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Abstract. Tanglegrams are a special class of graphs appearing in applications concerning cospeciation and
coevolution in biology and computer science. They are formed by identifying the leaves of two rooted binary

trees. We give an explicit formula to count the number of distinct binary rooted tanglegrams with n matched

vertices, along with a simple asymptotic formula and an algorithm for choosing a tanglegram uniformly at
random. The enumeration formula is then extended to count the number of tangled chains of binary trees

of any length. This includes a new formula for the number of binary trees with n leaves. We also give a

conjecture for the expected number of cherries in a large randomly chosen binary tree and an extension of
this conjecture to other types of trees.

1. Introduction

Tanglegrams are graphs obtained by taking two binary rooted trees with the same number of leaves and
matching each leaf from the tree on the left with a unique leaf from the tree on the right. This construction is
used in the study of cospeciation and coevolution in biology. For example, the tree on the left may represent
the phylogeny of a host, such as gopher, while the tree on the right may represent a parasite, such as louse [11],
[18, page 71]. One important problem is to reconstruct the historical associations between the phylogenies
of host and parasite under a model of parasites switching hosts, which is an instance of the more general
problem of cophylogeny estimation. See [18, 19, 20] for applications in biology. Diaconis and Holmes have
previously demonstrated how one can encode a phylogenetic tree as a series of binary matchings [6], which
is a distinct use of matchings from that discussed here.

In computer science, the Tanglegram Layout Problem (TL) is to find a drawing of a tanglegram in the
plane with the left and right trees both given as planar embeddings with the smallest number of crossings
among (straight) edges matching the leaves of the left tree and the right tree [2]. These authors point out
that tanglegrams occur in the analysis of software projects and clustering problems.

In this paper, we give the exact enumeration of tanglegrams with n matched pairs of vertices, along with
a simple asymptotic formula and an algorithm for choosing a tanglegram uniformly at random. We refer to
the number of matched vertices in a tanglegram as its size. Furthermore, two tanglegrams are considered to
be equivalent if one is obtained from the other by replacing the tree on the left or the tree on the right by
isomorphic trees. For example, in Figure 1, the two non-equivalent tanglegrams of size 3 are shown.

Figure 1. The tanglegrams of size 3.

We state our main results here postponing some definitions until Section 2. The following is our main
theorem.
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Theorem 1. The number of tanglegrams of size n is

tn =
∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)2
zλ

,

where the sum is over binary partitions of n and zλ is defined by Equation (1).

The first 10 terms of the sequence tn starting at n = 1 are

1, 1, 2, 13, 114, 1509, 25595, 535753, 13305590, 382728552,

see [17, A258620] for more terms.

Example. The binary partitions of n = 4 are (4), (2, 2), (2, 1, 1) and (1, 1, 1, 1), so

t4 =
1

4
+

32

8
+

32 · 12

4
+

52 · 32 · 12

24
= 13

as shown in Figure 2. It takes a computer only a moment to compute

t42 = 33889136420378480492869677415186948305278176263020722832251621520063757

and under a minute to compute all 3160 integer digits of t1000 using a recurrence based on Theorem 1 given
in Section 6.

Figure 2. The 13 tanglegrams of size 4.

We use the main theorem to study the asymptotics of the sequence tn. It turns out that

tn
n!
∼ e

1
8 4n−1

πn3
,

see Corollary 8 for an explanation and better estimates.

A side result of the proof is a new formula for the number of inequivalent binary trees, called the
Wedderburn-Etherington numbers [17, A001190].

Theorem 2. The number of inequivalent binary trees with n leaves is

bn =
∑
λ

∏`(λ)
i=2 (2(λi + · · ·+ λ`(λ))− 1)

zλ
,

where the sum is over binary partitions of n.

A tangled chain is an ordered sequence of k binary trees with matchings between neighboring trees in
the sequence. For k = 1, these are inequivalent binary trees, and for k = 2, these are tanglegrams, so the
following generalizes Theorems 1 and 2.

In terms of computational biology, tangled chains of length k formalize the essential input to a variety of
problems on k leaf-labeled (phylogenetic) trees (e.g. [24]).
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Figure 3. The tangled chains of length 3 for n = 3.

Theorem 3. The number of ordered tangled chains of length k for n is∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)k
zλ

,

where the sum is over binary partitions of n.

Example. For n = k = 3, we have partitions (2, 1) and (1, 1, 1), and the theorem gives

13

2
+

33 · 13

6
= 5,

as shown in Figure 3. For k = 3, the number of tangled chains on trees with n leaves gives rise to the sequence
starting

1, 1, 5, 151, 9944, 1196991, 226435150, 61992679960, 23198439767669, 11380100883484302.

See [17, A258486] for more terms.

From the enumerative point of view, it is also quite natural to ask how likely a particular tree T is to
appear on one side or the other of a uniformly selected tanglegram. In Section 7, we give a simple explicit
conjecture for the asymptotic growth of the expected number of copies of T on one side of a tanglegram as
a function of T and the size of the tanglegram. For example, the cherries of a binary tree are pairs of leaves
connected by a common parent. We conjecture that the expected number of cherries in one of the binary
trees of a tanglegram of size n chosen in the uniform distribution is n/4.

Further discussion of the applications of tanglegrams along with several variations on the theme are
described in [16]. In particular, tanglegrams can be used to compute the subtree-prune-regraft distance
between two binary trees.

The paper proceeds as follows. In Section 2, we define our terminology and state the main theorems. We
prove the main theorems in Section 3. Section 4 contains an algorithm to choose a tanglegram uniformly at
random for a given n. In Section 5, we give several asymptotic approximations to the number of tanglegrams
with increasing accuracy and complexity. In Section 6, we give a recursive formula for both the number of
tanglegrams and for tangled chains. We conclude with several open problems and conjectures in Section 7.

2. Background

In this section, we recall some vocabulary and notation on partitions and trees. This terminology can
also be found in standard textbooks on combinatorics such as [22]. We use these terms to give the formal
definition of tanglegrams and the notation used in the main theorems.

A partition λ = (λ1, λ2, . . . , λk) is a weakly decreasing sequence of positive integers. The length `(λ) of a
partition is the number of entries in the sequence, and |λ| denotes the sum of the entries of λ. We say λ is a
binary partition if all its parts are equal to a nonnegative power of 2. Binary partitions have appeared in a
variety of contexts, see for instance in [14, 15, 21] and [17, A000123]. When writing partitions, we sometimes
omit parentheses and commas.

If λ is a nonempty binary partition with mi occurrences of the letter 2i for each i, we also denote λ by
(1m0 , 2m1 , 4m2 , 8m3 , . . . , (2j)mj ) where 2j = λ1 is the maximum value in λ. Given λ = (1m0 , 2m1 , . . . , (2j)mj ),
let zλ denote the product

(1) zλ = 1m02m1 · · · (2j)mjm0!m1!m2! · · ·mj !.

The numbers zλ are well known since the number of permutations in Sn with cycle type λ is n!/zλ [22, Prop.
1.3.2]. For example, for λ = 44211 = (12, 21, 42), zλ = 12 · 21 · 42 · 2! · 1! · 2! = 128.
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A rooted tree has one distinguished vertex assumed to be a common ancestor of all other vertices. The
neighbors of the root are its children. Each vertex other than the root has a unique parent going along the
path back to the root, the other neighbors are its children. In a binary tree, each vertex either has two
children or no children. A vertex with no children is a leaf, and a vertex with two children is an internal
vertex. Two binary rooted trees with labeled leaves are said to be equivalent if there is an isomorphism from
one to the other as graphs mapping the root of one to the root of the other. Let Bn be the set of inequivalent
binary rooted trees with n ≥ 1 leaves, and let bn be the number of elements in the set Bn. The sequence of
bn’s for n ≥ 1 begins

1, 1, 1, 2, 3, 6, 11, 23, 46, 98.

We can inductively define a linear order on rooted trees as follows. We say that T > S if either:

• T has more leaves than S
• T and S have the same number of leaves, T has subtrees T1 and T2, T1 ≥ T2, S has subtrees S1 and
S2, S1 ≥ S2, and T1 > S1 or T1 = S1 and T2 > S2

We assume that every tree T in Bn, n ≥ 2, is presented so that T1 ≥ T2, where T1 is the left subtree (or
upper subtree if the tree is drawn with the root on the left or on the right) and T2 is the right (or lower)
subtree.

For each tree T ∈ Bn, we can identify its automorphism group A(T ) as follows. Fix a labeling on the
leaves of T using the numbers 1, 2, . . . , n. Label each internal vertex by the union of the labels for each of
its children. The edges in T are pairs of subsets from [n] := {1, . . . , n}, each representing the label of a child
and its parent. Let v = [v(1), v(2), . . . , v(n)] be a permutation in the symmetric group Sn. Then, v ∈ A(T )
if permuting the leaf labels by the function i 7→ v(i) for each i leaves the set of edges fixed.

A theorem due to Jordan [13] tells us that if T is a tree with subtrees T1 and T2, then A(T ) is isomorphic
to A(T1)×A(T2) if T1 6= T2, and to the wreath product A(T1) oZ2 if T1 = T2. Since the automorphism group
of a tree on one vertex is trivial, this implies that the general A(T ) can be obtained from copies of Z2 by
direct and wreath products (see [16] for more details). Furthermore, if T1 6= T2, then the conjugacy type of
an element of A(T ) is λ1 ∪ λ2, where λi is the conjugacy type of an element of A(Ti), i = 1, 2, and λ1 ∪ λ2

is the multiset union of the two sequences written in decreasing order. If T1 = T2, then for an arbitrary
element of A(T ) either the leaves in each subtree remain in that subtree, or all leaves are mapped to the
other subtree. The conjugacy type of an element of A(T ) is then either λ1 ∪ λ2, where λi is the conjugacy
type of an element of A(Ti), i = 1, 2, or it is 2λ1, where λ1 is the conjugacy type of an element of A(T1). In
particular, the conjugacy type of any element of the automorphism group of a binary tree must be a binary
partition.

Next, we define tanglegrams. Given a permutation v ∈ Sn along with two trees T, S ∈ Bn each with
leaves labeled 1, . . . , n, we construct an ordered binary rooted tanglegram (T, v, S) of size n with T as the
left tree, S as the right tree, by identifying leaf i in T with leaf v(i) in S. Note, (T, v, S) and (T ′, v′, S′) are
considered to represent the same tanglegram provided T = T ′, S = S′ as trees and v′ = uvw where u ∈ A(T )
and w ∈ A(S). Let Tn be the set of all ordered binary rooted tanglegrams of size n, and let tn be the number
of elements in the set Tn. For example, t3 = 2 and t4 = 13. Figures 1 and 2 show the tanglegrams of sizes
3 and 4 where we draw the leaves of the left and right tree on separate vertical lines and show the matching
using dashed lines. The dashed lines are not technically part of the graph, but this visualization allows us to
give a planar drawing of the two trees.

We remark that the planar binary trees with n ≥ 2 leaves are a different family of objects from Bn that also
come up in this paper. These are trees embedded in the plane so the left child of a vertex is distinguishable
from the right child. The planar binary trees with n + 1 leaves are well known to be counted by Catalan
numbers

cn =
1

n+ 1

(
2n

n

)
=

2n(2n− 1)!!

(n+ 1)!

because they clearly satisfy the Catalan recurrence

cn = c0cn−1 + c1cn−2 + c2cn−3 + · · ·+ cn−1c0

with c0 = c1 = 1. For example, there are c2 = 2 distinct planar binary trees with 3 leaves which are mirror
images of each other while b3 = 1. The sequence of cn’s for n ≥ 0 begins

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,
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see [17, A000108].
Dulucq and Guibert [7] have studied “twin binary trees”, which are pairs of planar binary trees with

matched vertices. This is the planar version of tanglegrams. They show that twin binary trees are in
bijection with Baxter permutations. The Baxter permutations in Sn are enumerated by a formula due to
Chung-Graham-Hoggart-Kleiman [4]

an =

∑n
k=1

(
n+1
k−1

)(
n+1
k

)(
n+1
k+1

)(
n+1

1

)(
n+2

2

)
See also the bijective proof by Viennot [23], and further refinements [5, 8].

3. Proof of the main theorems

The focus of this section is the proof of Theorem 1, namely that

tn =
∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)2
zλ

,

where the sum is over binary partitions of n. The proof of Theorem 1 reflects the chronological steps of
discovery. Theorem 2 will follow from a auxiliary result, and the proof of Theorem 3 is similar and is
included at the end of the section.

The number of tanglegrams is, by definition, equal to

tn =
∑
T

∑
S

|C(T, S)|,

where the sums on the right are over inequivalent binary trees with n leaves, and C(T, S) is the set of double
cosets of the symmetric group Sn with respect to the double action of A(T ) on the left and A(S) on the
right. Let us fix T ∈ Bn and S ∈ Bn and write C = C(T, S). Then

|C| =
∑
C∈C

1 =
∑
C∈C

|C|
|C|

=
∑
C∈C

∑
w∈C

1

|C|
=
∑
w∈Sn

1

|Cw|
,

where Cw is the double coset of Sn that contains w. It is known (e.g. [12, Theorem 2.5.1 on page 45 and
Exercise 40 on page 49]) that the size of the double coset Cw = A(T )wA(S) is the quotient

|A(T )| · |A(S)|
|A(T ) ∩ wA(S)w−1|

,

and therefore,

|C| =
∑
w∈Sn

|A(T ) ∩ wA(S)w−1|
|A(T )| · |A(S)|

.

We have∑
w∈Sn

|A(T ) ∩ wA(S)w−1| =
∑
w∈Sn

∑
u∈A(T )

∑
v∈A(S)

Ju = wvw−1K =
∑

u∈A(T )

∑
v∈A(S)

∑
w∈Sn

Ju = wvw−1K,

where J·K is the indicator function. Now u = wvw−1 can only be true if u and v are permutations of the
same conjugacy type λ, which must necessarily be a binary partition as noted above. Furthermore, if u and
v are both of type λ, then there are zλ permutations w for which u = wvw−1. That means that

(2) |C(T, S)| =
∑
λ |A(T )λ| · |A(S)λ| · zλ
|A(T )| · |A(S)|

,

where A(T )λ (respectively, A(S)λ) denotes the elements of A(T ) (resp., A(S)) of type λ.
Equation (2) is already quite useful for computing all tanglegrams with fixed left and right trees. For

example, if T and S are both the least symmetric tree with only one cherry, then A(T ) = A(S) = {id, (1, 2)},
the sum is over only two binary partitions of size n, namely (1, . . . , 1) and (2, 1, . . . , 1), and we get

|C| = n! + 2(n− 2)!

2 · 2
=

(n2 − n+ 2)(n− 2)!

4
.

In some other cases the summation is over many more λ’s, and can get quite complicated.
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However, to get the formula for tn we want to sum Equation (2) over all pairs of trees, and fortunately a
change of the order of summation helps. Indeed, we have

tn =
∑
T

∑
S

∑
λ |A(T )λ| · |A(S)λ| · zλ
|A(T )| · |A(S)|

=
∑
λ

zλ ·
∑
T

∑
S

|A(T )λ| · |A(S)λ|
|A(T )| · |A(S)|

(3)

=
∑
λ

zλ ·

(∑
T

|A(T )λ|
|A(T )|

)2

,(4)

and the main theorem will be proved once we have shown the following proposition.

Proposition 4. For a binary partition λ,∑
T∈Bn

|A(T )λ|
|A(T )|

=

∏`(λ)
i=2 (2

(
λi + · · ·+ λ`(λ)

)
− 1)

zλ
,

where A(T )λ denotes the elements of A(T ) of type λ.

The proposition also implies Theorem 2, as∑
T

1 =
∑
T

∑
λ

|A(T )λ|
|A(T )|

=
∑
λ

∑
T

|A(T )λ|
|A(T )|

.

If λ = 1n, then |A(T )λ| = 1 for all T ∈ Bn, so the proposition is saying that∑
T

1

|A(T )|
=

(2n− 3)!!

n!
=
cn−1

2n−1
.

This is equivalent to
∑
T 2n−1/|A(T )| = cn−1. Since 2n−1/|A(T )| counts all planar binary trees isomorphic

to T , this is just the well-known fact that there are cn−1 planar binary trees with n leaves.
For a general λ, however, the proposition is far from obvious. What we need is a recursion satisfied by the

expression on the right, analogous to the recursion cn = c0cn−1 + c1cn−1 + · · ·+ cn−1c0 for Catalan numbers.

Lemma 5. For a nonempty subset S = {i1 < i2 < . . . < ik} of the natural numbers define

(5) rS(x1, x2, . . .) = (xi2 + · · ·+ xik − 1)(xi3 + · · ·+ xik − 1) · · · (xik−1
+ xik − 1)(xik − 1).

Let n ≥ 2, let x denote variables x1, x2, . . ., and let x/2 denote x1/2, x2/2, . . .. Then

r[n](x) = 2n−1r[n](x/2) +
∑

1∈S([n]

rS(x) · r[n]\S(x).

Example. For n = 3, the lemma says that

(x2 + x3 − 1)(x3 − 1) = (x2 + x3 − 2)(x3 − 2) + 1 · (x3 − 1) + (x2 − 1) · 1 + (x3 − 1) · 1,

where the last three terms on the right-hand side correspond to subsets {1}, {1, 2}, and {1, 3}, respectively.
As another example, take xi = 2 for all i. Then rS(x) = (2|S| − 3)!! (where we interpret (−1)!! as 1),
rS(x/2) = 0, and by the obvious symmetry of S and [n] \ S the lemma yields

2 · (2n− 3)!! =

n−1∑
k=1

(
n

k

)
(2k − 3)!!(2n− 2k − 3)!!,

which is equivalent to the standard recurrence for Catalan numbers.

Proof of Lemma 5. The proof is by induction on n. For n = 2, the statement is simply x2−1 = (x2−2)+1·1.
Assume that the statement holds for n− 1, and let us prove it for n. Both sides are linear functions in x2, so
it is sufficient to prove that they have the same coefficient at x2 and that they give the same result for one
value of x2.

The coefficient of x2 in r[n](x) (resp., 2n−1r[n](x/2)) is clearly r[2,n](x) (resp., 2n−2r[2,n](x/2)). On
the other hand, rS(x) · r[n]\S(x) contains x2 if and only if 2 ∈ S, in which case the coefficient at x2 is
rS\{1}(x) · r[2,n]\S(x). The coefficients on both sides are equal by induction.
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Plug the value x2 = 2− x3 − · · · − xn into both sides. Clearly, the left-hand side becomes r[n]\{2}(x). It
is easy to see that if 2 ∈ S, then rS(x) · r[n]\S(x) + rS\{2}(x) · r([n]\S)∪{2}(x) = 0. That means that all the
terms in the summation cancel out except r[n]\{2}(x) · r{2}(x) = r[n]\{2}(x). Obviously, r[n](x/2) = 0, so the
right-hand side also equals r[n]\{2}(x). �

Proof of Proposition 4. Say λ is a binary partition of n. The proof is by induction on n. For n = 1, the
statement is obvious. Assume that the statement holds for all binary partitions up to size n − 1. Our task
is to show ∑

T

|A(T )λ|
|A(T )|

=
r[`(λ)](2λ1, 2λ2, 2λ3, . . .)

zλ

by showing the left hand side satisfies a recurrence similar to (5).
Given T ∈ Bn, let T1 and T2 be the subtrees of the root in T . Fix a labeling on the leaves of T such

that the leaves of T1 are labeled [1, k] and the leaves of T2 are labeled [k + 1, n]. Consider each A(Ti) to
be a subgroup of the permutations of the leaf labels for Ti. We can obtain a permutation of type λ in
A(T ) in one of two ways. First, we can choose permutations w1 ∈ A(T1), w2 ∈ A(T2) of types λ1 and λ2,
then w1w2 is a permutation of A(T ) of type λ. Second, if all parts of λ are at least 2 and T1 = T2 (and in
particular n = 2k), we can choose an arbitrary permutation w1 ∈ A(T1) and another permutation w2 ∈ A(T1)
specifically of type λ/2 := (λ1/2, λ2/2, . . .) and construct a permutation w ∈ A(T ) of cycle type λ as follows.
Say f : [1, k] −→ [k + 1, n] mapping i to i + k induces an isomorphism of T1 and T2. Define the “tree flip
permutation” π to be the product of the transpositions interchanging i with f(i) for all 1 ≤ i ≤ k. Now take
the product

w = πw1πw
−1
1 πw2.

It is clear that w ∈ A(T ) since it is the product of permutations in A(T ). Observe also that the cycles of
w are constructed so the leaf labels of T1 interleave the leaf labels of T2 in the cycles of w2 so w will have
cycle type λ. For example, if λ = (6, 4), then |λ| = 10 and π = (1 6)(2 7)(3 8)(4 9)(5 10). If we choose
w1 = (1 4)(2 5)(3) and w2 = (6 9 7)(8 10) then w = πw1πw

−1
1 πw2 = (6 1 9 5 7 4)(8 2 10 3), all in cycle

notation. Also, every element of A(T ) is constructed in one of these two ways.
We need to be careful to differentiate between the cases when the subtrees T1, T2 are different and when

they are equivalent. We have

∑
T

|A(T )λ|
|A(T )|

=
∑
T1>T2

|A(T )λ|
|A(T )|

+
∑
T1=T2

|A(T )λ|
|A(T )|

=

∑
T1>T2

( ∑
λ1∪λ2=λ

|A(T1)λ1 | · |A(T2)λ2 |
|A(T1)| · |A(T2)|

)
+
∑
T1

(
∑
λ1∪λ2=λ |A(T1)λ1 | · |A(T1)λ2 |) + |A(T1)| · |A(T1)λ/2|

2|A(T1)|2

or equivalently

(6) 2
∑
T∈Bn

|A(T )λ|
|A(T )|

=
∑

T1∈Bn/2

|A(T1)λ/2|
|A(T1)|

+
∑

λ1∪λ2=λ

 ∑
T1∈B|λ1|

|A(T1)λ1 |
|A(T1)|

 ∑
T2∈B|λ2|

|A(T2)λ2 |
|A(T2)|

 .

Let

qλ =

∏`(λ)
i=2 (2(λi + · · ·+ λ`(λ))− 1)

zλ
=
r[`(λ)](2λ1, 2λ2, 2λ3, . . .)

zλ
;

the notation also makes sense if λ`(λ) = 1/2, as in that case qλ = 0. By the induction hypothesis and (6), it
suffices to prove that

(7) 2qλ = qλ/2 +
∑

λ1∪λ2=λ

qλ1 · qλ2 .
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After multiplying both sides by zλ, this is

2

`(λ)∏
i=2

(2(λi + · · ·+ λ`(λ))− 1) = 2`(λ)

`(λ)∏
i=2

(λi + · · ·+ λ`(λ) − 1)

+
∑

λ1∪λ2=λ

(
λ

λ1, λ2

)
·
`(λ1)∏
i=2

(2(λ1
i + · · ·+ λ1

`(λ1))− 1) ·
`(λ2)∏
i=2

(2(λ2
i + · · ·+ λ2

`(λ2))− 1),

where
(

λ
λ1,λ2

)
=
∏
i

(
mi(λ)
mi(λ1)

)
. This equality holds by Lemma 5 with xi = 2λi. �

We conclude this section with the proof of Theorem 3.

Proof of Theorem 3. Let T = (T1, T2, . . . , Tk) be an ordered list of binary trees in Bn. Define CT to
be the set of “multicosets” of Sn with respect to A(T1) × A(T2) × · · · × A(Tk). More concretely, given
(w1, . . . , wk−1), (w′1, . . . , w

′
k−1) ∈ (Sn)k−1, we say (w1, . . . , wk−1) ≡T (w′1, . . . , w

′
k−1) provided there exist

ti ∈ A(Ti) such that wi = tiw
′
iti+1 for all i = 1, . . . , k− 1. Then, CT is the set of equivalence classes modulo

≡T. By definition, the number of tangled chains of length k and size n, denoted t(k, n), is given by

(8) t(k, n) =
∑
|CT|

where the sum is over all ordered lists T = (T1, T2, . . . , Tk) of trees Ti ∈ Bn.
Fix a particular list of trees T = (T1, T2, . . . , Tk), and let CT(w1, . . . , wk−1) be the multicoset in CT

containing (w1, . . . , wk−1). Clearly,

|CT| =
∑

w1∈Sn

∑
w2∈Sn

· · ·
∑

wk−1∈Sn

1

|CT(w1, . . . , wk−1)|
.

We give a recurrence for |CT(w1, . . . , wk−1)| in terms of the following subgroup. Let A(CT(w1, . . . , wk−1))
be the subgroup of all t1 ∈ A(T1) such that there exist ti ∈ A(Ti) for 2 ≤ i ≤ k satisfying wi = tiwiti+1 for all
i = 1, . . . , k−1. In this case, (t1w1, w2, . . . , wk−1) ≡T (w1, w2, . . . , wk−1) so we think of A(CT(w1, . . . , wk−1))
as the “left automorphism group” of CT(w1, . . . , wk−1). Observe that

A(CT(w1, . . . , wk−1)) = A(T1) ∩ w1A(T2)w−1
1 ∩ · · · ∩ w1w2 · · ·wk−1A(Tk)w−1

k−1 · · ·w
−1
2 w−1

1 ,

so

|A(CT(w1, . . . , wk−1))| =
k∑
i=1

∑
ti∈A(Ti)

Jt1 = w1t2w
−1
1 K · Jt2 = w2t3w

−1
2 K · · · Jtk−1 = wk−1tkw

−1
k−1K.

Now let T′ = (T2, . . . , Tk). For each (v2, . . . , vk−1) ∈ CT′(w2, . . . , wk−1), we can prepend a v1 to create a

distinct element (v1, v2, . . . , vk−1) ∈ CT(w1, . . . , wk−1) exactly when v1 is in A(T1)w1A(CT′(w2, . . . , wk−1))
which is again a double coset of Sn. Thus, by the formula for double cosets we have

|CT(w1, . . . , wk−1)| = |A(T1)| · |A(CT′(w2, . . . , wk−1))|
|A(CT(w1, . . . , wk−1))|

· |CT′(w2, . . . , wk−1)|

=
|A(T1)| · |A(T2)| · · · |A(Tk)|
|A(CT(w1, . . . , wk−1))|

by induction on k. Therefore,

(9) |CT| =
∑

w1∈Sn

∑
w2∈Sn

· · ·
∑

wk−1∈Sn

|A(CT(w1, . . . , wk−1))|
|A(T1)| · |A(T2)| · · · |A(Tk)|

,

where the denominators do not depend on the wi’s.
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Focusing on the sum in the numerator in (9), we have∑
(w1,w2,...,wk−1)

|A(CT(w1, . . . , wk−1))|

=
∑

(w1,w2,...,wk−1)

∑
t1∈A(T1)

· · ·
∑

tk∈A(Tk)

Jt1 = w1t2w
−1
1 K · · · Jtk−1 = wk−1tkw

−1
k−1K

=
∑

t1∈A(T1)

· · ·
∑

tk∈A(Tk)

∑
(w1,w2,...,wk−1)

Jt1 = w1t2w
−1
1 K · · · Jtk−1 = wk−1tkw

−1
k−1K

and so with similar logic as before, noting that the summand will be nonzero exactly when t1, t2, . . . , tk are
all of the same conjugacy type λ,

(10) |CT| =
∑
λ |A(T1)λ| · |A(T2)λ| · · · |A(Tk)λ| · zk−1

λ

|A(T1)| · |A(T2)| · · · |A(Tk)|
.

Plugging (10) into (8), we obtain

t(k, n) =
∑

(T1,...,Tk)

∑
λ |A(T1)λ| · |A(T2)λ| · · · |A(Tk)λ| · zk−1

λ

|A(T1)| · |A(T2)| · · · |A(Tk)|

=
∑
λ

zk−1
λ ·

( ∑
T∈Bn

|A(T )λ|
|A(T )|

)k
,

and Theorem 3 now follows from Proposition 4. �

4. Random generation of tanglegrams and inequivalent binary trees

In this section, we describe an algorithm in 3 stages to produce a random tanglegram in Tn. The stages
are based on Equation (3) and the proof of Proposition 4. A similar algorithm is also described to choose a
random binary tree with n leaves. In this section, “random” will mean uniformly at random unless specified
otherwise.

Recall from Section 3 that if T is a tree with equivalent left and right subtrees, we denote by π the “tree
flip permutation” between the subtrees. Also, for a partition λ, we defined

qλ =

∏`(λ)
i=2 (2(λi + · · ·+ λ`(λ))− 1)

zλ
.

The qλ notation also makes sense if λ`(λ) = 1/2, as in that case qλ = 0.

Algorithm 1 (Random generation of w ∈ A(T )).

Input: Binary tree T ∈ Bn.

Procedure: If T is the tree with one vertex, let w be the unique element of A(T ). Otherwise, the root of T
has subtrees T1 and T2. Assume the leaves of T1 are labeled [1, k] and the leaves of T2 are labeled [k + 1, n].
Use the algorithm recursively to produce wi ∈ A(Ti), i = 1, 2 where A(T1) is a subset of the permutations of
[1, n] which fix [k + 1, n] and A(T2) is a subset of the permutations of [1, n] which fix [1, k]. Construct w as
follows.

• If T1 6= T2, set w = w1w2.

• If T1 = T2, choose either w = w1w2 or w = πw1w2 with equal probability.

Output: Permutation w ∈ A(T ).

Algorithm 2 (Random generation of T with non-empty A(T )λ and w ∈ A(T )λ).

Input: Binary partition λ of n.

Procedure: If n = 1, let T be the tree with one vertex, and let w be the unique element of A(T ).
Otherwise, pick a subdivision (λ1, λ2) from {(λ1, λ2) : λ1 ∪ λ2 = λ} ∪ {(λ/2, λ/2)}, where (λ1, λ2) is chosen
with probability proportional to qλ1qλ2 and (λ/2, λ/2) with probability proportional to qλ/2.
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• If λ1, λ2 6= λ/2, use the algorithm recursively to produce trees T1, T2 and permutations w1 ∈ A(T1)λ1 ,
w2 ∈ A(T2)λ2 . If necessary, switch T1 ↔ T2, w1 ↔ w2 so that T1 ≥ T2. Let T = (T1, T2), w = w1w2.

• If λ1 = λ2 = λ/2, use the algorithm recursively to produce a tree T1 and a permutation w2 ∈ A(T1)λ/2,

and use Algorithm 1 to produce a permutation w1 ∈ A(T1). Let T = (T1, T1) and w = πw1πw
−1
1 πw2.

Output: Binary tree T and permutation w ∈ A(T )λ.

Algorithm 3 (Random generation of tanglegrams).

Input: Integer n.

Procedure: Pick a random binary partition λ of n with probability proportional to zλq
2
λ where tn =

∑
zλq

2
λ.

Use Algorithm 2 twice to produce random trees T and S and permutations u ∈ A(T )λ, v ∈ A(S)λ. Among
the permutations w for which u = wvw−1, pick one at random from the zλ possibilities.

Output: Binary trees T and S and double coset A(T )wA(S), or equivalently (T,w, S).

Algorithm 4 (Random generation of T ∈ Bn).

Input: Integer n.

Procedure: Pick a random binary partition λ of n with probability proportional to qλ. Use Algorithm 2 to
produce a random tree T (and a permutation u ∈ A(T )λ).

Output: Binary tree T .

Algorithm 4 is not the first of its kind, see also [9].

Algorithm 5 (Random generation of tangled chains).

Input: Positive integers k and n.

Procedure: Pick a random binary partition λ of n with probability proportional to zk−1
λ qkλ where t(k, n) =∑

zk−1
λ qkλ. Use Algorithm 2 k times to produce random trees Ti and permutations ui ∈ A(Ti)λ for i = 1, . . . , k.

Among the permutations wi for which ui = wiui+1w
−1
i , pick one uniformly at random for each i = 1, . . . , k−1.

Output: (T1, . . . , Tk) and (w1, . . . , wk−1).

Theorem 6. For any positive integer n, the following hold.

• Algorithm 1 produces every permutation w ∈ A(T ) with probability 1
|A(T )| .

• Algorithm 2 produces every pair (T,w), where w ∈ A(T )λ, with probability 1
|A(T )|·qλ .

• Algorithm 3 produces every tanglegram with probability 1
tn

.

• Algorithm 4 produces every inequivalent binary tree with probability 1
bn

.

• Algorithm 5 produces every tangled chain of length k of trees in Bn with probability 1
t(k,n) .

Proof. The first two proofs are by induction, with the case n = 1 being obvious. The induction for Algorithm
1 is trivial.

For Algorithm 2, say that we are given a binary partition λ, a tree T with n = |λ| leaves, and w ∈ A(T )λ.
We compute the probability that Algorithm 2 produces T and w. Assume first that T1 > T2 are the subtrees
of T . In particular, that means that w can be written uniquely as w1w2, where w1 ∈ A(T1) and w2 ∈ A(T2).
Say that wi is of type λi; we must have λ = λ1∪λ2. If λ1 6= λ2, there are two ways in which Algorithm 2 can
produce (T,w): either we partition λ into (λ1, λ2), and then the algorithm produces (T1, w1) and (T2, w2), or
we partition λ into (λ2, λ1), then the algorithm produces (T2, w2) and (T1, w1), and finally switches T1 ↔ T2,
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w1 ↔ w2. Since T1 and T2 are chosen independently, we can apply (7) and induction to obtain the probability
that (T,w) is chosen, namely

2 · qλ
1qλ2

2qλ
· 1

|A(T1)| · qλ1

· 1

|A(T2)| · qλ2

=
1

|A(T1)| · |A(T2)| · qλ
=

1

|A(T )| · qλ
.

If λ1 = λ2, but T1 6= T2, there are again two ways in which Algorithm 2 can produce (T,w): we must
partition λ into (λ1, λ1), and then it can either produce (T1, w1) and (T2, w2) or (T2, w2) and (T1, w1); in the
latter case it switches T1 ↔ T2, w1 ↔ w2. Similarly, the probability is 1

|A(T )|·qλ .

Now assume that T1 = T2. Either w can be written as w1w2, where w1 ∈ A(T1)λ1 and w2 ∈ A(T2)λ2 , or
as πw2πw

−1
2 πw1, where w1 ∈ A(T1)λ/2 and w2 ∈ A(T1). In the first case, (T,w) is produced with probability

qλ1qλ2

2qλ
· 1

|A(T1)| · qλ1

· 1

|A(T1)| · qλ2

=
1

2 · |A(T1)|2 · qλ
=

1

|A(T )| · qλ
.

In the second case, it is produced with probability

qλ/2

2qλ
· 1

|A(T1)| · qλ/2
· 1

|A(T1)|
=

1

2 · |A(T1)|2 · qλ
=

1

|A(T )| · qλ
.

This finishes the case for Algorithm 2.
The proof of the statement for Algorithm 3 is essentially just a rewriting of the proof from Section 3; we

include it for completeness. We are given n and a tanglegram (T,w, S) with T and S binary trees with n
leaves, C = A(T )wA(S) the double coset containing w with respect to A(T ) and A(S), and we want to prove
that P (T, S,C), the probability that this triple is produced by Algorithm 3, is 1/tn.

We proved that
∑
zλq

2
λ = tn, so the probability of choosing a binary partition λ is zλq

2
λ/tn. So we have

P (T, S,C) =
∑
λ

zλq
2
λ

tn
P (T, S,C|λ),

where P (T, S,C|λ) is the conditional probability that (T, S,C) is produced if λ is chosen. We can further
condition the probability: P (T, S,C|λ) =

∑
P (T, S,C|u, v, T, S, λ) · P (u, v, T, S|λ), where the sum is over

u ∈ A(T )λ, v ∈ A(S)λ. Furthermore,

P (T, S,C|u, v, T, S, λ) = P (C|u, v) and P (u, v, T, S|λ) = P (T, u|λ) · P (S, v|λ),

and so

P (T, S,C) =
∑
λ

zλq
2
λ

tn

∑
u∈A(T )λ

∑
v∈A(S)λ

P (C|u, v) · 1

|A(T )| · qλ
· 1

|A(S)| · qλ

=
1

tn
·
∑
λ

zλ
|A(T )| · |A(S)|

·
∑

u∈A(T )λ

∑
v∈A(S)λ

|C ∩Bu,v|
|Bu,v|

,

where Bu,v = {w ∈ Sn : u = wvw−1}. We know that |Bu,v| = zλ, so

P (T, S,C) =
1

tn
·
∑
λ

1

|A(T )| · |A(S)|
∑

u∈A(T )λ

∑
v∈A(S)λ

∑
w∈C

Ju = wvw−1K

=
1

tn
·
∑
w∈C

∑
λ

1

|A(T )| · |A(S)|
∑

u∈A(T )λ

∑
v∈A(S)λ

Ju = wvw−1K

=
1

tn
·
∑
w∈C

∑
λ

|A(T )λ ∩ wA(S)λw
−1|

|A(T )| · |A(S)|
=

1

tn
·
∑
w∈C

|A(T ) ∩ wA(S)w−1|
|A(T )| · |A(S)|

=
1

tn
·
∑
w∈C

1

|Cw|
=

1

tn
.

Finally, let us prove the statement for Algorithm 4. We have

P (T ) =
∑
λ

P (T |λ) · P (λ) =
∑
λ

|A(T )λ|
|A(T )| · qλ

· qλ
bn

=
1

bn
·
∑
λ |A(T )λ|
|A(T )|

=
1

bn
,

which proves that Algorithm 4 produces every inequivalent binary tree with the same probability. The proof
for Algorithm 5 is similar to Algorithms 3 and 4 so we omit the formal proof. �
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5. Asymptotic expansion of tn

In this section, we use Theorem 1 to obtain another formula for tn and several formulas to approximate
tn for large n.

Corollary 7. We have

(11) tn =
c2n−1n!

4n−1

∑
µ

n(n− 1) · · · (n− |µ|+ 1)

zµ ·
∏`(µ)
i=1

∏µi−1
j=1 (2n− 2(µ1 + · · ·+ µi−1)− 2j − 1)2

,

where the sum is over binary partitions µ with all parts equal to a positive power of 2 and |µ| ≤ n including
the empty partition in which case the summand is 1.

Proof. Every binary partition λ of size n can be expressed as µ1n−|µ|, where all parts of µ are at least 2. We
have zλ = zµ(n− |µ|)! and

`(λ)∏
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)
=

`(λ)−1∏
i=1

(2(n− λ1 − · · · − λi)− 1)

=

`(µ)−1∏
i=1

(2(n− µ1 − · · · − µi)− 1) · (2n− 2|µ| − 1)!!

=
(2n− 3)!!∏`(µ)

i=1

∏µi−1
j=1 (2n− 2(µ1 + · · ·+ µi−1)− 2j − 1)

.

Since (2n− 3)!!/n! = cn−1/2
n−1, (11) is an equivalent way to express the number of tanglegrams. �

The first few terms of the sum corresponding to partitions ∅, (2), (4), (2, 2), (4, 2), (2, 2, 2), (8) are

1 +
n(n− 1)

2(2n− 3)2
+

n(n− 1)(n− 2)(n− 3)

4(2n− 3)2(2n− 5)2(2n− 7)2
+
n(n− 1)(n− 2)(n− 3)

8(2n− 3)2(2n− 7)2

+
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

8(2n− 3)2(2n− 5)2(2n− 7)2(2n− 11)2
+
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

48(2n− 3)2(2n− 7)2(2n− 11)2

+
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)(n− 7)

8(2n− 3)2(2n− 5)2(2n− 7)2(2n− 9)2(2n− 11)2(2n− 13)2(2n− 15)2
.

Corollary 8. We have

tn
n!
∼
e

1
8 c2n−1

4n−1
∼ e

1
8 4n−1

πn3
and tn ∼

22n− 3
2 · nn− 5

2

√
π · en− 1

8

.

We can also compute approximations of higher degree. For example, we have

tn =
e

1
8 c2n−1n!

4n−1
·
(

1 +
1

4 n
+

137

256 n2
+

1285

1024 n3
+

456017

131072 n4
+

6140329

524288 n5
+O

(
n−6

))
=

22n− 3
2 · nn− 5

2

√
π · en− 1

8

·
(

1 +
13

12 n
+

3089

2304 n2
+

931423

414720 n3
+

826301423

159252480 n4
+

211060350013

13377208320 n5
+O

(
n−6

))
.

Sketch of proof. The crucial observation is that

n(n− 1) · · · (n− |µ|+ 1)

zµ ·
∏`(µ)
i=1

∏µi−1
j=1 (2n− 2(µ1 + · · ·+ µi−1)− 2j − 1)2

∼ n|µ|

zµ · (2n)2(|µ|−`(µ))
=

1

22(|µ|−`(µ)) · zµ · n|µ|−2`(µ)
.

So, to find an asymptotic approximation of order O(n−2m) or O(n−2m−1), we only have to consider
partitions µ with |µ| − 2`(µ) ≤ 2m in Equation (11). For m = 0, we only consider partitions of the type

22 · · · 2. The contribution of µ = 2k is 1/(22k2kk!), and the sum converges to
∑
k

1
23kk!

= e
1
8 .

Similarly, the coefficient of n−1 can be obtained by considering the coefficient of n−1 in each of these
terms, and the higher terms by considering in turn partitions of type 42k, 422k, 432k, 82k, etc. The last
expansion is obtained by considering the asymptotic expansions of cn−1 and n!. �
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6. A recurrence for enumerating tanglegrams and tangled chains

In this section, we give a recurrence for computing tn. Recall that for each nonempty binary partition
λ, we can construct its multiplicity vector mλ = (m0,m1,m2,m3, . . .) where mi is the number of times 2i

occurs in λ. The map λ 7→ mλ is a bijection from binary partitions to vectors of nonnegative integers with
only finitely many nonzero entries. The quantity zλ for a binary partition λ is easily expressed in terms of
the multiplicities in mλ as

zλ =
∏
h≥0

2h·mh mh! =
∏
h≥0
mh 6=0

mh∏
j=1

j · 2h

We will use the functions

(12) f2(s) := (2s− 1)2,

(13) c(h,m, s) :=

m∏
j=1

f2(s+ j · 2h)

j · 2h
,

and

(14) r(h, n, s) :=

n∑
m=0

(n−m) even

c(h,m, s) r

(
h+ 1,

n−m
2

, s+m2h
)

with base cases

(15) c(h, 0, s) = r(h, 0, s) = 1.

Lemma 9. For n ≥ 1, the number of tanglegrams is

tn =
r(0, n, 0)

f2(n)
,

which can be computed recursively using (14).

Proof. Let t̃n := (1− 2n)2tn. By the main formula

(16) t̃n =
∑
λ

∏`(λ)
i=1

(
2(λi + · · ·+ λ`(λ))− 1

)2
zλ

.

where the sum is over binary partitions of n.
We will consider the contribution to (16) from the parts of the partition of size 2h for each h separately.

To do this we will need to keep track of the partial sums of parts smaller than 2h. Let sλ = (sλ0 , s
λ
1 , . . .) where

sλh =
∑h−1
i=0 mi2

i and sλ0 = 0. Then the contribution of the parts of size 2h in λ to the corresponding term in
(16) is the factor c(h,mh, s

λ
h). Using this notation, we have

(17) t̃n =
∑

mλ=(m0,m1,...)`n

c(0,m0, 0)c(1,m1, s
λ
1 )c(2,m2, s

λ
2 ) · · ·

where the sum is over binary partitions of n represented by their multiplicity vector.
Next consider the binary partitions with exactly j parts of size 1. Note n − j must be even for this set

to be nonempty. The binary partitions of n with exactly j parts equal to 1 are in bijection with the binary
partitions of n−j

2 , so

(18) t̃n =

n∑
m0=0

(n−m0) even

c(0,m0, 0)
∑

(m1,m2,...)`n−m0
2

c(1,m1,m0)c(2,m2,m0 + 2 ·m1) · · · .
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Observe that the recurrence in (14) gives rise to the expansion

r(h, n, s) =
∑

(mh,mh+1,...)`n

c(h,mh, s)c(h+ 1,mh+1, s+mh · 2h)c(h+ 2,mh+2, s+mh · 2h +mh+1 · 2h+1) · · ·

where the sum is over binary partitions of n but the indexing is shifted so mh is the number of parts of size
1. Thus,

t̃n =

n∑
m=0

(n−m) even

c(0,m, 0) r

(
1,
n−m

2
,m

)
= r(0, n, 0)

which completes the proof since f2(n) = (2n− 1)2. �

We can extend the functions above to count tangled chains:

(19) fk(s) := (2s− 1)k,

(20) ck(h,m, s) :=

m∏
j=1

fk(s+ j · 2h)

j · 2h
,

and

(21) rk(h, n, s) :=

n∑
m=0

(n−m) even

ck(h,m, s) r

(
h+ 1,

n−m
2

, s+m2h
)

with base cases

(22) ck(h, 0, s) = rk(h, 0, s) = 1.

Then a proof very similar to the case k = 2 also proves the following statement.

Corollary 10. For n ≥ 1, the number of tangled chains of length k is

rk(0, n, 0)

fk(n)

which can be computed recursively using (21).

7. Final remarks

Generating functions. It is known (and easy to prove) that the ordinary generating function for inequiv-
alent trees satisfies the functional equation

B(x) = x+
1

2

(
B(x)2 +B(x2)

)
.

This is, of course, equivalent to a recurrence for the sequence bn. Given that in this paper we prove both
explicit formulas and recurrences for the numbers of tanglegrams and tangled chains, it makes sense to ask
the following.

Question 1. Does there exist a closed form or a functional equation for the generating function of tanglegrams
or tangled chains?
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Number of cherries and other subtrees. Cherries play an important role in the literature on tanglegrams.
For example, Charleston’s analysis [3, pp. 325–326] suggests the following question.

Question 2. What is the expected number of matched cherries in a random tanglegram?

Computer experiments with random tanglegram generation suggest that the following is true.

Conjecture 1. The expected number of cherries in the left tree in a random tanglegram converges to n/4.

Conjecture 2. The expected number of copies of the tree T in the left tree of a random tanglegram of size n
is asymptotically equal to 2−(l+k−1)n, where l is the number of leaves of T and k is the number of symmetries
of T , i.e. vertices with identical subtrees.

It also seems that the number of copies of a tree converges to a normal distribution.

If the conjectures hold, then for every tree T with l leaves and k symmetries, the number of copies of
the tree with T as left and as right subtree in the left tree of a randomly chosen tanglegram asymptotically
equals 2−(2l+(2k+1)−1)n = 4−(l+k)n. So that would imply the following.

Conjecture 3. Let T ′ ∈ Bn be the left tree of a tanglegram chosen uniformly at random. The expected
number of generators of A(T ′) is asymptotically equal to( ∑

T∈Bn

1

4l(T )+k(T )

)
n.

It is not hard to see that the sum in the conjecture equals f( 1
4 )n, where f(x) is the function defined by

f(0) = 0 and f(x) = x+ 1
2f(x)2 + (x− 1

2 )f(x2), or explicitly

f(x) = 1−

√√√√1− 2x+ (1− 2x)

(
1−

√
1− 2x2 + (1− 2x2)

(
1−

√
1− 2x4 + · · ·

))
.

Note that the computation of f( 1
4 ) = 0.27104169360883278703... converges very rapidly: the number of

correct digits roughly doubles after each step.

Connection with symmetric functions. The main theorems suggest that symmetric functions might be
at play; note, for example, the similarity with the formula hn =

∑
λ z
−1
λ pλ, where hn is the homogeneous

symmetric function, pλ the power sum symmetric function, and the sum is over all partitions of n.

Question 3. Is there a connection between tanglegrams (or more generally tangled chains) and symmetric
functions?

Remark. Based on a manuscript version of this paper, Ira Gessel pointed out that there is indeed a con-
nection between symmetric functions and the enumeration of the ordered and unordered tanglegrams based
on the theory of species. His claims will be spelled out in a forthcoming paper [10].

Variants on tanglegrams. Tanglegrams as described here fit in a set of more general setting of pairs of
graphs with a bijection between certain subsets of the vertices (more completely described and motivated in
[16]). One can also consider unordered tanglegrams by identifying (T, v, S) with (S, v−1, T ). For example,
the 4th and 5th tanglegrams in Figure 2 are equivalent as unordered tanglegrams, and so are the 8th and
10th. From this picture, the reader can verify that there are 10 unordered tanglegrams of size 4.

Because of reversibility assumptions for the continuous time Markov mutation models commonly used
to reconstruct phylogenetic trees, unrooted trees are the most common output of phylogenetic inference
algorithms. Thus another variant of tanglegrams involves using unrooted trees in place of rooted ones. The
motivation for studying these variants comes from noting that many problems in computational phylogenetics
such as distance calculation between trees [1] “factor” through a problem on tanglegrams.

Question 4. Is there a nice formula for the number of

• unordered binary rooted tanglegrams,
• ordered binary unrooted tanglegrams, or
• unordered binary unrooted tanglegrams?

These counts have been found up to 9 leaves (Table 1) by direct enumeration of double cosets [16].
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Table 1. The number of tanglegrams of various types up to 9 leaves.

leaves rooted ord. rooted unord. unrooted ord. unrooted unord.
1 1 1 1 1
2 1 1 1 1
3 2 2 1 1
4 13 10 2 2
5 114 69 4 4
6 1509 807 31 22
7 25595 13048 243 145
8 535753 269221 3532 1875
9 13305590 6660455 62810 31929
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