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Abstract. A tanglegram consists of two binary rooted trees with the same number of
leaves and a perfect matching between the leaves of the trees. We show that the two halves
of a random tanglegram essentially look like two independently chosen random plane binary
trees. This fact is used to derive a number of results on the shape of random tanglegrams,
including theorems on the number of cherries and generally occurrences of subtrees, the
root branches, the number of automorphisms, and the height. For each of these, we obtain
limiting probabilities or distributions. Finally, we investigate the number of matched cherries,
for which the limiting distribution is identi�ed as well.

1. Introduction

Tanglegrams are, intuitively, graphs obtained by taking two binary rooted trees with the
same number of leaves (which is the size of a tanglegram) and matching each leaf from the
tree on the left with a unique leaf from the tree on the right. Furthermore, we consider two
tanglegrams to be the same if we can get one from the other by an isomorphism that �xes the
roots. For example, the following �gure shows all 13 tanglegrams of size 4.

Figure 1. The 13 tanglegrams of size 4.

Let us make this de�nition more precise. A plane binary tree has one distinguished vertex
assumed to be a common ancestor of all other vertices, and each vertex either has two children
(left and right) or no children. A vertex with no children is a leaf, and a vertex with two
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children is an internal vertex. It is well known that the number of plane binary trees with n
leaves is the Catalan number 1

n

(
2n−2
n−1

)
, henceforth denoted by Cn. The sequence starts with

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,

see [10, A000108] and [12, �6] for more information.
Two plane binary trees with labeled leaves are said to be equivalent if there is an isomor-

phism from one to the other as graphs mapping the root of one to the root of the other. Let
Bn be the set of inequivalent plane binary trees with n ≥ 1 leaves. In the following, we will
refer to the elements of Bn merely as binary trees for simplicity. The sets Bn are enumerated
by the Wedderburn-Etherington numbers, whose sequence starts

1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983,

see [10, A001190] for more information.
For each plane binary tree T , denote by A(T ) its automorphism group, which can be in-

terpreted as a subgroup of the permutation group of the set of leaves, i.e. as a subgroup of
Sn. Given a permutation v ∈ Sn along with two trees T, S ∈ Bn, each with leaves labeled
1, . . . , n, we construct an ordered binary rooted tanglegram (or tanglegram for short) (T, v, S)
of size n with T as the left tree, S as the right tree, by identifying leaf i in T with leaf v(i)
in S. Furthermore, (T, v, S) and (T ′, v′, S′) are considered to represent the same tanglegram
provided T = T ′, S = S′ as trees and v′ = uvw, where u ∈ A(T ) and w ∈ A(S). In other
words, a tanglegram is a double coset of the symmetric group Sn with respect to the double
action of A(T ) on the left and A(S) on the right, where T, S ∈ Bn.

Let Tn be the set of all tanglegrams of size n, and let tn be the number of elements in the
set Tn. The sequence starts

1, 1, 1, 2, 13, 114, 1509, 25595, 535753, 13305590, 382728552, 12515198465, 458621603279,

see [10, A258620] for more terms. Note that in Figure 1, the dashed lines are not technically
part of the graph, but this visualization allows us to give a planar drawing of the two trees.

Tanglegrams naturally arise in biology, in particular in the study of cospeciation and co-
evolution. For example, the tree on the left may represent the phylogeny of a host, such as
gopher, while the tree on the right may represent a parasite, such as louse [8], [11, page 71].
For more information on tanglegrams in biology, see [9].

In computer science, the Tanglegram Layout Problem (TL) is to �nd a drawing of a tan-
glegram in the plane with the left and right trees both given as planar embeddings with the
smallest number of crossings among (straight) edges matching the leaves of the left tree and
the right tree [3]. These authors point out that tanglegrams occur in the analysis of software
projects and clustering problems.

It was recently shown in [1] that the number of tanglegrams of size n is given by

(1) tn =
∑
λ

zλ

( ∑
T∈Bn

|A(T )λ|
|A(T )|

)2
,

where the sum is over all binary partitions λ of n, i.e. partitions whose parts are all powers of
2, z(λ) =

∏
j(2

j)mjmj ! (mj being the number of occurrences of 2j in λ), and A(T )λ is the set
of automorphisms of T whose conjugacy class is λ.

Moreover, it was found that
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∑
T∈Bn

|A(T )λ|
|A(T )|

=

∏
i≥2(2(λi + · · ·+ λ`(λ))− 1)

zλ
.

Here λ1, λ2, . . . , λ`(λ) are the parts of λ written in weakly decreasing order. For example, the
binary partitions of n = 4 are 4, 22, 211 and 1111, so

t4 =
1

4
+

32

8
+

32 · 12

4
+

52 · 32 · 12

24
= 13.

The formula was used together with (1) to obtain an asymptotic formula for tn:

(2)
tn
n!

= e1/8

(
1
n

(
2n−2
n−1

)
2n−1

)2(
1 +O(n−1)

)
=
e1/84n−1

πn3
(
1 +O(n−1)

)
.

See [1, Corollary 8] for more details.
Once the enumeration problem is solved, it is very natural to consider random tanglegrams

and study their shape. An algorithm that generates tanglegrams uniformly at random was
described in [1], and a number of questions in this regard were put forward. The aim of this
paper is to answer these questions. In fact, we will obtain them as corollaries of a rather
precise structure theorem stating that the two halves of a random tanglegram look essentially
like two independently chosen random plane binary trees.

In order to make the similarity between tanglegrams and pairs of plane binary trees precise,
let us �rst recall the concept of the total variation distance of probability measures: for two
such measures π1, π2 de�ned on the same σ-algebra F , one de�nes

d(π1, π2) = sup
S∈F
|π1(S)− π2(S)|.

The two probability measures we are comparing are both de�ned on the set B2n of pairs of

binary trees. The �rst measure ν
(T )
n is the measure induced by the uniform measure on random

tanglegrams (the two components simply being the two halves of the tanglegram), the other

one, denoted by ν
(P )
n , is the measure obtained by choosing two plane binary trees uniformly

and independently at random. Our main theorem reads as follows:

Theorem 1. The total variation distance d(ν
(T )
n , ν

(P )
n ) goes to 0 as n → ∞, speci�cally

d(ν
(T )
n , ν

(P )
n ) = O(n−1/2). Moreover, there exist positive constants M1 and M2 such that we

have

(3) ν(T )n (S) ≤M1ν
(P )
n (S) +O(n−1) and ν(P )

n (S) ≤M2ν
(T )
n (S) +O(n−1)

for every subset S of B2n.

The �rst statement means that the two probability measures are globally very close, while
the second one provides an estimate on how much the probability of very unlikely events can
di�er. Theorem 1 allows us to carry over many structural properties from random plane binary
trees to random tanglegrams. For example, the number of cherries (pairs of leaves sharing a
common parent) in one half of a random tanglegram of size n is sharply concentrated around
n/4 and satis�es a central limit theorem; see Section 3 for several further corollaries that
follow from Theorem 1. First, however, we prove our main theorem in the following section.
As it turns out, cherries play a key role in our analysis.
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2. Proof of the main result

The �rst step is to rewrite the total variation distance, which is given by

d(ν(T )n , ν(P )
n ) = sup

S⊆B2n
|ν(T )n (S)− ν(P )

n (S)| = 1

2

∑
(B1,B2)∈B2n

∣∣ν(T )n (B1, B2)− ν(P )
n (B1, B2)

∣∣.
Let us remark here that for convenience we simply write ν

(T )
n (B1, B2) and ν

(P )
n (B1, B2) for the

respective probabilities of the event that the pair (B1, B2) is generated. The probability that
a certain pair (B1, B2) ∈ B2n of binary trees are the left and right half of a random tanglegram
is given by

ν(T )n (B1, B2) =
1

tn

∑
λ

zλ
|A(B1)λ|
|A(B1)|

|A(B2)λ|
|A(B2)|

,

while the probability that a pair of randomly chosen plane binary trees is isomorphic to
(B1, B2) is given by

ν(P )
n (B1, B2) =

(2n−1

Cn

)2
· 1

|A(B1)||A(B2)|
.

Next we make use of the observation that only partitions λ of the form λ = 2s1n−2s matter.
We denote the class of all such partitions by R. As it turns out, partitions that do not belong
to R are asymptotically irrelevant: to be precise, as it was shown in [1],∑

B1,B2

1

tn

∑
λ 6∈R

zλ
|A(B1)λ|
|A(B1)|

|A(B2)λ|
|A(B2)|

= O(n−1).

Thus we can restrict ourselves to summations over elements of R in the following:

d(ν(T )n , ν(P )
n ) =

1

2

∑
B1,B2

∣∣∣∣∣ 1

tn

∑
λ∈R

zλ
|A(B1)λ|
|A(B1)|

|A(B2)λ|
|A(B2)|

− ν(P )
n (B1, B2)

∣∣∣∣∣+O(n−1).

Using the asymptotic formula (2), we obtain

1

tn|A(B1)||A(B2)|
= ν(P )

n (B1, B2) ·
1

e1/8n!
· (1 +O(n−1))

for any pair (B1, B2), which gives us

(4) d(ν(T )n , ν(P )
n ) =

1

2

∑
B1,B2

ν(P )
n (B1, B2)

∣∣∣∣∣ 1

e1/8n!

∑
λ∈R

zλ|A(B1)λ||A(B2)λ| − 1

∣∣∣∣∣+O(n−1).

It remains to show that for a randomly chosen pair B1, B2 of plane binary trees, the expression
inside the absolute value bars is small. This will be achieved in a sequence of lemmas. The
�rst provides information on the size of |A(T )λ| for λ ∈ R:

Lemma 2. Let µ(s) = 2s1n−2s be the partition of n consisting of s twos and n− 2s ones, and
let c(T ) denote the number of cherries of a binary tree T . We have the inequalities(

c(T )

s

)
≤ |A(T )µ(s)| ≤

(
c(T ) + s− 1

s

)
.
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Proof. Intuitively speaking, most automorphisms whose cycle type is of the form µ(s) =
2s1n−2s are obtained by picking s cherries and interchanging the leaves of each of these cherries
and nothing else. In the following, we make this heuristic precise by providing some explicit
inequalities. The inequality

|A(T )µ(s)| ≥
(
c(T )

s

)
is immediate, since there is indeed one automorphism of the desired cycle type µ(s) for every
possible choice of s cherries. For the proof of the other inequality

(5) |A(T )µ(s)| ≤
(
c(T ) + s− 1

s

)
,

we �rst de�ne the following polynomial associated with a binary tree T :

P (T, u) =
∑
s≥0
|A(T )µ(s)|us.

Suppose that the two branches of B are T1 and T2 respectively. It is easy to see that

P (T, u) = P (T1, u)P (T2, u)

if T1 and T2 are distinct, and

P (T, u) = P (T1, u)2 + |A(T1)|u|T1|

if T1 and T2 are identical (isomorphic). We want to show that the coe�cient of us in P (T, u)

is always less than or equal to
(
c(T )+s−1

s

)
, which is the corresponding coe�cient in the power

series expansion of (1− u)−c(T ). Denoting coe�cient-wise inequality of polynomials or power
series by �, we can express this as

P (T, u) � (1− u)−c(T ),

which we now proceed to prove by induction on the size of T . For a tree that consists only
of a single leaf or a single cherry, the inequality is obvious. We also remark on this occasion
that the degree of P (T, u) is at most |T |/2.

For the induction step, we �rst consider the easy case that the two branches are distinct.
In this case, we have

P (T, u) = P (T1, u)P (T2, u) � (1− u)−c(T1)(1− u)−c(T2) = (1− u)−c(T ),

and we are done. If the two branches are identical, then we have to be more careful: since

P (T, u) = P (T1, u)2 + |A(T1)|u|T1|,
the coe�cient-wise inequality follows in the same way, except perhaps for the coe�cient of
u|T1|, where we need to verify it directly. Write t = |T1| for the size (number of leaves) of T1.
Since the degree of P (T1, u) is at most t/2, the contribution of P (T1, u)2 to the coe�cient

of ut is restricted to the squared coe�cient of ut/2 in P (T1, u) (if there is such a coe�cient).
Applying the induction hypothesis, we �nd that the coe�cient of ut in P (T, u) is at most(

c(T1) + t/2− 1

t/2

)2

+ |A(T1)|,

where we interpret the binomial coe�cient as 0 if t is odd. Next, we observe that |A(T1)| ≤
22c(T1)−1, which can be obtained by another easy induction from the recursion

|A(T )| = |A(T1)||A(T2)|
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if the branches T1 and T2 of T are distinct, and

|A(T )| = 2|A(T1)|2

if they are identical. Hence we have(
c(T1) + t/2− 1

t/2

)2

+ |A(T1)| ≤
(
c(T1) + t/2− 1

t/2

)2

+ 22c(T1)−1,

and we have to show that this is less than or equal to
(
c(T )+t−1

t

)
. This can be achieved in

di�erent ways, one of them being combinatorial. First of all, note that c(T1) ≤ t/2. The

binomial coe�cient
(
c(T )+t−1

t

)
=
(
2c(T1)+t−1

t

)
gives the number of ways to select t elements

from the set 1, 2, . . . , 2c(T1), repetitions allowed. The expression
(c(T1)+t/2−1

t/2

)2
counts those

choices for which the same number of elements are taken from the �rst and from the second
half (zero if t is odd). Now we associate to every subset of {1, 2, . . . , 2c(T1) − 1}, of which
there are exactly 22c(T1)−1, a possible selection where the numbers in the two halves are not
the same: this is done by adding an appropriate number of copies (i.e. as many as needed
to obtain a multiset of t elements) of the element 2c(T1) to the subset unless this creates
a �balanced� selection, in which case we increase the number of copies of the least element
(which must be in the �rst half) appropriately instead. This clearly creates an injection that
proves the desired inequality and hence completes the induction proof of (5). �

Now we apply our estimates to deal with the expressions that occur in (4) in the following
lemma:

Lemma 3.

(1) There exists an absolute constant K such that

1

n!

∑
λ∈R

zλ|A(B1)λ||A(B2)λ| ≤ K

for all possible pairs (B1, B2) of binary trees with n leaves.
(2) If we further assume that c(B1), c(B2) ≥ αn for some �xed constant α, then

1

n!

∑
λ∈R

zλ|A(B1)λ||A(B2)λ| = exp
(2c(B1)c(B2)

n2

)
+O(n−1),

where the constant implied by the O-term only depends on α.

Proof. From the previous lemma, we know that

1

n!

∑
λ∈R

zλ|A(B1)λ||A(B2)λ| ≤
1

n!

∑
0≤s≤n/2

zµ(s)

(
c(T1) + s− 1

s

)(
c(T2) + s− 1

s

)

≤ 1

n!

∑
0≤s≤n/2

zµ(s)

(
n/2 + s− 1

s

)2

,

and we would like to show that this is bounded by an absolute constant. By de�nition,
zµ(s) = 2ss!(n− 2s)!, so it remains to bound

1

n!

∑
0≤s≤n/2

2ss!(n− 2s)!

(
n/2 + s− 1

s

)2

.



THE SHAPE OF RANDOM TANGLEGRAMS 7

To this end, we apply the simple inequality

(n− 2s)! = n!
2s−1∏
j=0

(n− j)−1 ≤ n!(n− 2s)−2s

and split the sum into three parts: the �rst part is

1

n!

∑
0≤s≤

√
n

2ss!(n− 2s)!

(
n/2 + s− 1

s

)2

≤
∑

0≤s≤
√
n

2ss!
(n− 2s)!

n!

(n/2 + s− 1)2s

s!2

≤
∑

0≤s≤
√
n

2s(n− 2
√
n)−2s

(n/2 +
√
n)2s

s!

=
∑

0≤s≤
√
n

2−s

s!

(
1− 2√

n

)−2s(
1 +

2√
n

)2s
≤
∑
s≥0

2−s

s!

(√n+ 2√
n− 2

)2s
= exp

( (
√
n+ 2)2

2(
√
n− 2)2

)
,

which converges to e1/2 as n→∞ and is therefore bounded. Likewise, since n−2s > n/2+s−1
if s ≤ n/6,

1

n!

∑
√
n<s≤n/6

2ss!(n− 2s)!

(
n/2 + s− 1

s

)2

≤
∑

√
n<s≤n/6

2ss!(n− 2s)−2s
(n/2 + s− 1)2s

s!2

≤
∑

√
n<s≤n/6

2s

s!
= O

( 2d
√
ne

d
√
n e!

)
,(6)

which goes to 0 as n→∞ and is therefore also bounded. Finally,

1

n!

∑
n/6<s≤n/2

2ss!(n− 2s)!

(
n/2 + s− 1

s

)2

≤
∑

n/6<s≤n/2

2s(
n−s
s

) (n− s)!
n!

(2n/2+s−1)2

≤
∑

n/6<s≤n/2

2n/2(n/2)−s22n

≤ (n/2) · 25n/2(n/2)−n/6,(7)

which also goes to 0 as n→∞. This completes the proof of the �rst part of Lemma 3.
For the rest of the proof, we assume that c(B1), c(B2) ≥ αn. Now the inequalities(

c(Bi)

s

)
≤ |A(Bi)µ(s)| ≤

(
c(Bi) + s− 1

s

)
imply

|A(Bi)µ(s)| =
c(Bi)

s

s!

(
1 +O(s2/n)

)
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whenever s ≤
√
n. We already know from the estimates (6) and (7) that the partitions µ(s)

with s >
√
n only contribute a small error term (even much less than O(n−1)) to the sum

1

n!

∑
λ∈R

zλ|A(B1)λ||A(B2)λ|,

so we can focus on the values of s with s ≤
√
n. For those, we also have

(n− 2s)! = n! · n−2s
(

1 +O(s2/n)
)
.

Putting everything together yields

1

n!

∑
λ∈R

zλ|A(B1)λ||A(B2)λ| =
1

n!

∑
0≤s≤

√
n

2ss!(n− 2s)!|A(B1)µ(s)||A(B2)µ(s)|+O(n−1)

=
∑

0≤s≤
√
n

2ss!n−2s
c(B1)

s

s!

c(B2)
s

s!

(
1 +O(s2/n)

)
+O(n−1)

=
∑
s≥0

1

s!

(2c(B1)c(B2)

n2

)s
−
∑
s>
√
n

1

s!

(2c(B1)c(B2)

n2

)s
+O

(
n−1

∑
s≥0

s2

s!

(2c(B1)c(B2)

n2

)s)
+O(n−1)

= exp
(2c(B1)c(B2)

n2

)
+O(n−1).

Note here that 2c(B1)c(B2)/n
2 is always bounded above by 1

2 , so the in�nite sums are easily
estimated. This completes the proof of Lemma 3. �

Now we can return to the proof of Theorem 1. It is well known that the number of cherries
in a random plane binary tree with n leaves asymptotically follows a normal distribution, with
mean n(n−1)/(4n−6) ∼ n/4 and varianceO(n) (see [7, Examples III.14 and IX.25]). Thus ifB
is a random plane binary tree with n leaves, then by Chebyshev's inequality |c(B)− n/4| > k
holds with probability at most O(n/k2). Taking k = n/8, we �nd that c(B) < n/8 only
occurs with probability O(n−1) when a plane binary tree B is selected uniformly at random
(in fact, it is possible to obtain better estimates, but this is enough for our purposes). If either
c(B1) < n/8 or c(B2) < n/8, we estimate the sum

1

n!

∑
λ∈R

zλ|A(B1)λ||A(B2)λ|

by means of the �rst part of Lemma 3, showing that this case only contributes O(n−1) to the
expression in (4). Otherwise, we can use the second part of Lemma 3 to obtain

d(ν(T )n , ν(P )
n ) =

1

2

∑
B1,B2

ν(P )
n (B1, B2)

∣∣∣∣∣ 1

e1/8n!

∑
λ∈R

zλ|A(B1)λ||A(B2)λ| − 1

∣∣∣∣∣+O(n−1)

=
1

2

∑
B1,B2

ν(P )
n (B1, B2)

∣∣∣∣exp
(2c(B1)c(B2)

n2
− 1

8

)
− 1

∣∣∣∣+O(n−1).
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The sum can be interpreted as the expected value of∣∣∣∣exp
(2c(B1)c(B2)

n2
− 1

8

)
− 1

∣∣∣∣
with respect to the measure ν

(P )
n . Since∣∣∣∣exp

(
2x1x2 −

1

8

)
− 1

∣∣∣∣ = O
(∣∣∣x1 − 1

4

∣∣∣+
∣∣∣x2 − 1

4

∣∣∣)
for bounded x1, x2 (and x1 = c(B1)/n and x2 = c(B2)/n are indeed bounded above and
below), we can estimate the total variation distance by

d(ν(T )n , ν(P )
n ) = O

(
E(P )
n

(∣∣∣c(B1)

n
− 1

4

∣∣∣+
∣∣∣c(B2)

n
− 1

4

∣∣∣)+ n−1
)
,

where E(P )
n denotes the expected value with respect to ν

(P )
n . Now we can use independence

of B1 and B2. Letting E(B)
n denote the expected value when a plane binary tree B is chosen

uniformly at random, we have

E(P )
n

(∣∣∣c(B1)

n
− 1

4

∣∣∣+
∣∣∣c(B2)

n
− 1

4

∣∣∣) = 2E(B)
n

(∣∣∣c(B)

n
− 1

4

∣∣∣),
and Jensen's inequality gives us

E(B)
n

(∣∣∣c(B)

n
− 1

4

∣∣∣) ≤ (E(B)
n

((c(B)

n
− 1

4

)2))1/2

= O(n−1/2)

by the aforementioned fact that the variance of the number of cherries is only of linear order.
Putting everything together, we obtain

(8) d(ν(T )n , ν(P )
n ) = O(n−1/2),

which is exactly the �rst part of Theorem 1.

Remark 1. Since the typical �uctuations of c(B1) and c(B2) are of order
√
n, the proof also

shows that the order of magnitude of our estimate is best possible, i.e. the exponent 1
2 in (8)

cannot be increased.

Now we attend to the second statement of Theorem 1, namely (3), which is somewhat easier
to prove. We �rst observe that

ν(T )n (S) =
∑

(B1,B2)∈S

ν(P )
n (B1, B2)

1

e1/8n!

∑
λ∈R

zλ|A(B1)λ||A(B2)λ|+O(n−1)

by the same argument that gave us (4). Part (1) of Lemma 3 guarantees that

1

e1/8n!

∑
λ∈R

zλ|A(B1)λ||A(B2)λ|

is bounded above by an absolute constant, while the trivial estimate

1

e1/8n!

∑
λ∈R

zλ|A(B1)λ||A(B2)λ| ≥
1

e1/8

is obtained by only taking the partition λ = µ(0) = 1n consisting solely of ones into account (we
have zλ = n! and |A(B1)λ| = |A(B2)λ| = 1 for this particular choice of λ). The inequalities (3)
follow immediately.
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3. Consequences of the main theorem

Our main theorem tells us that the probability distributions ν
(T )
n and ν

(P )
n are almost the

same. It follows immediately that the behaviour of various shape parameters can be carried
over from plane binary trees. As a �rst instance, we obtain Conjecture 2 of [1] (as well as the
more speci�c Conjecture 1, which only considers cherries), which deals with the number of
copies of a �xed rooted binary tree B occurring as a fringe subtree (i.e. a subtree consisting
of a vertex and all its successors) in one half of a random tanglegram.

Corollary 4. The average number of cherries in the left (or right) tree of a random tanglegram
of size n is asymptotically equal to n/4; generally, the average number of occurrences of a �xed

binary tree B is asymptotically equal to µBn, where the constant µB is given by 21−|B|/|A(B)|.
Moreover, the number of occurrences is asymptotically normally distributed: if XB,n denotes
the number of occurrences of B in the left half of a random tanglegram of size n, then we have

lim
n→∞

ν(T )n

(
XB,n ≤ µBn+ xσB

√
n
)

=
1√
2π

∫ x

−∞
e−t

2/2 dt

for every real x, where the constant σB is de�ned by σ2B = 21−|B|/|A(B)| + 41−|B|(1 −
2|B|)/|A(B)|2. In particular, for cherries C we have σC = 1

4 .

Proof. This is a consequence of the analogous statement for plane binary trees, which is
obtained by standard means, cf. [4, Section 3.3]. There are 2|B|−1/|A(B)| plane binary trees
isomorphic to a binary tree B. Therefore, the bivariate generating function Y (x, u) for plane
binary trees, where the exponent of x marks the number of leaves and u the number of
occurrences of B, satis�es the functional equation

Y (x, u) = x+ Y (x, u)2 + (u− 1) · 2|B|−1

|A(B)|
x|B|.

This can be explained from the observation that the number of occurrences of B is either the
sum of the occurrences in the two branches, or 1 if the tree itself is isomorphic to B. The
last term takes this into account. The functional equation can be solved explicitly: using the
abbreviations a = 2|B|−1/|A(B)| and b = |B|, we have

Y (x, u) =
1

2

(
1−

√
1− 4x+ 4a(1− u)xb

)
.

For u in a suitable complex neighbourhood of 1, this function has a dominant square root
singularity at the smallest (in terms of absolute value) zero of the polynomial 1− 4x+ 4a(1−
u)xb. The central limit theorem follows by means of singularity analysis and the quasi-power
theorem ([7, Theorem IX.12], cf. also Example IX.26 in [7]). We omit the technical details.

Once the statement has been established for plane binary trees, it is easily carried over to
tanglegrams: the probability of the event XB,n ≤ µBn+xσB

√
n can only change by O(n−1/2)

in view of Theorem 1, so the central limit theorem follows trivially. As for the mean value,
we note that the number of occurrences is clearly O(n), so the change in the mean from plane

binary trees to tanglegrams is at most O
(
n · d(ν

(T )
n , ν

(P )
n )

)
= O(

√
n), which does not a�ect

the main term. �

A similar corollary provides information about the root branches:

Corollary 5. The limiting probability that one of the root branches of the left (or right) tree
of a random tanglegram consists of a single leaf is 1

2 . Generally, the limiting probability that
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a �xed binary tree B occurs as one of the two root branches of the left tree of a random
tanglegram is 2−|B|/|A(B)|.
Proof. This can be shown by a simple direct calculation: again, we note �rst that there are
2|B|−1/|A(B)| plane binary trees isomorphic to a binary tree B. Thus for large enough n
(greater than 2|B|), the number of plane binary trees for which one of the two branches

is isomorphic to |B| is 2 · 2|B|−1/|A(B)| · Cn−|B|. Dividing by the total number of plane
binary trees and taking the limit gives the desired result for plane binary trees, and it follows
automatically for tanglegrams:

lim
n→∞

2 · 2|B|−1/|A(B)| · Cn−|B|
Cn

=
2−|B|

|A(B)|
.

�

Our next corollary is concerned with the height, i.e. the length of the longest path from the
root to a leaf. Again, the result for plane binary trees carries over directly.

Corollary 6. The average height of the left (or right) tree of a random tanglegram is asymp-
totically equal to 2

√
πn, and the height asymptotically follows the theta distribution: if Hn

denotes the height of the left half of a random tanglegram of size n, then we have

lim
n→∞

ν(T )n

(
Hn ≥ x

√
n
)

= Θ(x) =
∑
j≥1

e−j
2x2(4j2x2 − 2)

for every positive real number x.

Proof. Again, the central limit theorem follows from the analogous statement for plane binary
trees ([7, Proposition VII.16]). For the mean value, we need to be slightly more careful than
in the proof of Corollary 4, since trees whose height is of linear order might a priori create
an error term of order

√
n. However, [5, Theorem 1.3] guarantees that the probability for the

height of a random plane binary tree to be greater than h is O(n3/2e−h
2/(4n)). We apply this

to h = n2/3 (for example) and combine it with (3). It follows that the height of one half of a
random tanglegram is greater than h with probability O(n−1). So those trees only contribute
at most O(1) to the average height. Now we can apply the �rst part of Theorem 1 to see

that the average height only changes by O(n2/3 · n−1/2) = O(n1/6) from plane binary trees to
tanglegrams. Since the average height of a plane binary tree is asymptotically equal to 2

√
πn

([6, Theorem B], see also [5, Corollary 1.1]), the corollary follows. �

Finally, we consider the automorphism group, more speci�cally the number of generators
(which is the number of vertices for which the two branches are identical) of one half B1 of a

random tanglegram. We denote this parameter by g(B1) and note that |A(B1)| = 2g(B1), so
this also provides information on the size of the automorphism group. The parameter g was
studied for plane binary trees by Bóna and Flajolet in [2]. We obtain the following result,
which settles Conjecture 3 of [1]:

Theorem 7. The expected number of generators of the left (or right) half of a random tangle-
gram of size n is asymptotically equal to γn, where the constant γ, whose numerical value is
0.2710416936 . . ., is the value of the function f(x) de�ned by f(x) = x+ 1

2f(x)2+(x− 1
2)f(x2)

at x = 1
4 . Moreover, the number of generators is asymptotically normally distributed.

Proof. In the same way as Corollary 4, this follows from the analogous statement for plane
binary trees, see [2, Theorem 2, (ii)]. �



12 MATJA� KONVALINKA AND STEPHAN WAGNER

4. The number of matched cherries

As it was pointed out in [1], cherries play a major role in the literature on tanglegrams,
and it was asked what the expected number of matched cherries (two cherries whose leaves
are matched to each other) in a random tanglegram would be. We prove that this expected
number is generally very small: in the limit, it follows a Poisson distribution whose mean
and variance are 1

4 . This result and its proof also help to better understand the asymptotic
formula (2).

Theorem 8. The probability that there are exactly k matched cherries in a random tanglegram
of size n converges to e−1/44−k/k!, i.e. the number of matched cherries has a limiting Poisson
distribution.

Proof. Consider any tanglegram T of size n; the group generated by rotations of all 2(n− 1)
internal vertices (by a rotation, we simply mean the action of interchanging the two branches)
acts on the set of all possible representations of this tanglegram as a pair of two plane trees with
a perfect matching between the leaves. The number of orbits, which is the number of distinct
representations of this kind, is 22(n−1)/|A(T )| by the orbit-stabiliser theorem. Conversely, we
can construct a tanglegram T from a pair of two plane binary trees B1, B2 and a perfect
matching σ, to which we assign a weight |A(T )|/22(n−1). In this way, each distinct tanglegram
is counted with a total weight of 1 if we sum over all choices of B1, B2, and σ.

Now we use this way of counting tanglegrams as a means to estimate the probability of
the event that there are exactly k tangled cherries. Pick two plane binary trees B1 and B2

with n leaves, and suppose that they have c1 and c2 cherries, respectively. Now we count
the number of perfect matchings between the leaves of the two trees that generate exactly k
matched cherries, where k is a �xed nonnegative integer. By a straightforward application of
the inclusion-exclusion principle, this number is

(
c1
k

)(
c2
k

)
· k!2k ·

∑
`≥0

(−1)`
(
c1 − k
`

)(
c2 − k
`

)
· `!2`(n− 2k − 2`)!

=
n!2k

k!

∑
`≥0

(−1)`2`

`!

∏k+`−1
j=0 (c1 − j)(c2 − j)∏2k+2`−1

j=0 (n− j)
.

The sum is estimated in a similar way as in the proof of part (2) of Lemma 3. If we assume
that c1, c2 ≥ n/8 (which we already know to be the case for most choices of B1 and B2), then
for ` ≤

√
n, we have

∏k+`−1
j=0 (c1 − j)(c2 − j)∏2k+2`−1

j=0 (n− j)
=
(c1c2
n2

)k+`(
1 +O(`2/n)

)
.
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Moreover, since c1, c2 ≤ n/2, it also follows easily that this fraction is bounded above by 1.
Thus∑
`≥0

(−1)`2`

`!

∏k+`−1
j=0 (c1 − j)(c2 − j)∏2k+2`−1

j=0 (n− j)
=

∑
0≤`≤

√
n

(−1)`2`

`!

(c1c2
n2

)k+`(
1 +O(`2/n)

)
+O

(∑
`>
√
n

2`

`!

)

=
∑
`≥0

(−1)`2`

`!

(c1c2
n2

)k+`
+O

(
n−1

∑
`≥0

`22`

`!

(c1c2
n2

)k+`)
+O

( 2d
√
ne

d
√
n e!

)
=
(c1c2
n2

)k
exp

(
− 2c1c2

n2

)
+O(n−1).

If either B1 or B2 has fewer than n/8 cherries (which happens with probability O(n−1) if
B1, B2 are randomly selected), then we can trivially estimate the number of matchings with
exactly k matched cherries by n!. It follows that the number of triples of two plane binary
trees and a matching between their leaves such that there are exactly k matched cherries is

C2
n · n! · 2k

k!

(
E(P )
n

((c(B1)c(B2)

n2

)k
exp

(
− 2c(B1)c(B2)

n2

))
+O(n−1)

)
.

Taylor expansion gives us

(x1x2)
ke−2x1x2 = 16−ke−1/8

(
1+

8k − 1

2

((
x1−

1

4

)
+
(
x2−

1

4

))
+O

((
x1−

1

4

)2
+
(
x2−

1

4

)2))
.

Recall that under ν
(P )
n , c(B1) and c(B2) are independent with mean n(n − 1)/(4n − 6) =

n/4 +O(1) and variance O(n), so this yields

E(P )
n

((c(B1)c(B2)

n2

)k
exp

(
− 2c(B1)c(B2)

n2

))
= 16−ke−1/8 +O(n−1).

Finally we �nd that there are

C2
n · n! · e

−1/8

8kk!

(
1 +O(n−1)

)
triples of two plane binary trees and a matching between their leaves with exactly k matched
cherries. For each of them, the size of the automorphism group is at least 2k, so the associated
weight is at least 2k/22(n−1). Consequently, the probability that there are exactly k matched
cherries is at least

1

tn
· C2

n · n! · e
−1/8

8kk!

(
1 +O(n−1)

)
· 2k

22(n−1)
=
e−1/44−k

k!

(
1 +O(n−1)

)
in view of (2). Letting pn,k denote the probability that a random tanglegram of size n has
exactly k matched cherries, we obtain

lim inf
n→∞

pn,k ≥
e−1/44−k

k!
.

Since the sum of these lower bounds is already 1, lim supn→∞ pn,k cannot be any greater, so
we must have

lim
n→∞

pn,k =
e−1/44−k

k!
,

completing our proof. �
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Remark 2. We see that the lower bound 2k that we used for the number of automorphisms must
be sharp most of the time, since the resulting lower bound for the probabilities pn,k turned
out to be asymptotically sharp. Once again, we observe that only those automorphisms
generated by cherries are asymptotically relevant (cf. Lemma 2). If every tanglegram had
trivial automorphism group, the number of tanglegrams of size n would simply be

n! ·
( Cn

2n−1

)2
.

Nontrivial automorphisms are thus only responsible for the factor e1/8 in the asymptotic
formula (2), and as the proof of Theorem 8 shows, these nontrivial automorphisms are mostly
generated by matched cherries.

The heuristic interpretation can be taken further: as explained earlier, two randomly gener-
ated plane binary trees with n leaves will each have about n/4 cherries (with high probability).
Suppose that the matching between the leaves is unbiased (uniformly random). Then a cherry
in the left tree has a probability of approximately

2 · n/4
n2

=
1

2n

of being matched to a cherry in the right tree. The law of rare events suggests that the
distribution of matched cherries should converge to a Poisson distribution with mean

n

4
· 1

2n
=

1

8
,

so the limiting probability that there are exactly k matched cherries should be e−1/88−k

k! .

However, k matched cherries raise the weight by (at least, with high probability exactly) 2k,
giving a total expected weight of ∑

k≥0

e−1/88−k

k!
· 2k = e1/8.

This is exactly the factor e1/8 in the asymptotic formula for tn. Moreover, because of this

induced bias, the limiting probability for k matched cherries is proportional to e−1/88−k

k! · 2k =
e−1/84−k

k! , giving us, as Theorem 8 indeed shows, a Poisson distribution with mean 1
4 .
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