/λ, exits in row 0. Call the resulting tableau T1 (of shape λ++/µ) and the exiting integer
k1. By Lemma 7, part (b), that means that if we again reverse insert from the bottom row of λ+

1 /λ in T1,
the reverse insertion again exits in row 0, and the exiting integer k2 is strictly greater than k1. Call the
resulting tableau T2, and continue. After r steps, we have a semistandard Young tableau S = Tr of shape
λ/µ, and a strictly decreasing word w = krkr−1 · · · k1. Such pairs (S,w) are obviously enumerated by the
left-hand side of CSPR. �

4. A bijective proof of the main theorem

The first step of our proof is to interpret the right-hand side of SQMNR′ as a weighted sum over some
combinatorial objects. The appropriate objects turn out to be skew semistandard Young tableaux with
some cells colored gray. To motivate these colorings, observe the following. If we “glue” together a vertical
strip and a horizontal strip in such a way that the result is a skew diagram, then this skew diagram cannot
have any 2× 2 squares. In other words, it is a broken ribbon. This also holds the other way around: if we
are given a broken ribbon, we can break it up into a vertical strip and a horizontal strip. See Figure 13
for two examples. Note that the right example is special: the white cells (i.e. the cells of µ and the cells
of λ/µ we put in the horizontal strip) form a partition. In other words, the cells of the horizontal strip
never have cells of the vertical strip to the left or above them.

Figure 13

Let us multiply both sides of SQMNR′ by 1− q and call this statement SQMNR′′:
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sλ/µ ·

(∑
τ`r

(1− q)`(τ)mτ

)
=
∑
λ+,µ−

(−1)|µ/µ
−|(−q)ht(λ+/λ)+wt(µ/µ−)(1− q)rib(λ+/λ)+rib(µ/µ−)sλ+/µ− .

We have fixed λ, µ, r. Say that we are given λ+, µ− such that λ+/λ and µ/µ− are broken ribbons with
|λ+/λ|+ |µ/µ−| = r, and a skew semistandard Young tableau T of shape λ+/µ−. Our first goal is to break
up each of the broken ribbons λ+/λ and µ/µ− into a vertical strip and a horizontal strip. More precisely,
we wish to choose partitions λ′, µ′ such that λ′/λ and µ′/µ− are horizontal strips, and λ+/λ′ and µ/µ′

are vertical strips. We weight such a selection with

(−1)|µ/µ
−|(−q)|λ

+/λ′|+|µ′/µ−|.

We color the cells of λ+/λ′ and µ′/µ− gray and leave the other cells white. So our requirements are saying
that both the gray cells of λ+/λ and the white cells of µ/µ− form a vertical strip, and both the white cells
of λ+/λ and the gray cells of µ/µ− form a horizontal strip; also, the white cells form a diagram of some

shape λ′/µ′ for λ ⊆ λ′ ⊆ λ+, µ− ⊆ µ′ ⊆ µ. Furthermore, the weight of such an object is (−1)|µ/µ
−|(−q)j ,

where j is the number of gray cells.

Example Figure 14 shows four examples with weights q16, q14, −q13 and −q11.

Figure 14

We claim that these objects indeed enumerate the right-hand side of SQMNR′.

Lemma 9 For fixed λ, µ, λ+, µ−, we have∑
λ′,µ′

(−1)|µ/µ
−|(−q)|λ

+/λ′|+|µ′/µ−| = (−1)|µ/µ
−|(−q)ht(λ+/λ)+wt(µ/µ−)(1− q)rib(λ+/λ)+rib(µ/µ−),

where the sum on the left runs over all λ′, µ′ such that λ′/λ and µ′/µ− are horizontal strips, and λ+/λ′

and µ/µ′ are vertical strips.

Proof. For each cell of λ+/λ, we have to decide whether or not to put it in λ′/λ or in λ+/λ′ (i.e. whether
to make it white or gray). If a cell in λ+/λ has a right neighbor in λ+/λ, it cannot be in λ+/λ′, since its
right neighbor would also have to be in λ+/λ′, and this would contradict the requirement that λ+/λ′ is a
vertical strip. Similarly, if a cell in λ+/λ has an upper neighbor in λ+/λ, it cannot be in λ′/λ, since its
upper neighbor would also have to be in λ′/λ, and this would contradict the requirement that λ′/λ is a
horizontal strip.
This means that the colors of all the cells in λ+/λ are determined, except for the top right cell of each
ribbon of λ+/λ, which can be either white or gray.
If a cell in µ/µ− has a right neighbor in µ/µ−, it cannot be in µ/µ′, since its right neighbor would also
have to be in µ/µ′, and this would contradict the requirement that µ/µ′ is a vertical strip. Similarly, if a
cell in µ/µ− has an upper neighbor in µ/µ−, it cannot be in µ′/µ−, since its upper neighbor would also
have to be in µ′/µ−, and this would contradict the requirement that µ′/µ− is a horizontal strip.
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This means that the colors of all the cells in µ/µ− are determined, except for the top right cell of each
ribbon of µ/µ−, which can be either white or gray.
In other words, we have two choices for each upper right cell of each ribbon of (λ+/λ) ∪ (µ/µ−). This

already means that there are 2rib(λ+/λ)+rib(µ/µ−) terms on the left-hand side.
We have at least ht(λ+/λ) gray cells in λ+/λ, and at least wt(µ/µ−) gray cells in µ/µ−. So the weight of
a term on the left-hand side is

(−1)|µ/µ
−|(−q)ht(λ+/λ)+wt(µ/µ−)(−q)j ,

where j is the number of cells that are gray by choice, and these choices are made independently. By the
binomial theorem,∑(

rib(λ+/λ) + rib(µ/µ−)

j

)
(−1)|µ/µ

−|(−q)ht(λ+/λ)+wt(µ/µ−)(−q)j =

(−1)|µ/µ
−|(−q)ht(λ+/λ)+wt(µ/µ−)(1− q)rib(λ+/λ)+rib(µ/µ−),

which finishes the proof of the lemma. �

We have managed to rewrite SQMNR′′ as follows:

sλ/µ ·

(∑
τ`r

(1− q)`(τ)mτ

)
=

∑
λ+,λ′,µ−,µ′

(−1)|µ/µ
−|(−q)|λ

+/λ′|+|µ′/µ−|sλ+/µ− ,

where the sum is over partitions λ+, λ′, µ−, µ′ such that λ+/λ and µ/µ− are broken ribbons with |λ+/λ|+
|µ/µ−| = r, λ′/λ and µ′/µ− are horizontal strips, and λ+/λ′ and µ/µ′ are vertical strips.

Fix λ, µ and r. By 1, a term on the right-hand side of SQMNR′′ therefore corresponds to a semistandard
Young tableau T with some cells colored white and some cells colored gray, such that the following
properties are satisfied:

• the shape of T is λ+/µ− for some λ+ ⊇ λ and µ− ⊆ µ, |λ+/λ|+ |µ/µ−| = r, and λ+/λ and µ/µ−

are broken ribbons;
• the white cells form a skew diagram λ′/µ′ for some partitions λ′, µ′;
• the white cells in λ+/λ form a horizontal strip, and the white cells in µ/µ− form a vertical strip;
• the gray cells are in (λ+/λ)∪ (µ/µ−), and they form a vertical strip in λ+/λ and a horizontal strip

in µ/µ−;

We call such an object a colored tableau of shape (λ, µ, λ′, µ′, λ+, µ−). We weight a colored tableau by

(−1)|µ/µ
−|(−q)|λ

+/λ′|+|µ′/µ−|.

Now perform the involution Ψ on the gray cells of a colored tableau. More specifically, find Ψλ′,µ′,λ+,µ−(T ).
Since λ+/λ′ is a vertical strip and µ′/µ− is a horizontal strip, the map is well defined. One gray cell
is removed, and one gray cell is added in the process. The result is a colored tableau T ′ of shape
(λ, µ, λ′, µ′, λ++, µ−−) for some λ++, µ−−; it has the same white cells as T , the same number of gray
cells as T , and with the property that |µ/µ−−| = |µ/µ−| ± 1 unless T = T ′ is a fixed point.

This already cancels a large number of terms. The ones that remain correspond to fixed points of
Ψλ′,µ′,λ+,µ− . Each such fixed point consists of a semistandard skew Young tableau S of some shape
λ′/µ′, where λ′/λ is a horizontal strip and µ/µ′ is a vertical strip, and of a strictly decreasing word w

coming from reverse insertion of λ+/λ′. Such an object is weighted by (−1)|µ/µ
′|(−q)|w|.

Now apply the Assaf-McNamara involution Φ to the tableau. More specifically, find Φλ,µ,λ′,µ′(S). The
result is a semistandard Young tableaux S′ of some shape λ+++/µ−−− with the property that |µ/µ−−−| =
|µ/µ−| ± 1 unless S = S′ is a fixed point. This cancels more terms. The ones that remain correspond to
fixed points of Φλ,µ,λ′,µ′ , together with a strictly decreasing word w and the weight (−q)|w|. Each such
fixed point consists of a semistandard Young tableau R of shape λ/µ, together with a weakly increasing
word v and a strictly decreasing word w. Such an object is weighted by (−q)|w|. Furthermore, every such
triple (R, v, w) appears as a non-canceling term on the right. Indeed, insert the elements of v into R to
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get a semistandard Young tableau S of shape λ′/µ for some partition λ′ so that λ′/λ is a horizontal strip;
then insert the elements of w into S and color the new cells gray to get a colored tableau T of shape λ+/µ
for some partition λ+ so that λ+/λ′ is a vertical strip. Then applying Ψ and Φ to T yields (R, v, w).

It remains to enumerate all triples (R, v, w). If we want (v, w) to contain, say, τi copies of i, 1 ≤ i ≤ `, we
can choose any j-subset of {1, . . . , `} and put the elements in decreasing order to form w, and then put the
remaining elements of the multiset {1τ1 , 2τ2 , . . . , `τ`} in weakly increasing order to form v. Furthermore,
the weight of (R, v, w) for these v and w is (−q)j . That means that the right-hand side of SQMNR′′

becomes, after cancellations,

sλ/µ ·

(∑
τ`r

(1− q)`(τ)mτ

)
,

which is the left-hand side of SQMNR′′.

5. A proof via skew Littlewood-Richardson rule

It is informative to use Lam-Lauve-Sotille’s [4] skew Littlewood-Richardson rule to find another proof
of SQMNR. The first lemma is a simple computation that allows us to replace the quantum power sum
functions with “hook” Schur functions and should remind the reader of the enumeration of pairs (v, w)
for v a weakly increasing word and w a strictly decreasing word at the end of the previous section. The
second lemma is technical and states that a certain property is preserved in jeu de taquin slides. And the
third lemma sheds some light on connections between jeu de taquin, hooks, and decompositions of broken
ribbons into vertical and horizontal strips.

Lemma 10 For all r, we have

p̃r =

r∑
k=1

(−q)r−ksk,1r−k .

Proof. Let us compute the expansion of the right-hand side in basis mλ. Given λ = (λ1, λ2, . . . , λ`) and
k, 1 ≤ k ≤ r, it is easy to count the number of semistandard Young tableaux of shape (k, 1r−k) and type

λ: place 1 in cell (1, 1), choose the elements to place in the (only) cell of rows 2, . . . , r − k + 1 in
(
`−1
r−k
)

ways and place them in the first column in strictly increasing order, and place the remaining elements in
weakly increasing order in the first row. This tells us that the coefficient of mλ in the right-hand side is

r∑
k=1

(−q)r−k
(
`− 1

r − k

)
= (1− q)`−1,

which is also the coefficient of mλ in p̃r. �

For the second lemma, we have to recall the celebrated backward (respectively, forward) jeu de taquin slide
due to Schützenberger. Say we are given a skew standard Young tableau of shape λ/µ. Let c = c0 be a
cell that is not in λ/µ, shares the right or lower edge (respectively, the left or upper edge) with λ/µ, and
is such that λ/µ∪ c is a valid skew diagram. Let c1 be the cell of λ/µ that shares an edge with c0; if there
are two such cells, take the one with the smaller entry (respectively, larger entry). Then move the entry
occupying c1 to c0, look at the tableau entries below or to the right of c1 (respectively, above or to the left
of c1), and repeat the same procedure. We continue until we reach the boundary, say in m moves. The
new tableau is a standard Young tableau and is called jdtc(T ). We say that c0, c1, . . . , cm is the path of
the slide.

If T is a skew standard Young tableau, we can repeatedly perform backward jeu de taquin slides. The
final result S is a standard Young tableau of straight shape, and it is independent of the choices during
the execution of the algorithm. We say that T rectifies to S. See [8, Appendix A1.2].

Say we are given a standard Young tableau T of shape λ/µ. We say that T has the k-NE property if the
following statements are true:

NE1 the entry in the last cell of the first non-empty row (i.e. the northeast cell) of λ/µ is k;
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NE2 if i < j < k, then i appears strictly to the left of j in T ;
NE3 if j > i > k, then i appears strictly above j in T .

The following figure shows some tableaux with 5-NE property.
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Figure 15

Lemma 11 If a tableau T has the k-NE property, its shape is a broken ribbon. Furthermore, the k-NE
property is preserved in a jeu de taquin slide.

Proof. For the first statement, assume that there is a 2× 2 square in λ/µ, assume it has numbers a, b in
the upper row and c, d in the lower row. If c < k, then a < c implies a < k, and this is a contradiction
with property NE2. If c > k, then d > c implies d > k, and this is contradiction with property NE3. But
we cannot have c = k since c is obviously not the northeast cell of T .
Now take the path c0, c1, . . . , cm of a backward slide in T . We claim that either all ci are in the same row,
or all ci are in the same column, or m = 2, c1 is below c0, and c2 is to the right of c1.
If they are not in the same row or column, it means that the ci’s take a turn. All three cells involved in
the turn (i.e. ci, ci+1, ci+2, where either ci+1 lies to the right of ci and ci+2 lies below ci+1, or ci+1 lies
below ci and ci+2 lies to the right of ci+1) cannot be in λ/µ, since that would imply that there is a 2× 2
block in λ/µ. Therefore the only option is if the entries involved in the turn are c0, c1, c2. Say that c1 lies
to the right of c0 and c2 lies below c1. The fact that we can add c0 to λ/µ implies that there is a cell
c′ of λ/µ below c0, with entry, say, a3. Say that we have a1 in c1 and a2 in c2. We have a3 < k (since
a3 > k would imply a2 > a3 > k, and this would contradict NE3). We also have a1 < a3, since otherwise
we would be sliding from c′ into c0 rather than from c1. But then a1 < k lies to the right of a3 < k, even
though a1 < a3, which contradicts NE2.
That means that c1 lies below c0 and c2 lies to the right of c1. If m ≥ 3, there must be cells both above
c2 and c3 in λ/µ, and this would give a 2× 2 block.
Assume first that all ci are in the same row. Obviously the northeast cell is preserved, so property NE1
holds for the new tableau. Furthermore, since all cells of the tableau stay in the same row, NE3 is
preserved. If NE2 is violated in the new tableau, it must mean that there is a cell c′ with entry < k in T
in the same column as c0. But this can only happen if c′ lies immediately below c0; by NE2, its entry is
less than the entry of c1, and therefore we would slide from c′ into c0, not from c1.
If all ci are in the same column, the proof that the properties NE1, NE2 and NE3 are preserved is
completely analogous. So let us assume that we have m = 2, c1 is below c0, and c2 is to the right of c1.
There must be a cell c′ of λ/µ to the right of c0, say with entry a3. Assume we have a1 in c1 and a2 in c2.
Then a1 < k (a1 > k would imply a2 > k and contradict NE3) and a2 > k (a2 < k would imply a3 < k
and contradict NE2). So all cells with entries < k stay in the same column, and all cells with entries > k
stay in the same row. Therefore NE2 and NE3 are still satisfied, and it is clear that the northeast cell
stays in place.
The proof for a forward slide is analogous. This completes the proof of the lemma. �

Lemma 12 Take r, k, 1 ≤ k ≤ r, and let S be the standard Young tableau of shape (k, 1r−k) with 1, 2, . . . , k
in the first row, and k + 1, k + 2, . . . , r in rows 2, 3, . . . , r − k + 1. Choose a skew shape λ/µ. Then the
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number of standard Young tableaux of shape λ/µ that rectify to S is
(

rib(λ/µ)−1
k−1−wt(λ/µ)

)
if λ/µ is a broken ribbon

of size r, and 0 otherwise.

Proof. Obviously the number is 0 unless |λ/µ| = r.
Note that S has the k-NE property. By Lemma 11, that means that if T of shape λ/µ rectifies to S, T
has the k-NE property and its shape λ/µ is a broken ribbon. Furthermore, there is only one non-skew
standard Young tableau that has the k-NE property, and that is S.
It remains to assume that λ/µ is a broken ribbon of size r, and to count the number of standard Young
tableaux of shape λ/µ that have the k-NE property. Place k in the northeast cell. If a cell in λ/µ has a
right neighbor in λ/µ, then the entry has to be less than k (otherwise both this entry and the entry to the
right would be greater than k, and this would contradict NE3). Similarly, if a cell in λ/µ has an upper
neighbor in λ/µ, then the entry has to be greater than k (otherwise both this entry and the entry above
it would be less than k, and this would contradict NE2).
This means that there are at least wt(λ/µ) elements that are < k. We can choose the northeast element
of any ribbon except the northeast ribbon and make it < k. Since there are k − 1 elements total that are
less than k, we have (

rib(λ/µ)− 1

k − 1− wt(λ/µ)

)
choices. �

Finally, recall the following result from [4]. For standard Young tableaux T and S, we let T ∗ S be the
tableau we get by placing T below and to the left of S. See Figure 16 for an example.
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Figure 16. Tableaux T , S and T ∗ S.

Theorem 13 (Skew Littlewood-Richardson rule – SLRR) Let λ, µ, σ, τ be partitions and fix a standard
Young tableau T of shape σ. Then

sλ/µsσ/τ =
∑

(−1)|R
−|sλ+/µ− ,

where the sum is over triples (R−, R+, R) of standard Young tableaux of respective shapes (µ/µ−)c, λ+/λ
and τ such that R− ∗R+ ∗R rectifies to T .

SLRR and the lemmas indeed prove SQMNR as follows. By Lemma 10,

sλ/µ · p̃r =

r∑
k=1

(−q)r−ksλ/µ · sk,1r−k .

By SLRR,

sλ/µ · sk,1r−k =
∑

R−,R+

(−1)|R
−|sλ+/µ− ,

where the sum is over R− ∈ SYT((µ/µ−)c), R+ ∈ SYT(λ+/λ) such that R− ∗R+ rectifies to T , where T
is the standard Young tableau of shape (k, 1r−k) with 1, 2, . . . , k in the first row, and k+ 1, k+ 2, . . . , r in
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rows 2, 3, . . . , r− k+ 1. By Lemma 12, the sum on the right is over λ+, µ− such that λ+/λ and µ/µ− are
broken ribbons, and for such λ+, µ−, the coefficient of sλ+/µ− is

(−1)|µ/µ
−|
(

rib(λ+/λ) + rib(µ/µ−)− 1

k − 1− wt(λ+/λ)− ht(µ/µ−)

)
.

This means that the coefficient of sλ+/µ− in sλ/µ · p̃r is

(−1)|µ/µ
−|
∑
k

(−q)r−k
(

rib(λ+/λ) + rib(µ/µ−)− 1

k − 1− wt(λ+/λ)− ht(µ/µ−)

)
.

Since r = rib(λ+/λ) + rib(µ/µ−) + wt(λ+/λ) + wt(µ/µ−) + ht(λ+/λ) + ht(µ/µ−), the sum equals

(−q)ht(λ+/λ)+wt(µ/µ−)
∑
k

(−q)rib(λ+/λ)+rib(µ/µ−)−1−(k−1−wt(λ+/λ)−ht(µ/µ−))
( rib(λ+/λ)+rib(µ/µ−)−1
k−1−wt(λ+/λ)−ht(µ/µ−)

)
= (−q)ht(λ+/λ)+wt(µ/µ−)(1− q)rib(λ+/λ)+rib(µ/µ−)−1

by the binomial theorem. This is SQMNR′.

6. Some conjectures involving Hall-Littlewood polynomials

The quantum power sum functions p̃r are equal to Hall-Littlewood polynomials Pr (with parameter q
instead of the usual t), see e.g. [5, page 214]. So while SPR gives the expansion of sλ/µsr, SQMNR gives
the expansion of sλ/µPr. Of course, the expansion of PλPr and PλP1r = Pλs1r in terms of Pλ+ are two of
the basic results for Hall-Littlewood polynomials (see [5, §III, (3.2) and (3.10)]). The following questions
naturally arise. Can we exchange the roles of P and s in SQMNR, i.e. is there a natural expansion of
Pλ/µsr in terms of Pλ+/µ−? What about Pλ/µs1r? The following conjectures suggest that the answers to
these questions are in the affirmative.

Recall the definition of the q-binomial coefficient,[
n
k

]
q

=
[n]!

[k]![n− k]!
, where [i]! = 1(1 + q)(1 + q + q2) · · · (1 + q + q2 + . . .+ qi−1).

For a horizontal strip λ/µ, define

hs(λ/µ) =
∏

λcj=µ
c
j+1

λcj+1=µcj+1

(1− qmj(λ)).

For a vertical strip λ/µ, define

vs(λ/µ) =
∏
j≥1

[
λcj − λcj+1

λcj − µcj

]
q

.

For a broken ribbon λ/µ, define

br(λ/µ) = (−q)ht(λ/µ)(1− q)rib(λ/µ).

For any skew shape λ/µ, define

sk(λ/µ) = q
∑
j (λ

c
j−µ

c
j

2
)
∏
j

[
λcj − µcj+1

mj(µ)

]
q

.

With this notation, SQMNR′ can be expressed as

sλ/µ · Pr =
1

1− q
∑
λ+,µ−

(−1)|µ/µ
−| br(λ+/λ) br((µ/µ−)c)sλ+/µ− ,

where the sum on the right is over λ+, µ− such that λ+/λ and µ/µ− are broken ribbons with |λ+/λ| +
|µ/µ−| = r.
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Conjecture 14 For partitions λ, µ, µ ⊆ λ, and r ≥ 0 we have

Pλ/µ · sr =
∑

(−1)|µ/µ
−| sk(λ+/λ) vs(µ/µ−)Pλ+/µ− ,

where the sum on the right is over all λ+ ⊇ λ, µ− ⊆ µ such that µ/µ− is a vertical strip and |λ+/λ| +
|µ/µ−| = r.

For λ = µ = ∅, this is identity (2) on page 219 in [5]. The formula seems to be new for µ = ∅ and arbitrary
λ.

Conjecture 15 For partitions λ, µ, µ ⊆ λ, and r ≥ 0 we have

Pλ/µ · s1r = Pλ/µ · P1r =
∑

(−1)|µ/µ
−| vs(λ+/λ) sk(µ/µ−)Pλ+/µ− ,

where the sum on the right is over all λ+ ⊇ λ, µ− ⊆ µ such that λ+/λ is a vertical strip and |λ+/λ| +
|µ/µ−| = r.

For µ = ∅, this is [5, §III, (3.2)].

The methods of this paper do not seem to work for these conjectures. In other words, the sign-reversing in-
volutions described in Sections 3 and 4 cancel only the constant coefficients on both sides of the conjectured
equalities; positive powers of q cancel in some other, mysterious manner.

The author was unable to find a (conjectural) skew version of the Pieri rule for Hall-Littlewood polynomials,
i.e. an expansion of Pλ/µPr in terms of Pλ+/µ− .

7. Final remarks

7.1. The motivation for this work was the open problem posed by Assaf and McNamara in [2]: to find a
combinatorial proof of the skew Murnaghan-Nakayama rule (SMNR). Even though this paper provides a
completely bijective proof of the skew quantum Murnaghan-Nakayama rule, which obviously specializes to
the non-quantum rule, Assaf-McNamara’s problem remains open. Indeed, plugging q = 1 into SQMNR′′,
which is the identity we proved bijectively, gives 0 on both sides. To get SMNR, we have to divide
SQMNR′′ by 1− q and then set q = 1.

One possibility would be to find a bijective proof of SQMNR′ instead. This would mean that one of
the northeast corners of ribbons of (λ+/λ) ∪ (µ/µ−) would have to be colored white (or gray), perhaps
the northeast corner of λ+/λ or the northeast corner of µ/µ−. We were unable to find such a bijection.
Even such a bijection, however, would not be enough to construct a bijection that proves SMNR. Indeed,
plugging in q = 1 makes many of the skew tableaux weighted with 0, and hence would not appear on
the right-hand side of SMNR at all. We would want to avoid such 0-weight objects in the sign-reversing
involution.

One possibility would be to construct an involution-principle type of a bijection. Namely, given a skew
semistandard Young tableau of shape λ+/µ, with λ+/λ a ribbon of size r, we would map it to a tableau
of shape λ++/µ−−, where λ++/λ is a broken ribbon of size r − 1 and |µ/µ−−| a broken ribbon of size
1, then map this to a tableau of shape λ+++/µ−−−, where λ+++/λ is a broken ribbon of size r − 2 and
|µ/µ−−| a broken ribbon of size 2 etc., until finally reaching a tableau of shape µ/µ−, where µ/µ− is a
ribbon of size r. We leave this as motivation for further work.

7.2. There is another natural q-version of power sum functions, defined by

p̄r =
∑
τ`r

qr−`(τ)(q − 1)`(τ)−1mτ ,

p̄µ = p̄µ1
p̄µ2
· · · .

For example,

p̄4 = q3m4 + q2(q − 1)m31 + q2(q − 1)m22 + q(q − 1)2m211 + (q − 1)3m1111
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and

p̄22 = q2m4 + 2q(q − 1)m31 + (3q2 − 2q + 1)m22 + 2(q − 1)(2q − 1)m211 + 6(q − 1)2m1111.

We have

p̄r|q=1 = mr = pr, p̄r|q=0 = (−1)r−1m1r = (−1)r−1s1r , lim
q→∞

p̄r
qr−1

=
∑
τ`r

mτ = sr.

Theorem 16 (SQMNR′′′) For partitions λ, µ, µ ⊆ λ, and r ≥ 0, we have

sλ/µ · p̄r = (−1)r−1
∑
λ+,µ−

(−1)|µ/µ
−|(−q)wt(λ+/λ)+ht(µ/µ−)(1− q)rib(λ+/λ)+rib(µ/µ−)−1sλ+/µ− ,

where the sum on the right is over λ+, µ− such that λ+/λ and µ/µ− are broken ribbons with |λ+/λ| +
|µ/µ−| = r.

For q = 0, this is the conjugate skew Pieri rule (multiplied by (−1)r−1), for q = 1, this is again the skew
Murnaghan-Nakayama rule, and if we divide by qr−1 and send q to ∞, we get the skew Pieri rule. We
could give an involutive proof in the spirit of the proof of SQMNR′, but we can also derive SQMNR′′′

from SQMNR′ by observing that p̄r = qrp̃r|q=q−1 .

7.3. Lam-Lauve-Sotille’s skew Littlewood-Richardson rule is very general, but the computation of actual
coefficients in the expansion, i.e. counting all standard Young tableaux of a given shape that rectify to a
given tableau, is complicated in practice. In light of Section 5, our work can be seen as one possible answer
to the following question. For what special shapes of λ, µ, σ, τ can we actually compute the coefficients?
SQMNR can be interpreted as saying that if τ = ∅ and σ is a hook, the coefficients are certain binomial
coefficients, while SPR says that the coefficient is ±1 if τ = ∅ and σ = r.

It would be interesting to find other examples when the coefficients can be computed and yield elegant
answers, both for Schur functions and for other Hopf algebras.
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