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Abstract

Sylvester’s identity is a classical determinantal identity with a straightforward
linear algebra proof. We present combinatorial proofs of several non-commutative
extensions, and find a β-extension that is both a generalization of Sylvester’s identity
and the β-extension of the quantum MacMahon master theorem.

1 Introduction

1.1 Classical Sylvester’s determinantal identity.

Combinatorial linear algebra is a beautiful and underdeveloped part of enumerative com-
binatorics. The underlying idea is very simple: one takes a matrix identity and views
it as an algebraic result over a (possibly non-commutative) ring. Once the identity is
translated into the language of words, an explicit bijection or an involution is employed
to prove the result. The resulting combinatorial proofs are often insightful and lead to
extensions and generalizations of the original identities, often in unexpected directions.

Sylvester’s identity is a classical determinantal identity that is usually written in the
form used by Bareiss ([B]).

Theorem 1.1 (Sylvester’s identity) Let A denote a matrix (aij)m×m; take n < i, j ≤ m
and define

A0 =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 , ai∗ =

(
ai1 ai2 · · · ain

)
, a∗j =




a1j

a2j
...

anj


 ,
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bij = det

(
A0 a∗j
ai∗ aij

)
, B = (bij)n+1≤i,j≤m

Then
det A · (det A0)

m−n−1 = det B.

Example 1.2 If we take n = 1 and m = 3, the Sylvester’s identity says that

(a11a22a33 − a11a32a23 − a21a12a33 + a21a32a13 + a31a12a23 − a31a22a13)a11 =

=

∣∣∣∣
a11a22 − a21a12 a11a23 − a21a13

a11a32 − a31a12 a11a33 − a31a13

∣∣∣∣ .

Bareiss’s proof of Theorem 1.1 is a pretty straightforward linear algebra argument; see
[MG], [AAM] for other proofs and some mild generalizations.

1.2 Extensions of Sylvester’s identity.

The Sylvester’s identity has been intensely studied, mostly in the algebraic rather than
combinatorial context. In 1991, a generalization to quasideterminants, essentially equiv-
alent to our Theorem 3.1, was found by Gelfand and Retakh [GeR]. Krob and Leclerc
[KL] used their result to prove the following quantum version.

Let q ∈ C\{0}. Call a matrix (in non-commutative variables) A = (aij)m×m quantum
if:

• ajkaik = qaikajk for i < j,

• ailaik = qaikail for k < l,

• ajkail = ailajk for i < j, k < l,

• aikajl − ajlaik = (q−1 − q)ailajk for i < j, k < l.

Define the quantum determinant of a matrix A by

detqA =
∑

σ∈Sm

(−q)− inv σaσ(1)1aσ(2)2 · · · aσ(m)m,

where inv σ denotes the number of inversions of the permutation σ.

Theorem 1.3 (Krob, Leclerc) For a quantum matrix A = (aij)m×m, take n, A0, ai∗ and
a∗j as before, and define

bij = detq

(
A0 a∗j
ai∗ aij

)
, B = (bij)n+1≤i,j≤m.

Then
detqA · (detqA0)

m−n−1 = detqB.
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Krob and Leclerc’s proof consists of an application of the so-called quantum Muir’s
law of extensible minors to the expansion of a minor.

Since then, Molev found several far-reaching extensions to Yangians, including other
root systems [Mo1, Mo2]; see also [HM].

1.3 Main result.

In this paper, we find a multiparameter right-quantum analogue of Sylvester’s identity.
We use the techniques developed in [KP].

Fix non-zero complex numbers qij for 1 ≤ i < j ≤ m. We call a matrix A q-right-
quantum if

ajkaik = qijaikajk for all i < j, (1.1)

aikajl − q−1
ij ajkail = qklq

−1
ij ajlaik − qklailajk for all i < j, k < l. (1.2)

In the next section, we define the concept of a q-determinant of a square matrix. We
then have

detq(I − A) =
∑

J⊆[m]

(−1)|J |detqAJ ,

where

detqAJ =
∑
σ∈SJ


 ∏

p<r : jp>jr

q−1
jrjp


 aσ(j1)j1 · · · aσ(jk)jk

for J = {j1 < j2 < . . . < jk}.
Our main theorem is the following.

Theorem 1.4 (q-right-quantum Sylvester’s determinant identity) Let A = (aij)m×m be
a q-right-quantum matrix, and choose n < m. Let A0, ai∗, a∗j be defined as above, and let

cqij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
, Cq = (cqij)n+1≤i,j≤m.

Suppose qij = qi′j′ for all i, i′ ≤ n and j, j′ > n. Then

detq
−1(I − A0) · detq(I − A) = detq(I − Cq).

The determinant detq(I − A0) does not commute with other determinants in the
definition of cqij, so the identity cannot be written in a form analogous to Theorem 1.1.
See Remark 9.9 for a discussion of the necessity of the condition qij = qi′j′ for i, i′ ≤ n,
j, j′ > n.

The proof roughly follows the pattern of the proof of the main theorem in [KP]. First
we show a combinatorial proof of the classical Sylvester’s identity (Sections 3 and 4). Then
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we adapt the proof to simple non-commutative cases – the Cartier-Foata case (Section
5) and the right-quantum case (Section 6). We extend the results to cases with a weight
(Sections 7 and 8) and to multiparameter weighted cases (Sections 9 and 10). We also
present a β-extension of Sylvester’s identity in Section 11.

2 Algebraic framework

2.1 Words and matrices.

We work in the C-algebra A of formal power series in non-commuting variables aij, 1 ≤
i, j ≤ m. Elements of A are infinite linear combinations of words in variables aij (with
coefficients in C). In most cases we take elements of A modulo some ideal I generated by
a finite number of quadratic relations. For example, if Icomm is generated by aijakl = aklaij

for all i, j, k, l, then A/Icomm is the symmetric algebra (the free commutative algebra with
variables aij).

We abbreviate the product aλ1µ1 · · · aλ`µ`
to aλ,µ for λ = λ1 · · ·λ` and µ = µ1 · · ·µ`,

where λ and µ are regarded as words in the alphabet {1, . . . , m}. For such a word
ν = ν1 · · · ν`, define the set of inversions

I(ν) = {(i, j) : i < j, νi > νj},

and let inv ν = |I(ν)| be the number of inversions.

2.2 Determinants.

Let B = (bij)n×n be a square matrix with entries in A, i.e. bij’s are linear combinations
of words in A. To define the determinant of B, expand the terms of

∑
σ∈Sn

(−1)inv(σ)bσ11 · · · bσnn,

and weight a word aλ,µ with a certain weight w(λ, µ). The resulting expression is called
the determinant of B (with respect to A). In the usual commutative case, all weights are
equal to 1.

In all cases we consider we have w(∅,∅) = 1. Therefore

1

det(I − A)
=

1

1− Σ
= 1 + Σ + Σ2 + . . . ,

where Σ is a certain finite sum of words in aij and both the left and the right inverse of
det(I −A) are equal to the infinite sum on the right. We can use the fraction notation as
above in non-commutative situations.
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2.3 Paths.

We consider lattice steps of the form (x, i) → (x + 1, j) for some x, i, j ∈ Z, 1 ≤ i, j ≤ m.
We think of x being drawn along the x-axis, increasing from left to right, and refer
to i and j as the starting height and ending height, respectively. We identify the step
(x, i) → (x + 1, j) with the variable aij. Similarly, we identify a finite sequence of steps
with a word in the alphabet {aij}, 1 ≤ i, j ≤ m, i.e. with an element of the algebra A.
If each step in a sequence starts at the ending point of the previous step, we call such a
sequence a lattice path. A lattice path with starting height i and ending height j is called
a path from i to j.

Example 2.1 The following is a path from 4 to 4.

Figure 1: Representation of the word a41a13a32a22a25a54a43a33a33a31a14a44.

Recall that the (i, j)-th entry of Ak is the sum of all paths of length k from i to j.
Since

(I − A)−1 = I + A + A2 + . . . ,

the (i, j)-th entry of (I − A)−1 is the sum of all paths (of any length) from i to j.

3 Non-commutative Sylvester’s identity

As in Section 1, choose n < m, and denote the matrix (aij)m×m by A and (aij)n×n by A0.

We will show a combinatorial proof of the non-commutative Sylvester’s identity due
to Gelfand and Retakh, see [GeR].

Theorem 3.1 (Gelfand-Retakh) Consider the matrix C = (cij)n+1≤i,j≤m, where

cij = aij + ai∗(I − A0)
−1a∗j.

Then
(I − A)−1

ij = (I − C)−1
ij .

Proof: Take a lattice path aii1ai1i2 · · · ai`−1j with i, j > n. Clearly it can be uniquely
divided into paths P1, P2, . . . Pp with the following properties:

• the ending height of Pi is the starting height of Pi+1

• the starting and the ending heights of all Pi are strictly greater than n
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• all intermediate heights are less than or equal to n

Next, note that

cij = aij + ai∗(I − A0)
−1a∗j = aij +

∑

k,l≤n

aik(I + A0 + A2
0 + . . .)klalj

is the sum over all non-trivial paths with starting height i, ending height j, and interme-
diate heights ≤ n. This decomposition hence proves the theorem.

Example 3.2 The following figure depicts the path from Example 2.1 with a dotted line
between heights n and n + 1, and the corresponding decomposition, for n = 3.

P1 P2 P3 P4

Figure 2: The decomposition (a41a13a32a22a25)(a54)(a43a33a33a31a14)(a44).

The theorem implies that

(I − A)−1
n+1,n+1(I − An+1,n+1)−1

n+2,n+2 · · ·
(

I −
(

A0 a∗m
am∗ amm

))−1

mm

= (3.1)

= (I − C)−1
n+1,n+1(I − Cn+1,n+1)−1

n+2,n+2 · · · (1− cmm)−1.

Here An+1,n+1 is the matrix A with the (n + 1)-th row and column removed.

In all the cases we consider in the following sections, both the left-hand side and the
right-hand side of this equation can be written in terms of determinants, as in the classical
Sylvester’s identity.

4 Commutative case

Recall that if D is an invertible matrix with commuting entries, we have

(
D−1

)
ij

= (−1)i+j det Dji

det D
,

where Dji denotes the matrix D without the j-th row and the i-th column. Apply this
to (3.1): the numerators (except the last one on the left-hand side) and denominators
(except the first one on both sides) cancel each other, and we get

det(I − A0)

det(I − A)
=

1

det(I − C)
. (4.1)
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Proposition 4.1 For i, j > n we have

δij − cij =

det

(
I − A0 −a∗j
−ai∗ δij − aij

)

det(I − A0)
. (4.2)

Proof: Clearly we have

(1− cij)
−1 =

((
I −

(
A0 a∗j
ai∗ aij

))−1
)

ij

,

and by (4.1), this is equal to

det(I − A0)

det

(
I −

(
A0 a∗j
ai∗ aij

)) .

This finishes the proof for i = j, and for i 6= j we have

1− cij =

det

(
I − A0 −a∗j
−ai∗ 1− aij

)

det(I − A0)
=

det

(
I − A0 −a∗j
−ai∗ −aij

)
+ det

(
I − A0 0
−ai∗ 1

)

det(I − A0)
=

=

det

(
I − A0 −a∗j
−ai∗ −aij

)
+ det(I − A0)

det(I − A0)
=

det

(
I − A0 −a∗j
−ai∗ −aij

)

det(I − A0)
+ 1.

Proof (of Theorem 1.1): The proposition, together with (4.1), implies that

det(I − A)

det(I − A0)
= det(I − C) = det(I − A0)

n−m det B

for

bij = det

(
I − A0 −a∗j
−ai∗ δij − aij

)
, B = (bij)n+1≤i,j≤m,

which is Theorem 1.1 for the matrix I − A.

5 Cartier-Foata case

A matrix A is Cartier-Foata if
aikajl = ajlaik (5.1)

for i 6= j, and right-quantum if

ajkaik = aikajk for all i 6= j, (5.2)

aikajl − ajkail = ajlaik − ailajk for all i 6= j, k 6= l. (5.3)
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Cartier-Foata matrices were introduced in [CF] and further studied in [F2]; see also
[GGRW, §3.9]. For references on quantum and right-quantum algebras, see [K] and [M3].

A Cartier-Foata matrix is also right-quantum, but the proofs tend to be much simpler
for Cartier-Foata matrices.

Note also that the classical definition of the determinant

det B =
∑

σ∈Sm

(−1)inv σbσ11 · · · bσmm

makes sense for a matrix B = (bij)m×m with entries generated by aij; in the language of
Section 2, we have w(λ, µ) = 1 for all words λ, µ.

A special case (when i = j = 1) of the following proposition is [KP, Proposition 3.2,
Proposition 4.2]. The proof in this more general case is almost exactly the same and we
omit it.

Proposition 5.1 If A = (aij)m×m is a Cartier-Foata matrix or a right-quantum matrix,
we have (

1

I − A

)

ij

= (−1)i+j 1

det(I − A)
· det (I − A)ji

for all i, j.

Lemma 5.2 If A is a Cartier-Foata matrix, C is a right-quantum matrix.

Proof: Choose i, j, k > n, i 6= j. The product cikcjk is the sum of terms of the form

aii1ai1i2 · · · aipkajj1aj1j2 · · · ajrk

for p, r ≥ 0, i1, . . . , ip, j1, . . . , jr ≤ n. Note that with the (possible) exception of i, j, k, all
other terms appear as starting heights exactly as many times as they appear as ending
heights.
Identify this term with a sequence of steps, as described in Section 2. We will perform a
series of switches of steps that will transform such a term into a term of cjkcik.
The variable ajj1 (or ajk if r = 0) commutes with all variables that appear before it. In
other words, in the algebra A, the expressions

aii1ai1i2 · · · aipkajj1aj1j2 · · · ajrk

and
ajj1aii1ai1i2 · · · aipkaj1j2 · · · ajrk

are the same modulo the ideal Icf generated by aikajl − ajlaik for i 6= j. Graphically, we
can keep switching the step j → j1 with the step to its left until it is at the beginning of
the sequence.
If r = 0, we are already done. If not, take the first step to the right of ajj1 that has
starting height j1; such a step certainly exists – for example j1 → j2. Without changing
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the expression modulo Icf , we can switch this step with the ones to the left until it is just
right of j → j1. Continue this procedure; eventually, our sequence is transformed into an
expression of the form

ajj′1aj′1j′2 · · · aj′
r′k

aii′1ai′1i′2 · · · ai′
p′k

which is equal modulo Icf to the expression we started with.
As an example, take m = 5, n = 2, i = 3, j = 5, k = 4 and the term a31a12a24a52a22a24.
The steps shown in Figure 3 transform it into a52a24a31a12a22a24.
It is clear that applying the same procedure to the result, but with the roles of i’s and j’s
interchanged, gives the original sequence. This proves that indeed cikcjk = cjkcik.
The proof of the other relation (5.3) is similar and we only sketch it. Choose i, j, k, l > n,
i 6= j, k 6= l. Then cikcjl + cilcjk is the sum of terms of the form

aii1ai1i2 · · · aipkajj1aj1j2 · · · ajrl

and of the form
aii1ai1i2 · · · aiplajj1aj1j2 · · · ajrk

for p, r ≥ 0, i1, . . . , ip, j1, . . . , jr ≤ n. Applying the same procedure as above to the first
term yields either

ajj′1aj′1j′2 · · · aj′
r′k

aii′1ai′1i′2 · · · ai′
p′ l

or
ajj′1aj′1j′2 · · · aj′

r′ l
aii′1ai′1i′2 · · · ai′

p′k
,

this procedure is reversible and it yields the desired identity. See Figure 4 for examples
with m = 5, n = 2, i = 3, j = 4, k = 3, l = 5.

Figure 3: Transforming a31a12a24a52a22a24 into a52a24a31a12a22a24.

If A is Cartier-Foata, Proposition 5.1 implies

(I − A)−1
n+1,n+1(I − An+1,n+1)−1

n+2,n+2 · · · = det −1(I − A) · det(I − A0).

By Lemma 5.2, C is right-quantum, so by Proposition 5.1

(I − C)−1
n+1,n+1(I − Cn+1,n+1)−1

n+2,n+2 · · · = det −1(I − C),
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Figure 4: Transforming a31a13a42a21a15 and a31a13a42a22a25.

and hence
det −1(I − A0) · det(I − A) = det(I − C).

In the classical Sylvester’s identity, the entries of I−C are also expressed as determinants.
The following is an analogue of Proposition 4.1.

Proposition 5.3 If A is Cartier-Foata, then

cij = − det −1(I − A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)
. (5.4)

Proof: We can repeat the proof of Proposition 4.1 almost verbatim. We have

(1− cij)
−1 =

((
I −

(
A0 a∗j
ai∗ aij

))−1
)

ij

,

and because the matrix (
A0 a∗j
ai∗ aij

)

is still Cartier-Foata, Proposition 5.1 shows that this is equal to

det −1

(
I −

(
A0 a∗j
ai∗ aij

))
· det(I − A0).

We get

1− cij = det −1(I − A0) · det

(
I −

(
A0 a∗j
ai∗ aij

))
=

= det −1(I − A0) ·
(

det

(
I − A0 −a∗j
−ai∗ −aij

)
+ det

(
I − A0 0
−ai∗ 1

))
=

= det −1(I − A0) ·
(

det

(
I − A0 −a∗j
−ai∗ −aij

)
+ det(I − A0)

)
=

= det −1(I − A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)
+ 1.

We have proved the following.
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Theorem 5.4 (Cartier-Foata Sylvester’s identity) Let A = (aij)m×m be a Cartier-Foata
matrix, and choose n < m. Let A0, ai∗, a∗j be defined as above, and let

cij = − det −1(I − A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)
, C = (cij)n+1≤i,j≤m.

Then
det −1(I − A0) · det(I − A) = det(I − C).

6 Right-quantum analogue

The right-quantum version of the Sylvester’s identity is very similar; we prove a right-
quantum version of Lemma 5.2 and Proposition 5.3, and a right-quantum version of
Theorem 5.4 follows.

The only challenging part is the following.

Lemma 6.1 If A is a right-quantum matrix, so is C.

Proof: Choose i, j, k > n, i 6= j. Instead of dealing directly with the equality cikcjk =
cjkcik, we will prove an equivalent identity.
Denote by Pk

ij(k1, k2, . . . , kn) the set of sequences of k1+. . .+kn+2 steps with the following
properties:

• starting heights form a non-decreasing sequence;

• each r between 1 and n appears exactly kr times as a starting height and exactly
kr times as an ending height;

• i and j appear exactly once as starting heights;

• k appears exactly twice as an ending height.

For m = 5, n = 2, i = 3, j = 5, k = 4, k1 = 1, k2 = 1, all such sequences are shown in
Figure 5.

Figure 5: Sequences in the set P4
35(1, 1).

We will do something very similar to the proof of Lemma 5.2: we will perform switches
on sequences in Pk

ij(k1, k2, . . . , kn) until they are transformed into sequences of the form
P1P2P3, where:

• P1 is a path from i to k with all intermediate heights ≤ n;
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• P2 is a path from j to k with all intermediate heights ≤ n;

• P3 is a sequence of steps with non-decreasing heights, with all heights ≤ n, and with
the number of steps with starting height r equal to the number of steps with ending
height r for all r.

Namely, we move the step i → i′ to the first place, the first step of the form i′ → i′′ to
the second place, etc. If we start with α ∈ Pk

ij(k1, k2, . . . , kn), we denote the sequences we
get during this process by α, ψ(α), ψ2(α), . . . , ψN(α), the final result ψN(α) is denoted by
ϕ(α), and we take ψN+l(α) = ψN(α) for all l ≥ 0. For example, the sequence a11a24a34a52

is transformed into a34a52a24a11 in 5 steps, see Figure 6.

Figure 6: Transforming a11a24a34a52 into a34a52a24a11.

Of course, we have to prove that this can be done without changing the sum modulo
the ideal Irq generated by relations (5.2)–(5.3), and this is done in almost exactly the same
way as the proof in [KP, §4]. Figure 7 is an example for m = 5, n = 2, i = 3, j = 5, k =
4, k1 = 1, k2 = 1; each column corresponds to a transformation of an element of P4

35(1, 1),
if two elements in the same row have the same label, their sum can be transformed into
the sum of the corresponding elements in the next row by use of the relation (5.3), and
if an element is not labeled it either means that it is transformed into the corresponding
element in the next row by use of the relation (5.2) or is already in the required form.

To prove this can be done in general, define the rank of a sequence ai1j1ai2j2 · · · to
be the cardinality of {(k, l) : k < l, ik > il}. Clearly, the rank of an element of P =
Pk

ij(k1, k2, . . . , kn) is 0, and rank ψi+1(α) = rank ψi(α) + 1 .
Take r ≥ 0, and assume that ∑

α∈P
ψr(α) =

∑
α∈P

α

modulo Irq. Assume that we switch the steps (x− 1, i′) → (x, k′) and (x, j′) → (x + 1, l′)
in order to get ψr+1(α) from ψr(α). If k′ = l′, ψr+1(α) = ψr(α) mod Irq by (5.2). On
the other hand, if k′ 6= l′, replace (x − 1, i′) → (x, k′) and (x, j′) → (x + 1, l′) in ψr(α)
by (x − 1, i′) → (x, l′) and (x, j′) → (x + 1, k′); this sequence has rank r and is equal to
ψr(β) for some β ∈ P . But then (5.3) tells us that, modulo Irq, ψr+1(α) + ψr+1(β) =
ψr(α) + ψr(β), and so ∑

α∈P
ψr+1(α) =

∑
α∈P

α

modulo Irq, and by induction ∑
α∈P

α = cikcjkS

modulo Irq, where S is the sum over all sequences of steps with the following properties:
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Figure 7: Transforming the sequences in P4
35(1, 1) into terms of c34c54S.

• starting heights form a non-decreasing sequence;

• starting and ending heights are all between 1 and n;

• each r between 1 and n appears as many times as a starting height as an ending
height.

Of course, we can also reverse the roles of i and j, and this proves that the sum of all
elements of Pk

ij(k1, k2, . . . , kn) is modulo Irq also equal to

cjkcikS.

Hence, modulo Irq,
cikcjkS = cjkcikS. (6.1)

But S = 1 + a11 + . . . + ann + a11a22 + a12a21 + . . . is an invertible element of A, so (6.1)
implies

cikcjk = cjkcik,

provided A is a right-quantum matrix.
The proof of the other relation is almost completely analogous. Now we take i 6= j, k 6= l,
and define Pkl

ij (k1, k2, . . . , kn) as the set of sequences of k1 + . . . + kn + 2 steps with the
following properties:
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• starting heights form a non-decreasing sequence;

• each r between 1 and n appears exactly kr times as a starting height and exactly
kr times as an ending height;

• i and j appear exactly once as starting heights;

• k and l appear exactly once as ending heights.

A similar reasoning shows that the sum over all elements of Pkl
ij (k1, k2, . . . , kn) is equal

both to (cikcjl + cilcjk)S and to (cjlcik + cjkcil)S modulo Irq, which implies cikcjl + cilcjk =
cjlcik + cjkcil.

Proposition 6.2 If A is right-quantum, then

cij = − det −1(I − A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)
. (6.2)

Proof: The proof is exactly the same as the proof of Proposition 5.3.

Theorem 6.3 (right-quantum Sylvester’s identity) Let A = (aij)m×m be a right-quantum
matrix, and choose n < m. Let A0, ai∗, a∗j be defined as above, and let

cij = − det −1(I − A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)
, C = (cij)n+1≤i,j≤m.

Then
det −1(I − A0) · det(I − A) = det(I − C).

7 q-Cartier-Foata analogue

Let us find a quantum extension of Theorem 5.4. Fix q ∈ C \ {0}. We say that a matrix
A = (aij)m×m is q-Cartier-Foata if

ajlaik = aikajl for i < j, k < l, (7.1)

ajlaik = q2aikajl for i < j, k > l, (7.2)

ajkaik = qaikajk for i < j, (7.3)

and q-right-quantum if

ajkaik = qaikajk for all i < j, (7.4)

aikajl − q−1ajkail = ajlaik − qailajk for all i < j, k < l. (7.5)

Clearly, Cartier-Foata and right-quantum matrices are special cases of q-Cartier-Foata
and q-right-quantum matrices, for q = 1; furthermore, a quantum matrix is also right-
quantum. In [GLZ], the term “right quantum” stands for what we call “q-right-quantum”.
For references, see [K] and [M3].
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In the following two sections, the weight w(λ, µ) is equal to qinv µ−inv λ. For example,

detq(I − A) =
∑

J⊆[m]

(−1)|J |detqAJ ,

where
detqAJ = detq(aij)i,j∈J =

∑
σ∈SJ

(−q)− inv σaσ(j1)j1 · · · aσ(jk)jk

for J = {j1 < j2 < . . . < jk}.
The following extends Proposition 5.1. A special case (when i = j = 1) is [KP,

Proposition 5.2, Proposition 6.2]. The proof in this more general case is almost exactly
the same and we omit it.

Proposition 7.1 If A = (aij)m×m is a q-Cartier-Foata or a q-right-quantum matrix, we
have (

1

I − A[ij]

)

ij

= (−1)i+j 1

detq(I − A)
· detq (I − A)ji

for all i, j, where

A[ij] =




q−1a11 · · · q−1a1j a1,j+1 · · · a1m
...

. . .
...

...
. . .

...
q−1ai−1,1 · · · q−1ai−1,j ai−1,j+1 · · · ai−1,m

ai1 · · · aij qai,j+1 · · · qai,m
...

. . .
...

...
. . .

...
am1 · · · amj qam,j+1 · · · qamm




.

We use Theorem 3.1 for A[ij]. Let us find the corresponding C = (c′i′j′)n+1≤i′,j′≤m.
Denote

ai′j′ + q−1ai′∗(I − q−1A0)
−1a∗j′

by ci′j′ for i′, j′ > n. If i′ < i, j′ ≤ j, we have

c′i′j′ = q−1ai′j′ + (q−1ai′∗)(I − q−1A0)
−1(q−1a∗j′) = q−1ci′j′ ;

if i′ < i, j ′ > j, we have

c′i′j′ = ai′j′ + (q−1ai′∗)(I − q−1A0)
−1a∗j′ = ci′j′ ;

if i′ ≥ i, j′ ≤ j, we have

c′i′j′ = ai′j′ + ai′∗(I − q−1A0)
−1(q−1a∗j′) = ci′j′ ;

and if i′ ≥ i, j′ > j, we have

c′i′j′ = qai′j′ + ai′∗(I − q−1A0)
−1a∗j′ = qci′j′ .

We have proved the following.
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Proposition 7.2 With A[ij] as above and with C = (ci′j′)n+1≤i′,j′≤m for

ci′j′ = ai′j′ + ai′∗(I − q−1A0)
−1(q−1a∗j′),

we have
(I − A[ij])

−1
i′j′ = (I − C[ij])

−1
i′j′ .

Remark 7.3 Let us present a slightly different proof of the proposition. Another way to
characterize A[ij] is to say that the entry akl has weight q to the power of

{
1: l > j
0: l ≤ j

−
{

1: k < i
0: k ≥ i

.

That means that in
(
A`

[ij]

)
i1i`

,

ai1i2ai2i3 · · · ai`−1i`

has weight
q|{r : ir>j}|−|{r : ir<i}|.

Assume that we have a decomposition of a path of length ` from i′ to j′, i′, j′ > n, as
in Section 3, say aλ,µ = ai′λ1,λ1i1ai1λ2,λ2i2 · · · aip−1λp,λpj′ , with all elements of λr at most n,
ir > n, and the length of λr equal to `r. Put i0 = i′, ip+1 = j′.The number of indices of
λ = i′λ1 . . . λp that are strictly smaller than i is clearly

p∑
r=1

`r + |{r : ir < i}| = `− p + |{r : ir < i}|,

and the number of indices of µ = λ1 . . . λpj
′ that are strictly greater than j is |{r : ir > j}|.

Therefore the path aλ,µ is weighted by

q−`+p+|{r : ir>j}|−|{r : ir<i}|.

On the other hand, take a term aλ,µ = ai′λ1,λ1i1ai1λ2,λ2i2 · · · aip−1λp,λpj′ (with λr, ir, `r as
before) of (C`

[ij])i′j′ . Each air−1λr,λrir has weight q−`r as an element of C, and aλ,µ has the
additional weight

q|{r : ir>j}|−|{r : ir<i}|

as a term of (C`
[ij])i′j′ . The proposition follows.

In what follows, the crucial observation is the following. Take aλ,µ, λ = λ1ijλ2,
µ = µ1klµ2, λ′ = λ1jiλ2, µ′ = µ1lkµ2 for i < j. Then

qinv µ−inv λaλ,µ = qinv µ′−inv λ′aλ′µ′ mod Iq−cf ,

where Iq−cf is the ideal of A generated by the equations (7.1)–(7.3).

We show this by considering in turn each of the following possibilities:

the electronic journal of combinatorics 14 (2007), #R42 16



1. i < j, k < l

2. i < j, k > l

3. i < j, k = l

For example, to prove case (1), note that ajlaik − aikajl is a generator of Iq−cf , and
that inv µ′ = inv µ + 1 and inv λ′ = inv λ + 1. Other cases are similarly straightforward.

Lemma 7.4 If A is a q-Cartier-Foata matrix, C is a q-right-quantum matrix.

Proof: We adapt the proof of Lemma 5.2. Choose i, j, k > n, i < j. The product cikcjk is
the sum of terms of the form

q−p−raii1ai1i2 · · · aipkajj1aj1j2 · · · ajrk

for p, r ≥ 0, i1, . . . , ip, j1, . . . , jr ≤ n.
Without changing the expression modulo Iq−cf , we can repeat the procedure in the proof
of Lemma 5.2, keeping track of weight changes. The resulting expression

ajj′1aj′1j′2 · · · aj′
r′k

aii′1ai′1i′2 · · · ai′
p′k

has, by the discussion preceding the lemma, weight q−1−r′−p′ (the extra −1 comes from
the fact that the step with starting height j is now to the left of the step with starting
height i), In other words,

cjkcik = qcikcjk.

The proof of the other relation is completely analogous.

If A is q-Cartier-Foata, Proposition 7.1 implies

(I − A[n+1,n+1])
−1
n+1,n+1(I −

(
An+1,n+1

)
[n+2,n+2]

)−1
n+2,n+2 · · · = detq

−1(I − A) · detq(I − A0).

By Lemma 7.4, C is q-right-quantum, so by Proposition 7.1

(I − C[n+1,n+1])
−1
n+1,n+1(I −

(
Cn+1,n+1

)
[n+2,n+2]

)−1
n+2,n+2 · · · = detq

−1(I − C),

and hence
detq

−1(I − A0) · detq(I − A) = detq(I − C).

The final step is to write entries of C as quotients of quantum determinants.

Proposition 7.5 If A is q-Cartier-Foata, then

cij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
.
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Proof: Again,

(1− cij)
−1 =

((
I −

(
q−1A0 q−1a∗j

ai∗ aij

))−1
)

ij

,

and because the matrix (
A0 a∗j
ai∗ aij

)

is still q-Cartier-Foata, Proposition 7.1 shows that this is equal to

detq
−1

(
I −

(
A0 a∗j
ai∗ aij

))
· detq(I − A0).

The rest of the proof is exactly the same as in Proposition 5.3, with detq playing the role
of det.

We have proved the following.

Theorem 7.6 (q-Cartier-Foata Sylvester’s identity) Let A = (aij)m×m be a q-Cartier-
Foata matrix, and choose n < m. Let A0, ai∗, a∗j be defined as above, and let

cq
ij = −detq

−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
, Cq = (cq

ij)n+1≤i,j≤m.

Then
detq

−1(I − A0) · detq(I − A) = detq(I − Cq).

8 q-right-quantum analogue

The results of the previous two sections easily extend to a q-right-quantum Sylvester’s
identity. Denote the ideal generated by relations (7.4)–(7.5) by Iq−rq. It is easy to see
that if λ = λ1ijλ2, µ = µ1klµ2, λ′ = λ1jiλ2, µ′ = µ1lkµ2 and if i < j, then

qinv µ−inv λaλ,µ + qinv µ′−inv λaλ,µ′ = qinv µ−inv λ′aλ′,µ + qinv µ′−inv λ′aλ′,µ′ mod Iq−rq.

Lemma 8.1 If A is a q-right-quantum matrix, so is C.

Proof: This is a weighted analogue of Lemma 6.1. The sum over elements of Pk
ij(k1, . . . , kn)

with aλ,µ weighted by qinv µ−inv λ = qinv µ is modulo Iq−rq equal to both cikcjkS and
q−1cjkcikS; this implies the relation (7.4) for elements of C, and the proof of (7.5) is
completely analogous.

Proposition 8.2 If A is q-right-quantum, then

cij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
.
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Proof: The proof is exactly the same as the proof of Proposition 7.5.

Proposition 7.2, Lemma 8.1 and Proposition 8.2 imply the following theorem.

Theorem 8.3 (q-right-quantum Sylvester’s identity) Let A = (aij)m×m be a q-right-
quantum matrix, and choose n < m. Let A0, ai∗, a∗j be defined as above, and let

cq
ij = −detq

−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
, Cq = (cq

ij)n+1≤i,j≤m.

Then
detq

−1(I − A0) · detq(I − A) = detq(I − Cq).

9 qij-Cartier-Foata analogue

Now let us prove a multiparameter extension of Theorem 7.6. Choose qij 6= 0 for i < j,
and recall that a matrix A = (aij)m×m is q-Cartier-Foata if

qklajlaik = qijaikajl for i < j, k < l, (9.1)

ajlaik = qijqlkaikajl for i < j, k > l, (9.2)

ajkaik = qijaikajk for i < j, (9.3)

and q-right-quantum if

ajkaik = qijaikajk for all i < j, (9.4)

aikajl − q−1
ij ajkail = qklq

−1
ij ajlaik − qklailajk for all i < j, k < l. (9.5)

Clearly, q-Cartier-Foata and q-right-quantum matrices are special cases of q-Cartier-
Foata and q-right-quantum matrices, for qij = q for all i, j. They were introduced in [KP]
and were motivated by [M2].

If we define qii = 1 and qji = q−1
ij for i < j, we can write the conditions (9.1)–(9.3)

more concisely as
qklajlaik = qijaikajl, (9.6)

for all i, j, k, l, i 6= j, and (9.4)–(9.5) as

aikajl − q−1
ij ajkail = qklq

−1
ij ajlaik − qklailajk (9.7)

for all i, j, k, l, i 6= j.

In the following two sections, the weight w(λ, µ) is equal to

∏

(i,j)∈I(µ)

qµjµi

∏

(i,j)∈I(λ)

q−1
λjλi

.
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For example,

detq(I − A) =
∑

J⊆[m]

(−1)|J |detqAJ ,

where

detqAJ = detq(aij)i,j∈J =
∑
σ∈SJ


 ∏

p<q:σ(p)>σ(q)

q−1
σ(q)σ(p)


 aσ(j1)j1 · · · aσ(jk)jk

for J = {j1 < j2 < . . . < jk}.
The following extends Proposition 7.1. A special case (when i = j = 1) is [KP,

Proposition 7.3, Proposition 8.1]. The proof in this more general case is almost exactly
the same and we omit it.

Proposition 9.1 If A = (aij)m×m is a q-Cartier-Foata matrix or a q-right-quantum
matrix, we have

(
1

I − A[ij]

)

ij

= (−1)i+j 1

detq(I − A)
· detq (I − A)ji

for all i, j, where

A[ij] =




q−1
1i a11 · · · q−1

1i a1j q−1
1i qj,j+1a1,j+1 · · · q−1

1i qjma1m
...

. . .
...

...
. . .

...
q−1
i−1,iai−1,1 · · · q−1

i−1,iai−1,j q−1
i−1,iqj,j+1ai−1,j+1 · · · q−1

i−1,iqjmai−1,m

ai1 · · · aij qj,j+1ai,j+1 · · · qjmai,m
...

. . .
...

...
. . .

...
am1 · · · amj qj,j+1am,j+1 · · · qjmamm




.

Assume that qij = qi′j′ for i, i′ ≤ n, j, j′ > n; denote this value by q. We use Theorem
3.1 for the matrix A[ij] and the corresponding C = (c′i′j′)n+1≤i′,j′≤m. Define

ci′j′ = ai′j′ + q−1ai′∗(I − q−1A0)
−1a∗j′

for i′, j′ > n. If i′ < i, j′ ≤ j, we have

c′i′j′ = q−1
i′i ai′j′ + (q−1

i′i ai′∗)(I − q−1A0)
−1(q−1a∗j′) = q−1

i′i ci′j′ ;

if i′ < i, j ′ > j, we have

c′i′j′ = q−1
i′i qjj′ai′j′ + (q−1

i′i ai′∗)(I − q−1A0)
−1(q−1qjj′a∗j′) = q−1

i′i qjj′ci′j′ ;

if i′ ≥ i, j′ ≤ j, we have

c′i′j′ = ai′j′ + ai′∗(I − q−1A0)
−1(q−1a∗j′) = ci′j′ ;

and if i′ ≥ i, j′ > j, we have

c′i′j′ = qjj′ai′j′ + ai′∗(I − q−1A0)
−1(q−1qjj′a∗j′) = qjj′ci′j′ .

We have proved the following.
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Proposition 9.2 With A[ij] as defined above and with C = (ci′j′)n+1≤i′,j′≤m for

ci′j′ = ai′j′ + ai′∗(I − q−1A0)
−1(q−1a∗j′),

we have
(I − A[ij])

−1
i′j′ = (I − C[ij])

−1
i′j′ .

Remark 9.3 Another way to characterize A[ij] is to say that the entry akl has weight

{
qjl : l > j
1: l ≤ j

·
{

q−1
ki : k < i
1: k ≥ i

.

That means that in
(
A`

[ij]

)
i1i`

,

ai1i2ai2i3 · · · ai`−1i`

has weight ∏
ir>j

qjir ·
∏
ir<i

q−1
iri .

An alternative way to prove the proposition is analogous to the proof of Proposition 7.2
outlined in Remark 7.3.

If aλ,µ, λ = λ1ijλ2, µ = µ1klµ2, λ′ = λ1jiλ2, µ′ = µ1lkµ2 and if i < j, then


 ∏

(i,j)∈I(µ)

qµjµi

∏

(i,j)∈I(λ)

q−1
λjλi


 aλ,µ =


 ∏

(i,j)∈I(µ′)

qµ′jµ′i

∏

(i,j)∈I(λ′)

q−1
λ′jλ′i


 aλ′µ′ mod Iq−cf ,

where Iq−cf is the ideal of A generated by the equations (9.1)–(9.3).

As in the q-Cartier-Foata case, we show this by considering in turn each of the possi-
bilities k < l, k > l, k = l.

Lemma 9.4 If A is a q-Cartier-Foata matrix, C is a q-right-quantum matrix.

Proof: We adapt the proof of Lemma 7.4. Choose i, j, k > n, i < j. The product cikcjk is
the sum of terms of the form

q−p−raii1ai1i2 · · · aipkajj1aj1j2 · · · ajrk

for p, r ≥ 0, i1, . . . , ip, j1, . . . , jr ≤ n.
Note that since

q−p−r = qj1k · · · qjrkq
−1
i1i · · · q−1

ipi q
−1
j1i · · · q−1

jriq
−1
j1j · · · q−1

jrj,

the weight of aii1ai1i2 · · · aipkajj1aj1j2 · · · ajrk is of the form

∏

(i,j)∈I(µ)

qµjµi

∏

(i,j)∈I(λ)

q−1
λjλi
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for λ = ii1 . . . ipjj1 . . . jr and µ = i1 . . . ipkj1 . . . jrk. Without changing the expression
modulo Iq−cf , we can repeat the procedure in the proof of Lemma 5.2, but changing the
weight at each switch. The resulting expression

ajj′1aj′1j′2 · · · aj′
r′k

aii′1ai′1i′2 · · · ai′
p′k

has, by the discussion preceding the lemma, weight

qi′1k · · · qi′
p′k

q−1
j′1j · · · q−1

j′
r′j

q−1
i′1j · · · q−1

i′
p′j

q−1
i′1i · · · q−1

i′
p′ i

q−1
ij = q−r′−p′q−1

ij

(the extra q−1
ij comes from the fact that the step with starting height j is now to the left

of the step with starting height i), In other words,

cjkcik = qijcikcjk.

The proof of the other relation is completely analogous.

If A is q-Cartier-Foata, Proposition 9.1 implies

(I − A[n+1,n+1])
−1
n+1,n+1(I −

(
An+1,n+1

)
[n+2,n+2]

)−1
n+2,n+2 · · · = detq

−1(I − A) · detq(I − A0).

By Lemma 7.4, C is q-right-quantum, so by Proposition 9.1

(I − C[n+1,n+1])
−1
n+1,n+1(I −

(
Cn+1,n+1

)
[n+2,n+2]

)−1
n+2,n+2 · · · = detq

−1(I − C),

and hence
detq

−1(I − A0) · detq(I − A) = detq(I − C).

So far, the extension to the multiparameter case has been straightforward. However,
we need something extra for the proof of the analogue of Proposition 7.5 since the matrix

(
A0 a∗j
ai∗ aij

)

is in general not q-Cartier-Foata. However, a special case of the first statement of Propo-
sition 9.1 holds under slightly weaker conditions.

Proposition 9.5 Assume that for A = (aij)m×m, the submatrix (aij)m×(m−1) is a q-
Cartier-Foata or a q-right-quantum matrix. Then

(
1

I − A[mm]

)

mm

=
1

detq(I − A)
· detq (I − Amm) ,

where A[mm] is defined as in Proposition 9.1.

Proof: When i = j = m, the relations (9.1)-(9.5) for k = m or l = m are never used in
the proof of Proposition 9.1.
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In other words, even though only the first n columns of

(
A0 a∗j
ai∗ aij

)

satisfy the q-Cartier-Foata condition, we still have

(1− cij)
−1 =

((
I −

(
q−1A0 q−1a∗j

ai∗ aij

))−1
)

ij

=

= detq
−1

(
I −

(
A0 a∗j
ai∗ aij

))
· detq(I − A0).

Proposition 9.6 If A is q-Cartier-Foata, then

cij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
.

Proof: This follows from the previous proposition, using the same technique as in the
proof of Proposition 5.3.

We have proved the following.

Theorem 9.7 (q-Cartier-Foata Sylvester’s theorem) Let A = (aij)m×m be a q-Cartier-
Foata matrix, and choose n < m. Let A0, ai∗, a∗j be defined as above, and let

cqij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
, Cq = (cqij)n+1≤i,j≤m.

Suppose qij = qi′j′ for all i, i′ ≤ n and j, j′ > n. Then

detq
−1(I − A0) · detq(I − A) = detq(I − Cq).

Remark 9.8 It is important to note that the determinant detq(I − Cq) is with respect
to C, the algebra generated by cij’s, not with respect to A. For example, for n = 2 and
m = 4, we have

detq(I − Cq) = 1− cq33 − cq44 + cq33c
q
44 − q−1

34 cq43c
q
34.

Remark 9.9 The condition qij = qi′j′ whenever i, i′ ≤ n, j, j′ > n is indeed necessary, as
shown by the following. Take n = 1 and m = 3. In detq

−1(I − A0) · detq(I − A) we have
the term

−q−1
12 q−1

13 a21a32a13,

while in detq(I − Cq) we have

−q−1
23 (−a32)(−q−1

12 a21a13) = −q−2
12 a21a32a13.
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10 qij-right-quantum analogue

The results in this section are almost complete copies of proofs above.

Assume we have a q-right-quantum matrix, with qij = q for i ≤ n, j > n. In the
notation of the previous section, we have the following.

Lemma 10.1 If A is a q-Cartier-Foata matrix, C is a q-right-quantum matrix.

Proof: We use a combination of proofs of Lemmas 8.1 and 9.4.

Proposition 10.2 If A is q-right-quantum, then

cij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
.

Proof: We use the same technique as in the proof of Proposition 9.6.

This finishes the proof of Theorem 1.4.

11 The β-extension

Theorem 1.1 trivially implies that

(det B)β = (det A)β · (det A0)
β(m−n−1)

for any β ∈ Z, where aij are commutative variables and

bij = det

(
A0 a∗j
ai∗ aij

)
, B = (bij)n+1≤i,j≤m.

It is not immediately clear what the non-commutative extension of this could be. Of
course, Theorem 5.4 implies that

(det(I − C))β =
(
det −1(I − A0) · det(I − A)

)β

for

cij = − det −1(I − A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)
, C = (cij)n+1≤i,j≤m,

where A is a Cartier-Foata or right-quantum matrix, but this does not tell us how to cal-
culate terms of (det(I−C))β. However, a technique similar to the proof of the β-extension
of the non-commutative MacMahon Master Theorem, [KP, §10], gives a reasonable inter-
pretation of (det(I − C))β for β ∈ Z when A is a Cartier-Foata matrix.

We need some terminology from [KP]. A balanced sequence (b-sequence) is a finite
sequence of steps such that the number of steps starting at height i is equal to the number
of steps ending at height i, for all i. We denote this number by ki, and call (k1, . . . , km) the
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type of the b-sequence. An ordered sequence (o-sequence) is a b-sequence where the steps
starting at smaller height always precede steps starting at larger heights. In other words,
an o-sequence of type (k1, . . . , km) is a sequence of k1 steps starting at height 1, then k2

steps starting at height 2, etc., so that ki steps end at height i. Denote by O(k1, . . . , km)
the set of all o-sequences of type (k1, . . . , km). Finally, consider a lattice path from (0, 1)
to (x1, 1) that never goes below y = 1 or above y = m, then a lattice path from (x1, 2)
to (x2, 2) that never goes below y = 2 or above y = m, etc.; in the end, take a straight
path from (xm−1,m) to (xm,m). We call this a path sequence (p-sequence). Observe that
every p-sequence is also a b-sequence. Denote by P(k1, . . . , km) the set of all p-sequences
of type (k1, . . . , km).

In [KP, §2] a bijection

ϕ : O(k1, . . . , km) −→ P(k1, . . . , km)

was defined (which proved various forms of the MacMahon Master Theorem) as follows.
Take an o-sequence α, and let [0, x] be the maximal interval on which it is part of a p-
sequence, i.e. the maximal interval [0, x] on which the o-sequence has the property that if
a step ends at level i, and the following step starts at level j > i, the o-sequence stays on
or above height j afterwards. Let i be the height at x. Choose the step (x′, i) → (x′+1, i′)
in the o-sequence that is the first to the right of x that starts at level i (such a step exists
because an o-sequence is a balanced sequence). Continue switching this step with the one
to the left until it becomes the step (x, i) → (x + 1, i′). The new object is part of a p-
sequence at least on the interval [0, x+1]. Continuing this procedure we get a p-sequence
ϕ(α).

A lattice path from i to i with each height appearing at most once as the starting
height is called a disjoint cycle.

For an o-sequence aλ,µ, take the corresponding p-sequence aλ′,µ′ = ϕ(aλ,µ). If the first
repeated height in aλ′,µ′ is the starting height of the sequence, the sequence starts with a
disjoint cycle; remove it and repeat the algorithm. If the first repeated height in aλ′,µ′ is
not the starting height of the sequence, we have λ′ starting with i1i2 · · · ipip+1ip+2 · · · ip+r−1

and µ′ starting with i2i3 · · · ip+1ip+2 · · · ip for different indices i1, . . . , ip+r−1. Then we can
move the disjoint cycle ip → ip+1 → . . . → ip+r−1 → ip to the beginning, remove it,
and repeat the algorithm with the rest of the sequence. The resulting sequence is a
concatenation of disjoint cycles, and we call it the disjoint cycle decomposition of the o-
sequence aλ,µ (or of the p-sequence aλ′,µ′). For example, the disjoint cycle decomposition
of

a13a11a12a13a22a23a22a21a23a22a23a32a31a31a33a32a32a33a33

is
a22a32a23a13a31a11a22a12a21a13a31a33a23a32a22a23a32a33a33.

We say that two cycles in the disjoint cycle decomposition are disjoint if the sets of
their starting heights are disjoint.
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Recall that for a Cartier-Foata matrix A, the matrix C = (cij)n+1≤i,j≤m with

cij = − det −1(I − A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)

is right-quantum by Lemma 5.2 and Proposition 5.3, so

det −1(I − C) = (I − C)−1
n+1,n+1(I − Cn+1,n+1)−1

n+2,n+2 · · · =

= (I − A)−1
n+1,n+1(I − An+1,n+1)−1

n+2,n+2 · · · (11.1)

by Theorem 3.1. The last expression is the sum over all sequences which are concatena-
tions of a lattice path from n + 1 to n + 1, a lattice path from n + 2 to n + 2, etc.

Theorem 11.1 (β-extension of Cartier-Foata Sylvester’s identity) Assume A = (aij)m×m

is a Cartier-Foata matrix. For

C = (cij)n+1≤i,j≤m with cij = − det −1(I − A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)
.

For each β ∈ Z, the expression (
1

det(I − C)

)β

is equal to ∑
eµ(β)aλ,µ,

where µ runs over all words in the alphabet {1, . . . , m}, λ is the non-decreasing rearrange-
ment of µ, and eµ(β) is a polynomial function of β that is calculated as follows. Let
u1u2 . . . uk be the disjoint cycle decomposition of aλ,µ. Let J be the set of i ∈ {1, . . . , k}
such that ui contains a height > n. Then

eµ(β) =
∑

π

(
β + l − 1− d(π)

l

)
, (11.2)

where the sum is over all permutations π ∈ Sk with the following properties:

• if i < j, π(i) > π(j), then uπ(i), uπ(j) are disjoint;

• for each i /∈ J there exists j > i such that uπ(i) and uπ(j) are not disjoint;

• if π(i) > π(i + 1) then π(i) ∈ J .

Here d(π) denotes the number of descents of the subword of (π(1), π(2), . . . , π(k)) composed
of π(i) ∈ J , and l = |J |.
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Example 11.2 Take µ = 132521421325. The disjoint cycle decomposition of the o-
sequence a11a13a12a25a22a21a24a32a31a43a52a55 is

u1u2u3u4u5u6 = (a11)(a25a52)(a22)(a13a32a21)(a12a24a43a31)(a55).

We have J = {2, 4, 5, 6}, the only permutations in S6 that appear in the sum (11.2) are
213456, 213465, 261345 with d(213456) = 0, d(213465) = 1, d(261345) = 1. Therefore

eµ(β) =

(
β + 3

4

)
+ 2

(
β + 2

4

)
=

β4

8
+

5β3

12
+

3β2

8
+

β

12
.

Example 11.3 Take n = 0. In this case J = {1, . . . , k}, only the first condition is not
vacuously true on π, and we get the β-extension of MacMahon Master Theorem, [KP,
Theorem 10.5].

It is clear that each term of (det(I −C))−β is an o-sequence modulo Icf , and that the
coefficients of o-sequences are polynomial functions of β. Therefore it is enough to prove
the theorem for β ∈ N, and this is an enumerative problem. We are given an o-sequence
aλ,µ and β slots, and we have to calculate in how many ways we can choose terms of
(det(I − C))−1 in each slot so that their product is, modulo Icf , equal to aλ,µ. We start
the proof with a lemma.

Lemma 11.4 All the steps in a cycle of the disjoint cycle decomposition must be placed
in the same slot.

Proof: This is proved in exactly the same way as the proof of [KP, Lemma 10.4], since all
we used there was that the sequence chosen in each slot must be balanced, which is also
true in our case.

Proof of Theorem 11.1. We call cycles with all heights ≤ n low cycles, and cycles con-
taining at least one height > n high cycles.
The lemma tells us that we must choose a permutation π ∈ Sk such that u1 · · · uk =
uπ(1) · · · uπ(k) modulo Icf , and place the cycles uπ(1), . . . , uπ(k) in the β slots so that the
cycles in each slot give a term appearing in (det(I − C))−1.
Two cycles commute if and only if they are disjoint. That means that the condition
u1 · · · uk = uπ(1) · · · uπ(k) is equivalent to

• if i < j, π(i) > π(j), then uπ(i), uπ(j) are disjoint,

which is the first condition in Theorem 11.1.
Take a low cycle uπ(i), and assume that it is disjoint with all uπ(j) for j > i. That means
we can push it to the end of the chosen slot without changing the sequence modulo Icf .
But then the sequence in the slot is not equal to a sequence of the form (11.1) modulo
Icf . Therefore

• for each i /∈ J there exists j > i such that uπ(i) and uπ(j) are not disjoint,
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which is the second condition in Theorem 11.1.
Finally, assume that we have π(i) > π(i + 1) with π(i) /∈ J . Then π(i) must be placed
in the same slot as a high cycle π(j) for j > i, and so π(i + 1), which commutes with
π(i), must be placed in the same slot as well. But then this placement of cycles in slots is
already counted in the permutation where π(i) and π(i + 1) are switched. Therefore we
have

• if π(i) > π(i + 1) then π(i) ∈ J ,

which is the third condition in Theorem 11.1.
We have described all permutations that give aλ,µ, and now we have to find the number
of ways to place uπ(1), . . . , uπ(k) in the β slots so that the cycles in each slot give a term
appearing in (det(I −C))−1. All cycles between two consecutive high cycles must appear
in the same slot as the right-hand high cycle. Therefore placing the cycles in slots is the
same as placing β−1 dividers after (some of the) high cycles. Of course, there are

(
β−1+l

l

)
ways of doing this, but we can get the same terms several times: if we take two consecutive
high cycles uπ(i), uπ(j) with i < j, π(i) > π(j), then uπ(i) must necessarily commute with
uπ(j) and with all the low cycles between them, we can move uπ(j) to the right of uπ(i),
possibly move some of the low cycles before uπ(j) to the right of uπ(i), and we see that
this term has already been counted for a different π. In order to avoid overcounting, we
have to place a divider after uπ(i). Therefore the number of unique placements in slots

corresponding to π is
(

β−1+l−d(π)
l

)
, and this finishes the proof of Theorem 11.1.
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