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Abstract. Many discrete mathematics problems in phylogenetics are defined
in terms of the relative labeling of pairs of leaf-labeled trees. These relative

labelings are naturally formalized as tanglegrams, which have previously been

an object of study in coevolutionary analysis. Although there has been con-
siderable work on planar drawings of tanglegrams, they have not been fully

explored as combinatorial objects until recently. In this paper, we describe how

many discrete mathematical questions on trees “factor” through a problem on
tanglegrams, and how understanding that factoring can simplify analysis. De-

pending on the problem, it may be useful to consider a unordered version

of tanglegrams, and/or their unrooted counterparts. For all of these defini-
tions, we show how the isomorphism types of tanglegrams can be understood

in terms of double cosets of the symmetric group, and we investigate their
automorphisms. Understanding tanglegrams better will isolate the distinct

problems on leaf-labeled pairs of trees and reveal natural symmetries of spaces

associated with such problems.

1. Introduction

Consider the problem of computing the subtree-prune-regraft (SPR) distance
between two leaf-labeled phylogenetic trees. An SPR move cuts one edge of the
tree and then reattaches the resulting rooted subtree at another edge (Figure 1).
The SPR distance between two (phylogenetic, meaning leaf-labeled) trees T1 and
T2 is the minimum number of SPR moves required to transform T1 into T2. This
distance is of fundamental importance in phylogenetics, and many papers have been
written both applying [1, 2] and investigating properties of [3–5] this distance.

Say that we wanted to calculate the SPR distance between every pair of trees on
a certain number of leaves. Näıvely this would require a large number of SPR calcu-
lations, namely the number of leaf-labeled phylogenetic trees choose two. However,
the distance between two such trees does not depend on the actual labels of T1 and
T2, so one can permute the leaf labels without changing the distance. Furthermore,
a path made by intermediate trees between the two trees could also have its labels
permuted in order to give a path between the trees with permuted leaf labels. Thus,
problems like SPR distance do not concern the actual leaf labels as such, but rather
use the leaf labels as markers that can be used to map leaves of one phylogenetic
tree on to another: the problem and its solutions are actually defined in terms of a
relative leaf labeling (Figure 1).
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Figure 1. Two equivalent subtree-prune-regraft moves applied
to trees which are identical up to relabeling. The number of such
moves required to transform one tree into another only depends on
the relative leaf labeling between the two trees.

Analogous discrete mathematics problems and objects defined in terms of tuples
of labeled combinatorial objects, but without direct reference to the labels them-
selves, are ubiquitous in computational biology. Any distance between pairs of
trees that is computed in terms of tree modifications, such as (rooted or unrooted)
subtree-prune-regraft described above, nearest-neighbor-interchange and tree bisec-
tion and reattachment (see [4] for a review), satisfy this condition. Such moves
are used as the basis of both maximum-likelihood heuristic search and Bayesian
Markov chain Monte Carlo (MCMC) tree reconstruction. The corresponding graph,
in which trees form vertices and a collection of moves form edges, has natural sym-
metries of pairs of points in these spaces which have the same relative labeling. For
example, hitting times of simple random walks on graphs formed by such moves for
given start and end trees [6–8] are defined in terms of relative labelings between
the start and end trees. The same is true for more complex random walks such as
Markov chain Monte Carlo using a label-invariant likelihood, as would be used for
sampling from a prior distribution on trees [9]. Graph characteristics such as Ricci-
Ollivier curvature [10] under simple random walks or MCMC with a label-invariant
likelihood are expressed in terms of relative tree labelings [11]. Analogous consider-
ations hold for the problem of species delimitation, which can naturally be phrased
in terms of inference of a partition of relatively labeled objects: neither distances
between partitions [12] nor the graphs underlying MCMC over these partitions [13]
actually refer to labels themselves.

The concept of a pair of rooted phylogenetic trees with a relative leaf labeling
has been formalized as a tanglegram [14, 15]. A tanglegram is a pair of trees on
the same set of leaves with a bijection between the leaves in the two trees [16]
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Figure 2. The tanglegram corresponding to the pairs of trees in
Figure 1, with the bijection shown in gray. When considered as a
graph, the black edges are called tree edges, and the gray edges are
called between-leaf edges.

(Figure 2). There has been extensive work on the problem of finding the layout
of a given tanglegram in the plane that minimizes crossings, with the goal of most
clearly visualizing co-evolutionary relationships between species [16–21].

However, we are not aware of any work considering tanglegrams as a convenient
formalization of the notion of a relative leaf labeling in the context of studying
pairs of labeled phylogenetic trees. There has also been little work enumerating
or finding other properties of tanglegrams until recently [22]. In addition, more
challenging and important problems in mathematical phylogenetics reduce to ques-
tions on relatively-labeled collections of more than two trees, and correspondingly
one can extend the notion of tanglegram to more than two trees. For example,
“supertree” methods reconstruct a tree from collections of trees, each of which is
typically considered to express information about the larger tree [2,23,24], which in
fact is a problem on multi-tree tanglegrams. The same is true for the minimal hy-
bridization network [25] and maximum agreement subtree [26, 27] problems. Thus
many problems in the discrete mathematics of phylogenetic trees “factor” through
a problem concerning a generalized version of a tanglegram.

With this motivation for studying tanglegrams in more depth, here we formalize
more general notions of tanglegram, describe their symmetries, observe that tan-
glegrams have a convenient algebraic formulation as double cosets of the symmetric
group, and provide some enumeration results for four types of tanglegram.

2. Tanglegrams

An unrooted binary tree T is a finite graph for which there is a unique path
between every pair of vertices, and such that every non-leaf vertex has degree three.
A rooted tree is an unrooted tree with a distinguished node called the root. We will
also make the assumption common in phylogenetics that the root of a rooted tree
has degree two, and that there are no degree-two nodes other than the root (if there
is a root). The leaves L(T ) of a tree T are degree-one vertices of the tree.

Definition 1. Let T and S be trees with the same number of leaves. An ordered
tanglegram Y on (T, S) is an ordered triple (T, φ, S), where φ is a bijection L(T )→
L(S).

The graph of the tanglegram Y is the graph formed from the union of T and S
by adding an edge from each leaf x in T to the corresponding leaf φ(x) in S. We
will distinguish these between-leaf edges from the tree edges of T and S (Figure 2).
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We have defined tanglegrams in terms of ordered triples Y = (T, φ, S) , so Y ′ =
(S, φ−1, T ) is a different tanglegram. This is a sensible definition when considering
sequences of trees with an inherent directionality. However, often there is not such
a directionality, such as for subtree-prune-regraft moves, which are easily reversed.
This motivates the following concept:

Definition 2. A unordered tanglegram is a pair ({T, S}, φ) where {T, S} is an
unordered set of two trees, and φ is a bijection between L(T ) and L(S).

2.1. Automorphisms and tanglegram equivalence. Let V (X) denote the ver-
tex set of a graph X. An isomorphism between unrooted trees T and S is a bijective
map h : V (T )→ V (S) in which f maps edges of T to edges of S. For a rooted tree,
we add the requirement that an isomorphism must map the root node of T to the
root node of S. An automorphism of a tree T is an isomorphism of T with itself. It
is clear that the degree of a node (i.e. the number of adjacent nodes) is preserved
under isomorphisms. In phylogenetics, it is common that the root of a tree is the
only node of degree two. In this case, there is no distinction between isomorphisms
of rooted trees and isomorphisms of these trees as unrooted trees because degrees
are preserved under isomorphism.

We start with an “obvious” lemma, the proof of which can be found in the
Appendix. First note that any isomorphism between trees T and S preserves the
leaf sets L(T ) and L(S), and therefore induces a bijection between L(T ) and L(S).

Lemma 3. An isomorphism between (rooted or unrooted) trees T and S is uniquely
determined by the induced bijection between L(T ) and L(S). In particular, an
automorphism of a tree T is uniquely determined by the induced permutation of the
leaf set L(T ). �

Thus we will often consider an isomorphism as such a bijection L(T )→ L(S).

Definition 4. Given two tanglegrams Y = (T, φ, S) and Y ′ = (T, φ′, S) on the same
pair of trees, an isomorphism of Y and Y ′ is defined by a pair of automorphisms
g : L(T )→ L(T ), and h : L(S)→ L(S) satisfying h ◦ φ = φ′ ◦ g.

The condition in the definition can be visualized in the commutative diagram

L(T )
φ−−−−→ L(S)yg yh

L(T )
φ′−−−−→ L(S).

Note that if two tanglegrams Y1 and Y2 are isomorphic, then there is a 1-1
map from the graph of Y1 to the graph of Y2 which maps between-leaf edges to
between-leaf edges.

2.2. Symmetries of trees. In order to describe the ensemble of tanglegrams it
is necessary to review the symmetries of the trees in the tanglegram. Although
this material is classical, we were not able to find a simple presentation, and so
provide one here. We will assume familiarity with the basics of group theory (cov-
ered by dozens of textbooks, e.g. [28]). Automorphisms of a tree T form a group
under composition. Using Sn to denote the symmetric group on n objects, leaf
automorphisms of T form a subgroup A(T ) of S|L(T )|.
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To enumerate symmetries of trees it is convenient to use the notion of a wreath
product ; we will only define and use wreath product in the case when the acting
group is Sk. Use Gk to denote the k-fold direct product G× · · · ×G.

Given a group G, the wreath product G oSk of G by Sk can be described as the
direct product Gk × Sk with the following group operation. First recall that the
group operation on Gk is defined by applying G’s group operation component-wise.
An element of Sk acts on Gk by permuting the components, such that the group
action of σ ∈ Sk on g ∈ Gk is the element σ(g) ∈ Gk with ith component gσ(i).

Given elements g, g′ in Gk and σ, σ′ ∈ Sk, the wreath group law is:

(g, σ) (g′, σ′) := (g σ(g′), σσ′).

For rooted trees, Jordan [29] and Pólya [30] observed that the automorphism
group of any rooted tree can be built by repeated direct products and wreath
products of symmetric groups as follows. In the simplest case, assume a rooted
tree T for which the root has two daughter subtrees T1 and T2. If T1 and T2
are isomorphic (and thus have the same automorphism groups), the automorphism
group of T is the wreath product A(T1) o S2. That is, its symmetry group is
two copies of A(T1) along with the symmetry exchanging T1 and T2, equipped
with the group operation that appropriately exchanges the subtrees before applying
symmetries to the subtrees. If T1 and T2 are not isomorphic, then A(T ) is simply
the direct product A(T1)×A(T2).

Now let T be a tree whose root has some number of daughters, each of which
are roots of subtrees T1, . . . , Tr. We can reorder and partition the subtrees into N
partitions:

T1, . . . , Ti1 , Ti1+1, . . . , Ti2 , . . . , TiN−1+1, . . . , TiN

such that the subtrees in each partition are isomorphic to one another and the
subtrees in different partitions are not isomorphic. This defines integers i1, . . . , iN ;
take i0 to be zero. A more general version of the argument above establishes

Theorem 5 (Jordan, 1869). A(T ) is the direct product A1 × · · · × AN , where Aj
is the wreath product of A(Tij ) with the symmetric group Sij−ij−1 . �

This defines the automorphism group of a rooted tree recursively, where of course
the automorphism group of a single leaf is trivial.

Example 6. Let Tn denote the perfectly balanced binary tree on 2n leaves and let
Gn = A(Tn). G2 = S2 and for each n, Gn = Gn−1 o S2. Moreover, |Gn| =
2|Gn−1|2.

Example 7. The symmetry group of the Newick-format [31] tree (1,((2,3),((4,5),6)));
(shown as the upper-left tree of Figure 1) is the direct product of the symmetry
groups of (2, 3) and ((4, 5), 6). Each of these symmetry groups are S2.

The automorphism group of an unrooted tree will become clear after we describe
a classical and mathematically natural way to root an unrooted tree: at the centroid.
Let T be a tree, and let x be a node of T . If we remove x as well as the edges
attached to x from T , we obtain a number of disjoint connected and rooted subtrees,
X1, . . . , Xk.

Definition 8. The weight of x, w(x), is defined as the maximum number of nodes
of the subtrees X1, . . . , Xk.
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Definition 9. The node x is said to be a centroid of T if w(x) is minimal over all
nodes of T .

It is clear that any automorphism of T maps a centroid to a centroid, a fact
which we will use to find a root fixed under leaf automorphism. Centroids are
unique or nearly so, as shown by the following theorem, the proof of which can be
found as a guided exercise in [32, §2.3.4.4].

Theorem 10 (Jordan, 1869). Every tree has either:

1. a unique centroid or
2. two adjacent centroids.

In case 2, every automorphism either preserves the centroids or exchanges them. �

Let T be an unrooted tree, and let Tr be the rooted tree formed by rooting T at
either the unique centroid, or by a new node in the edge joining a pair of centroids.

Corollary 11. The automorphism group of an unrooted tree T is identical to the
automorphism group of the associated rooted tree Tr. �

Example 12. The symmetry group of the six-leaf unrooted tree with three two-leaf
subtrees (Newick format ((1,2),(3,4),(5,6));) is S2 oS3.

2.3. Double cosets and enumeration of tanglegrams. We are now ready to
algebraically describe the set of tanglegrams on a pair of n-leaf trees. Assume n-
leaf trees T and S, which are both rooted or both unrooted. Arbitrarily mark the
elements of the leaf sets L(T ) and L(S) with the same set of n symbols, such that
we can identify both A(T ) and A(S) as subgroups of Sn. Using this same marking,
we can also think of the bijections from L(T ) to L(S) as being elements of Sn, thus
these elements of Sn give tanglegrams on T and S. Recall Definition 4, stating
that the set of bijections φ′ giving the same tanglegram as a given φ are those for
which there exist automorphisms g ∈ A(T ) and h ∈ A(S) such that h ◦ φ = φ′ ◦ g.
This criterion is equivalent to φ′ = hφg−1 as group elements in Sn. The set of
elements satisfying such a criterion is called a double coset [28].

Definition 13. Given a subgroup J of a group G and g ∈ G, the right coset Jg
(resp. left coset gJ) G is the set of elements of the form {jg | j ∈ J} (resp.
{gj | j ∈ J}). The number of right cosets of J in G is equal to the number of left
cosets. This number is defined as the index of J in G and is denoted [G : J ]. Given
two subgroups J and K of G, the double coset JgK for some g ∈ G is the set of
elements {jgk | j ∈ J, k ∈ K}.

Any two right (left) cosets of J in G are either identical or disjoint and the
number of elements in any coset is the same, i.e. |J |. In contrast to single cosets
(left or right), the number of elements in a double coset may vary. We state
these observations, and the equivalent observations in the unordered case, as a
proposition.

Proposition 14. Given two trees T and S with n leaves,

• the set of tanglegrams isomorphic to a tanglegram (T,w, S) is in 1-1 corre-
spondence with the double coset A(S)wA(T ) of Sn.

• the set of unordered tanglegrams isomorphic to ({T, S}, w) is in 1-1 corre-
spondence with equivalence classes of double cosets A(S)wA(T ) where pairs
of cosets HwK and Kw−1H are deemed equivalent.
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Figure 3. The two unrooted binary tanglegrams with four leaves.

�

Note that the actual 1-1 correspondence depends on the marking of T and S.
Here are some useful facts concerning cosets [28,33]:

• any two cosets are either disjoint or identical
• every double coset is a disjoint union of right cosets and a disjoint union of

left cosets
• the number of right cosets of H in HgK is the index [K : K ∩ g−1Hg], and

the number of left cosets of K in HgK is the index [H : H ∩ gKg−1].

Combining these facts with the proposition above, we get:

Proposition 15. The number of bijections from L(T ) to L(S) giving an ordered
tanglegram isomorphic to Y = (T,w, S) is equal to |A(S)|[A(T ) : A(T )∩w−1A(S)w],
or equivalently |A(T )|[A(S) : A(S) ∩ wA(T )w−1]. �

Example 16. Let T and S be the unique binary unrooted tree with 4 leaves. There
are two distinct tanglegrams on (T, S) in both the ordered and unordered cases
(Figure 3). The automorphism group of either tree, A(T ), is the wreath product of
S2 by S2, thus of order 8 (set theoretically Z2×Z2×Z2). Marking the leaves with
the integers 1 through 4 such that (1, 2) and (3, 4) are both sister pairs, G = A(T )
is generated by {(12), (34), (13)(24)} ⊂ S4.

The symmetric group S4 contains 4! = 24 elements. Every double coset is a
disjoint union of single cosets, and G contains 8 elements, therefore the number
of elements in a double coset is a multiple of 8. Moreover, since the double cosets
partition S4, we either have 3 double cosets (each of 8 elements), or 2 double cosets
(one of 8 elements and one of 16 elements), or one coset (of 24 elements). Taking
w = (23), we calculate:

G ∩ wGw−1 = {(), (12)(34), (13)(24), (14)(23)}.
Using the properties of double cosets, we find that the number of single cosets in
the double coset GwG is the index [G : G ∩ w−1Gw] = 2. Thus this double coset
has 16 elements, and so there must be two double cosets, corresponding to the two
tanglegrams.

2.4. Symmetries of tanglegrams.

Definition 17. An automorphism of an ordered tanglegram Y is an automorphism
of the graph of Y which maps each tree to itself. An automorphism of an unordered
tanglegram Y is an automorphism of the graph of Y which preserves the between-
leaf edges, so an automorphism of an unordered tanglegram either maps each tree to
itself or switches the two trees. If Y is a rooted tanglegram, then an automorphism
of Y is required to preserve the roots of the two trees.
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Figure 4. An ordered rooted and an unordered unrooted tan-
glegram formed by two copies of the same unrooted tree with no
automorphism that switches the trees forming each tanglegram.
These examples show that the second condition of Proposition 18
is not always satisfied.

If the automorphism f : Y → Y exchanges the two trees, f is described by a
pair of isomorphisms: g1 : T → S and g2 : S → T . For any leaf x of T , the image
of a bijective pair (x, φ(x)) must map to another bijective pair (g2(φ(x)), g1(x)).
This implies that g1(x) = φ(g2(φ(x))), and thus in general that g1 = φ ◦ g2 ◦ φ. If
we put the same set of distinguishing marks on the leaves of the trees T and S, we
may consider the bijection φ to be an element of the symmetric group Sn. With
these conventions, we have shown that there exist g1 ∈ A(T ) and g2 ∈ A(T ) such
that g1 = φ g2 φ as group elements when there is an automorphism that switches
the two trees. The converse follows from reversing this argument. In summary:

Proposition 18. If Y is an unordered tanglegram, then there exists an automor-
phism of Y that switches the two trees if and only if:

• the trees T and S are isomorphic, and
• φA(T )φ ∩A(T ) 6= ∅.

�

On the other hand, if h : Y → Y is an automorphism which maps each tree
to itself, then f is described by two automorphisms g : T → T and h : S → S
satisfying φ ◦ g = h ◦ φ when restricted to the leaves, or g = φ−1hφ as elements of
the symmetric group.

Proposition 19. Assume an ordered tanglegram Y = (T, φ, S), or an unordered
tanglegram ({T, S}, φ). Set H = A(T ) ∩ φ−1A(T )φ.

1. If Y is ordered or T is not isomorphic to S, then A(Y ) = H.
2. If Y is unordered and T is isomorphic to S, then,

a. if A(T ) ∩ φA(T )φ 6= ∅, then A(Y ) contains H as a subgroup of index 2.
b. otherwise, A(Y ) = H.

�

Similar to the case for trees, tanglegram automorphisms are determined entirely
by their action on the leaves of one of the trees.

2.5. Labeled tanglegrams. Analogous to the concept of a leaf-labeled tree, there
is a concept of a labeled tanglegram.

Definition 20. A labeled tanglegram is a tanglegram along with a bijective map
of the label set X to the leaves of one of the trees.
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This is analogous to the definition of a leaf-labeled phylogenetic tree [34]. The
other tree can be considered to be labeled by the composition of the labeling with
the bijection. Applying this labeling to both trees and then forgetting the bijection
gives a pair of leaf labeled trees on the same label set, and each such pair of leaf
labeled trees obviously determines a labeled tanglegram. Thus, labeled tanglegrams
are in one-to-one correspondence with pairs of leaf-labeled phylogenetic trees. If
the tanglegram is ordered, then this is an ordered pair of trees, and if unordered it
is unordered.

It is natural to ask how many distinct labeled n-tanglegrams have the same un-
derlying ordered or unordered tanglegram. Each leaf has a distinct label, such that
the symmetric group acts freely on these labels. By the orbit-stabilizer theorem,

Proposition 21. The number of leaf-distinct labelings of a given n-tanglegram Y
is equal to n!/|A(Y )|. �

This is true for ordered and unordered tanglegrams, using their respective au-
tomorphism definitions. For example, there are 12 labelings for the ordered tan-
glegram (1,(2,(3,4))); (((1,2),3),4); but only 6 when considered as an unordered
tanglegram.

Given a means of sampling uniformly from tanglegrams [22], we can use this
proposition to obtain a weighted sampling scheme for the uniform distribution
across pairs of phylogenetic trees on the same labeling set. For example, assume
we wanted to approximate the expectation of a function f on uniformly sampled
pairs of labeled trees, but which is constant on pairs of trees that make the same
tanglegram (such as SPR distance). Then∑

T1,T2

f(T1, T2)P(T1, T2) =
∑
Y

f(T1, T2)P(T1, T2|Y )P(Y )

where if f(T1, T2) = f(T2, T1) for all T1, T2 then the right hand sum can be over
unordered tanglegrams Y , and otherwise it is over ordered tanglegrams Y . Here
P(T1, T2|Y ) is simply the indicator function expressing if T1 and T2 make Y , divided
by the number of pairs of labeled trees making Y as enumerated in Proposition 21.
Rather than sampling pairs of trees uniformly and calculating an empirical ex-
pectation as on the left side, we can get a lower variance estimator by sampling
tanglegrams uniformly and weighting them as on the right hand side. Such a means
of sampling uniformly from tanglegrams in the rooted binary ordered case is given
in [22].

3. Variants and special cases

3.1. Multiple trees. The definition of a tanglegram on two trees can be general-
ized to a version on multiple trees.

Definition 22. Given trees T1, . . . , Tn with the same number of leaves, a multi-
tanglegram on this set of trees is given by a pair of tuples ((T1, . . . , Tn), (φij)i,j∈1,...,n)
in which φij : L(Ti)→ L(Tj) are bijections satisfying:

1. φii = 1 for all i;
2. φji = φ−1ij for all i, j;
3. φik = φjk ◦ φij, for all i, j, k.

We can also generalize the definition of isomorphism to multi-tanglegrams on n
trees.
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Definition 23. Two multi-tanglegrams Y = ((T1, . . . , Tn), (φij)i,j∈1,...,n) and Y ′ =
((T1, . . . , Tn), (φ′ij)i,j∈1,...,n) on the same list of trees are isomorphic if there exist
automorphisms (gi : Ti → Ti)i∈1,...,n and (hi : Ti → Ti)i∈1,...,n satisfying hj ◦ φij =
φ′ij ◦ gi for i, j = 1, . . . , n.

It is clear that the n2 bijections φij are completely determined by the n− 1 bi-

jections {φ1i}i=2,...,n, since φij = φ1j ◦φ−11i . With this observation, we can rephrase
the definition of isomorphism above, which we will state as a proposition:

Proposition 24. Using the notation above, multi-tanglegrams Y1 and Y2 are iso-
morphic if and only if there exist automorphisms gi ∈ A(Ti), i = 1, . . . , n satisfying
φ′1i = gi ◦ φ1i ◦ g−11 .

Alternatively, the automorphisms φij are completely determined by a sequence
φ12, φ23, . . . , φk−1 k, and thus multi-tanglegrams are called tangled chains by [22].

3.2. More general classes of graphs. Another direction of generalization in-
volves considering more general classes of graphs. For example, the tanglegram
layout problem has been studied for rooted phylogenetic networks [35]. Given a
natural number n, define an n-leaved graph as a graph U along with n distinguished
vertices L(U) called leaves.

Definition 25. Given a natural number n, define a generalized n-tanglegram as
a triple (U, φ, V ), where U and V are a pair of n-leaved graphs and φ is a bijection
between L(U) and L(V ).

Equivalent statements to those above can also hold in this more general setting.
If we require that n-leaved graph automorphisms preserve the leaf set L(U), we
can again define the leaf automorphism group A(U) to be the automorphism group
of U restricted to L(U). If the graphs are such that any graph automorphism is
determined by its action on the leaf set, then generalized tanglegrams on a given
pair of n-leaved graphs U and V are in one-to-one correspondence with double
cosets A(V )wA(U) in Sn.

3.3. Partitions. Another line of inquiry in computational evolutionary biology
concerns species delimitation, which can naturally be phrased in terms of inference
of a partition of labeled objects. In a manner analogous to phylogenetic trees,
researchers use MCMC to explore the posterior on such partitions [13], and com-
parison of the results can be performed using distances between the partitions [12].
Similar considerations hold for random walks and these distances as described in
the introduction for trees. These partitions can also be thought of as a certain type
of leaf-labeled tree of height two, thus pairs of partitions on the same underlying
set also give a type of tanglegram.

All of the above conclusions hold for such partition tanglegrams as well. The
automorphisms of a partition are a special case of Theorem 5. For example, the
partition 123 | 456 | 78 has automorphism group (S3 oS2)×S2.

4. Enumeration

Using a computer algebra package such as GAP4 [36] which is able to enumerate
double cosets, and a package such as Sage [37] which can obtain symmetry groups of
graphs, one can apply Proposition 14 to directly enumerate any type of tanglegram
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Figure 5. Counts of various types of tanglegrams.

on a given pair of trees. We have provided code to enumerate and work with
tanglegrams at https://github.com/matsengrp/tangle.

For the case of binary ordered rooted tanglegrams, an elegant formula for the
total number of tanglegrams on n leaves tn has recently been found [22]. One can
use this formula, along with the number of tanglegrams on pairs of isomorphic trees,
to compute the number of unordered tanglegrams as follows.

An unordered tanglegram is represented twice in the list of ordered tanglegrams
on n leaves if the two trees are non-isomorphic, or if the trees are isomorphic and
the coset is different when the representative is inverted as in Figure 4. For n
leaves, we let sn be the number of unordered tanglegrams, and then let tison be the
number of ordered tanglegrams and sison the number of unordered tanglegrams on
isomorphic pairs of trees. To get sn, we start with tn and subtract off half the
number of ordered tanglegrams on non-isomorphic trees for the first case, and then
subtract off tison − sison for the second. Simplifying tn − (tn − tison )/2 − (tison − sison ),
we get sn =

(
tn − tison

)
/2 + sison for any n ≥ 3.

Such direct enumeration of various types of tanglegrams (Figure 5, Table 1)
suggests that their number grows super-exponentially. In fact, that the number of
(binary ordered rooted) tanglegrams is O(n! 4n n−3) as shown by [22].

There are thus many fewer such tanglegrams than there are pairs of leaf-labeled
trees. Indeed, a simplification of the argument establishing Corollary 8 of [22]
shows that the ratio of the number of ordered pairs of leaf-labeled rooted trees
to the number of binary ordered rooted tanglegrams is asymptotically a constant
times the order of the symmetric group:

((2n− 3)!!)
2

tn
∼ n!

e1/8
.

Intuitively, although the action of the symmetric group is not always free, “for
most cases it is close” to free. This may suggest that for n leaves, the ratio of
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Table 1. Enumeration of various types of binary tanglegrams.
These counts have been validated “from below” by checking for
graph isomorphisms between exemplars for n ≤ 6 in the rooted
case, and n ≤ 7 in the unrooted case.

leaves rooted ord. rooted unord. unrooted ord. unrooted unord.

1 1 1 1 1
2 1 1 1 1
3 2 2 1 1
4 13 10 2 2
5 114 69 4 4
6 1509 807 31 22
7 25595 13048 243 145
8 535753 269221 3532 1875
9 13305590 6660455 62810 31929

the number of ordered pairs of leaf-labeled unrooted trees to the number of binary
ordered unrooted tanglegrams is also of order n!.

5. Discussion

Tanglegrams have been an object of study since before DNA sequences were
widely available for the reconstruction of phylogenetic trees [38]. So far they have
been studied before in the context of co-evolutionary analyses, classically that be-
tween a host and a parasite, a subject of continuing interest [39,40]. As such, there
has been extensive work on the case in which two rooted trees are distinguished
between one another, as when one tree represents hosts and one parasites, which we
call the ordered rooted case. Here we have broadened the definition of tanglegrams
by considering a broader class of underlying graphs, including unordered and/or
unrooted tanglegrams.

In this form, tanglegrams formalize statements concerning pairs of phylogenetic
trees on the same leaf set that do not directly make reference to the labels them-
selves. Symmetric tanglegrams also do not make reference to the order of the trees.
We observe that many problems in phylogenetic combinatorics “factor” through a
problem on tanglegrams. As such, we believe tanglegrams to be a worthwhile ob-
ject of study in phylogenetic combinatorics, and note that they have already been
crucial in an analysis of the geometry of the subtree-prune-regraft graph [11].

These generalized notions of tanglegrams, which are equivalent to the collection
of double cosets formed by the automorphism groups of the two trees, invite further
investigation by combinatorialists. An elegant formula for the number of binary
ordered rooted tanglegrams has recently been found [22], as well as for the multi-
tanglegram case. Here we provide the first several terms of the analogous sequence
for unordered and/or unrooted tanglegrams; Ira Gessel has used the theory of
species to develop means to enumerating unordered tanglegrams, which will be
described in a forthcoming paper [41]. It would be helpful to have a means of
efficiently sampling other classes of tanglegrams according to familiar distributions
on labeled phylogenetic trees, perhaps building on the method of sampling binary
ordered rooted tanglegrams uniformly at random in [22].
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[17] K. Buchin, M. Buchin, J. Byrka, M. Nòllenburg, Y. Okamoto, R. I. Silveira, and A. Wolff,
“Drawing (complete) binary tanglegrams: Hardness, approximation, Fixed-Parameter
tractability.” 5 June 2008.

[18] A. Lozano, R. Y. Pinter, O. Rokhlenko, G. Valiente, and M. Ziv-Ukelson, “Seeded tree
alignment,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 5, pp. 503–513, Oct. 2008.

[19] M. S. Bansal, W.-C. Chang, O. Eulenstein, and D. Fernández-Baca, “Generalized binary
tanglegrams: Algorithms and applications,” in Bioinformatics and Computational Biology,

Lecture Notes in Computer Science, pp. 114–125, Springer Berlin Heidelberg, 1 Jan. 2009.
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Appendix

Proof of Lemma 3. Assume that two isomorphisms f, g : T → S induce the same
bijection of L(T ) to L(S). Let Π be a path between any two leaves of T . Then f(Π)
and g(Π) are paths are paths between the same leaves of S and thus are identical
by definition of a tree. Now, we just need to prove that every internal vertex x lies
on a path joining two leaves. Since x is internal, it belongs to at least two edges
(x, y) and (x, y′). Consider a sequence of vertices obtained by following edges in
the graph without backtracking, i.e. such that (w, z) never follows (z, w), starting
with (x, y). Because the tree is finite and contains no loops by definition, this path
will terminate at a leaf. The same argument applied to (x, y′) finds another leaf
such that the path between these two leaves contains x. �
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