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by
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on April 25, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis, we apply combinatorial means for proving and generalizing classical
determinantal identities. In Chapter 1, we present some historical background and
discuss the algebraic framework we employ throughout the thesis. In Chapter 2, we
construct a fundamental bijection between certain monomials that proves crucial for
most of the results that follow. Chapter 3 studies the first, and possibly the best-
known, determinantal identity, the matrix inverse formula, both in the commutative
case and in some non-commutative settings (Cartier-Foata variables, right-quantum
variables, and their weighted generalizations). We give linear-algebraic and (new) bi-
jective proofs; the latter also give an extension of the Jacobi ratio theorem. Chapter
4 is dedicated to the celebrated MacMahon master theorem. We present numerous
generalizations and applications. In Chapter 5, we study another important result,
Sylvester’s determinantal identity. We not only generalize it to non-commutative
cases, we also find a surprising extension that also generalizes the master theorem.
Chapter 6 has a slightly different, representation theory flavor; it involves represen-
tations of the symmetric group, and also Hecke algebras and their characters. We
extend a result on immanants due to Goulden and Jackson to a quantum setting, and
reprove certain combinatorial interpretations of the characters of Hecke algebras due
to Ram and Remmel.

Thesis Supervisor: Igor Pak
Title: Associate Professor of Applied Mathematics
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Chapter 1

Introduction

1.1 Historical background

Determinants have a long and illustrious history. Since their first recorded use in 3rd
century BCE in the Chinese math textbook The Nine Chapters on the Mathematical
Art, they have been one of the most studied mathematical objects, with innumerable
applications in diverse areas of mathematics and other sciences.

Their proper definition in non-commutative settings has remained elusive. The star-
studded collection of people who tried to remedy that includes Cayley, Dyson, Frobe-
nius, Schur, Wedderburn and Richardson. The “best” definition of the determinant
of a matrix with completely non-commutative entries appeared only in the 1990s.
We are referring, of course, to the beautiful theory of quasideterminants, which orig-
inated in the works of Gelfand and Retakh [GR91]. For a definitive treatment of
quasideterminants and a comprehensive historical account, see [GGRW05].

In this thesis, however, we restrict our attention to matrices whose entries satisfy
certain conditions. As a result, we do not need general quasideterminants (which are
rational functions of entries) and can use much simpler polynomial determinants (e.g.
quantum determinants). For some results in “quantum linear algebra”, see [Man88]
and [KL95].

Considering how well established determinants and determinantal identities are (in
both commutative and non-commutative contexts), it is surprising how little work has
been done in trying to understand them combinatorially. Zeilberger’s article [Zei85]
discussed some simple proofs of determinantal identities, but only for commutative
variables. Foata’s paper [Foa79] is closer to the concept of this thesis, as it proves
a non-commutative linear algebraic result bijectively, however, the proof is rather
complicated and does not seem to extend to more general non-commutative settings.
See also Cartier and Foata’s version of MacMahon master theorem [CF69].

The determinantal identities treated in this thesis in detail are the matrix inverse for-
mula, MacMahon master theorem, Sylvester’s determinantal identity, and Goulden-
Jackson’s determinantal expression for an immanant. See each particular chapter for
historical background on the particular identity.
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The general framework described in this and the following chapter is used for proofs
of results in Chapters 3–5. Chapter 6 stands apart somewhat, both in terms of
the non-commutative setting (it deals with quantum matrices, not Cartier-Foata or
right-quantum matrices) and the methods of proof.

Let us conclude this overview with a description of papers that are the source for this
thesis, in chronological order. The general algebraic framework discussed in Section
1.2, the fundamental transformation from Chapter 2, non-combinatorial proofs of the
non-commutative matrix inverse formulas in Section 3.2, and most of the results on
MacMahon master theorem in Chapter 4 are from [KP07] (joint work with Igor Pak).
Chapter 5 is entirely based on [Kon07]. The short paper [Konb] was the basis for
Sections 6.1 and 6.2. Parts of Chapter 2, Sections 3.3–3.7, and Section 4.7 are found
in [Kon08], Sections 2.7, 6.3 and 6.4 are from [KS] (joint work with Mark Skandera),
and Sections 6.5 and 6.6 are from [Kona].

1.2 Algebraic framework

In this section, we describe the way we want to think about determinantal identities,
and introduce some basic terminology. Let us start with two well-known examples.

The most famous determinantal identity of all is the matrix inverse formula.

Theorem 1.2.1 (matrix inverse formula) For a complex invertible matrix A =
(aij)m×m, we have

(
A−1

)
ij

= (−1)i+j
detAji

detA
.

We know that (under certain conditions, e.g. if ‖A‖ < 1 or if the entries of A are
variables)

(I −A)−1 = I + A+ A2 + . . . ,

so (
(I −A)−1

)
ij

= δij + aij +
∑

k

aikakj + . . . ,

and we can rephrase the matrix inverse formula as follows:

det(I − A) ·

(
δij + aij +

∑

k

aikakj + . . .

)
= (−1)i+j det(I −A)ji.

In other words, the matrix inverse formula says that two power series in variables aij
are the same, provided that the variables commute.

Another famous determinantal identity is the following result due to MacMahon. In
the statement of this theorem, as well as throughout the thesis, a bold letter denotes
a vector of variables (e.g. x stands for (x1, . . . , xm)), and the meaning of expressions
such as xr and r! should be obvious from the context (xr11 · · ·x

rm
m and r1! · · · rm! for

these examples).
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Theorem 1.2.2 (MacMahon master theorem) Let A = (aij)m×m be a complex ma-
trix, and let x1, . . . , xm be a set of variables. Denote by G(r) the coefficient of xr

in
m∏

i=1

(ai1x1 + . . .+ aimxm)ri.

Let t1, . . . , tm be another set of variables, and T = diag t. Then

∑

r≥0

G(r)tr =
1

det(I − TA)
.

Example 1.2.3 The coefficient of x2y0z2 in (y + z)2(x + z)0(x + y)2 is 1, and the
coefficient of x2y3z1 in (y + z)2(x+ z)3(x+ y)1 is 3. On the other hand, for

A =




0 1 1
1 0 1
1 1 0


 T =



t 0 0
0 u 0
0 0 v


 ,

we have
1

det(I − TA)
=

1

1− tu− tv − uv − 2tuv
=

= 1 + . . .+ t2u0v2 + . . .+ 3t2u3v1 + . . . ♦

We can take aij to be variables; each G(r) is then a finite sum of monomials in aij .
By taking t1 = . . . = tm = 1, MacMahon master theorem gives

∑

r≥0

G(r) =
1

det(I − A)
.

Since det(I −A) = 1− a11 − . . .− amm + a11a22 − a21a12 + . . ., the right-hand side is
also a power series in aij ’s.

Therefore the MacMahon master theorem also says that two power series in variables
aij are the same, provided that the variables commute.

This thesis tries to find answers to the following natural questions.

• Do (versions of) these (and other) determinantal identities hold when the vari-
ables are not commutative, provided we define properly the concept of non-
commutative determinants?

• Can we find combinatorial proofs of these (commutative and non-commutative)
identities?

• Can we add parameters and find natural q-analogues?

We denote by A the C-algebra of formal power series in non-commuting variables aij ,
1 ≤ i, j ≤ m. Elements of A are infinite linear combinations of words in variables

11



aij (with coefficients in C). In most cases we take elements of A modulo some ideal
I generated by a finite number of quadratic relations. For example, if Icomm is
generated by aijakl = aklaij for all i, j, k, l, then A/Icomm is the symmetric algebra
(the free commutative algebra with variables aij). See Section 1.3 for examples and
further definitions.

We abbreviate the product aλ1µ1 · · ·aλℓµℓ
to aλ,µ for λ = λ1 · · ·λℓ and µ = µ1 · · ·µℓ,

where λ and µ are regarded as words in the alphabet {1, . . . , m}. For example,
we write a413225433314,132254333144 for a41a13a32a22a25a54a43a33a33a31a14a44. For a word
ν = ν1 · · · νℓ, define the set of inversions

I(ν) = {(i, j) : i < j, νi > νj},

and let inv(ν) = |I(ν)| be the number of inversions.

We often consider lattice steps of the form (x, i) → (x + 1, j) for some x, i, j ∈ Z,
1 ≤ i, j ≤ m. We think of x being drawn along the x-axis, increasing from left to
right, and refer to i and j as the starting height and ending height, respectively. We
identify the step (x, i) → (x + 1, j) with the variable aij . Similarly, we identify a
finite sequence of steps with a word in the alphabet {aij}, 1 ≤ i, j ≤ m, i.e. with
an element of the algebra A. If each step in a sequence starts at the ending point of
the previous step, we call such a sequence a lattice path. A lattice path with starting
height i and ending height j is called a path from i to j.

Example 1.2.4 Figure 1-1 represents a path from 4 to 4. ♦

Figure 1-1: Representation of the word a41a13a32a22a25a54a43a33a33a31a14a44.

Recall that the (i, j)-th entry of Ak is the sum of all paths of length k from i to j.
Since

(I −A)−1 = I + A+ A2 + . . . ,

the (i, j)-th entry of (I −A)−1 is the sum of all paths (of any length) from i to j.

As mentioned in the historical background, determinants play a vital role in this
thesis. Definitions in various non-commutative contexts are discussed in Section 1.4.

Throughout the thesis, we work over the field of complex numbers. However, any
field with characteristic 6= 2 would do.

12



1.3 Ideals and the “1 = q principle”

Throughout the thesis, we use the following definitions and notation.

(1) The ideal Icomm of A generated by relations

ajlaik = aikajl for all i, j, k, l (1.3.1)

is called the commutative ideal ; the algebra Acomm = A/Icomm is the commu-
tative algebra; and a matrix (aij)1≤i,j≤m satisfying these relations is called a
commutative matrix.

(2) The ideal Icf of A generated by relations

ajlaik = aikajl for all i, j, k, l, i 6= j (1.3.2)

is called the Cartier-Foata ideal ; the algebra Acf = A/Icf is the Cartier-Foata
algebra; and a matrix (aij)1≤i,j≤m satisfying these relations is called a Cartier-
Foata matrix.

(3) The ideal Irq of A generated by relations

ajkaik = aikajk for all i, j, k, (1.3.3)

aikajl − ajkail = ajlaik − ailajk for all i, j, k, l (1.3.4)

is called the right-quantum ideal ; the algebra Arq = A/Irq is the right-quantum
algebra; and a matrix (aij)1≤i,j≤m satisfying these relations is called a right-
quantum matrix.

(4) The ideal Iq−cf of A generated by relations

ajlaik = aikajl for all i < j, k < l, (1.3.5)

ajlaik = q2 aikajl for all i < j, k > l, (1.3.6)

ajkaik = q aikajk for all i, j, k, i < j (1.3.7)

for q ∈ C\{0} is called the q-Cartier-Foata ideal ; the algebra Aq−cf = A/Iq−cf is
the q-Cartier-Foata algebra; and a matrix (aij)1≤i,j≤m satisfying these relations
is called a q-Cartier-Foata matrix.

(5) The ideal Iq−rq of A generated by relations

ajkaik = q aikajk for all i, j, k, i < j, (1.3.8)

aikajl − q
−1 ajkail = ajlaik − q ailajk for all i < j, k < l; (1.3.9)

for q ∈ C\{0} is called the q-right-quantum ideal ; the algebraAq−rq = A/Iq−rq is
the q-right-quantum algebra; and a matrix (aij)1≤i,j≤m satisfying these relations
is called a q-right-quantum matrix.
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(6) The ideal Iq−cf of A generated by relations

ajlaik = q−1
kl qij aikajl for all i < j, k < l, (1.3.10)

ajlaik = qijqlk aikajl for all i < j, k > l, (1.3.11)

ajkaik = qij aikajk for all i, j, k, i < j (1.3.12)

for qij ∈ C \ {0}, 1 ≤ i < j ≤ m, is called the q-Cartier-Foata ideal ; the alge-
bra Aq−cf = A/Iq−cf is the q-Cartier-Foata algebra; and a matrix (aij)1≤i,j≤m

satisfying these relations is called a q-Cartier-Foata matrix.

(7) The ideal Iq−rq of A generated by relations

ajkaik = qij aikajk for all i, j, k, i < j, (1.3.13)

aikajl−q
−1
ij ajkail = qklq

−1
ij ajlaik−qkl ailajk for all i < j, k < l (1.3.14)

for qij ∈ C \ {0}, 1 ≤ i < j ≤ m, is called the q-right-quantum ideal ; the
algebra Aq−rq = A/I is the q-right-quantum algebra; and a matrix (aij)1≤i,j≤m

satisfying these relations is called a q-right-quantum matrix.

(8) The ideal Iq of A generated by relations

ailaik = q aikail for all i, k, l, k < l, (1.3.15)

ajkaik = q aikajk for all i, j, k, i < j, (1.3.16)

ajkail = ailajk for all i < j, k < l, (1.3.17)

ajlaik = aikajl + (q − q−1) ailajk for all i < j, k < l (1.3.18)

is called the quantum ideal ; the algebra Aq = A/Iq is the quantum algebra; and
a matrix (aij)1≤i,j≤m satisfying these relations is called a quantum matrix.

We have the following implications:

(8) ⇒ (1)
⇑

(7) ⇒ (5) ⇒ (3)
⇓ ⇓ ⇓
(6) ⇒ (4) ⇒ (2)

⇓
(1)

For example, by (7)⇒ (6) we mean that if a statement is true for all q-right-quantum
matrices, it is also true for all q-Cartier-Foata matrices. equivalently, every q-Cartier-
Foata matrix is also q-right-quantum.

Note that if we write qii = 1 for all i and qji = q−1
ij for i < j, we can write the

conditions of (6) more concisely as

qkl ajlaik = qij aikajl, (1.3.19)

14



for all i, j, k, l, and i 6= j, and we can write the conditions of (7) as

aikajl − q
−1
ij ajkail = qklq

−1
ij ajlaik − qkl ailajk (1.3.20)

Remark 1.3.1 In [GLZ06], the term right-quantum was used for what we call q-right-
quantum. In [CF], the authors call our right-quantum matrices Manin matrices. ♦

Example 1.3.2 Let xij, yi,j be complex variables, and write X = (xij)m×m, Y =
(yij)m×m (where the entries are operators of multiplication by xij or yij), ∂X =
(∂/∂xij)m×m, ∂Y = (∂/∂yij)m×m. Since xij and ∂/∂xij (or yij and ∂/∂yij) do not

commute, the matrix

(
X ∂Y
Y ∂X

)
is not Cartier-Foata. However,

(xij · ∂/∂xij − ∂/∂xij · xij)f = −f = (yij · ∂/∂yij − ∂/∂yij · yij)f,

so it is right-quantum. ♦

Foata and Han introduced ([FH08, Section 3]) the so-called “1 = q principle” to
derive identities in the algebra Aq−rq from those in the algebra Arq.

Lemma 1.3.3 (“1 = q principle”) Let φ : A → A denote the linear map induced by

φ (aλ,µ) = qinv(µ)−inv(λ)aλ,µ.

Then:

(a) φ maps Irq into Iq−rq;

(b) Call aλ,µ balanced if λ is a rearrangement of µ (i.e. if λ and µ contain the same
letters with the same multiplicities). Then φ(αβ) = φ(α)φ(β) for α, β linear
combinations of balanced sequences.

Proof. (a) It suffices to prove the claim for elements of the form

α = aλ,µ(aikajk − ajkaik)aλ′,µ′

and
β = aλ,µ(aikajl − ajkail − ajlaik + ailajk)aλ′,µ′

with i < j (and k < l). Note that the sets of inversions of the words λijλ′ and λjiλ′

differ only in one inversion. Therefore φ(α) is a multiple of

aikajk − q
−1ajkaik.

For β the proof is analogous. (b) It suffices to prove the claim for α = aλ,µ with λ
a rearrangement of µ and β = aλ′,µ′ with λ′ a rearrangement of µ′. The number of
inversions of λλ′ is equal to the number of inversions of λ, plus the number of inversions
of λ′, plus the number of pairs (i, j) with λi > λ′j. Similarly, the number of inversions
of µµ′ is equal to the number of inversions of µ, plus the number of inversions of µ′,

15



plus the number of pairs (i, j) with µi > µ′
j. Since λ is a rearrangement of µ and λ′ is

a rearrangement of µ′, inv(µµ′) − inv(λλ′) = (inv(µ)− inv(λ)) + (inv(µ′) − inv(λ′)),
which concludes the proof.

Lemma 1.3.4 (“1 = qij principle”) Let φ : A → A denote the linear map induced by

φ (aλ,µ) =




∏

(i,j)∈I(µ)

qµjµi

∏

(i,j)∈I(λ)

q−1
λjλi



 aλ,µ.

Assume that every element of a set S is of the form
∑

i∈J ciaλi,µi, where λi is a
rearrangement of λj and µi is a rearrangement of µj.for all i, j ∈ J . Denote by I
the ideal of A generated by S, and by I ′ the ideal of A generated by φ(S). Then

(a) φ maps I into I ′;

(b) φ(αβ) = φ(α)φ(β) for α, β linear combinations of balanced sequences.

Proof. The proof of lemma follows verbatim the proof of Lemma 1.3.3. We omit the
details.

Many of the results in this thesis involving q- (or q-) right-quantum variables can be
achieved in one of the following (fundamentally equivalent) ways. We can first prove
the result in the case when q = 1 (respectively, qij = 1) by combinatorial means, and
then use the “1 = q principle” (respectively, “1 = qij principle”) described above.
Alternatively, we can adapt every step of the proof by keeping track of powers of
q (respectively, monomials in qij) attached to monomials in the non-commutative
variables aij . In both cases, the main difficulty is proving the result in the case
without parameter, and the rest of the proof is relatively straightforward.

This is in sharp contrast with the case of quantum variables. If we put q = 1, quan-
tum variables become commutative, and proofs are fundamentally simpler. Compare
Chapter 6 with Chapters 2–5.

1.4 Non-commutative determinants

Let B = (bij)n×n be a square matrix with entries inA, i.e. bij ’s are linear combinations
of words in A. To define the determinant of B, expand the terms of

∑

σ∈Sn

(−1)inv(σ)bσ11 · · · bσnn,

and weight a word aλ,µ with a certain weight w(aλ,µ). The resulting expression is
called the determinant of B (with respect to A). In the usual commutative case, all
weights are equal to 1.
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In all cases we consider we have w(ε) = w(a∅,∅) = 1. Therefore

1

det(I − A)
=

1

1− Σ
= 1 + Σ + Σ2 + . . . ,

where Σ is a certain finite linear combination of words in aij , and both the left and
the right inverse of det(I −A) are equal to the infinite sum on the right. We can use
the fraction notation as above in non-commutative situations.

Throughout the thesis, we use the following determinants.

(1) The usual (non-weighted) determinant det. Here the weight w(aλ,µ) is equal to
1 for every λ and µ. This determinant appears in settings (1), (2) and (3) from
Section 1.3. Note that in this case,

detB =
∑

σ∈Sn

(−1)inv(σ)bσ11 · · · bσnn

for every matrix B = (bij)n×n.

(2) The q-determinant detq. Here the weight w(aλ,µ) is equal to qinv(µ)−inv(λ). This
determinant appears in settings (4), (5) and (8) from Section 1.3.

(3) The q-determinant detq. Here the weight w(aλ,µ) is equal to




∏

(i,j)∈I(µ)

qµjµi






∏

(i,j)∈I(λ)

q−1
λjλi


 .

This determinant appears in settings (6) and (7) from Section 1.3.

Example 1.4.1 For

B =

(
a12 a14

a22 a24

)
,

we have
detB = a12a24 − a22a14,

detqB = a12a24 − q
−1a22a14,

detqB = a12a24 − q
−1
12 a22a14. ♦
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Chapter 2

The fundamental transformation

2.1 The transformation and the Cartier-Foata case

The type of a sequence ai1j1ai2j2 · · ·ainjn is defined to be (p; r) for p = (p1, . . . , pm)
and r = (r1, . . . , rm), where pk (respectively rk) is the number of k’s among i1, . . . , in
(respectively j1, . . . , jn). If p = r, we call the sequence balanced.

Take non-negative integer vectors p = (p1, . . . , pm) and r = (r1, . . . , rm) with
∑
pi =∑

ri = n, and a permutation π ∈ Sm. An ordered sequence of type (p; r) with respect
to π (o-sequence for short) is a sequence ai1j1ai2j2 · · ·ainjn of type (p; r) such that
π−1(ik) ≤ π−1(ik+1) for k = 1, . . . , n− 1. Denote the set of ordered sequence of type
(p; r) with respect to π by Oπ(p; r). Clearly, there are

(
n

r1,...,rm

)
elements in Oπ(p; r).

A back-ordered sequence of type (p; r) with respect to π (or bo-sequence) is a sequence
ai1j1ai2j2 · · ·ainjn of type (p; r) such that π−1(jk) ≥ π−1(jk+1) for k = 1, . . . , n − 1.
Denote the set of back-ordered sequences of type (p; r) with respect to π by O

π
(p; r).

There are
(

n
p1,...,pm

)
elements in O

π
(p; r).

Example 2.1.1 For m = 3, n = 4, p = (2, 1, 1), r = (0, 3, 1) and π = 231, Oπ(p; r)
is

{a22a32a12a13, a22a32a13a12, a22a33a12a12, a23a32a12a12}.

For m = 3, n = 4, p = (2, 2, 0), r = (1, 2, 1) and π = 132, O
π
(p; r) is

{a12a12a23a21, a12a22a13a21, a12a22a23a11, a22a12a13a21, a22a12a23a11, a22a22a13a11}.

Figure 2-1: Some ordered and back-ordered sequences.
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Figure 2-1 shows ordered sequences with respect to 1234 and 2314, and back-ordered
sequences with respect to 1234 and 4231. ♦

We abbreviate Oπ(p;p) and O
π
(p;p) to Oπ(p) and O

π
(p), respectively; and if π =

id, we write simply O(p; r) and O(p; r).

Take non-negative integer vectors p = (p1, . . . , pm) and r = (r1, . . . , rm) with
∑
pi =∑

ri = n, and a permutation π ∈ Sm. Define a path sequence of type (p; r) with
respect to π (p-sequence for short) to be a sequence ai1j1ai2j2 · · ·ainjn of type (p; r)
that is a concatenation of lattice paths with starting heights iks and ending heights
jls so that π−1(iks) ≤ π−1(it) for all t ≥ ks, and it 6= jls for t > ls. Denote the set of
all path sequences of type (p; r) with respect to π by Pπ(p; r).

Similarly, define a back-path sequence of type (p; r) with respect to π (or bp-sequence)
to be a sequence ai1j1ai2j2 · · ·ainjn of type (p; r) that is a concatenation of lattice
paths with starting heights iks and ending heights jls so that π−1(jks) ≤ π−1(jt) for
all t ≤ kj , and jt 6= iks for t < ks. Denote the set of all back-path sequences of type
(p; r) by P

π
(p; r).

Example 2.1.2 Figure 2-2 shows some path sequences with respect to 2341 and 3421,
and back-path sequences with respect to 1324 and 4321. The second path sequence
and the second back-path sequence are balanced. ♦

Figure 2-2: Some path and back-path sequences.

We abbreviate Pπ(p;p) and P
π
(p;p) to Pπ(p) and P

π
(p); and if π = id, we write

simply P(p; r) and P(p; r). Note that a (back-)path sequence of type (p;p) is a
concatenation of lattice paths with the same starting and ending height, with no
ending height of a lattice path appearing to the right of the lattice path.

Recall that for a word w = i1i2 . . . in, we say that (k, l) is an inversion of u if k < l
and ik > il, and we write inv(w) for the number of inversions of w and I for the
set of inversion of w. For α = ai1j1ai2j2 · · ·ainjn, write inv(α) = inv(j1j2 . . . jn) −
inv(i1i2 . . . in). Furthermore, define

Oπ(p; r) =
∑

α∈Oπ(p;r)

α, O
π
(p; r) =

∑

α∈O
π
(p;r)

(−1)inv(α) α,

P π(p; r) =
∑

α∈Pπ(p;r)

α, P
π
(p; r) =

∑

α∈P
π
(p;r)

(−1)inv(α) α,
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Let us construct a natural map

ϕ : Oπ(p; r) −→ Pσ(p; r). (2.1.1)

Without loss of generality, we assume π = id, since this is just relabeling of the
variables aij according to π.

Take an o-sequence α = ai1j1ai2j2 · · ·ainjn, and interpret it as a concatenation of steps.
Among the steps ik → jk with the lowest σ−1(ik), take the leftmost one. Continue
switching this step with the one on the left until it is at the beginning of the sequence.
Then take the leftmost step to its right that begins with jk, move it to the left until
it is the second step of the sequence, and continue this procedure while possible.
Now we have a concatenation of a lattice path and a (shorter) o-sequence. Clearly,
continuing this procedure on the remaining o-sequence, we are left with a p-sequence
with respect to σ.

Example 2.1.3 Figure 2-3 shows the transformation of

a14a12a13a13a14a22a21a23a31a34a33a34a34a34a42a41a42a43a41a41a44

into
a22a21a14a42a23a31a12a34a41a13a33a34a42a34a43a34a41a13a41a14a44

with respect to σ = 2341. In the first five drawings, the step that must be moved to
the left is drawn in bold. In the next three drawings, all the steps that will form a
lattice path in the p-sequence are drawn in bold. ♦

Figure 2-3: The transformation ϕ.

Lemma 2.1.4 The map ϕ : O(p; r)→ Pσ(p; r) constructed above is a bijection.

Proof. Since the above procedure never switches two steps that begin at the same
height, there is exactly one o-sequence that maps into a given p-sequence: take all
steps starting at height 1 in the p-sequence in the order they appear, then all the
steps starting at height 2 in the p-sequence in the order they appear, etc. Clearly,
this map preserves the type of the sequence.
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Lemma 2.1.4 has the following immediate application.

Theorem 2.1.5 Take non-negative integer vectors p, r with
∑
pi =

∑
ri, and per-

mutations π, σ ∈ Sm. If the matrix A = (aij)m×m is Cartier-Foata, i.e. if it satisfies

ajkail = ailajk for all i 6= j, (2.1.2)

then
Oπ(p; r) = P σ(p; r). (2.1.3)

Proof: The equation follows from the fact that the map ϕ never switches two steps
that start at the same height. That means that modulo the ideal Icf generated by
the relation (2.1.2), we have ϕ(α) = α for each α ∈ Oπ(p; r); in other words, if A is
Cartier-Foata, ϕ(α) = α for each α ∈ Oπ(p; r) and so

Oπ(p; r) =
∑

α∈Oπ(p;r)

α =
∑

α∈Oπ(p;r)

ϕ(α) =
∑

α∈Pπ(p;r)

α = P π(p; r).

We can construct an analogous map

ϕ : O
π
(p; r) −→ P

σ
(p; r), (2.1.4)

where we move steps to the right instead of to the left. Again, ϕ is a bijection, and it
implies the following result. Note that the condition on A is weaker than in Theorem
2.1.5, but we assume an extra condition on p.

Theorem 2.1.6 Take non-negative integer vectors p, r with
∑
pi =

∑
ri, and per-

mutations π, σ ∈ Sm. Assume that the matrix A = (aij)m×m satisfies

ajkail = ailajk for all i 6= j, k 6= l, (2.1.5)

and that p ≤ 1. Then
O
π
(p; r) = P

σ
(p; r). (2.1.6)

Proof: The equation follows from the fact that the map ϕ never switches two steps
that end at the same height. Furthermore, since pi ≤ 1, we never switch two steps
that begin at the same height, so we do not need (2.1.5) for i = j. That means
that modulo the ideal generated by the relation (2.1.5), we have ϕ(α) = α for each
α ∈ O

π
(p; r); in other words, if A satisfies (2.1.5), ϕ(α) = α for each α ∈ O

π
(p; r)

and
O
π
(p; r) =

∑

α∈O
π
(p;r)

α =
∑

α∈O
π
(p;r)

ϕ(α) =
∑

α∈P
π
(p;r)

α = P
π
(p; r).

It is not immediately clear why we need Theorems 2.1.5 and 2.1.6 (and their right-
quantum, weighted and quantum analogues proved in Sections 2.2–2.7). They are,
however, crucial for the remaining chapters. They will give us concise proofs of the
matrix inverse formulas and Jacobi ratio theorem in Chapter 3, of MacMahon master
theorem and various extensions of it in Chapter 4, and, in Chapter 5, of the fact that
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a certain matrix is (q− or q−)right-quantum, which will lead to non-commutative
extensions of Sylvester’s determinantal identity.

The transformation was found independently, but is related to the first fundamental
transformation from [Foa65].

2.2 The right-quantum case

Theorems 2.1.5 and 2.1.6 have the following natural extension to right-quantum (and
“almost” right-quantum) matrices.

Theorem 2.2.1 Take a matrix A = (aij)m×m, non-negative integer vectors p, r with∑
pi =

∑
ri, and permutations π, σ ∈ Sm.

(1) Assume that A is right-quantum, i.e. that it has the properties

ajkaik = aikajk, (2.2.1)

aikajl − ajkail = ajlaik − ailajk for all k 6= l. (2.2.2)

Then
Oπ(p; r) = P σ(p; r). (2.2.3)

(2) Assume that A satisfies the property (2.2.2) above, and that p ≤ 1. Then

O
π
(p; r) = P

σ
(p; r). (2.2.4)

Define a q-sequence to be a sequence we get in the transformation of o-sequences into
p-sequences with the above procedure (including the o-sequence and the p-sequence).

A sequence ai1j1ai2j2 · · ·ainjn is a q-sequence if and only if it is a concatenation of

• some lattice paths with starting heights iks and ending heights jls so that
σ−1(iks) ≤ σ−1(it) for all t ≥ ks, and it 6= jls for t > ls;

• a lattice path with starting height ik and ending height jk so that σ−1(iks) ≤
σ−1(it) for all t ≥ ks; and

• a sequence that is an o-sequence except that the leftmost step with starting
height jk can be before some of the steps with starting height i, σ−1(i) ≤ σ−1(jk).

For a q-sequence α, denote by ψ(α) the q-sequence we get by performing the switch
described above; for a p-sequence α (where no more switches are needed), define
ψ(α) = α. By construction, the map ψ always switches steps with different starting
heights.

For a sequence ai1j1ai2j2 · · ·ainjn, define the rank as inv(i1i2 . . . in) (more generally,
the rank with respect to π is inv(π−1(i1)π

−1(i2) . . . π
−1(in))). Clearly, o-sequences are

exactly the sequences of rank 0. It is important to note that the map ψ increases by
1 the rank of sequences that are not p-sequences.

23



Write Qσ
n(p; r) for the union of two sets of sequences of type (p, r): the set of all

q-sequences of type (p, r) with rank n and the set of p-sequences of type (p, r) (with
respect to σ) with rank < n; in particular, O(p; r) = Qσ

0 (p; r) and Pσ(p; r) =
Qσ
N(p; r) for N large enough.

Lemma 2.2.2 The map ψ : Qσ
n(p; r)→ Qσ

n+1(p; r) is a bijection for all n.

Proof. A q-sequence of rank n which is not a p-sequence is mapped into a q-sequence
of rank n+1, and ψ is the identity map on p-sequences. This proves that ψ is indeed
a map from Qσ

n(p; r) to Qσ
n+1(p; r). It is easy to see (and it also follows from Lemma

2.1.4) that ψ is injective and surjective.

As an illustration of how the proof of Theorem 2.2.1 works, consider p = r = (3, 1, 1);
there are

(
5

3,1,1

)
= 20 o-sequences of type r. The sum of all the q-sequences in a line of

Figure 2.2 is, modulo Irq, equal to the sum of all q-sequences in the next line; if only
one q-sequence in the line is drawn in bold, it means that we are using the relation
(2.2.1), and if two q-sequences in the line are drawn in bold, it means that we are
using the relation (2.2.2).

Proof of Theorem 2.2.1. (1) Recall that we are assuming that A is right-quantum.
Take a q-sequence α. If α is a p-sequence, then ψ(α) = α. Otherwise, assume that
(x− 1, i)→ (x, k) and (x, j)→ (x+ 1, l) are the steps to be switched in order to get
ψ(α). If k = l, then ψ(α) = α by (2.2.1). Otherwise, denote by β the sequence we
get by replacing these two steps with (x− 1, i)→ (x, l) and (x, j)→ (x+ 1, k). The
crucial observation is that β is also a q-sequence, and that its rank is equal to the
rank of α. Furthermore, α + β = ψ(α) + ψ(β) because of (2.2.2). This implies that∑
ψ(α) =

∑
α with the sum over all sequences in Qσ

n(p; r). Repeated application of
this shows that ∑

ϕ(α) =
∑

α

with the sum over all α ∈ O(p; r). Because ϕ is a bijection, this finishes the proof of
(2.2.3).
(2) For the proof of (2.2.4), we use (analogously defined) bq-sequences, back-rank,
the sets Q

σ

n(p; r), and the bijections ψ : Q
σ

n(p; r) → Q
σ

n+1(p; r) and ϕ : O
π
(p; r) →

P
σ
(p; r), for which we move steps to the right instead of to the left. Assume that

(x − 1, j) → (x, l) and (x, i) → (x + 1, k) are the steps in α we want to switch.
The condition pi ≤ 1 guarantees that i 6= j. Denote by β the sequence we get by
replacing these two steps with (x − 1, i) → (x, l) and (x, j) → (x + 1, k); β is also a
q-sequence of the same rank, and because i 6= j, its number of inversions differs from
α by ±1. The relation (2.2.2) implies α − β = ψ(α) − ψ(β), and this means that∑

(−1)inv(ψ(α))ψ(α) =
∑

(−1)inv(α)α and hence also

∑
(−1)inv(ϕ(α))ϕ(α) =

∑
(−1)inv(α)α

with the sum over all α ∈ O(p; r).
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Figure 2-4: Graphical illustration of O(3, 1, 1) = P (3, 1, 1) in the right-quantum case.

2.3 The q-Cartier-Foata case

Choose q ∈ C \ {0}, and define

Oπ
q (p; r) =

∑

α∈Oπ(p;r)

qinv(α)α, O
π

q (p; r) =
∑

α∈O
π
(p;r)

(−q)− inv(α) α,
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P π
q (p; r) =

∑

α∈Pπ(p;r)

qinv(α)α, P
π

q (p; r) =
∑

α∈P
π
(p;r)

(−q)− inv(α) α.

Recall that inv(α) is defined to be inv(µ)− inv(λ) for α = aλ,µ.

Example 2.3.1 For the p-sequence

α = a13a32a24a43a31a11a22a34a44a43

shown in Figure 2-5, we have

inv(1324312344) = 0 + 3 + 1 + 4 + 2 + 0 + 0 + 0 + 0 + 0 = 10

and
inv(3243112443) = 4 + 2 + 5 + 3 + 0 + 0 + 0 + 1 + 1 + 0 = 16.

Figure 2-5: A p-sequence with weight q6.

Therefore, the p-sequence α is weighted by q6 in Pq(2, 2, 3, 3). ♦

Theorem 2.3.2 Take a matrix A = (aij)m×m, non-negative integer vectors p, r with∑
pi =

∑
ri, and permutations π, σ ∈ Sm.

(1) Assume that A is q-Cartier-Foata, i.e. that it has the properties

ajlaik = aikajl for all i < j, k < l, (2.3.1)

ajlaik = q2 aikajl for all i < j, k > l, (2.3.2)

ajkaik = q aikajk for all i < j (2.3.3)

Then
Oπ
q (p; r) = P σ

q (p; r). (2.3.4)

(2) Assume that A satisfies (2.3.1) and (2.3.2) above, and that p ≤ 1. Then

O
π

q (p; r) = P
σ

q (p; r). (2.3.5)

The proof of the theorem is a weighted analogue of the proof of Theorems 2.1.5
and 2.1.6. The main technical difference is essentially bookkeeping of the powers of
q which appear after switching the letters aij (equivalently, the lattice steps in the
q-sequences).

Proof of Theorem 2.3.2. (1) Choose a q-sequence α = aλ,µ and let ψ(α) = aλ′,µ′ .
Assume that the switch we perform is between steps (x− 1, i)→ (x, k) and (x, j)→
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(x+ 1, l); write λ = λ1ijλ2, µ = µ1klµ2, λ
′ = λ1jiλ2, µ

′ = µ1lkµ2. If i < j and k < l,
we have inv(λ′) = inv(λ) + 1, inv(µ′) = inv(µ) + 1. By (2.3.1), ψ(α) = α,

qinv(µ′)−inv(λ′)ψ(α) = qinv(µ)−inv(λ)α mod Iq−cf . (2.3.6)

Similarly, if i < j and k > l, we have inv(λ′) = inv(λ) + 1, inv(µ′) = inv(µ)− 1. By
(2.3.2), we have ψ(α) = q2α, which implies equation (2.3.6). If i < j and k = l, we
have inv(λ′) = inv(λ) + 1, inv(µ′) = inv(µ). By (2.3.3), we have ψ(α) = qα, which
implies (2.3.6) again. The cases when i > j are analogous.
Iterating equation (2.3.6), we conclude that if α = aλ,µ is an o-sequence and ϕ(α) =
aλ′,µ′ is the corresponding p-sequence, then

qinv(µ′)−inv(λ′) ϕ(α) = qinv(µ)−inv(λ) α.

This implies (2.2.4). Part (2) is analogous.

Before continuing with the q-right-quantum case, let us make an important observa-
tion about the weight of balanced paths with respect to the identity permutation. Let
us call a sequence ai1i2ai2i3 · · ·aini1 a primitive path if it has the property ij > i1 for
j = 2, . . . , n. A p-sequence α ∈ P(r) decomposes into a product of primitive paths;
for example, the p-sequence in Example 2.3.1 is a product of four primitive paths:
(a13a32a24a43a31)(a11)(a22)(a34a44a43).

Proposition 2.3.3 If a p-sequence α of length n decomposes into p primitive paths,
then α is weighted by qn−p in Pq(r).

Proof. By definition, α = aλ,µ is weighted by qinv(µ)−inv(λ) as a term of Pq(r). Assume
first that α is primitive, α = ai1i2ai2i3 · · ·aini1 with ij > i1 for j = 2, . . . , n. We have
λ = i1i2 · · · in−1in and µ = i2i3 · · · ini1, which means that µ has all the inversions that
λ has, plus the inversions (1, n), (2, n), . . . , (n− 1, n). In other words, qinv(µ)−inv(λ) =
qn−1.
Now take α = aλ,µ = α1 · · ·αp, where every αk is a primitive path. Every primitive
path is balanced, which means that inversions corresponding to different primitive
paths in λ and µ cancel each other out (cf. the proof of the “1 = q principle”,
Proposition 1.3.3); in other words,

qinv(µ)−inv(λ) = qinv(µ1)−inv(λ1) · · · qinv(µp)−inv(λp) = qn1−1 · · · qnp−1,

where αk = aλk ,µk
has length nk. Since n1 + . . .+ np = n, this finishes the proof.

The p-sequence from Example 2.3.1 has length 10 and is a product of 4 primitive
paths. Therefore it is weighted by q6 in Pq(2, 2, 3, 3), agreeing with the direct calcu-
lation.

2.4 The q-right-quantum case

Let us retain the notation of Section 2.3.
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Theorem 2.4.1 Take a matrix A = (aij)m×m, non-negative integer vectors p, r with∑
pi =

∑
ri, and permutations π, σ ∈ Sm.

(1) Assume that A is q-right-quantum, i.e. that it has the properties

ajkaik = q aikajk for all i < j, , (2.4.1)

aikajl − q
−1 ajkail = ajlaik − q ailajk for all i < j, k < l. (2.4.2)

Then
Oπ
q (p; r) = P σ

q (p; r). (2.4.3)

(2) Assume that A satisfies (2.4.2) above, and that p ≤ 1. Then

O
π

q (p; r) = P
σ

q (p; r). (2.4.4)

Proof: The proof of the theorem is almost identical to the one given in Section 2.2,
with some (bookkeeping) modifications similar to those in the proof of Theorem
2.3.2. We only prove part (1), as the proof of (2) is completely analogous. Take a
q-sequence α, and assume that (x−1, i)→ (x, k) and (x, j)→ (x+1, l) are the steps
to be switched in order to get ψ(α). If i < j and k = l, then qψ(α) = α by (2.4.1)
and so

qinv(ψ(α))ψ(α) = qinv(α)α.

If i < j and k < l, denote by β the sequence we get by replacing these two steps with
(x − 1, i) → (x, l) and (x, j) → (x+ 1, k). Then β is also a q-sequence, and its rank
is equal to the rank of α. Furthermore, ψ(α) + q−1ψ(β) = α + qβ by (2.4.2), and so

qinv(ψ(α))ψ(α) + qinv(ψ(β))ψ(β) = qinv(α)α+ qinv(β)β.

This implies that
∑
qinv(ψ(α))ψ(α) =

∑
qinv(α)α with the sum over all sequences in

Qσ
n(p; r), and so

Oq(p; r) =
∑

α∈O(p;r)

qinv(α)α =
∑

α∈O(p;r)

qinv(ϕ(α))ϕ(α) =
∑

α∈Pπ(p;r)

qinv(α)α = P σ
q (p; r).

2.5 The q-Cartier-Foata case

For 1 ≤ i < j ≤ m, choose qij ∈ C \ {0}, and write

qinv α =




∏

(i,j)∈I(µ)

qµjµi








∏

(i,j)∈I(λ)

q−1
λjλi



 .

for α = aλ,µ. Define

Oπ
q(p; r) =

∑

α∈Oπ(p;r)

qinv αα, O
π

q(p; r) =
∑

α∈O
π
(p;r)

(−q)−inv α α,
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P π
q (p; r) =

∑

α∈Pπ(p;r)

qinv αα, P
π

q(p; r) =
∑

α∈P
π
(p;r)

(−q)−inv α α.

Example 2.5.1 For the p-sequence

α = a13a32a24a43a31a11a22a34a44a43

shown in Figure 2-5, we have

I(1324312344) = {(2, 3), (2, 6), (2, 7), (3, 6), (4, 5), (4, 6), (4, 7), (4, 8), (5, 6), (5, 7)}

and

I(3243112443) = {(1, 2), (1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (3, 4), (3, 5),

(3, 6), (3, 7), (3, 10), (4, 5), (4, 6), (4, 7), (8, 10), (9, 10)}

Therefore, the p-sequence α is weighted by

(q23q13q13q23q12q12q34q14q14q24q34q13q13q23q34q34)(q23q13q23q12q34q14q24q34q13q23)
−1 =

= q12q
2
13q14q

2
34

in Pq(2, 2, 3, 3). ♦

Theorem 2.5.2 Take a matrix A = (aij)m×m, non-negative integer vectors p, r with∑
pi =

∑
ri, and permutations π, σ ∈ Sm.

(1) Assume that A is q-Cartier-Foata, i.e. that it has the properties

ajlaik = q−1
kl qij aikajl for all i < j, k < l (2.5.1)

ajlaik = qijqlk aikajl for all i < j, k > l (2.5.2)

ajkaik = qij aikajk for all i < j (2.5.3)

Then
Oπ

q(p; r) = P σ
q (p; r). (2.5.4)

(2) Assume that A satisfies (2.5.1) and (2.5.2) above, and that p ≤ 1. Then

O
π

q(p; r) = P
σ

q(p; r). (2.5.5)

The proof of the theorem is a multiparameter analogue of the proof of Theorem 2.3.2;
instead of counting the number of inversions, we have to keep track of the actual
inversions.

Proof of Theorem 2.5.2. (1) Choose a q-sequence α = aλ,µ and let ψ(α) = aλ′,µ′ .
Assume that the switch we perform is between the n-th step (x− 1, i) → (x, k) and
the (n + 1)-th step (x, j) → (x + 1, l); write λ = λ1ijλ2, µ = µ1klµ2, λ

′ = λ1jiλ2,
µ′ = µ1lkµ2. If i < j and k < l, we have I(λ′) = I(λ) ∪ {(n, n + 1)}, I(µ′) =
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I(µ) ∪ {(n, n+ 1)}. By (2.5.1), qklq
−1
ij ψ(α) = α modulo Iq−cf and

qinv ψ(α)ψ(α) = qinv αα. (2.5.6)

We prove this relation similarly in other cases, using (2.5.2) and (2.5.3). We conclude
that if α = aλ,µ is an o-sequence and ϕ(α) = aλ′,µ′ is the corresponding p-sequence,
then

qinv ϕ(α)ϕ(α) = qinv αα

This implies (2.5.4). Part (2) is analogous.

We also need a multiparameter analogue of Proposition 2.3.3.

Proposition 2.5.3 The weight of a p-sequence α in Pq(r) is

∏
qij,

where the product runs over all pairs (i, j) with i the starting height of a primitive
path of α, and j another stasrting height of the same primitive path.

Proof. Take a primitive path α = ai1i2ai2i3 · · ·aini1 first. Then µ = i2i3 · · · ini1 has all
the inversions that λ = i1i2 · · · in−1in has, plus the inversions (1, n), (2, n), . . . , (n −
1, n), and therefore

qinv α = qi1i2qi1i3 · · · qi1in .

Now take α = aλ,µ = α1 · · ·αp, where every αk is a primitive path. Every primitive
path is balanced, which means that inversions corresponding to different primitive
paths in λ and µ cancel each other out; in other words,

qinv α = qinv α1 · · ·qinv αp .

This finishes the proof.

Note that if we take qij = q−1
ji for i > j, Proposition 2.5.3 also holds for weights of

sequences α in P π
q (r) for any permutation π.

The p-sequence from Example 2.5.1 has four primitive paths with starting heights
1, 1, 2, 3, and is by Proposition 2.5.3 weighted by

(q13q12q14q13)()()(q34q34) = q12q
2
13q14q

2
34

in Pq(2, 2, 3, 3), agreeing with the direct calculation in Example 2.5.1.

2.6 The q-right-quantum case

Let us deal with the q-right-quantum case. We retain the notation of Section 2.5.

Theorem 2.6.1 Take a matrix A = (aij)m×m, non-negative integer vectors p, r with∑
pi =

∑
ri, and permutations π, σ ∈ Sm.
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(1) Assume that A is q-right-quantum, i.e. that it has the properties

ajkaik = qijaikajk for i < j, (2.6.1)

aikajl − q
−1
ij ajkail = qklq

−1
ij ajlaik − qklailajk for i < j, k < l. (2.6.2)

Then
Oπ

q(p; r) = P σ
q (p; r). (2.6.3)

(2) Assume that A satisfies the property (2.6.2) above, and that p ≤ 1. Then

O
π

q(p; r) = P
σ

q(p; r). (2.6.4)

Proof. The proof of the theorem is a combination of the proofs of Theorems 2.4.1 and
2.5.2. The details are left to the reader.

2.7 The quantum case

For p = r = 1, we can prove a more general statement than Theorem 2.4.1 when the
variables are quantum. To simplify the presentation slightly, we only prove the case
when π = σ = id.

Denote the permutation with cycle notation (1, . . . , µ1)(µ1 + 1, . . . , µ2) · · · for some
composition µ = (µ1, . . . , µr) of m by γµ. A permutation is of such form if and only
if w(i) ≤ i + 1 for all i. For w ∈ Sm, denote by aw the o-sequence aid,w, by aw the
corresponding p-sequence ϕ(aid,w), and by µ(w) the cycle type of w (treated as a
composition). Write γw for γµ(w). For example, for w = 532461, we have

aw = a15a23a32a44a56a61, aw = a15a56a61a23a32a44,

µ(w) = (3, 2, 1), γw = (1, 2, 3)(4, 5)(6).

Theorem 2.7.1 Take a matrix A = (aij)m×m, and assume that A is quantum, i.e.
that it has the properties

ailaik = q aikail for all i, k, l, k < l, (2.7.1)

ajkaik = q aikajk for all i, j, k, i < j, (2.7.2)

ajkail = ailajk for all i < j, k < l, (2.7.3)

ajlaik = aikajl + (q − q−1) ailajk for all i < j, k < l. (2.7.4)

Assume that we are given complex coefficients cw, w ∈ Sm. For a permutation w,
choose the smallest i that satisfies w(i) = j + 1 > i+ 1 (if such an i exists). Denote
the transposition (j, j + 1) by sj. The permutation sjwsj either has the same number
of inversions as w, or it has 2 fewer. Assume that:

• if inv(sjwsj) = inv(w), then cw = csjwsj
;

• if inv(sjwsj) = inv(w)− 2, then cw = csjwsj
+ (q − q−1)cwsj

.
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Then ∑

w∈Sm

cwaw =
∑

w∈Sm

cγwaw.

Example 2.7.2 Take m = 3, and assume that c312 = c231 and c321 = c213 + (q −
q−1)c312 = c213 + (q − q−1)c231. Then

c312a21a32 + c321a22a31 = c231a21a32 + (c213 + (q − q−1)c231)a22a31 =

= c231(a21a32 + (q − q−1)a22a31) + c213a22a31 = c231a32a21 + c213a31a22

and so

c123a11a22a33+c132a11a23a32+c213a12a21a33+c231a12a23a31+c312a13a21a32+c321a13a22a31

is equal to

c123a11a22a33+c132a11a23a32+c213a12a21a33+c231a12a23a31+c231a13a32a21+c213a13a31a22,

as predicted by the theorem. ♦

Proof of Theorem 2.7.1. Choose a permutation v ∈ Sm, and write αv0 = id, βv0 =
v. Assume that after k steps of the fundamental transformation, we have the q-
sequence aαv

k,β
v
k

for permutations αvk and βvk . Write aw = ϕ(aw) = aαv ,βv . Furthermore,
denote (αvk)

−1βvk by πvk and (αv)−1βv by πv. The crucial observation is the connection
between the fundamental transformation and the transformation w 7→ sjwsj, where
i is minimal with w(i) > i+ 1, and j = w(i)− 1. Take the q-sequence aαv

k
,βv

k
of rank

k. Then πv(i) = j + 1 with i the minimal position which satisfies πv(i) > i+ 1 if and
only if we have to switch steps at positions j and j+ 1 in order to get aαv

k+1,β
v
k+1

from
aαv

k
,βv

k
. In other words, αvk+1 = αvksj, β

v
k+1 = βvksj and πvk+1 = sjπ

v
ksj . We also have

aαv ,βv = av and πv = γv. As an example, take v = 45132; then we get

k 0 1 2 3
αvk 12345 12435 14235 14325
βvk 45132 45312 43512 43152
πvk (143)(25) (134)(25) (124)(35) (123)(45)
i 1 1 2
j 3 2 3

If we show that ∑

w∈Sm

cπw
k
aαw

k
,βw

k
=
∑

w∈Sm

cπw
k+1
aαw

k+1,β
w
k+1
, (2.7.5)

for every k, then

∑

w∈Sm

cwaw =
∑

w∈Sm

cπw
0
aαw

0 ,β
w
0

=
∑

w∈Sm

cπw
1
aαw

1 ,β
w
1

= . . . =
∑

w∈Sm

cπwaαw,βw =
∑

w∈Sm

cγwaw

and the proof of the theorem is complete.
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To prove (2.7.5), take v ∈ Sm, k and the corresponding j, and note that both aαv
k,β

v
k

and aαv
k
,βv

k
·sj

appear in ∑

w∈Sm

cπw
k
aαw

k ,β
w
k
,

one with coefficient cα−1β and the other with coefficient cα−1βsj
, where we write α = αvk

and β = βvk . We have α(j) < α(j+1). Also, we can assume without loss of generality
that β(j) < β(j + 1) (otherwise we reverse the roles of β and βsj). Then

aα(j+1)β(j+1)aα(j)β(j) = aα(j)β(j)aα(j+1)β(j+1) + (q − q−1)aα(j)β(j+1)aα(j+1)β(j)

and
aα(j+1)β(j)aα(j)β(j+1) = aα(j)β(j+1)aα(j+1)β(j),

so
aαsj ,βsj

= aα,β + (q − q−1)aα,βsj

and
aαsj ,β = aα,βsj

.

Note that inv(sjα
−1βsj) = inv(α−1β) and inv(α−1βsj) = inv(sjα

−1β) − 2. This
implies

cα−1βaα,β + cα−1βsj
aα,βsj

= cα−1βaα,β +
(
csjα−1β + (q − q−1)cα−1β

)
aα,βsj

=

= cα−1β

(
aα,β + (q − q−1)aα,βsj

)
+ csjα−1βaα,βsj

= csjα−1βsj
aαsj ,βsj

+ csjα−1βaαsj ,β.

This completes the induction step and the proof of the lemma.

Example 2.7.3 The functions cw = qinv(w) and cw = (−q)− inv(w) both satisfy the
condition of the lemma. This implies Theorem 2.4.1 for quantum variables and p =
r = 1 (for part (2), we have to use some symmetry). ♦
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Chapter 3

The matrix inverse formulas

3.1 Introduction

As mentioned in the introduction, non-commutative versions of the matrix inverse for-
mula play an important role in this thesis; they are crucial for the proofs of MacMahon
master theorem and Sylvester’s determinantal identity, as well as for various exten-
sions, generalizations and related results.

A common pattern for proofs in the following chapters will be to use (a variant of)
the fundamental transformation discussed in Chapter 2, and then to finish the proof
by invoking the matrix inverse formula.

The classical matrix inverse formula is such a simple linear algebraic result that it is to
be expected that there are also simple linear algebraic proofs of its non-commutative
analogues. However, since we are interested in combinatorial aspects of determinantal
identities, we also present combinatorial, if more complicated proofs.

Not surprisingly, these proofs also strongly rely on the fundamental transformation.
Also not surprisingly, they are easily adaptable to other settings; for example, the
Jacobi ratio theorem (Section 3.7) in the right-quantum case requires almost no extra
effort, while a direct linear algebraic proof would be more difficult.

We start off the chapter by stating the matrix inverse formulas, and proving them
non-combinatorially in Section 3.2. In Section 3.3, we give a combinatorial proof in
the Cartier-Foata case; in Section 3.4, we extend this to right-quantum variables; and
in Sections 3.5 and 3.6, we prove the results with parameters. We close the chapter
by proving the right-quantum Jacobi ratio theorem in Section 3.7.

Theorem 3.1.1 (Cartier-Foata matrix inverse formula) If A = (aij)m×m is a Cartier-
Foata matrix, we have

(
1

I − A

)

ij

= (−1)i+j ·
1

det(I − A)
· det (I −A)ji

for all i, j.
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Theorem 3.1.2 (right-quantum matrix inverse formula) If A = (aij)m×m is a right-
quantum matrix, we have

(
1

I − A

)

ij

= (−1)i+j ·
1

det(I − A)
· det (I −A)ji

for all i, j.

Theorem 3.1.3 (weighted matrix inverse formula) If A = (aij)m×m is a q-Cartier-
Foata or a q-right-quantum matrix, we have

(
1

I − A[i]

)

ii

=
1

detq(I −A)
· detq (I − A)ii

for all i, where

A[i] =




q−1a11 · · · q−1a1i a1,i+1 · · · a1m
... · · ·

...
... · · ·

...
q−1ai−1,1 · · · q−1ai−1,i ai−1,i+1 · · · ai−1,m

ai1 · · · aii qai,i+1 · · · qaim
... · · ·

...
... · · ·

...
am1 · · · ami qam,i+1 · · · qamm




. (3.1.1)

Theorem 3.1.4 (multiparameter matrix inverse formula) If A = (aij)m×m is a q-
Cartier-Foata matrix or a q-right-quantum matrix, we have

(
1

I − A[i]

)

ii

=
1

detq(I −A)
· detq (I − A)ii

for all i, where

A[i] =




q−1
1i a11 · · · q−1

1i a1i q−1
1i qi,i+1a1,i+1 · · · q−1

1i qima1m
...

. . .
...

...
. . .

...
q−1
i−1,iai−1,1 · · · q

−1
i−1,iai−1,i q−1

i−1,iqi,i+1ai−1,i+1 · · · q
−1
i−1,iqimai−1,m

ai1 · · · aii qi,i+1ai,i+1 · · · qimaim
...

. . .
...

...
. . .

...
am1 · · · ami qi,i+1am,i+1 · · · qimamm




. (3.1.2)

A reader not interested in combinatorial proofs of these formulas and in the right-
quantum version of the Jacobi ratio theorem (which will not be needed in subsequent
chapters) is advised to skim over Section 3.2, and then proceed to Chapter 4.

Similar results are also important (and well-known) in quantum algebra, see for ex-
ample the results of Manin on quantum determinants [Man89, Man88] and advanced
technical results of Etingof and Retakh who found analogues of this result for all
twisted quantum groups [ER99].
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3.2 Non-combinatorial proofs of Theorems 3.1.1 –

3.1.4

Lemma 3.2.1 Let B = (bij)m×m be a matrix.

(1) If B is Cartier-Foata and if B′ denotes the matrix we get by interchanging
adjacent columns of B, then B′ is also Cartier-Foata, and detB′ = − detB.

(2) If B is Cartier-Foata and has two equal columns, then detB = 0.

(3) For every B, we have

detB =

m∑

k=1

(−1)m+k(detBkm)bkm.

Proof: (1) Clearly B′ is also Cartier-Foata. By definition,

detB =
∑

π∈Sm

(−1)inv(π)bπ(1)1 · · · bπ(i)ibπ(i+1),i+1 · · · bπ(m)m,

and because bπ(i)i and bπ(i+1),i+1 commute and because inv(π′) = inv(π)± 1 for π′ =
π · (i, i+ 1), this is equal to − detB′. (2) By (1), it is enough to prove that detB = 0
if adjacent columns are equal. But for such a matrix, detB = − detB by (1). (3)
We have

detB =
∑

π∈Sm

(−1)inv(π)bπ(1)1 · · · bπ(m)m =
m∑

k=1

∑

π(m)=k

(−1)inv(π)bπ(1)1 · · · bπ(m)m =

=
m∑

k=1



∑

π(m)=k

(−1)inv(π)bπ(1)1 · · · bπ(m−1),m−1


 bkm =

m∑

k=1

(−1)m+k(detBkm)bkm.

Proof of Theorem 3.1.1. Take B = I − A and recall that B is invertible. Note that

(δik − aik)(δjl − ajl) = δikδjl − δjlaik − δikajl + aikajl =

= δikδjl − δjlaik − δikajl + ajlaik = (δjl − ajl)(δik − aik)

for k 6= l, so B is also Cartier-Foata. The j-th coordinate of the matrix product

((−1)i+1 detB1i, (−1)i+2 detB2i, . . . , (−1)i+mBmi) · B

is
∑m

k=1(−1)i+k detBkibkj ; which is by Lemma 3.2.1, part (3), equal to

(−1)m−i det




b11 · · · b1,i−1 b1,i+1 · · · b1m b1j
b21 · · · b2,i−1 b2,i+1 · · · b2m b2j
...

. . .
...

...
. . .

...
...

bm1 · · · bm,i−1 bm,i+1 · · · bmm bmj


 .
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The last matrix is also Cartier-Foata, so parts (1) and (2) of the lemma yield

((−1)i+1 detB1i, (−1)i+2 detB2i, . . . , (−1)i+mBmi) = detB · εi · B
−1

and (
B−1

)
ij

= (−1)i+j
1

detB
· detBji,

which finishes the proof.

Lemma 3.2.2 Let B = (bij)m×m be a matrix.

(1) If B is right-quantum and if B′ denotes the matrix we get by interchanging
adjacent columns of B, then B′ is also right-quantum, and detB′ = − detB.

(2) If B is right-quantum and has two columns equal, then detB = 0.

Proof. (1) Clearly B′ is also right-quantum. For a permutation π ∈ Sm, denote by π′

the permutation π · (i, i+ 1). Then

(−1)inv(π)bπ(1)1 · · · bπ(m)m + (−1)inv(π′)bπ′(1)1 · · · bπ′(m)m =

= (−1)inv(π)bπ(1)1 · · · bπ(i−1),i−1(bπ(i)ibπ(i+1),i+1 − bπ(i+1)ibπ(i),i+1)bπ(i+2),i+2 · · · bπ(m)m =

= (−1)inv(π)bπ(1)1 · · · bπ(i−1),i−1(bπ(i+1),i+1bπ(i)i − bπ(i),i+1bπ(i+1)i)bπ(i+2),i+2 · · · bπ(m)m =

= −
(
(−1)inv(π)b′π(1)1 · · · b

′
π(m)m + (−1)inv(π′)b′π′(1)1 · · · b

′
π′(m)m

)
,

so detB′ = − detB. Part (2) follows.

Proof of Theorem 3.1.2. Because

(δjk − ajk)(δik − aik) = δjkδik − δjkaik − δikajk + ajkaik =

= δjkδik − δjkaik − δikajk + aikajk = (δik − aik)(δjk − ajk)

and
(δik − aik)(δjl − ajl)− (δjk − ajk)(δil − ail) =

= δikδjl − δjkδil − δikajl − δjlaik + δjkail + δilajk + aikajl − ajkail =

= δikδjl − δjkδil − δikajl − δjlaik + δjkail + δilajk + ajlaik − ailajk =

= (δjl − ajl)(δik − aik)− (δil − ail)(δjk − ajk),

the matrix B = I−A is also right-quantum. Now we can repeat the proof of Theorem
3.1.1 verbatim, using Lemma 3.2.2 instead of parts (1) and (2) of Lemma 3.2.1.

Proof of Theorem 3.1.3. We have proved that (for A either Cartier-Foata or right-
quantum)

det(I −A) ·

(
1

I −A

)

ii

− det (I −A)ii
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is an element of Irq. Apply the map φ defined in the statement of the “1 = q principle”
(Lemma 1.3.3); we get

φ
(
det(I − A) · (I − A)−1

ii − det (I −A)ii
)

=

= φ(det(I −A)) · φ
(
(I − A)−1

ii

)
− φ

(
det (I −A)ii

)
∈ Iq−rq,

where we used the fact that all terms of det(I − A) and (I − A)−1
ii are balanced.

Clearly,

φ(det(I − A)) = φ




∑

J⊆[m]

(−1)|J | detAJ



 =
∑

J⊆[m]

(−1)|J |detqAJ = detq(I − A)

and similarly

φ
(
det (I −A)ii

)
= detq (I − A)ii ,

so it remains to evaluate
φ
(
(I − A)−1

ii

)
.

A term in (I −A)−1
ii is a path from i to i. For aλ,µ = aii1ai1i2 · · ·aini, inv(µ)− inv(λ)

is equal to |{j : ij > i}| − |{j : ij < i}|. On the other hand, if a step akl is weighted
by q−1 for k < i, l ≤ i and by q for k ≥ i, l > i, then aii1ai1i2 · · ·aini is weighted by
q|{j : ij>i}|−|{j : ij<i}| (as can be proved by induction on the length of the path). This
means that

φ
(
(I − A)−1

ii

)
= (I − A[i])

−1
ii ,

where A[i] is given by (3.2.2).

Proof of Theorem 3.1.4. The proof is very similar to the proof of Theorem 3.1.3 and
we omit some of the details. We know that

det(I −A) ·

(
1

I −A

)

ii

− det (I −A)ii ∈ Irq,

and we can apply the map φ defined in the statement of the “1 = qij principle”
(Lemma 1.3.4) with S the set of relations (1.3.3)–(1.3.4) (and I = Irq, ψ(S) the set
of relations (1.3.13)–(1.3.14), I ′ = Iq−rq). We get

φ
(
det(I − A) · (I − A)−1

ii − det (I −A)ii
)

=

= φ(det(I − A)) · φ
(
(I −A)−1

ii

)
− φ

(
det (I − A)ii

)
∈ Iq−rq,

where we used the fact that all terms of det(I−A) and (I−A)−1
ii are balanced. Then

φ(det(I − A)) = detq(I − A), φ
(
det (I −A)ii

)
= detq (I − A)ii ,
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and
φ
(
(I −A)−1

ii

)
= (I −A[i])

−1
ii

for A[i] given by (3.1.2).

3.3 Cartier-Foata case

As promised, this section is devoted to the combinatorial proof of Theorem 3.1.1. We
prove the equivalent formula

det(I − A) ·

(
1

I − A

)

ij

= (−1)i+j det (I − A)ji (3.3.1)

for a Cartier-Foata matrix A = (aij)m×m.

First note that
det(I −A) =

∑

J⊆[m]

(−1)|J | detAJ . (3.3.2)

In other words, det(I −A) is the weighted sum of aπ(j1)j1 · · ·aπ(jk)jk over all permuta-
tions π of all subsets {j1, . . . , jk} of [m], with aπ(j1)j1 · · ·aπ(jk)jk weighted by (−1)cyc π.
Also note that every term of

detAJ =
∑

π∈SJ

(−1)inv(π)aπ(j1)j1aπ(j2)j2 · · ·aπ(jk)jk

is a product of commuting variables; that means that the variables can be written in
any order.

Proof of Theorem 3.1.1. When i = j, the right-hand side of (3.3.1) is simply the
right-hand side of (3.3.2), with [m] replaced by [m] \ {i}, and we can use the map ϕ
with π = (m, . . . , 1) and σ = id defined in Section 2.1 (see (2.1.4) and the paragraph
following it) to transform all sequences into bp-sequences with respect to id. Figure
3-1 shows the right-hand side of (3.3.1) for m = 4, i = j = 3. If i 6= j, use ϕ with
respect to π = (m, . . . , 1) and σ = (j, 1, . . . , j − 1, j + 1, . . . , m) to transform every
sequence into a bp-sequence with distinct starting and ending heights, with the last
lattice path being a path from i to j, and with a weight of such a lattice path being
1 if the number of lattice paths is odd, and −1 otherwise. Figure 3-2 shows this for
m = 4, i = 2, j = 3.

1

Figure 3-1: A representation of det (I − A)33.

Cycles of odd length are even permutations, and cycles of even length are odd permu-
tations. For a permutation π of J ⊆ [m] with |J | = k, the product (−1)inv(π) · (−1)k
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Figure 3-2: A representation of − det (I − A)32.

is therefore equal to (−1)cycα, and the left-hand side of (3.3.1) is equal to the sum

∑
(−1)cycα α · β, (3.3.3)

where the sum runs over all pairs (α, β) with the following properties:

• α = aπ(j1)j1 · · ·aπ(jk)jk for some j1 < . . . < jk, and π is a permutation of
{j1, . . . , jk}; cycα denotes the number of cycles of π;

• β is a lattice path from i to j.

Our goal is to cancel most of the terms and get the right-hand side of (3.3.1).
Let us divide the pairs (α, β) in two groups.

• (α, β) ∈ G1 if no starting or ending height is repeated in α ·β, or the first height
that is repeated in α · β is a starting height;

• (α, β) ∈ G2 if the first height to be repeated in α · β is an ending height.

The sum (3.3.3) splits into two sums S1 and S2. Let us discuss each of these in turn.

(1) Note that if the first height that is repeated in α · β is a starting height, this
starting height must be i, either as the starting height of the first step of β if α
contains i, or the second occurrence of i as a starting height of β if α does not
contain i.
Apply the map ϕ with π = (m, . . . , 1) and σ = (i, 1, . . . , i− 1, i + 1, . . . , m) to
every α in S1. The terms (−1)cycα ϕ(α) · β that do not include i as a starting
height sum up to the right-hand side of (3.3.1). The terms that do include i as
a starting height either have it in α (and possibly in β) or they have it only in β.
There is an obvious sign-reversing involution between the former and the latter
– just move the cycle of α containing i over to β or vice versa. This means that
S1 is equal to the right-hand side of (3.3.1).

(2) Note that the first height k that is repeated in α · β as an ending height cannot
be i. Write β = β ′β ′′, where β ′ is a path from i to k with no repeated heights.
Apply ϕ with respect to π = (m, . . . , 1) and σ = (k, 1, . . . , k − 1, k + 1, . . . , m)
to α. The height k can either appear in α (then it appears only as an ending
height in β ′) or not (then it appears once as a starting height and twice as an
ending height in β ′). There exists an obvious involution between the sets of
pairs with either of these properties: move the cycle in ϕ(α) starting with k to
the end of β ′ if k appears as a height in α, and move the cycle starting with k
from β ′ to the end of ϕ(α) otherwise. We can make this move without changing
the product ϕ(α) · β modulo Icf because all the steps in ϕ(α) · β ′ have different
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starting heights. Also note that the involution changes the number of cycles
in ϕ(α) by 1; since α · β is weighted by (−1)cycα in (3.3.3), the involution is
sign-reversing, and the sum S2 is equal to 0.

This completes the proof.

Example 3.3.1 Figure 3-3 shows some pairs that are canceled by the involutions
described in (1) and (2) above for m = 4, i = 2 and j = 3.

Figure 3-3: Some pairs that cancel in (3.3.3).

The top two pairs belong to G1, and the bottom two pairs belong to G2. The sequence
α in the pair (α, β) is drawn in bold. ♦

3.4 Right-quantum case

The involutions that prove the theorem in the right-quantum case are the same, but
we have to be more careful because we have to move the steps simultaneously. This
will be done by repeated use of Theorem 2.2.1.

Again, we have

det(I −A) =
∑

J⊆[m]

(−1)|J | detAJ . (3.4.1)

Proof of Theorem 3.1.2. We deal with the equivalent identity

det(I − A) ·

(
1

I − A

)

ij

= (−1)i+j det (I − A)ji . (3.4.2)

When i = j, the right-hand side of (3.4.2) is the right-hand side of (3.3.1), with [m]
replaced by [m] \ {i}, and since

detA = O
w0

(1),

for w0 = (m, . . . , 1), equation (2.2.4) for π = w0 and σ = id tells us that we can trans-
form all bo-sequences in det (I − A)ii into bp-sequences with respect to id, weighted
by 1 if the number of lattice paths is even and by −1 if it is odd. If i 6= j, use (2.2.4)
with π = (m, . . . , 1) and σ = (j, 1, . . . , j−1, j+1, . . . , m) to transform every sequence
into a bp-sequence with the last lattice path being a path from i to j, and with a
weight of such a lattice path being 1 if the number of lattice paths is odd, and −1
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otherwise.
The description of the left-hand side of (3.4.2) is the same as in the Cartier-Foata
case, and we divide the sum

∑
(−1)cycα α · β into S1 and S2 in the same fashion.

Again we discuss these sums separately.

(a) If the first height that is repeated in α · β is a starting height, this starting
height is i, either as the starting height of the first step of β if α contains i, or
the second occurrence of i as a starting height of β if α does not contain i. For
each β, we can apply (2.2.4) with respect to σ = (i, 1, . . . , i− 1, i+ 1, . . . , m) to
the sum ∑

(−1)cycαα

over all α with (α, β) ∈ G1. The terms (−1)cycα α · β that do not include i sum
up to the right-hand side of (3.4.2). The terms that do include i either have
it in α (and possibly in β) or they have it only in β. The same sign-reversing
involution as in the Cartier-Foata case proves that S1 is equal to the right-hand
side of (3.4.2).

(b) The first height k that is repeated in α · β as an ending height cannot be i. Fix
k and a path γ from k to j. For each path γ′ from i to k without repeated
heights, use (2.2.4) with respect to σ = (k, 1, . . . , k − 1, k + 1, . . . , m) on the
sum ∑

(−1)cycα α

over all α such that (α, γ′γ) ∈ G2 and the only repeated height in α · γ′ is the
ending height k. The sum of

∑
(−1)cycα α · β

over (α, β) ∈ G2, β = γ′γ, and k the only repeated (ending) height in α · γ′, is
therefore equal to (∑

P
σ
(p; r)

)
· γ

with

• p a vector of 1’s and 0’s, with 1 in the i-th entry and the k-th entry, and

• r equal to p except that the i-th entry is 0 and the k-th entry is 2.

Equation (2.2.4) of Theorem 2.2.1 yields

P
σ
(p; r) = O(p; r),

and this is clearly equal to 0 since α1ai1kai2kα2 and α1ai2kai1kα2 have opposite
signs in O(p; r), and since ai1kai2k = ai2kai1k.

This completes the proof.
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3.5 Weighted cases

Proof of Theorem 3.1.3. Assume that A is q-right-quantum. The proof consists of
a careful analysis of the powers of q we get if we repeat the steps of the proof of
Theorem 3.1.2. We want to prove the identity

detq(I − A) ·

(
1

I −A[i]

)

ii

= detq (I − A)ii . (3.5.1)

We have detq(I − A) =
∑

J⊆[m](−1)|J |detqAJ , so every sequence α = aλ′,µ′ that

appears in detq(I − A) is weighted by (−1)cycαq− inv(λ′) = (−1)cycαqinv(µ′)−inv(λ′). A
term β = aλ′′,µ′′ = aii1ai1i2 · · ·aini in (I − A[i])

−1
ii , on the other hand, is weighted by

q|{j : ij>i}|−|{j : ij<i}| (see the non-combinatorial proof of the same theorem on page 38),
which is equal to qinv(µ′)′−inv(λ′)′ . Furthermore, both α and β are balanced, so

inv(µ′µ′′)− inv(λ′λ′′) = inv(µ′)− inv(λ′) + inv(µ′′)− inv(λ′′),

cf. the proof of part (2) of Lemma 1.3.3. Therefore a term α ·β = aλ,µ on the left-hand
side of (3.5.1) is weighted by (−1)cycαqinv(µ)−inv(λ).
The switches we perform always involve relations (1.3.8) and (1.3.9), and we have
already verified (in the proof of Theorem 2.4.1) that this implies that every term aλ,µ
at each step of the proof is weighted by ±qinv(µ)−inv(λ), and the same cancellations
occur as in the proof of Theorem 3.1.2. We are left with the terms of detq(I − A)
that do not involve i, and this is exactly the right-hand side of (3.5.1).

Remark 3.5.1 Theorems 3.1.1 and 3.1.2 do not seem to have nice q-analogues when
i 6= j. The reason is that the terms of (1 − A)−1

ij (with the entries of A possibly
multiplied by some power of q, as in A[i]) are (weighted) paths from i to j and are
therefore not balanced sequences. ♦

3.6 Multiparameter cases

Proof of Theorem 3.1.4. This is almost identical to the proof of Theorem 3.1.3 in the
previous section. Assume that A is q-right-quantum, we want to prove the identity

detq(I − A) ·

(
1

I −A[i]

)

ii

= detq (I − A)ii . (3.6.1)

We continue as before, with the weight

qinv(µ)−inv(λ)

of the sequence aλ,µ replaced by

∏

(i,j)∈I(µ)

qµjµi

∏

(i,j)∈I(λ)

q−1
λjλi

,
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and relations (1.3.13) and (1.3.14) playing the role of (1.3.8) and (1.3.9).

Remark 3.6.1 It Chapter 5, we will need the conclusion of Theorem 3.1.4 for i = m
under the weaker assumption that qklajlaik = qijaikajl for k, l 6= m (or that aikajl −
q−1
ij ajkail = qklq

−1
ij ajlaik − qklailajk for k, l 6= m), i.e. that only the variables in the

first m − 1 columns of A satisfy the q-Cartier-Foata (q-right-quantum) relations. It
is easy to modify either the proof given in this section or in Section 3.2 to prove this
more general statement.
Namely, the variable aπ(m)m appearing in α with (α, β) ∈ G1 must be at the end of
α, and we do not have to swap this variable with any other when we apply the map
ϕ with respect to π = (m, . . . , 1) and σ = (m, 1, . . . , m− 1). On the other hand, the
steps that we switch in the case (α, β) ∈ G2 involve exactly one step starting at m,
and no steps ending at m, so we never use the q-Cartier-Foata (or q-right-quantum)
relation for variables that are in the last column of A.
Alternatively, take a look at the proof on page 37. If the first m−1 columns of A are
Cartier-Foata (or right-quantum) and B = I − A, the j-th coordinate of

((−1)m+1 detB1m, (−1)m+2 detB2m, . . . , Bmm) · B

is
∑m

k=1(−1)m+k detBkmbkj , which is equal to

det




b11 · · · b1,m−1 b1j
b21 · · · b2,m−1 b2j
...

. . .
...

...
bm1 · · · bm,m−1 bmj


 .

For j = m, this is clearly detB, and for j 6= m, the determinant involves no variables
a∗m, so Lemma 3.2.1 (or Lemma 3.2.2) implies that the determinant is 0 in this case.
Therefore

((−1)m+1 detB1m, (−1)m+2 detB2m, . . . , Bmm) = detB · εm · B
−1

and (
B−1

)
mm

=
1

detB
· detBmm,

which is what we wanted to prove. ♦

3.7 Jacobi ratio theorem

The proofs in Sections 3.3–3.4 are not only the simplest combinatorial proof of the
matrix inverse formula (see [Foa79] for an alternative combinatorial proof in the
Cartier-Foata case), but also generalize easily to the proof of Jacobi ratio theorem.
This result appears to be new (for either Cartier-Foata or right-quantum matrices),
although a variant was proved for general non-commutative variables in [GR91] and
for quantum matrices in [KL95].
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We need the following proposition.

Proposition 3.7.1 If the matrix A = (aij)m×m is right-quantum, so is the matrix
C = (cij)m×m = (I −A)−1.

Proof. First note that
cij = (I −A)−1

ij

is the sum of all lattice paths from i to j.
We need some notation:

• let O denote the sum of O(p) over all p ≥ 0, and let P denote the sum of P (p)
over all p ≥ 0;

• the superscript i in front of an expression E means that E contains no variable
ai∗; for example, icji denotes the sum of all paths from j to i that reach i exactly
once, and ijO is the sum of O(p) over all p ≥ 0 with pi = pj = 0;

• Oj
i for i 6= j means the sum of O(p; r) with pi = ri + 1, pj = rj − 1.

• Ok
ij for different i, j, k means the sum of O(p; r) with pi = ri + 1, pj = rj + 1,

pk = rk − 2.

• Okl
ij for different i, j, k, l means the sum of O(p; r) with pi = ri + 1, pj = rj + 1,

pk = rk − 1, pl = rl − 1.

Let us prove that cikcjk = cjkcik. There is nothing to prove when i = j, so we have
to consider two possible cases:

• Take i 6= j = k. First let us prove that cjj
jcij = cij. To see this, use (2.2.3) on

Oj
i twice, once with respect to the permutation π = (i, j, 1, 2, . . . , m) and once

with respect to the permutation σ = (j, i, 1, 2, . . . , m). We get

Oj
i = cij

jP π and Oj
i = cjj

jcij
jP π

and since jP π = jP is invertible in A (its constant term is 1), we have

cij = cjj
jcij. (3.7.1)

But every path from i to j splits into a path from i to j with no step starting
at j, and a path from j to j. Therefore multiplying (3.7.1) by cjj yields

cijcjj = cjj(
jcijcjj) = cjjcij,

which is the relation we had to prove.

• Assume that i 6= k 6= j. Note that using (2.2.3) with respect to π and σ gives

Ok
ij = cik

kcjk
kP = cjk

kcik
kP
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and so
cik

kcjk = cjk
kcik; (3.7.2)

when we multiply this by ckk, we get

cikcjk = cjkcik.

We also have to prove cikcjl + cilcjk = cjkcil + cjlcik for k 6= l. Let us investigate three
possible cases:

• Take i = k, j = l. By using (2.2.3) on O twice, once with respect to π and once
with respect to σ, we get

O = cii
icjj

ijP = cjj
jcii

ijP. (3.7.3)

Furthermore, (3.7.1) yields

cii
icjj = cii (cjj −

icji cij) = cii cjj − (cii
icji) cij = cii cjj − cjicij

and similarly
cjj

jcii = cjj cii − cij cji,

so (3.7.3) gives
cii cjj − cji cij = cjj cii − cij cji.

• Take i 6= k, j = l and use (2.2.3) on Ok
j for different permutations, we get

Ok
j = cii

icjk
ikP + cik

kcji
ikP and Ok

j = cjk
kcii

ikP.

But then
cii

icjk + cik
kcji = cjk

kcii

implies

cii (cjk −
icji cik) + cik (cji −

kcjk cki) = cjk (cii −
kcik cki)

and
cii cjk + cik cji = cjk cii + cii

icji cik + (cik
kcjk − cjk

kcik) cki,

and so (3.7.1) and (3.7.2) imply

cii cjk + cik cji = cjk cii + cji cik.

• Assume that i, j 6= k, l. Then the equalities

Okl
ij = cik

kcjl
klP + cil

lcjk
klP = cjk

kcil
klP + cjl

lcik
klP,

cik (cjl −
kcjk ckl) + cil (cjk −

lcjl clk) = cjk (cil −
kcik ckl) + cjl (cik −

lcil clk),
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and (3.7.2) imply
cik cjl + cil cjk = cjk cil + cjl cik.

This completes the proof.

Theorem 3.7.2 (right-quantum Jacobi ratio theorem) Take I, J ⊆ [m] with |I| =
|J |. If A = (aij)m×m is right-quantum and C = (cij)m×m = (I −A)−1, then

detCI,J = (−1)
∑

i∈I i+
∑

j∈J j ·
1

det(I − A)
· det(I − A)J,I .

In particular,

det

(
1

I − A

)
=

1

det(I − A)
.

Proof. We only sketch the proof as it is very similar to the proof of Theorem 3.1.2
given in Section 3.4 once we have Proposition 3.7.1, and we assume that I = J
as this makes the reasoning slightly simpler. Use (2.2.4) for σ = id (we can do
that because of Proposition 3.7.1) on detCI ; for a permutation π of I with cyclic
structure (i11i

1
2 . . . i

1
k1

)(i21i
2
2 . . . i

2
k2

) · · · (il1i
l
2 . . . i

l
kl

) (where the first element of each cycle
is the smallest, and where starting elements of cycles are increasing), we get the term

(−1)inv(π) (cil1,il2 · · · cilkl
,il1

) · · · (ci21,i22 · · · ci2k2
,i21

) (ci11,i12 · · · ci1k1
,i11

).

For each selection of paths (in variables aij)

il1 → il2, . . . , i
l
kl
→ il1, . . . , i

2
1 → i22, . . . , i

2
k2
→ i21, i

1
1 → i12, . . . , i

1
k1
→ i11,

this yields a concatenation of (possibly empty) lattice paths from il1 to il1, i
l−1
1 to il−1

1 ,
etc., with exactly one starting height its for every s marked on each path it1 → it1. For
example, take m = 5, I = {1, 2, 4}, and π =

(
124
421

)
. The term of detCI corresponding

to π is −c22c14c41, and some of the sequences (without the minus sign) corresponding
to this term are depicted in Figure 3-4. Note the empty path corresponding to c22 in
the second example. When we multiply detCI on the left by det(I − A), we get the

Figure 3-4: Some sequences in c22c14c41.

sum ∑
(−1)cycα+inv(β) α · β, (3.7.4)

where the sum runs over all pairs (α, β) with the following properties:

• α = aπ(j1)j1 · · ·aπ(jk)jk for some j1 < . . . < jk, and π is a permutation of
{j1, . . . , jk}; cycα denotes the number of cycles of π;
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• β is a concatenation of lattice path from il1 to i1l , i
l−1
1 to il−1

1 with exactly one
starting height its marked on each path it1 → it1, where

σ = (i11i
1
2 . . . i

1
k1

)(i21i
2
2 . . . i

2
k2

) · · · (il1i
l
2 . . . i

l
kl

)

and inv(β) denotes the number of inversions of σ.

The cancellation process described in the proof of the matrix inverse formula applies
here almost verbatim, and this shows that det(I−A)·detCI is equal to det(I−A)I .

49



50



Chapter 4

MacMahon master theorem

4.1 Introduction

The MacMahon master theorem is one of the jewels in enumerative combinatorics, and
it is as famous and useful as it is mysterious. Most recently, a new type of algebraic
generalization was proposed in [GLZ06] and was further studied in [FH08, FH07a,
FH07b, HL07]. In this chapter we present further generalizations of the MacMa-
hon master theorem and several other related results. While our generalizations are
algebraic in statement, the heart of our proofs is completely bijective, unifying all gen-
eralizations. The approach seems to be robust enough to allow further generalizations
in this direction.

Let us begin with a brief outline of the history of the subject. The master theorem was
discovered in 1915 by Percy MacMahon in his landmark two-volume “Combinatory
Analysis”, where he called it “a master theorem in the Theory of Partitions” [Mac16,
page 98]. Much later, in the early sixties, the real power of the master theorem was
discovered, especially as a simple tool for proving binomial identities (see [GJ83]). The
proof of the MacMahon master theorem using Lagrange inversion is now standard,
and the result is often viewed in the analytic context [Goo62, GJ83].

An algebraic approach to the MacMahon master theorem goes back to Foata’s thesis
[Foa65], parts of which were later expanded in [CF69] (see also [Lal79]). The idea was
to view the theorem as a result on “words” over a (partially commutative) alphabet,
so one can prove it and generalize it by means of simple combinatorial and algebraic
considerations. This approach became highly influential and led to a number of new
related results (see e.g. [Kob92, Min01, Vie86, Zei85]).

While the MacMahon master theorem continued to be extended in several directions
(see [FZ88, KS99]), the “right” q- and non-commutative analogues of the results
evaded discovery until recently. This was in sharp contrast with the Lagrange inver-
sion, whose q- and non-commutative analogues were understood fairly well [Gar81,
GR92, Ges80, GS83, PPR, Sin95]. Unfortunately, no reasonable generalizations of
the master theorem followed from these results.

An important breakthrough was made by Garoufalidis, Lê and Zeilberger (GLZ), who
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introduced a new type of q-analogue, with a technical proof [GLZ06]. In a series of
papers, Foata and Han first modified and extended the Cartier-Foata combinatorial
approach to work in this algebraic setting, obtaining a new (involutive) proof of the
GLZ-theorem [FH08]. Then they developed a beautiful “1 = q” principle which gives
perhaps the most elegant explanation of the results [FH07a] (see also Section 1.3).
They also analyze a number of specializations in [FH07b]. Most recently, Hai and
Lorenz gave an interesting algebraic proof of the GLZ-theorem, opening yet another
direction for exploration.

In this chapter, we present a number of generalizations of the classical MacMahon
master theorem in the style of Cartier-Foata and Garoufalidis-Lê-Zeilberger. Our
approach is bijective and is new even in the classical cases.

We begin with the statement of the commutative MacMahon master theorem due
to Percy MacMahon [Mac16] and show two classical applications. We give a short
combinatorial proof in Section 4.2. In Section 4.3, we show a non-commutative gener-
alization of the theorem: the right-quantum master theorem. We see that the theorem
is an easy corollary of the work in Chapters 2 and 3. In Section 4.4 we prove the
Garoufalidis-Lê-Zeilberger’s theorem (q-right-quantum master theorem). In Section
4.5, we generalize the theorem to the q-right-quantum case. In later sections, we
present some applications and extensions of this result:

• a β-extension in Section 4.6;

• a “non-balanced” version of the master theorem in Section 4.7;

• a concise proof of a q-extension of MacMahon master theorem due to Kratten-
thaler and Schlosser in Section 4.8.

We close the chapter with some remarks in Section 4.9. Note that Theorem 5.8.1 is a
generalization of both the β-extension of the master theorem and of Sylvester’s iden-
tity. There are also connections between the master theorem and Goulden-Jackson’s
immanant formula (6.1.3). See the appropriate sections for more details.

Theorem 4.1.1 (MacMahon master theorem) Let A = (aij)m×m be a complex ma-
trix, and let x1, . . . , xm be a set of variables. Denote by G(r) the coefficient of xr

in
m∏

i=1

(ai1x1 + . . .+ aimxm)ri. (4.1.1)

Let t1, . . . , tm be another set of variables, and T = diag t. Then

∑

r≥0

G(r)tr =
1

det(I − TA)
, (4.1.2)

where the summation is over all non-negative integer vectors r.

By taking t = 1 we get ∑

r≥0

G(r) =
1

det(I − A)
, (4.1.3)
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whenever both sides of the equation are well defined, for example when all aij are
formal variables. Moreover, replacing aij in (4.1.3) with aij ti shows that (4.1.3) is
actually equivalent to (4.1.2). We will use this observation throughout the chapter.

MacMahon master theorem is classically used to prove binomial identities. The fol-
lowing is a typical example.

Example 4.1.2 Let us derive Dixon’s identity. Denote the sum

n∑

i=0

(−1)i
(
n

i

)3

.

by S(n). Since

(
1−

x

y

)n(
1−

y

z

)n(
1−

z

x

)n
=

∑

0≤i,j,k≤n

(
n

i

)(
n

j

)(
n

k

)
(−1)i+j+kxi−kyj−izk−j ,

we have

S(n) = [x0y0z0]

(
1−

x

y

)n(
1−

y

z

)n(
1−

z

x

)n
= [xnynzn](y − x)n(z − y)n(x− z)n

and by Theorem 4.1.1,

S(n) = [tnunvn]
1

det(I − TA)
,

where

T =



t 0 0
0 u 0
0 0 v


 , A =




0 −1 1
1 0 −1
−1 1 0


 .

Therefore

S(n) = [tnunvn](1 + tu+ uv + vt)−1 =
∑

p,q,r≥0

(−1)p+q+r
(
p+ q + r

p, q, r

)
,

where the summation is over (p, q, r) with p+ r = p+ q = r+ q = n. In other words,

n∑

i=0

(−1)i
(
n

i

)3

= 0

for n odd and, for n = 2l,

n∑

i=0

(−1)i
(
n

i

)3

= (−1)l
(

3l

l, l, l

)
. ♦

Example 4.1.3 Let us find the generating function for the number of multiderange-
ments, i.e. permutations of the multiset {1r1, 2r2, . . . , mrm} for which no i is in a
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position previously occupied by (a copy of) i. We get the usual derangements for
r1 = r2 = . . . = 1.
Denote the number of multiderangement of {1r1, 2r2, . . . , mrm} by a(r). Then

a(r) = [xr](x2 + x3 + . . .+ xm)r1(x1 + x3 + . . .+ xm)r2 · · · (x1 + x2 + . . .+ xm−1)
rm ,

which is, by the master theorem, equal to [tr] det−1(I − TA), where

T =




t1 0 · · · 0
0 t2 · · · 0
...

...
. . .

...
0 0 · · · tm


 , A =




0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0


 ,

in other words,

∑

r≥0

a(r)tr =

∣∣∣∣∣∣∣∣∣

1 −t1 · · · −t1
−t2 1 · · · −t2
...

...
. . .

...
−tm −tm · · · 1

∣∣∣∣∣∣∣∣∣

−1

.

By definition,

Dm =
∑

σ∈Sm


sign(σ)(−1)m−|Fix(σ)|

∏

i/∈Fix(σ)

ti


 ,

where Fix(σ) is the set of fixed points of σ. Since Dm is symmetric in t1, . . . , tm, we
have Dm =

∑m
j=0(−1)jQjej(t), where ej is the elementary symmetric function and

Qj =
∑

π∈Sj ,Fix(π)=∅ sign(π). Define

Pj =
∑

π∈Sj

sign(π) =

{
1 : j = 0, 1
0 : otherwise

.

Then Pj =
∑j

i=0

(
j
i

)
Qi and Qj =

∑j
i=0(−1)j−i

(
j
i

)
Pi = (−1)j−1(j−1) by the inclusion-

exclusion principle. Therefore

∑

r≥0

a(r)tr =
1

1−
∑

i<j titj − 2
(∑

i<j<k titjtk

)
− . . .− (m− 1)t1 · · · tm

. ♦

4.2 A combinatorial proof of the classical MacMa-

hon master theorem

Observe that choosing a term of
∏m

i=1(ai1x1 + . . .+ aimxm)ri means choosing a term
a1∗x∗ r1 times, then choosing a term a2∗x∗ r2 times, etc., and then multiplying all
these terms. Moreover, if we are interested in the coefficient of xr, ∗ has to represent
1 r1 times, 2 r2 times, etc. In other words, each term on the left-hand side of (4.1.2)
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corresponds to an o-sequence (with respect to id) in O(r) for a unique vector r.

On the other hand, let B = (bij) be an invertible m ×m matrix over C. Denote by
B11 the matrix B without the first row and the first column, by B12,12 the matrix
B without the first two rows and the first two columns, etc. For the entries of the
inverse matrix we have

(
B−1

)
11

=
detB11

detB
. (4.2.1)

Substituting B = I − A and iterating (4.2.1), we obtain

1

det(I − A)
=

det (I − A11)

det(I − A)
·
det (I −A12,12)

det(I − A11)
·
det (I − A123,123)

det(I − A12,12)
· · ·

1

1− amm
=

=

(
1

I − A

)

11

(
1

I − A11

)

22

(
1

I −A12,12

)

33

· · ·
1

1− amm
,

provided that all the minors are invertible. Now let aij be commuting variables. We
obtain that the right-hand side of equation (4.1.3) is the product of entries in the
inverses of matrices.

Since (I − A)−1 = I + A + A2 + . . ., we get a combinatorial interpretation of the
(11)-entry: (

1

I − A

)

11

=
∑

a1j1aj1j2 · · ·ajn1, (4.2.2)

where the summation is over all finite sequences (j1, . . . , jn) with jr ∈ [m] for all r.
Similarly, (

1

I −A11

)

22

=
∑

a2j1aj1j2 · · ·ajn2,

where the summation is over all finite sequences (j1, . . . , jn) with jr ∈ {2, . . . , m} for
all r. A combinatorial interpretation of the other terms of the product is analogous.
But that means that each term on the right-hand side of (4.1.2) corresponds to a
p-sequence (with respect to id) in P(r) for a unique vector r.

This means that Theorem 4.1.1 is equivalent to the existence of a bijection

ϕ : O(r) −→ P(r)

for which ϕ(α) is a rearrangement of α for every o-sequence α. Of course, this is
precisely what we did in Section 2.1. As a reminder, ϕ in this special case (where the
sequences are balanced and π = σ = id) is constructed as follows. Take an o-sequence
α, and let [0, x] be the maximal interval on which it is part of a p-sequence, i.e. the
maximal interval [0, x] on which the o-sequence has the property that if a step ends
at level i, and the following step starts at level j > i, the o-sequence stays on or above
height j afterwards. Let i be the height at x. Choose the step (x′, i) → (x′ + 1, i′)
in the o-sequence that is the first to the right of x that starts at level i (such a step
exists because we have a balanced sequence). Continue switching this step with the
one to the left until it becomes the step (x, i) → (x + 1, i′). The new object is part

55



of a p-sequence at least on the interval [0, x+ 1]. Continuing this procedure we get a
p-sequence ϕ(α).

Example 4.2.1 Figure 4-1 shows the switches for an o-sequence of type (3, 1, 1), and
the p-sequence

a13a32a22a23a31a11a12a22a21a13a31a23a33a32a22a23a32a33a33

in Figure 4-2 is the result of applying this procedure to the o-sequence

a13a11a12a13a22a23a22a21a23a22a23a32a31a31a33a32a32a33a33

shown in the same figure (we need 33 switches). ♦

Figure 4-1: Transforming an o-sequence into a p-sequence.

Figure 4-2: An o-sequence and the corresponding p-sequence of type (4, 7, 8).

4.3 The right-quantum case

In this section, we assume that the variables x1, . . . , xm commute with each other and
with all aij. Note that the notion of the coefficient of xr in

m∏

i=1

(ai1x1 + . . .+ aimxm)ri (4.3.1)

still makes sense, since we can move the xi’s in each term to the right and order them.

Theorem 4.3.1 (right-quantum master theorem) Assume that A = (aij)m×m is a
right-quantum matrix. Denote the coefficient of xr in (4.3.1) by G(r). Then

∑

r≥0

G(r) =
1

det(I − A)
, (4.3.2)

where the summation is over all non-negative integer vectors r = (r1, . . . , rm).
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Proof. Exactly as in the commutative case,
∑
G(r) is the sum of all o-sequences, and

by (2.2.1), ∑

r≥0

G(r) =
∑

r≥0

O(r) =
∑

r≥0

P (r).

On the other hand, we have
1

det(I − A)
=

=

(
1

det(I − A)
· det

(
I − A11

))
·

(
1

det(I − A11)
· det

(
I − A12,12

))
· · ·

1

1− amm
,

which is, by the right-quantum matrix inverse formula (Theorem 3.1.2), equal to

(
1

I − A

)

11

·

(
1

I − A11

)

22

·

(
1

I − A12,12

)

31

· · ·

(
1

I − amm

)
. (4.3.3)

It follows that (4.3.3) is the sum over all p-sequences. This finishes the proof.

4.4 The q-right-quantum case

In this section, we assume that the variables x1, . . . , xm q-commute, xjxi = q xixj for
i < j, where q ∈ C \ {0} is fixed. Suppose also that x1, . . . , xm commute with all aij .
Again, it makes sense to talk about the coefficient of xr in

m∏

i=1

(ai1x1 + . . .+ aimxm)ri . (4.4.1)

In Section 1.4, we defined the concept of the q-determinant of a matrix B = (bij)m×m

with entries in A. Recall that we have

detq(I − A) =
∑

J⊆[m]

(−1)|J |detqAJ ,

where
detqAJ =

∑

σ∈SJ

(−q)− inv(σ)aσ(j1)j1 · · ·aσ(jk)jk

for J = {j1 < j2 < . . . < jk}. The following theorem was first proved in [GLZ06].

Theorem 4.4.1 (q-right-quantum master theorem) Assume that A = (aij)m×m is a
q-right-quantum matrix. Denote the coefficient of xr in (4.4.1) by G(r). Then

∑

r≥0

G(r) =
1

detq(I − A)
, (4.4.2)

where the sum is over all r = (r1, . . . , rm) ≥ 0, and detq denotes the q-determinant.

Proof: When we expand the product (4.4.1), move the xi’s to the right and order

57



them, the coefficient at aλ,µ is equal to qinv(µ). This means that
∑
G(r) is a weighted

sum of o-sequences, with an o-sequence α = aλ,µ weighted by qinv(µ) = qinv(α). So

∑

r≥0

G(r) =
∑

r≥0

Oq(r) =
∑

r≥0

Pq(r),

where the last equality follows from Theorem 2.4.1. On the other hand, we have

1

detq(I − A)
=

=

(
1

detq(I − A)
· detq

(
I − A11

))
·

(
1

detq(I − A11)
· detq

(
I −A12,12

))
· · ·

1

1− amm
,

which is, by the q-right-quantum matrix inverse formula (Theorem 3.1.3), equal to

(
1

I − A[1]

)

11

·

(
1

I − A[2]

)

22

·

(
1

I −A[3]

)

33

· · ·

(
1

I − A[m]

)

mm

, (4.4.3)

where

A[i] =




aii qai,i+1 · · · qai,m
ai+1,i qai+1,i+1 · · · qai+1,m

...
...

. . .
...

am,i qam,i+1 · · · qamm


 .

An entry in (4.4.3) is a p-sequence, and every step contributes q to the weight, except
for the last step of every primitive sequence. A p-sequence α of length n which
decomposes into p primitive sequences is therefore weighted by qn−p in (4.4.3), and,
by Proposition 2.3.3,

1

detq(I − A)
=
∑

r≥0

Pq(r).

This finishes the proof.

4.5 The q-right-quantum case

Fix complex numbers qij 6= 0, where 1 ≤ i < j ≤ m. Suppose that the variables
x1, . . . , xm are q-commuting, xjxi = qij xixj for i < j, and that they commute with
all aij . Again, we can talk about the coefficient of xr in

m∏

i=1

(ai1x1 + . . .+ aimxm)ri . (4.5.1)

In Section 1.4, we defined the concept of the q-determinant. We have

detq(I − A) =
∑

J⊆[m]

(−1)|J |detqAJ ,
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where

detqAJ =
∑

σ∈SJ




∏

p<r : jp>jr

(−qjrjp)
−1


 aσ(j1)j1 · · ·aσ(jk)jk

for J = {j1 < j2 < . . . < jk}.

Theorem 4.5.1 Assume that A = (aij)m×m is a q-right-quantum matrix. Denote
the coefficient of xr in (4.5.1) by G(r). Then

∑

r≥0

G(r) =
1

detq(I − A)
, (4.5.2)

where the he sum is over all r = (r1, . . . , rm) ≥ 0, and detq denotes the q-determinant.

Proof. When we expand the product (4.5.1), move the xi’s to the right and order
them, the coefficient at aλ,µ is equal to

∏
(i,j)∈I(µ) qµjµi

. This means that
∑
G(r) is a

weighted sum of o-sequences, with an o-sequence α = aλ,µ weighted by

∏

(i,j)∈I(µ)

qµjµi
=

∏

(i,j)∈I(µ)

qµjµi

∏

(i,j)∈I(λ)

q−1
λjλi

= qinv α.

In other words, we have

∑

r≥0

G(r) =
∑

r≥0

Oq(r) =
∑

r≥0

Pq(r),

where the last equality follows from Theorem 2.6.1. On the other hand, we have

1

detq(I −A)
=

=

(
1

detq(I −A)
· detq

(
I − A11

))
·

(
1

detq(I −A11)
· detq

(
I −A12,12

))
· · ·

1

1− amm
,

which is, by the q-right-quantum matrix inverse formula (Theorem 3.1.4), equal to

(
1

I − A[1]

)

11

·

(
1

I − A[2]

)

22

·

(
1

I −A[3]

)

33

· · ·

(
1

I − A[m]

)

mm

, (4.5.3)

where

A[i] =




aii qi,i+1ai,i+1 · · · qi,mai,m
ai+1,i qi,i+1ai+1,i+1 · · · qi,mai+1,m

...
...

. . .
...

am,i qi,i+1am,i+1 · · · qi,mamm


 .

An entry in (4.5.3) is a p-sequence, with a step that is not the first step of a primitive
path contributing qij to the weight, where j is the step’s ending height and i is the
starting height of the primitive path that the step is part of. A p-sequence α therefore
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has, as a term of (4.5.3), weight ∏
qij,

where the product runs over all pairs (i, j) with i the starting height of a primitive
path of α, and j another height of the same primitive path. By Proposition 2.3.3,

1

detq(I − A)
=
∑

r≥0

Pq(r).

This finishes the proof.

4.6 The β-extension

In this section we first present an extension of MacMahon master theorem due to
Foata and Zeilberger. Their theorem does not generalize to our non-commutative
settings, but we find a variant that does.

First, assume that aij are commutative variables and let β ∈ N be a non-negative
integer. For r = (r1, . . . , rm), let P(r) denote the set of all permutations of the set

{(1, 1), . . . , (1, r1), (2, 1), . . . , (2, r2), . . . , (m, 1), . . . , (m, rm)}. (4.6.1)

For a permutation π ∈ P(r), we define πij = i′ whenever π(i, j) = (i′, j′). Define the
weight v(π) by the word

v(π) =

m∏

i=1

ri∏

j=1

ai,πij

and the β-weight vβ(π) by the product

vβ(π) = βcycπv(π),

where cyc π is the number of cycles of the permutation π. For example, if

π =

(
(1, 1) (1, 2) (1, 3) (2, 1) (3, 1)
(2, 1) (1, 2) (1, 1) (3, 1) (1, 3)

)
∈ P(3, 1, 1),

then v(π) = a12a11a11a23a31 and vβ(π) = β2 a12a11a11a23a31.

By definition, the word v(π) is always an o-sequence of type r. Note now that the
word α ∈ O(r) does not determine the permutation π uniquely, since the second
coordinate j′ in (i′, j′) = π(i, j) can take any value between 1 and ri′ . From here it
follows that there are exactly r1! · · · rm! permutations π ∈ P(r) corresponding to a
given o-sequence α ∈ O(r). The (usual) MacMahon master theorem can be restated
as

1

det(I −A)
=
∑

r≥0

1

r!

∑

π∈P(r)

v(π).
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Foata and Zeilberger proved in [FZ88, §3] the following extension of the master the-
orem: (

1

det(I −A)

)β
=
∑

r≥0

1

r!

∑

π∈P(r)

vβ(π). (4.6.2)

Proof: For the sake of completeness, we include Foata and Zeilberger’s proof.
Call a permutation π ∈ P(r) connected if it has only one cycle, and write C(r) for the
set of connected permutations of the set (4.6.1). Note that vβ(π) = βv(π) π ∈ C(r)
and that vβ is multiplicative in the sense that if π is the product of cycles π1, . . . , πk
then vβ(π) = vβ(π1) · · · vβ(πk). Every permutation decomposes into a product of
connected permutations, so by the exponential formula (see e.g. [Sta99, Corollary
5.1.6])

1

det(I − A)
=
∑

r≥0

1

r!

∑

π∈P(r)

v(π) = exp




∑

r≥0

1

r!

∑

π∈C(r)

v(π)





and
(

1

det(I − A)

)β
= exp



∑

r≥0

1

r!

∑

π∈C(r)

βv(π)


 =

= exp



∑

r≥0

1

r!

∑

π∈C(r)

vβ(π)


 =

∑

r≥0

1

r!

∑

π∈P(r)

vβ(π).

Take a word µ in the alphabet {1, . . . , m}, and let λ denote its non-decreasing rear-
rangement. Define

cµ(β) =
1

r!

∑

π

βcyc(π),

where r is the type of the o-sequence aλ,µ (i.e. ri is the number of i’s in µ) and the
sum runs over all π ∈ P(r) with v(π) = aλ,µ. Another way to phrase (4.6.2) is to say
that (

1

det(I −A)

)β
=
∑

µ

cµ(β)aλ,µ (4.6.3)

where µ runs over all words in the alphabet {1, . . . , m} and λ is the non-decreasing
rearrangement of µ.

Example 4.6.1 Take a11a12a21a22 (so r1 = r2 = 2). The relevant permutations are

(
(1, 1) (1, 2) (2, 1) (2, 2)
(1, 1) (2, 1) (1, 2) (2, 2)

)
,

(
(1, 1) (1, 2) (2, 1) (2, 2)
(1, 1) (2, 2) (1, 2) (2, 1)

)
,

(
(1, 1) (1, 2) (2, 1) (2, 2)
(1, 2) (2, 1) (1, 1) (2, 2)

)
,

(
(1, 1) (1, 2) (2, 1) (2, 2)
(1, 2) (2, 2) (1, 1) (2, 1)

)
,

and therefore
c1212(β) = (β3 + 2β2 + β)/4. ♦
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Denote by Sr the natural embedding of Sr1 × · · · × Srm into Sr1+...+rm . Since the
variables aij commute, aλ,µ remains the same if we apply π ∈ Sr to µ. For example,
a12a11a22a21 = a11a12a21a22. Furthermore, it is easy to see that cµ is also invariant
with respect to the action of Sr.

Write µ = µ1µ2 · · ·µm, where µi is of length ri. Denote by rji the number of j’s in µi;
clearly, ri = r1

i + . . .+ rmi . The orbit of µ with respect to the action of Sr has

(
r1

r1
1, r

2
1 . . . , r

m
1

)(
r2

r1
2, r

2
2, . . . , r

m
2

)
· · ·

(
rm

r1
m, r

2
m, . . . , r

m
m

)

elements. This means that if we rearrange the terms on the right-hand size of (4.6.2)
lexicographically (so aij never appears before aik for j > k), the coefficient of aλ,µ is

1
∏

i,j r
j
i !

∑

π

βcyc(π),

where the sum runs over all π ∈ P(r) with v(π) = aλ,µ.

Assume now that the matrix A is Cartier-Foata. Choosing a term of (det(I − A))−β

means choosing β terms in (det(I − A))−1 and multiplying them from left to right.
Since the variables with different left indices commute, we can write each term of
(det(I −A))−β as an o-sequence, and there must exist non-negative integers dµ(β) so
that (

1

det(I − A)

)β
=
∑

µ

dµ(β)aλ,µ

where µ runs over all words in the alphabet {1, . . . , m} and λ is the non-decreasing
rearrangement of µ.

Even though commutative variables are also Cartier-Foata, that does not mean that
cµ = dµ for all µ; in fact, cµ(β) is not always an integer. For example, we have (by
Example 4.6.1)

c1212(2) = c1221(2) = c2112(2) = c2121(2) = 9/2,

while
d1212(2) = d2121(2) = 4, d1221(2) = d2112(2) = 5.

Note, however, that we do have

c1212(2) + c1221(2) + c2112(2) + c2121(2) = d1212(2) + d2121(2) + d1221(2) + d2112(2)

since the values on both sides represent the coefficient of a11a12a21a22 in (det(I−A))−2

when we rearrange commuting variables aij in lexicographic order. In general, we have

∑

µ

cµ(β) =
∑

µ

dµ(β), (4.6.4)
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where both sums run over the orbit of a word of type r under the action of Sr.

Let us find a combinatorial interpretation of dµ. For an o-sequence aλ,µ, take the
corresponding p-sequence aλ′,µ′ = ϕ(aλ,µ) (see Section 4.2), and interpret it as a
sequence of steps.

In what follows, we call a lattice path from i to i with each height appearing at most
once as the starting height a disjoint cycle. For example, a12a25a53a31 is a disjoint
cycle while a12a23a33a31 is not.

If the first repeated height in aλ′,µ′ is the starting height of the sequence, the sequence
starts with a disjoint cycle; remove it and repeat the algorithm. If the first repeated
height in aλ′,µ′ is not the starting height of the sequence, we have λ′ starting with
i1i2 · · · ipip+1ip+2 · · · ip+r−1 and µ′ starting with i2i3 · · · ip+1ip+2 · · · ip for different in-
dices i1, . . . , ip+r−1. Then we can move the disjoint cycle ip → ip+1 → . . .→ ip+r−1 →
ip to the beginning, remove it, and repeat the algorithm with the rest of the sequence.
The resulting sequence is a concatenation of disjoint cycles, and we call it the disjoint
cycle decomposition of the o-sequence aλ,µ.

Example 4.6.2 Take the o-sequence

a13a11a12a13a22a23a22a21a23a22a23a32a31a31a33a32a32a33a33

from Example 4.2.1. The corresponding disjoint cycle decomposition is

a22a32a23a13a31a11a22a12a21a13a31a33a23a32a22a23a32a33a33.

and has 13 cycles. See Figure 4-3. ♦

Figure 4-3: Disjoint cycle decomposition of an o-sequence.

Remark 4.6.3 Note that the word “disjoint” means that the starting heights in each
cycle are different, not that the starting heights of different cycles are disjoint as sets.
If µ is a permutation of {1, 2, . . . , m}, the disjoint cycle decomposition of a12...m,µ is
a canonically chosen disjoint cycle decomposition of the permutation µ. ♦

Recall that we are trying to calculate the β-th power of the sum of all o-sequences.
Imagine we have β (linearly ordered) slots, and that we are given a word µ and its
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non-decreasing rearrangement λ. The number of ways of putting each step λi → µi
in one of the slots so that the steps within each slot form an o-sequence, and so that
the resulting sequence is aλ,µ, is precisely the coefficient dµ(β).

The following lemma will reduce the calculation of dµ to a simple combinatorial
argument.

Lemma 4.6.4 All the steps in a cycle of the disjoint cycle decomposition must be
placed in the same slot.

Proof: Assume by induction that we have proved this for the first p− 1 cycles, with
the base of induction being p = 1. Take the p-th cycle i1 → i2 → . . . → il → i1. If
l = 1, there is nothing to prove, otherwise assume that i1 → i2 is placed in slot r and
that i2 → i3 is placed in slot r′ > r. The step i1 → i2 in slot r ends with i2, and
since the sequence in each slot is balanced, there must be a step with starting height
i2 in slot r. If this step is in one of the first p − 1 cycles, there is another step with
ending height i2 in slot r by the induction hypothesis. This would mean that in slot r
there is a step with starting height i2 that belongs to one of the cycles p+1, p+2, . . .,
which is a contradiction since this step should be to the right of i2 → i3.
The contradiction proves that i2 → i3 must be in a slot r′ ≤ r. But if r′ < r, the
same reasoning as above shows that i3 → i4, i4 → i5 etc. are in a slot strictly to the
left of r. In particular, this would hold for the step i1 → i2, which is a contradiction.
This shows that i2 → i3 is in the same slot as i1 → i2, and the same proof shows that
the whole cycle i1 → i2 → . . .→ il → i1 is in the same slot.

We will say that two cycles in the disjoint cycle decomposition are disjoint if the sets
of their starting heights are disjoint. Furthermore, let des(π) denote the number of
descents of a permutation π, i.e. the cardinality of the set {i : π(i) > π(i+ 1)}.

Theorem 4.6.5 Assume A = (aij)m×m is a Cartier-Foata matrix. For a word µ in
the alphabet {1, . . . , m}, denote by λ its non-decreasing rearrangement, and denote by
dµ(β) the coefficient of aλ,µ in (det(I − A))−β.
Let u1u2 · · ·uk be the disjoint cycle decomposition of the o-sequence aλ,µ. Then

dµ(β) =
∑

π

(
β + k − 1− des(π)

k

)
, (4.6.5)

where the sum is over π ∈ Sk for which i < j, π(i) > π(j) implies disjoint uπ(i), uπ(j).

Example 4.6.6 The sequence a11a12a21a22 is already written as a product of three
disjoint cycles, u1 = a11, u2 = a12a21, u3 = a22, so u1 has to appear before u2, and u2

has to appear before u3. The only permutation in the sum (4.6.5) is therefore id, and

d1212(β) =

(
β + 2

3

)
=
β(β + 1)(β + 2)

6
.

The disjoint cycle decomposition of a11a12a22a21 is (a11)(a22)(a12a21), so u1 and u2

64



have to appear before u3. The permutations in the sum (4.6.5) are 123 and 213, and

d1221(β) =

(
β + 2

3

)
+

(
β + 1

3

)
=
β(β + 1)(2β + 1)

6
.

We also get d2112(β) = d1221(β) and d2121(β) = d1212(β). Note that indeed

c1212(β) + c1221(β) + c2112(β) + c2121(β) = d1212(β) + d2121(β) + d1221(β) + d2112(β),

as predicted by (4.6.4). ♦

Example 4.6.7 It is interesting to note what (4.6.4) gives for special cases of µ. For
µ = 11 . . . 1, we get

1

r!

∑

π∈Sr

βcycπ =

(
β + r − 1

r

)
,

for µ = 12 . . . r, we get

βr =
∑

π∈Sr

(
β + r − 1− des(π)

r

)
,

while for µ = 11 . . . 122 . . . 2 . . .mm . . .m of type r, we get

1

r!

∑

πi∈Sri

βcycπ1+...+cyc πm =
m∏

i=1

(
β + ri − 1

ri

)
=
∑

π

(
β + r − 1− des(π)

r

)
,

where π runs over permutations in Sr, r = r1 + . . . + rm, with π−1(i) < π−1(j)
whenever r1 + . . .+ rp < i < j ≤ r1 + . . .+ rp+1 for some p. In other words, we get a
combinatorial interpretation of the coefficients ed in the expansion

m∏

i=1

(
β + ri − 1

ri

)
=

r∑

d=1

ed

(
β + r − d

r

)
:

ed is the number of permutations π ∈ Sn with d descents and with the property
π−1(i) < π−1(j) whenever r1 + . . .+ rp < i < j ≤ r1 + . . .+ rp+1 for some p. ♦

Example 4.6.8 It is easy to see that the coefficient dµ(β) of the o-sequence aλ,µ in
(det(I−A))−β is a polynomial in β for β ∈ C. It follows that the formula (4.6.5) holds
for all β ∈ C. For example, take β = −1. If the disjoint cycle decomposition of aλ,µ
has r cycles, the binomial coefficients appearing in (4.6.5) are

(
r−2
r

)
,
(
r−3
r

)
, . . . ,

(
−1
r

)
.

These are all zero except
(
−1
r

)
= (−1)r. In other words, dµ(−1) = 0 unless the

permutation r . . . 21 is permissible, i.e. unless all r cycles are disjoint, in which case
dµ(−1) = (−1)r. But this is exactly det(I −A) =

∑
J⊆[m](−1)|J | detAJ . ♦

Proof (of Theorem 4.6.5): By the lemma, each cycle has to lie in one of the slots.
So we have to find the number of ways to place the k cycles in β slots so that their
product is aλ,µ. Note that two cycles commute if and only if they are either the same
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or disjoint. That means that a permutation π of the cycles gives aλ,µ if and only if the
inversions of π correspond to pairs of disjoint cycles. Take the identity permutation,
which does not have inversions and therefore certainly satisfies this condition. We
have to find the number of ways of placing these k linearly ordered cycles in β linearly
ordered slots. Of course, there are

(
β+k−1

k

)
ways to do that. Now assume that the

first two cycles are disjoint, so that the permutation 2134 . . . k satisfies the condition.
There are again

(
β+k−1

k

)
ways to place the cycles in the slots, but since the first two

cycles commute, placing them in the same slot would give the same term as the
corresponding placement for the identity permutation. Basic enumeration shows that
the number of ways to place k linearly ordered cycles in β linearly ordered slots so
that the first two cycles are in different slots is

(
β+k−2

k

)
. Similarly, for any permutation

π whose inversions correspond to pairs of disjoint cycles, a descent i of π corresponds
to commuting cycles uπ(i), uπ(i+1), so we should not place π(i) and π(i+1) in the same

slot to avoid double counting. In other words, dµ(β) =
∑

π

(
β+k−1−des(π)

k

)
, where the

sum is over all permutations π ∈ Sk such that i < j, π(i) > π(j) implies that the
cycles uπ(i), uπ(j) are disjoint.

Finally, assume that A is right-quantum. By the right-quantum MacMahon theorem
(Theorem 4.3.1), each of the β factors of (det(I−A))−β is a sum of o-sequences. After
multiplication, we get a sum over all concatenations of β o-sequences. However, this
cannot be transformed into a sum of o-sequences, as shown by the following.

Example 4.6.9 The sum over all sequences of type (1, 1) in (det(I − A))−2 is

a11a22 ·1+a11 ·a22+a22 ·a11+1·a11a22+a12a21 ·1+1·a12a21 = 3a11a22+a22a11+2a12a21,

which is not equal to a weighted sum of o-sequences. ♦

Extensions to weighted cases in the spirit of Section 2.3 and 2.5 are possible, however.

Theorem 4.6.10 Assume A = (aij)m×m is a q-Cartier-Foata matrix. For a word µ
in the alphabet {1, . . . , m}, denote by λ its non-decreasing rearrangement, and denote
by dq

µ(β) the coefficient of aλ,µ in (detq(I−A))−β. Let u1u2 · · ·uk be the disjoint cycle
decomposition of aλ,µ. Then

dq
µ(β) =




∏

(i,j)∈I(µ)

qµjµi


 ·

∑

π

(
β + k − 1− des(π)

k

)
,

with the sum over π ∈ Sk for which uπ(i), uπ(j) are disjoint if i < j, π(i) > π(j).

4.7 Non-balanced master theorem

For commuting variables t1, . . . , tm, write T = diag t, and choose d with
∑
di = 0.

Denote byM the multiset of all i with di < 0, with each i appearing −di times, and by
S(M) the set of all permutations of the multisetM; denote by N = (N1, N2, . . . , Nd)
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the multiset of all i with di > 0, with each i appearing di times. Note that M and
N have the same cardinality δ; write M (respectively N) for the sum of all elements
of M (respectively N ) counted with their multiplicities. For π = π1 · · ·πδ ∈ S(M),
let Ikπ (for 1 ≤ k ≤ δ) be the set {π1, . . . , πk}, write εkπ for the size of the intersection
of Ik−1

π and the open interval between πk and Nk, and write Jkπ = (Ikπ \ {πk})∪{Nk}.

Theorem 4.7.1 Choose a right-quantum matrix A = (aij)m×m, and let x1, . . . , xm
be commuting variables that commute with aij. For p, r ≥ 0, denote the coefficient of
xr in

∏m
i=1(ai1x1 + . . .+ aimxm)pi by G(p; r). Then

FA,d(t) =
∑

p=r+d

G(p; r)tp =

=
(−1)M+N

det(I − TA)

∑

π∈S(M)

δ∏

k=1

(−1)ε
k
π · det(I − TA)I

k
π ,J

k
π ·

1

det(I − TA)Ik
π,I

k
π

. (4.7.1)

Proof. Fix non-negative integer vectors p, r with p = r+d, and use (2.1.3) on O(p; r)
with respect to the permutation σ = i1 · · · isj1 · · · , jt, where i1 < i2 < . . . < is form
the underlying set of N (in other words, {i1, . . . , is} = {i : di > 0}) and j1 < j2 <
. . . < jt are the remaining elements of [m].
A path sequence in Pσ(p; r) has the following structure. The first path starts at
N1 = i1 and ends at one of the heights inM; the second path starts at N2 (which is
i1 if di1 > 1, and i2 if di1 = 1), and ends at one of the heights in M, and it does not
include the ending height of the previous path except possibly as the ending height.
In general, the k-th path starts at Nk and ends at one of the heights inM, and does
not contain any of the ending heights of previous paths except possibly as the ending
height. All together, the ending heights of these δ paths form a permutation of M,
which explains why FA,d(t) is written as a sum over π ∈ S(M). After these paths,
we have a balanced path sequence that does not include any height inM.
Now choose π = π1 · · ·πδ ∈ S(M), and look at all the p-sequences in Pσ(p; r) (for all
p, r ≥ 0 with p = r + d) whose first δ ending heights of paths are π1, . . . , πδ (in this
order). The k-th path is a path from Nk to πk, and it does not include π1, . . . , πk−1

except possibly as an ending height. By the matrix inverse formula (Theorem 3.1.2),
such paths, weighted by tpk , where (pk, rk) is the path’s type, are enumerated by

±
1

det(I − TA)I
k−1
π ,Ik−1

π

· det(I − TA)I
k
π ,J

k
π ,

and a simple consideration shows that the sign is (−1)Nk+πk+εk
π . The balanced path

sequences that do not include heights fromM are enumerated by

(
1

det(I−TA)Iδ
π
· det(I − TA)I

δ
π∪{j1}

)
·
(

1

det(I−A)Iδ
π∪{j1}

· det (I − A)I
δ
π∪{j1,j2}

)
· · ·

1

1−ajtjt
=

=
1

det(I − TA)Iδ
π

,
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where we wrote det(I − TA)I instead of det(I − TA)I,I . Formula (4.7.1) follows.

Example 4.7.2 For d = 0, we have M = N = ∅, (M) = {∅}, M = N = 0, δ = 0,

FA,d(t) =
1

det(I − TA)
,

which is the right-quantum master theorem. ♦

Example 4.7.3 Take

A =




2 1 4 2
3 2 4 3
3 4 1 1
1 3 5 5


 , d = (1,−2, 2,−1),

F = FA,d(t) = 40tv2 + 262t2v2 + 128tuv2 + 312tv3 + 251tv2w + . . . .

where we write t, u, v, w instead of t1, t2, t3, t4. We have M = (2, 2, 4), S(M) =
{224, 242, 422}, N = (1, 3, 3), δ = 3, M = 8, N = 7, I1

224 = {2}, I2
224 = {2},

I3
224 = {2, 4}, I1

242 = {2}, I2
242 = {2, 4}, I3

242 = {2, 4}, I1
422 = {4}, I2

422 = {2, 4},
I3
422 = {2, 4}, εiπ = 0 for all π and i, J1

224 = {1}, J2
224 = {3}, J3

224 = {3, 4}, J1
242 = {1},

J2
242 = {2, 3}, J3

242 = {3, 4}, J1
422 = {1}, J2

422 = {3, 4}, J3
422 = {3, 4}. Therefore

F = −
1

det(I − TA)

(
det(I − TA)2,1

det(I − TA)2,2

det(I − TA)2,3

det(I − TA)2,2

det(I − TA)24,34

det(I − TA)24,24
+

det(I − TA)2,1

det(I − TA)2,2

det(I − TA)24,23

det(I − TA)24,24

det(I − TA)24,34

det(I − TA)24,24
+

det(I − TA)4,1

det(I − TA)4,4

det(I − TA)24,34

det(I − TA)24,24

det(I − TA)24,34

det(I − TA)24,24

)
=

F = −
D24,34

(
D2,1D2,3D4,4D24,24 +D2,1D2,2D4,4D24,23D24,34 +D4,1D

2
2,2D24,34

)

DD2
2,2D4,4D2

24,24

,

where

D = det(I − TA) = 1−2t−2u−v −5w +tu−10tv+8tw−14uv+
uw −5tuv−4tuw+28tvw+17uvw+46tuvw,

D2,1 = det(I − TA)2,1 = −t− 15tv − tw + 34tvw,
D2,2 = det(I − TA)2,2 = 1− 2t− v − 5w − 10tv + 8tw + 28tvw,
D2,3 = det(I − TA)2,3 = −4v + 5tv + 17vw − 30tvw,
D4,1 = det(I − TA)4,1 = −2t+ tu− 2tv − 13tuv,
D4,4 = det(I − TA)4,4 = 1− 2t− 2u− v + tu− 10tv − 14uv − 5tuv,
D24,23 = det(I − TA)24,23 = −v − 4tv,
D24,24 = det(I − TA)24,24 = 1− 2t− v − 10tv,
D24,34 = det(I − TA)24,34 = −4v + 5tv.

Since we are dealing with complex variables, we do not have to worry about the order
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of multiplication. ♦

Corollary 4.7.4 For every n, we have

n−1∑

i=1

(−1)i
(

n

i− 1

)(
n

i

)(
n

i+ 1

)
=

{
2(−1)m

(
2m
m−1

)(
3m
m−1

)
: n = 2m

0 : n = 2m− 1
.

Proof. Let us denote the sum we are trying to calculate by S(n). Clearly,

[xn+1yn+1zn−2](z − y)n(x− z)n(y − x)n = [xyz−2](1− y
z
)n(1− z

x
)n(1− x

y
)n =

= [xyz−2]
∑

i,j,k

(−1)i+j+k
(
n

i

)(
n

j

)(
n

k

)(
x

y

)i (y
z

)j (z
x

)k
= S(n),

and so we have to use Theorem 4.7.1 for

A =




0 −1 1
1 0 −1
−1 1 0


 , d = (−1,−1, 2).

We get

∑

p=r+d

G(p; r)tp1up2vp3 =
−v2(1 + t)

(1 + tv)(1 + tu+ tv + uv)
+

−v2(1− u)

(1 + uv)(1 + tu+ tv + uv)

and

S(n) = [tnunvn]

(
−v2(1 + t)

(1 + tv)(1 + tu+ tv + uv)
+

−v2(1− u)

(1 + uv)(1 + tu+ tv + uv)

)
=

= 2[tnunvn]

(
−v2

(1 + tv)(1 + tu+ tv + uv)

)
,

where we used some obvious symmetry. Then

S(n) = 2
∑

i,j,k,l

(−1)l+1(tv)lv2

(
i+ j + k

i, j, k

)
(−1)i+j+k(tu)i(tv)j(uv)k,

with the sum over all i, j, k, l ≥ 0 with l + i+ j = n, i+ j = n, l + 2 + j + k = n, i.e.
S(n) = 0 if n is odd and

S(2m) =
2(−1)m

(m+ 1)!(m− 1)!

m−1∑

l=0

(3m− 1− l)!

(m− 1− l)!
= 2(−1)m

(
2m

m− 1

)m−1∑

l=0

(
3m− 1− l

m− 1− l

)
;

therefore S(2m) = 2(−1)m
(

2m
m−1

)(
3m
m−1

)
, since every (m− 1)-subset of [3m] consists of

elements 1, . . . , l and an (m−1−l)-subset of {l+2, . . . , 3m} for a uniquely determined
l.
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Remark 4.7.5 It is easy to find the “dual” version of Theorem 4.7.1, namely to
calculate the generating function

F̃A,d(t) =
∑

p=r+d

G(p; r)tr :

paths from Nk to πk that do not include π1, . . . , πk−1 except possibly as an ending
height, weighted by trk, where (pk, rk) is the type of the path, are enumerated by

±
1

det(I − AT )I
k−1
π ,Ik−1

π

· det(I − AT )I
k
π ,J

k
π .

Therefore

F̃A,d(t) =
(−1)M+N

det(I − AT )

∑

π∈S(M)

δ∏

k=1

(−1)ε
k
π · det(I − AT )I

k
π ,J

k
π ·

1

det(I −AT )Ik
π ,I

k
π

with the same notation as in Theorem 4.7.1. ♦

Remark 4.7.6 It would be nice to use Theorem 4.7.1 to prove

n−k∑

i=k

(−1)i
(

n

i− k

)(
n

i

)(
n

i+ k

)
=

(−1)m(2m)!2(3m)!

m!(m− k)!(m+ k)!(2m− k)!(2m+ k)!
, (4.7.2)

which can be established by the WZ method [PWZ96] (see also Remark 4.7.7). The
author proved the left-hand side is equal to 0 if n is odd and, if k ≥ 1, is equal to

2

k∑

j=1

(
2k − j − 1

k − 1

) ⌊j/2⌋∑

i=0

(−1)m−i

(
j

2i

)(
3m− i+ j − k

m− i

)(
2m

m+ k − i

)
,

and it is easy to see for small k that this is equal to the right-hand side of (4.7.2).

Remark 4.7.7 It was pointed out to the author by Christian Krattenthaler that the
identity (4.7.2) is a special case of

3F2 (a, b, c; 1+a−b, 1+a−c; 1) =
Γ
(
1+ a

2

)
Γ (1+a−b) Γ (1+a−c) Γ

(
1+ a

2
−b−c

)

Γ (1+a) Γ
(
1+ a

2
−b
)
Γ
(
1+ a

2
−c
)
Γ (1+a−b−c)

,

a more general form of Dixon’s identity. ♦

4.8 Krattenthaler-Schlosser’s q-analogue

In the context of multidimensional q-series, an interesting q-analogue of the MacMa-
hon master theorem was obtained in [KS99, Theorem 9.2]. In this section we place
the result in our non-commutative framework and deduce it from Theorem 4.3.1.
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We start with some basic definitions and notations. Let zi, bij , 1 ≤ i, j ≤ m, be
commutative variables, and let q1, . . . , qm ∈ C be fixed complex numbers. Denote by
Ei the qi-shift operator

Ei : C[z1, . . . , zm] −→ C[z1, . . . , zm]

that replaces each occurrence of zi by qizi. We assume that Er commutes with bij , for
all 1 ≤ i, j, r ≤ m. For a non-negative integer vector k = (k1, . . . , km), denote by [zk]F
the coefficient of zk11 · · · z

km
m in the series F . Denote by 1 the constant polynomial 1.

Finally, let
(a; q)k = (1− a)(1− aq) · · · (1− aqk−1).

Theorem 4.8.1 (Krattenthaler-Schlosser) Let A = (aij)m×m, where

aij = ziδij − zibijEi , for all 1 ≤ i, j ≤ m.

Then, for non-negative integer vector k, we have:

[z0]

m∏

i=1

(
m∑

j=1

bijzj/zi; qi

)

ki

=
[
zk
] ( 1

det(I −A)
· 1

)
. (4.8.1)

Note that the right-hand side of (4.8.1) is non-commutative and (as stated) does not
contain qi’s, while the left-hand side contains only commutative variables and qi’s. It
is not immediately obvious and was shown in [KS99] that the theorem reduces to the
MacMahon master theorem. Here we give a new proof of the result.

Proof of Theorem 4.8.1. Think of variables zi and bij as operators acting on poly-
nomials by multiplication. Then a matrix entry aij is an operator as well. Note
that multiplication by zi and the operator Ej commute for i 6= j. This implies that
the equation (1.3.2) holds, i.e. that A is a Cartier-Foata (and therefore also a right-
quantum) matrix. Let x1, . . . , xm be formal variables that commute with each other
and with aij ’s. By Theorem 4.3.1, we have:

1

det(I − A)
=
∑

r≥0

G(r1, . . . , rm),

where

G(r1, . . . , rm) = [xr]

m∏

i=1

(ai1x1 + . . .+ aimxm)ri .

Recall that aij = zi(δij − bijEi). Now observe that every coefficient G(r1, . . . , rm) ·1 is
equal to zr times a polynomial in bij and qi. Therefore, the right-hand side of (4.8.1)
is equal to

[
zk
] ( 1

det(I − A)
· 1

)
=
[
zk
]
(
∑

r

G(r) · 1

)
=
[
zk
] (
G(k) · 1

)
.
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This is, of course, a sum of [zk](α · 1) over all o-sequences α of type k. Define

ckij = ziδij − zibijq
k−1
i and dkij = zjδij − zjbijq

k−1
i .

It is easy to prove by induction that

aiλ1aiλ2 · · ·aiλℓ
· 1 = cℓiλ1

cℓ−1
iλ2
· · · c1iλℓ

.

Therefore, for every o-sequence

α = a1λ1
1
a1λ1

2
· · ·a1λ1

k1
a2λ2

1
a2λ2

2
· · ·a2λ2

k2
· · ·amλm

1
amλm

2
· · ·amλm

km
(4.8.2)

we have:

α · 1 = ck1
1λ1

1
ck1−1
1λ1

2
· · · c11λ1

k1

ck2
2λ2

1
ck2−1
2λ2

2
· · · c12λ2

k2

· · · ckm

mλm
1
ckm−1
mλm

2
· · · c1mλm

km

= dk1
1λ1

1
dk1−1

1λ1
2
· · · d1

1λ1
k1

dk2
2λ2

1
dk2−1

2λ2
2
· · · d1

2λ2
k2

· · · dkm

mλm
1
dkm−1
mλm

2
· · · d1

mλm
km
,

where the second equality holds because α is a balanced sequence. On the other hand,

[
z0
] m∏

i=1

(
m∑

j=1

bijzj/zi; qi

)

ki

=
[
zk
] m∏

i=1

ki∏

j=1

(dji1 + . . .+ djim)

is equal to the sum of

[
zk
] (
dk1

1λ1
1
dk1−1

1λ1
2
· · · d1

1λ1
k1

dk2
2λ2

1
dk2−1

2λ2
2
· · · d1

2λ2
k2

· · · dkm

mλm
1
dkm−1
mλm

2
· · · d1

mλm
km

)

over all o-sequences α of form (4.8.2). This completes the proof.

4.9 Final remarks

From our presentation, one may assume that the choice of a (qij)-analogue was a
lucky guess or a carefully chosen deformation designed to make the technical lemmas
work. This was not our motivation, of course. These quadratic algebras are well
known generalizations of the classical quantum groups of type A (see [Man87, Man89,
Man88]). They were introduced and extensively studied by Manin, who also proved
their Koszulity and defined the corresponding (generalized) quantum determinants.
While our proof is combinatorial, the Hai-Lorenz approach works in the q-case as
well.

The relations studied in this paper always lead to quadratic algebras. While the deep
reason lies in the Koszul duality, the fact that Koszulity can be extended to non-
quadratic algebras is suggestive [Ber01]. The first such effort is made in [EP] where
an unusual algebraic extension of MacMahon master theorem is obtained.

In the previous papers [FH08, FH07a, FH07b, GLZ06] the authors used Bos(·) and
Fer(·) notation for the left- and the right-hand side of (4.1.3). While the implied
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connection is not unjustified, it might be misleading when the results are generalized.
Indeed, in view of Koszul duality connection, the algebras can be interchanged, while
giving the same result with notions of Boson and Fermion summations switched. On
the other hand, we should point out that in the most interesting cases the Fermion
summation is finite, which makes it special from combinatorial point of view.

Even though the statement of Theorem 4.7.1 appears rather intricate even in the
commutative case, a computer algebra program finds the generating function easily.
A Mathematica package genmacmahon.m that calculates FA,d(t) for a commutative
matrix A = (aij)m×m and an integer vector d = (d1, . . . , dm) with

∑
di = 0 is

available at http://www-math.mit.edu/~konvalinka/genmacmahon.m (read in the
package with << genmacmahon.m and write F[A,d,t]), and it would be easy to adapt
this to the non-commutative situation.

The Krattenthaler-Schlosser’s q-analogue (Theorem 4.8.1) is essentially a byproduct
of the authors’ work on q-series. It was pointed out by Michael Schlosser that the
Cartier-Foata matrices routinely appear in the context of “matrix inversions” for q-
series (see [KS99, Sch97]). It would be interesting to see if our extensions (such as the
qij-analogue in Section 4.5) can be used to obtain new results, or to give new proofs
of existing results.
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Chapter 5

Sylvester’s determinantal identity

5.1 Introduction

Sylvester’s identity is a classical determinantal identity that is usually written in the
form used by Bareiss [Bar68]. We present his proof for the sake of completeness.

Theorem 5.1.1 (Sylvester’s identity) Let A denote a matrix (aij)m×m; take n <
i, j ≤ m and define

A0 =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 , ai∗ =

(
ai1 ai2 · · · ain

)
, a∗j =




a1j

a2j
...
anj


 ,

bij = det

(
A0 a∗j
ai∗ aij

)
, B = (bij)n+1≤i,j≤m

Then
detA · (detA0)

m−n−1 = detB.

Proof: By continuity, it is enough to prove the identity in the case when A0 is invert-
ible. Write A in block form

A =

(
A0 A1

A2 A3

)
=

(
A0 0
A2 I

)(
I A−1

0 A1

0 A3 − A2A
−1
0 A1

)
,

by taking determinants we obtain

detA = detA0 · det(A3 − A2A
−1
0 A1). (5.1.1)

By applying the same formula to the matrix

(
A0 a∗j
ai∗ aij

)
,
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for n < i, j ≤ m, we get

bij = detA0 · (aij − ai∗A
−1
0 a∗j).

This implies
detB = (detA0)

m−n det(A3 − A2A
−1
0 A1),

which is by (5.1.1) equal to

detA · (detA0)
m−n−1.

See [MG85], [AAM96] for other proofs and some mild generalizations.

Example 5.1.2 If we take n = 1 and m = 3, the Sylvester’s identity says that

(a11a22a33 − a11a32a23 − a21a12a33 + a21a32a13 + a31a12a23 − a31a22a13)a11 =

=

∣∣∣∣
a11a22 − a21a12 a11a23 − a21a13

a11a32 − a31a12 a11a33 − a31a13

∣∣∣∣ . ♦

The Sylvester’s identity has been intensely studied, mostly in algebraic rather than
combinatorial contexts. In 1991, a generalization to quasideterminants, essentially
equivalent to our Theorem 5.2.1, was found by Gelfand and Retakh [GR91]. Krob
and Leclerc [KL95] used their result to prove the following quantum version.

Theorem 5.1.3 (Krob, Leclerc) For a quantum matrix A = (aij)m×m, take n, A0,
ai∗ and a∗j as before, and define

bij = detq

(
A0 a∗j
ai∗ aij

)
, B = (bij)n+1≤i,j≤m.

Then
detqA · (detqA0)

m−n−1 = detqB.

Krob and Leclerc’s proof consists of an application of the so-called quantum Muir’s
law of extensible minors to the expansion of a minor.

Since then, Molev found several far-reaching extensions to Yangians, including other
root systems [Mol02, Mol06]; see also [HM06].

In this chapter, we prove the following multiparameter right-quantum analogue of
Sylvester’s identity.

Theorem 5.1.4 (q-right-quantum Sylvester’s determinant identity) Suppose that
A = (aij)m×m is a q-right-quantum matrix, and choose n < m. Let A0, ai∗, a∗j be
defined as above, and let

cqij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
, Cq = (cqij)n+1≤i,j≤m.
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Suppose qij = qi′j′ for all i, i′ ≤ n and j, j′ > n. Then

detq
−1(I − A0) · detq(I −A) = detq(I − C

q).

The determinant detq(I − A0) does not commute with other determinants in the
definition of cqij , so the identity cannot be written in a form analogous to Theorem
5.1.1. See Remark 5.7.6 for a discussion of the necessity of the condition qij = qi′j′
for i, i′ ≤ n, j, j′ > n.

The proof roughly follows the pattern of the proof of the main theorem in Chapter 4.
First we show a combinatorial proof of the classical Sylvester’s identity (Sections 5.2
and 5.3). Then we adapt the proof to simple non-commutative cases – the Cartier-
Foata case (Section 5.4) and the right-quantum case (Section 5.5). We extend the
results to cases with a weight (Section 5.6) and to multiparameter weighted cases
(Section 5.7). We also present a β-extension of Sylvester’s identity (Section 5.8).

5.2 Non-commutative Sylvester’s identity

As in Section 5.1, choose n < m, and denote the matrix (aij)m×m by A and (aij)n×n
by A0.

We show a combinatorial proof of the non-commutative Sylvester’s identity due to
Gelfand and Retakh, see [GR91].

Theorem 5.2.1 (Gelfand-Retakh) Consider the matrix C = (cij)n+1≤i,j≤m, where

cij = aij + ai∗(I − A0)
−1a∗j .

Then
(I − A)−1

ij = (I − C)−1
ij .

Proof. Take a lattice path aii1ai1i2 · · ·aiℓ−1j with i, j > n. Clearly it can be uniquely
divided into paths P1, P2, . . . Pp with the following properties:

• the ending height of Pi is the starting height of Pi+1

• the starting and the ending heights of all Pi are strictly greater than n

• all intermediate heights are less than or equal to n

Next, note that

cij = aij + ai∗(I −A0)
−1a∗j = aij +

∑

k,l≤n

aik(I + A0 + A2
0 + . . .)klalj

is the sum over all non-trivial paths with starting height i, ending height j, and
intermediate heights ≤ n. This decomposition hence proves the theorem.
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Example 5.2.2 The following figure depicts the path from Example 1.2.4 with a
dotted line between heights n and n + 1, and the corresponding decomposition, for
n = 3. ♦

P1 P2 P3 P4

Figure 5-1: The decomposition (a41a13a32a22a25)(a54)(a43a33a33a31a14)(a44).

The theorem implies that

(I − A)−1
n+1,n+1(I −A

n+1,n+1)−1
n+2,n+2 · · ·

(
I −

(
A0 a∗m
am∗ amm

))−1

mm

= (5.2.1)

= (I − C)−1
n+1,n+1(I − C

n+1,n+1)−1
n+2,n+2 · · · (1− cmm)−1.

In all the cases we consider in the following sections, both the left-hand side and the
right-hand side of this equation can be written in terms of determinants, as in the
classical Sylvester’s identity.

5.3 The commutative case

Recall that if D is an invertible matrix with commuting entries, we have

(
D−1

)
ij

= (−1)i+j
detDji

detD
,

where Dji denotes the matrix D without the j-th row and the i-th column. Ap-
ply this to (5.2.1): the numerators (except the last one on the left-hand side) and
denominators (except the first one on both sides) cancel each other, and we get

det(I −A0)

det(I − A)
=

1

det(I − C)
. (5.3.1)

Proposition 5.3.1 For i, j > n we have

δij − cij =

det

(
I − A0 −a∗j
−ai∗ δij − aij

)

det(I − A0)
. (5.3.2)
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Proof: Clearly we have

(1− cij)
−1 =

((
I −

(
A0 a∗j
ai∗ aij

))−1
)

ij

,

and by (5.3.1), this is equal to

det(I −A0)

det

(
I −

(
A0 a∗j
ai∗ aij

)) .

This finishes the proof for i = j, and for i 6= j we have

1− cij =

det

(
I − A0 −a∗j
−ai∗ 1− aij

)

det(I − A0)
=

det

(
I − A0 −a∗j
−ai∗ −aij

)
+ det

(
I − A0 0
−ai∗ 1

)

det(I −A0)
=

=

det

(
I −A0 −a∗j
−ai∗ −aij

)
+ det(I − A0)

det(I −A0)
=

det

(
I − A0 −a∗j
−ai∗ −aij

)

det(I −A0)
+ 1.

Proof of Theorem 5.1.1. The proposition, together with (5.3.1), implies that

det(I −A)

det(I − A0)
= det(I − C) = det(I − A0)

n−m detB

for

bij = det

(
I −A0 −a∗j
−ai∗ δij − aij

)
, B = (bij)n+1≤i,j≤m,

which is Theorem 5.1.1 for the matrix I − A.

While this proof is clearly more complicated than the one presented in Section 5.1, it
has a fairly straightforward extension to non-commutative cases.

5.4 The Cartier-Foata case

In this section, we extend Sylvester’s identity to Cartier-Foata matrices. The crucial
step is the following lemma.

Lemma 5.4.1 If A = (aij)m×m is a Cartier-Foata matrix, then C = (cij)n+1≤i,j≤m,
where

cij = aij + ai∗(I − A0)
−1a∗j ,

is a right-quantum matrix.
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Proof. Choose i, j, k > n, i 6= j. The product cikcjk is the sum of terms of the form

aii1ai1i2 · · ·aipkajj1aj1j2 · · ·ajrk

for p, r ≥ 0, i1, . . . , ip, j1, . . . , jr ≤ n. Note that with the (possible) exception of i, j, k,
all other terms appear as starting heights exactly as many times as they appear as
ending heights.
Identify this term with a sequence of steps, as described in Section 1.2. We will
perform a series of switches of steps that will transform such a term into a term of
cjkcik.
The variable ajj1 (or ajk if r = 0) commutes with all variables that appear before
it. In other words, in the algebra A, the expressions aii1ai1i2 · · ·aipkajj1aj1j2 · · ·ajrk
and ajj1aii1ai1i2 · · ·aipkaj1j2 · · ·ajrk are the same modulo the ideal Icf generated by
aikajl − ajlaik for i 6= j. Graphically, we can keep switching the step j → j1 with the
step to its left until it is at the beginning of the sequence.
If r = 0, we are already done. If not, take the first step to the right of ajj1 that
has starting height j1; such a step certainly exists – for example j1 → j2. Without
changing the expression modulo Icf , we can switch this step with the ones to the left
until it is just right of j → j1. Continue this procedure; eventually, our sequence is
transformed into an expression of the form

ajj′1aj′1j′2 · · ·aj′r′kaii
′
1
ai′1i′2 · · ·ai′p′k

which is equal modulo Icf to the expression we started with.

Figure 5-2: Transforming a31a12a24a52a22a24 into a52a24a31a12a22a24.

As an example, take m = 5, n = 2, i = 3, j = 5, k = 4 and a31a12a24a52a22a24. The
steps shown in Figure 5-2 transform it into a52a24a31a12a22a24.
It is clear that applying the same procedure to the result, but with the roles of i’s and
j’s interchanged, gives the original sequence. This proves that indeed cikcjk = cjkcik.
The proof of the other relation (1.3.3) is similar and we only sketch it. Choose
i, j, k, l > n, i 6= j, k 6= l. Then cikcjl + cilcjk is the sum of terms of the form

aii1ai1i2 · · ·aipkajj1aj1j2 · · ·ajrl

and of the form
aii1ai1i2 · · ·aiplajj1aj1j2 · · ·ajrk
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for p, r ≥ 0, i1, . . . , ip, j1, . . . , jr ≤ n. Applying the same procedure as above to the
first term yields either

ajj′1aj′1j′2 · · ·aj′r′kaii
′
1
ai′1i′2 · · ·ai′p′ l

or
ajj′1aj′1j′2 · · ·aj′r′ laii

′
1
ai′1i′2 · · ·ai′p′k,

this procedure is reversible and it yields the desired identity.

Figure 5-3: Transforming a31a13a42a21a15 and a31a13a42a22a25.

See Figure 5-3 for examples with m = 5, n = 2, i = 3, j = 4, k = 3, l = 5.

Remark 5.4.2 It is of interest to note that the matrix C is not necessarily Cartier-
Foata when A is Cartier-Foata. For example, take m = 5 and n = 1. the sum of the
terms of type (2, 1, 1, 0, 0; 2, 0, 0, 1, 1) in c24c35 is

(a24)(a31a11a15) + (a21a14)(a31a15) + (a21a11a14)(a35) =

= a11a15a24a31 + a14a15a21a31 + a11a14a21a35,

while the sum of the terms of the same type in c35c24 is

(a35)(a21a11a14) + (a31a15)(a21a14) + (a31a11a15)(a24) =

= a11a14a21a35 + a15a14a21a31 + a11a15a24a31. ♦

If A is Cartier-Foata, the matrix inverse formula (Theorem 3.1.1) implies

(I −A)−1
n+1,n+1(I − A

n+1,n+1)−1
n+2,n+2 · · · = det −1(I −A) · det(I −A0).

By Lemma 5.4.1, C is right-quantum, so by Theorem 3.1.2

(I − C)−1
n+1,n+1(I − C

n+1,n+1)−1
n+2,n+2 · · · = det −1(I − C),

and hence
det −1(I − A0) · det(I − A) = det(I − C).

In the classical Sylvester’s identity, the entries of I − C are also expressed as deter-
minants. The following is an analogue of Proposition 5.3.1.
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Proposition 5.4.3 If A is Cartier-Foata, then

cij = − det −1(I − A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)
. (5.4.1)

Proof: We can repeat the proof of Proposition 5.3.1 almost verbatim. We have

(1− cij)
−1 =

((
I −

(
A0 a∗j
ai∗ aij

))−1
)

ij

,

and because the matrix (
A0 a∗j
ai∗ aij

)

is still Cartier-Foata, Theorem 3.1.1 shows that this is equal to

det −1

(
I −

(
A0 a∗j
ai∗ aij

))
· det(I − A0).

We get

1− cij = det −1(I −A0) · det

(
I −

(
A0 a∗j
ai∗ aij

))
=

= det −1(I −A0) ·

(
det

(
I − A0 −a∗j
−ai∗ −aij

)
+ det

(
I − A0 0
−ai∗ 1

))
=

= det −1(I − A0) ·

(
det

(
I − A0 −a∗j
−ai∗ −aij

)
+ det(I −A0)

)
=

= det −1(I −A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)
+ 1.

We have proved the following.

Theorem 5.4.4 (Cartier-Foata Sylvester’s identity) Let A = (aij)m×m be a Cartier-
Foata matrix, and choose n < m. Let A0, ai∗, a∗j be defined as above, and let

cij = − det −1(I − A0) · det

(
I −A0 −a∗j
−ai∗ −aij

)
, C = (cij)n+1≤i,j≤m.

Then
det −1(I − A0) · det(I − A) = det(I − C).

5.5 The right-quantum case

The right-quantum version of the Sylvester’s identity is very similar; we prove a right-
quantum version of Lemma 5.4.1 and Proposition 5.4.3, and a right-quantum version
of Theorem 5.4.4 follows.
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Lemma 5.5.1 If A = (aij)m×m is a right-quantum matrix, so is C = (cij)n+1≤i,j≤m,
where

cij = aij + ai∗(I − A0)
−1a∗j .

Proof. Choose i, j, k > n, i 6= j. Instead of dealing directly with the equality cikcjk =
cjkcik, we prove an equivalent identity.
Denote by Ok

ij(r) the set O(r + εi + εj ; r + 2εk), where εl denotes the vector with 1
in l-th entry and zeros elsewhere. In other words, Ok

ij(r) is the set of sequences of
r1 + . . .+ rn + 2 steps with the following properties:

• starting heights form a non-decreasing sequence;

• each s between 1 and n appears exactly rs times as a starting height and exactly
rs times as an ending height;

• i and j appear exactly once as starting heights;

• k appears exactly twice as an ending height.

For m = 5, n = 2, i = 3, j = 5, k = 4, r1 = 1, r2 = 1, all such sequences are shown in
Figure 5-4.

Figure 5-4: Sequences in the set O4
35(1, 1).

Now we use the relation (2.2.3) (with π = σ = id). It tells us that modulo the ideal
Irq, the sum of all sequences of Ok

ij(r) is equal to the sum of all sequences of the form
P1P2P3, where:

• P1 is a path from i to k with all intermediate heights ≤ n;

• P2 is a path from j to k with all intermediate heights ≤ n;

• P3 is a sequence of steps with non-decreasing heights, with all heights ≤ n, and
with the number of steps with starting height s equal to the number of steps
with ending height s for all s.

For example, the sequence a11a24a34a52 is transformed into a34a52a24a11, see Figure
5-5.

Figure 5-5: Transforming a11a24a34a52 into a34a52a24a11.
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This means that the sum of all elements of Ok
ij(r) over all r ≥ 0 is modulo Irq equal

to
cikcjkS,

where S is the sum over all sequences of steps with the following properties:

• starting heights form a non-decreasing sequence;

• starting and ending heights are all between 1 and n;

• each s between 1 and n appears as many times as a starting height as an ending
height.

Of course, we can also reverse the roles of i and j, and this proves that the sum of all
elements of Ok

ij(r) is modulo Irq also equal to

cjkcikS.

Hence, modulo Irq,
cikcjkS = cjkcikS. (5.5.1)

But S = 1 + a11 + . . . + ann + a11a22 + a12a21 + . . . is an invertible element of A –
and actually it is equal to 1/ det(I − A0) modulo Irq by the right-quantum master
theorem – so (5.5.1) implies

cikcjk = cjkcik,

provided A is a right-quantum matrix.
The proof of the other relation is almost completely analogous. Now we take i 6= j,
k 6= l, and define Okl

ij (r) to be O(r + εi + εj; r + εk + εl), i.e. the set of sequences of
r1 + . . .+ rn + 2 steps with the following properties:

• starting heights form a non-decreasing sequence;

• each s between 1 and n appears exactly rs times as a starting height and exactly
rs times as an ending height;

• i and j appear exactly once as starting heights;

• k and l appear exactly once as ending heights.

A similar reasoning shows that the sum over all elements of Okl
ij (r) is equal both to

(cikcjl + cilcjk)S and to (cjlcik + cjkcil)S modulo Irq, which implies cikcjl + cilcjk =
cjlcik + cjkcil.

Note that the method of proof is very similar to the proof of Proposition 3.7.1.

Proposition 5.5.2 If A is right-quantum, then

cij = − det −1(I − A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)
. (5.5.2)
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Proof: The proof is exactly the same as the proof of Proposition 5.4.3.

Theorem 5.5.3 (right-quantum Sylvester’s identity) Let A = (aij)m×m be a right-
quantum matrix, and choose n < m. Let A0, ai∗, a∗j be defined as above, and let

cij = − det −1(I − A0) · det

(
I −A0 −a∗j
−ai∗ −aij

)
, C = (cij)n+1≤i,j≤m.

Then
det −1(I − A0) · det(I − A) = det(I − C).

5.6 Weighted cases

In this section, we extend the results of the previous two sections to weighted cases.

Suppose that the matrix A = (aij)m×m is q-Cartier-Foata. We will use Theorem 5.2.1
for the matrix

A[ij] =




q−1a11 · · · q−1a1j a1,j+1 · · · a1m
...

. . .
...

...
. . .

...
q−1ai−1,1 · · · q−1ai−1,j ai−1,j+1 · · · ai−1,m

ai1 · · · aij qai,j+1 · · · qai,m
...

. . .
...

...
. . .

...
am1 · · · amj qam,j+1 · · · qamm




.

Let us find the corresponding C = (c′i′j′)n+1≤i′,j′≤m. Denote

ai′j′ + q−1ai′∗(I − q
−1A0)

−1a∗j′

by ci′j′ for i′, j′ > n. If i′ < i, j′ ≤ j, we have

c′i′j′ = q−1ai′j′ + (q−1ai′∗)(I − q
−1A0)

−1(q−1a∗j′) = q−1ci′j′;

if i′ < i, j′ > j, we have

c′i′j′ = ai′j′ + (q−1ai′∗)(I − q
−1A0)

−1a∗j′ = ci′j′;

if i′ ≥ i, j′ ≤ j, we have

c′i′j′ = ai′j′ + ai′∗(I − q
−1A0)

−1(q−1a∗j′) = ci′j′;

and if i′ ≥ i, j′ > j, we have

c′i′j′ = qai′j′ + ai′∗(I − q
−1A0)

−1a∗j′ = qci′j′.

We have proved the following.
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Proposition 5.6.1 With A[ij] as above and with C = (ci′j′)n+1≤i′,j′≤m for

ci′j′ = ai′j′ + ai′∗(I − q
−1A0)

−1(q−1a∗j′),

we have
(I −A[ij])

−1
i′j′ = (I − C[ij])

−1
i′j′.

Remark 5.6.2 Let us present a slightly different proof of the proposition. Another
way to characterize A[ij] is to say that the entry akl has weight q to the power of

{
1: l > j
0: l ≤ j

−

{
1: k < i
0: k ≥ i

.

That means that in
(
Aℓ[ij]

)
i1iℓ

, ai1i2ai2i3 · · ·aiℓ−1iℓ has weight q|{r : ir>j}|−|{r : ir<i}|.

Assume that we have a decomposition of a path of length ℓ from i′ to j′, i′, j′ > n, as in
Section 5.2, say aλ,µ = ai′λ1,λ1i1ai1λ2,λ2i2 · · ·aip−1λp,λpj′, with all elements of λr at most
n, ir > n, and the length of λr equal to ℓr. Put i0 = i′, ip+1 = j′.The number of indices
of λ = i′λ1 . . . λp that are strictly smaller than i is clearly

∑p
r=1 ℓr + |{r : ir < i}| =

ℓ−p+|{r : ir < i}|, and the number of indices of µ = λ1 . . . λpj
′ that are strictly greater

than j is |{r : ir > j}|. Therefore the path aλ,µ is weighted by q−ℓ+p+|{r : ir>j}|−|{r : ir<i}|.
On the other hand, take a term aλ,µ = ai′λ1,λ1i1ai1λ2,λ2i2 · · ·aip−1λp,λpj′ (with λr, ir, ℓr
as before) of (Cℓ

[ij])i′j′. Each air−1λr ,λrir has weight q−ℓr as an element of C, and aλ,µ

has the additional weight q|{r : ir>j}|−|{r : ir<i}| as a term of (Cℓ
[ij])i′j′. The proposition

follows. ♦

Lemma 5.6.3 If A = (aij)m×m is a q-Cartier-Foata matrix, then C = (cij)n+1≤i,j≤m,
where

cij = aij + ai∗(I − A0)
−1a∗j ,

is a q-right-quantum matrix.

Proof. We adapt the proof of Lemma 5.4.1. Choose i, j, k > n, i < j. The product
cikcjk is the sum of terms of the form

q−p−raii1ai1i2 · · ·aipkajj1aj1j2 · · ·ajrk

for p, r ≥ 0, i1, . . . , ip, j1, . . . , jr ≤ n. Without changing the expression modulo Iq−cf ,
we can repeat the procedure in the proof of Lemma 5.4.1, keeping track of weight
changes. The resulting expression

ajj′1aj′1j′2 · · ·aj′r′kaii
′
1
ai′1i′2 · · ·ai′p′k

has, by the discussion preceding the lemma, weight q−1−r′−p′ (the extra −1 comes
from the fact that the step with starting height j is now to the left of the step with
starting height i). In other words,

cjkcik = qcikcjk.
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The proof of the other relation is completely analogous.

If A is q-Cartier-Foata, Theorem 3.1.3 implies

(I−A[n+1,n+1])
−1
n+1,n+1(I−

(
An+1,n+1

)
[n+2,n+2]

)−1
n+2,n+2 · · · = detq

−1(I−A)·detq(I−A0).

By Lemma 5.6.3, C is q-right-quantum, so by Theorem 3.1.3

(I − C[n+1,n+1])
−1
n+1,n+1(I −

(
Cn+1,n+1

)
[n+2,n+2]

)−1
n+2,n+2 · · · = detq

−1(I − C),

and hence
detq

−1(I − A0) · detq(I −A) = detq(I − C).

The final step is to write entries of C as quotients of q-determinants.

Proposition 5.6.4 If A is q-Cartier-Foata, then

cij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
.

Proof. Again,

(1− cij)
−1 =

((
I −

(
q−1A0 q−1a∗j
ai∗ aij

))−1
)

ij

,

and because the matrix (
A0 a∗j
ai∗ aij

)

is still q-Cartier-Foata, Theorem 3.1.3 shows that this is equal to

detq
−1

(
I −

(
A0 a∗j
ai∗ aij

))
· detq(I − A0).

The rest of the proof is exactly the same as in Proposition 5.4.3, with detq playing
the role of det.

We have proved the following.

Theorem 5.6.5 (q-Cartier-Foata Sylvester’s identity) Let A = (aij)m×m be a q-
Cartier-Foata matrix, and choose n < m. Let A0, ai∗, a∗j be defined as above, and
let

cqij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
, Cq = (cqij)n+1≤i,j≤m.

Then
detq

−1(I −A0) · detq(I − A) = detq(I − C
q).

The results easily extend to a q-right-quantum Sylvester’s identity.
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Lemma 5.6.6 If A = (aij)m×m is a q-right-quantum matrix, so is C = (cij)n+1≤i,j≤m,
where

cij = aij + ai∗(I − A0)
−1a∗j .

Proof. This is a weighted analogue of Lemma 5.5.1. By equation (2.4.3), the sum over
all elements of Ok

ij(r) with aλ,µ weighted by qinv(µ)−inv(λ) = qinv(µ), is modulo Iq−rq

equal to both cikcjkS and q−1cjkcikS; this implies the relation (1.3.8) for elements of
C, and the proof of (1.3.8) is completely analogous.

Proposition 5.6.7 If A is q-right-quantum, then

cij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
.

Proof. The proof is exactly the same as the proof of Proposition 5.6.4.

Proposition 5.6.1, Lemma 5.6.6 and Proposition 5.6.7 imply the following theorem.

Theorem 5.6.8 (q-right-quantum Sylvester’s identity) Let A = (aij)m×m be a q-
right-quantum matrix, and choose n < m. Let A0, ai∗, a∗j be defined as above, and
let

cqij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
, Cq = (cqij)n+1≤i,j≤m.

Then
detq

−1(I −A0) · detq(I − A) = detq(I − C
q).

5.7 Multiparameter cases

In this section, we prove a multiparameter extension of Theorems 5.6.5 and 5.6.8. We
will use Theorem 5.2.1 for the matrix

A[ij] =




q−1
1i a11 · · · q−1

1i a1j q−1
1i qj,j+1a1,j+1 · · · q−1

1i qjma1m
...

. . .
...

...
. . .

...
q−1
i−1,iai−1,1 · · · q−1

i−1,iai−1,j q−1
i−1,iqj,j+1ai−1,j+1 · · · q−1

i−1,iqjmai−1,m

ai1 · · · aij qj,j+1ai,j+1 · · · qjmai,m
...

. . .
...

...
. . .

...
am1 · · · amj qj,j+1am,j+1 · · · qjmamm




.

Assume that qij = qi′j′ for i, i′ ≤ n, j, j′ > n; denote this value by q. We will use
Theorem 5.2.1 for the matrix A[ij] and the corresponding C = (c′i′j′)n+1≤i′,j′≤m. Define

ci′j′ = ai′j′ + q−1ai′∗(I − q
−1A0)

−1a∗j′

for i′, j′ > n. If i′ < i, j′ ≤ j, we have

c′i′j′ = q−1
i′i ai′j′ + (q−1

i′i ai′∗)(I − q
−1A0)

−1(q−1a∗j′) = q−1
i′i ci′j′;
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if i′ < i, j′ > j, we have

c′i′j′ = q−1
i′i qjj′ai′j′ + (q−1

i′i ai′∗)(I − q
−1A0)

−1(q−1qjj′a∗j′) = q−1
i′i qjj′ci′j′;

if i′ ≥ i, j′ ≤ j, we have

c′i′j′ = ai′j′ + ai′∗(I − q
−1A0)

−1(q−1a∗j′) = ci′j′;

and if i′ ≥ i, j′ > j, we have

c′i′j′ = qjj′ai′j′ + ai′∗(I − q
−1A0)

−1(q−1qjj′a∗j′) = qjj′ci′j′.

We have proved the following.

Proposition 5.7.1 With A[ij] as defined above and with C = (ci′j′)n+1≤i′,j′≤m for

ci′j′ = ai′j′ + ai′∗(I − q
−1A0)

−1(q−1a∗j′),

we have
(I −A[ij])

−1
i′j′ = (I − C[ij])

−1
i′j′.

Remark 5.7.2 Another way to characterize A[ij] is to say that the entry akl has
weight {

qjl : l > j
1: l ≤ j

·

{
q−1
ki : k < i
1: k ≥ i

.

That means that in
(
Aℓ[ij]

)
i1iℓ

, ai1i2ai2i3 · · ·aiℓ−1iℓ has weight

∏

ir>j

qjir ·
∏

ir<i

q−1
iri .

An alternative way to prove the proposition is analogous to the proof of Proposition
5.6.1 outlined in Remark 5.6.2. ♦

Lemma 5.7.3 If A = (aij)m×m is a q-Cartier-Foata matrix, then C = (cij)n+1≤i,j≤m,
where

cij = aij + ai∗(I − A0)
−1a∗j .

is a q-right-quantum matrix.

Proof. We adapt the proof of Lemma 5.6.3. Choose i, j, k > n, i < j. The product
cikcjk is the sum of terms of the form

q−p−raii1ai1i2 · · ·aipkajj1aj1j2 · · ·ajrk

for p, r ≥ 0, i1, . . . , ip, j1, . . . , jr ≤ n.
Note that since

q−p−r = qj1k · · · qjrkq
−1
i1i
· · · q−1

ipi
q−1
j1i
· · · q−1

jri
q−1
j1j
· · · q−1

jrj
,
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the weight of aii1ai1i2 · · ·aipkajj1aj1j2 · · ·ajrk is of the form

∏

(i,j)∈I(µ)

qµjµi

∏

(i,j)∈I(λ)

q−1
λjλi

for λ = ii1 . . . ipjj1 . . . jr and µ = i1 . . . ipkj1 . . . jrk. Without changing the expression
modulo Iq−cf , we can repeat the procedure in the proof of Lemma 5.4.1, but changing
the weight at each switch. The resulting expression

ajj′1aj′1j′2 · · ·aj′r′kaii
′
1
ai′1i′2 · · ·ai′p′k

has, by the discussion preceding the lemma, weight

qi′1k · · · qi′p′kq
−1
j′1j
· · · q−1

j′
r′
jq

−1
i′1j
· · · q−1

i′
p′
jq

−1
i′1i
· · · q−1

i′
p′
iq

−1
ij = q−r

′−p′q−1
ij

(the extra q−1
ij comes from the fact that the step with starting height j is now to the

left of the step with starting height i), In other words,

cjkcik = qijcikcjk.

The proof of the other relation is completely analogous.

If A is q-Cartier-Foata, Theorem 3.1.4 implies

(I−A[n+1,n+1])
−1
n+1,n+1(I−

(
An+1,n+1

)
[n+2,n+2]

)−1
n+2,n+2 · · · = detq

−1(I−A) ·detq(I−A0).

By Lemma 5.6.3, C is q-right-quantum, so by Theorem 3.1.4

(I − C[n+1,n+1])
−1
n+1,n+1(I −

(
Cn+1,n+1

)
[n+2,n+2]

)−1
n+2,n+2 · · · = detq

−1(I − C),

and hence
detq

−1(I −A0) · detq(I − A) = detq(I − C).

So far, the extension to the multiparameter case has been straightforward. However,
we need something extra for the proof of the analogue of Proposition 5.6.4 since the
matrix (

A0 a∗j
ai∗ aij

)

is in general not q-Cartier-Foata – only the variables in the first n columns satisfy
the relation (1.3.19).

However, by Remark 3.6.1, we still have

(1− cij)
−1 =

((
I −

(
q−1A0 q−1a∗j
ai∗ aij

))−1
)

ij

=
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= detq
−1

(
I −

(
A0 a∗j
ai∗ aij

))
· detq(I − A0).

Proposition 5.7.4 If A is q-Cartier-Foata, then

cij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
.

Proof: This follows from the previous proposition, using the same technique as in the
proof of Proposition 5.4.3.

We have proved the following.

Theorem 5.7.5 (q-Cartier-Foata Sylvester’s theorem) Let A = (aij)m×m be a q-
Cartier-Foata matrix, and choose n < m. Let A0, ai∗, a∗j be defined as above, and
let

cqij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
, Cq = (cqij)n+1≤i,j≤m.

Suppose qij = qi′j′ for all i, i′ ≤ n and j, j′ > n. Then

detq
−1(I − A0) · detq(I −A) = detq(I − C

q).

Remark 5.7.6 It is important to note that the determinant detq(I − Cq) is with
respect to C, the algebra generated by cij’s, not with respect to A. For example, for
n = 2 and m = 4, we have

detq(I − C
q) = 1− cq33 − c

q
44 + cq33c

q
44 − q

−1
34 c

q
43c

q
34.

The condition qij = qi′j′ whenever i, i′ ≤ n, j, j′ > n is indeed necessary, as shown by
the following. Take n = 1 and m = 3. In detq

−1(I − A0) · detq(I − A) we have the
term

−q−1
12 q

−1
13 a21a32a13,

while in detq(I − Cq) we have

−q−1
23 (−a32)(−q

−1
12 a21a13) = −q−2

12 a21a32a13. ♦

Assume we have a q-right-quantum matrix, with qij = q for i ≤ n, j > n. In the
notation of the previous section, we have the following.

Lemma 5.7.7 If A = (aij)m×m is a q-right-quantum matrix, so is C = (cij)n+1≤i,j≤m,
where

cij = aij + ai∗(I − A0)
−1a∗j .

Proof. We use a combination of proofs of Lemmas 5.6.6 and 5.7.3.

Proposition 5.7.8 If A is q-right-quantum, then

cij = −detq
−1(I − A0) · detq

(
I − A0 −a∗j
−ai∗ −aij

)
.

91



Proof. We use the same technique as in the proof of Proposition 5.7.4.

This finishes the proof of Theorem 5.1.4.

5.8 The β-extension

Theorem 5.1.1 trivially implies that

(detB)β = (detA)β · (detA0)
β(m−n−1)

for any β ∈ Z, where aij are commutative variables and

bij = det

(
A0 a∗j
ai∗ aij

)
, B = (bij)n+1≤i,j≤m.

It is not immediately clear what the non-commutative extension of this could be. Of
course, Theorem 5.4.4 implies that

(det(I − C))β =
(
det −1(I − A0) · det(I −A)

)β

for

cij = − det −1(I − A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)
, C = (cij)n+1≤i,j≤m,

where A is a Cartier-Foata or right-quantum matrix, but this does not tell us how
to calculate the terms of (det(I −C))β. However, a technique similar to the proof of
the β-extension of the non-commutative MacMahon master theorem, Theorem 4.6.5,
gives a reasonable interpretation of (det(I−C))β for β ∈ Z when A is a Cartier-Foata
matrix.

We use the terminology of Section 4.6.

Recall that for a Cartier-Foata matrix A, the matrix C = (cij)n+1≤i,j≤m with

cij = − det −1(I −A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)

is right-quantum by Lemma 5.4.1 and Proposition 5.4.3, so

det −1(I − C) = (I − C)−1
n+1,n+1(I − C

n+1,n+1)−1
n+2,n+2 · · · =

= (I − A)−1
n+1,n+1(I − A

n+1,n+1)−1
n+2,n+2 · · · (5.8.1)

by Theorem 5.2.1. The last expression is the sum over all sequences which are con-
catenations of a lattice path from n+ 1 to n+ 1, a lattice path from n+ 2 to n+ 2,
etc.

Theorem 5.8.1 (β-extension of Cartier-Foata Sylvester’s identity) Assume A =
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(aij)m×m is a Cartier-Foata matrix. Write

C = (cij)n+1≤i,j≤m for cij = − det −1(I −A0) · det

(
I − A0 −a∗j
−ai∗ −aij

)
.

For each β ∈ Z, the expression

(
1

det(I − C)

)β

is equal to ∑
eµ(β)aλ,µ,

where µ runs over all words in the alphabet {1, . . . , m}, λ is the non-decreasing rear-
rangement of µ, and eµ(β) is a polynomial function of β that is calculated as follows.
Let u1u2 . . . uk be the disjoint cycle decomposition of aλ,µ. Let J be the set of i for
which ui contains a height > n. Then

eµ(β) =
∑

π

(
β + l − 1− des′(π)

l

)
, (5.8.2)

where the sum is over all permutations π ∈ Sk with the following properties:

• if i < j, π(i) > π(j), then uπ(i), uπ(j) are disjoint;

• for each i /∈ J there exists j > i such that uπ(i) and uπ(j) are not disjoint and
such that {π(i+ 1), . . . , π(j − 1)} ∩ J = ∅;

• if π(i) > π(i+ 1) then π(i) ∈ J .

Here des′(π) denotes the number of descents of the subword of (π(1), π(2), . . . , π(k))
composed of π(i) ∈ J , and l = |J |.

Example 5.8.2 Take m = 5, n = 2, µ = 132521421325. The disjoint cycle decom-
position of the o-sequence a11a13a12a25a22a21a24a32a31a43a52a55 is

u1u2u3u4u5u6 = (a11)(a25a52)(a22)(a13a32a21)(a12a24a43a31)(a55).

We have J = {2, 4, 5, 6}, the only permutations in S6 that appear in the sum (5.8.2)
are 213456, 213465, 261345 with des′(213456) = 0, des′(213465) = 1, des′(261345) =
1. Therefore

eµ(β) =

(
β + 3

4

)
+ 2

(
β + 2

4

)
=
β4

8
+

5β3

12
+

3β2

8
+
β

12
. ♦

Example 5.8.3 Take n = 0. In this case J = [k], only the first condition is not
vacuously true on π, and we get the β-extension of MacMahon master theorem,
Theorem 4.6.5. ♦
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It is clear that each term of (det(I − C))−β is an o-sequence modulo Icf , and that
the coefficients of o-sequences are polynomial functions of β. Therefore it is enough
to prove the theorem for β ∈ N, and this is an enumerative problem. We are given
an o-sequence aλ,µ and β slots, and we have to calculate in how many ways we can
choose terms of (det(I−C))−1 in each slot so that their product is, modulo Icf , equal
to aλ,µ. We start the proof with a lemma.

Lemma 5.8.4 All the steps in a cycle of the disjoint cycle decomposition must be
placed in the same slot.

Proof: This is proved in exactly the same way as the proof of Lemma 4.6.4, since all
we used there was that the sequence chosen in each slot must be balanced, which is
also true in our case.

Proof of Theorem 5.8.1. We call cycles with all heights ≤ n low cycles, and cycles
containing at least one height > n high cycles.
The lemma tells us that we must choose a permutation π ∈ Sk such that u1 · · ·uk =
uπ(1) · · ·uπ(k) modulo Icf , and place the cycles uπ(1), . . . , uπ(k) in the β slots so that
the cycles in each slot give a term appearing in (det(I − C))−1.
Two cycles commute if and only if they are disjoint. That means that the condition
u1 · · ·uk = uπ(1) · · ·uπ(k) is equivalent to

• if i < j, π(i) > π(j), then uπ(i), uπ(j) are disjoint,

which is the first condition in Theorem 5.8.1.
Take a low cycle uπ(i), and assume that it is disjoint with all uπ(j) for j > i. That
means we can push it to the end of the chosen slot without changing the sequence
modulo Icf . But then the sequence in the slot is not equal modulo Icf to a sequence
in (5.8.1). Therefore

• for each i /∈ J there exists j > i such that uπ(i) and uπ(j) are not disjoint,

which is part of the second condition in Theorem 5.8.1. Furthermore, if j > i is the
lowest integer with this property, then uπ(i), . . . , uπ(j) must all be placed in the same
slot. If there is a π(p) ∈ J with i < p < j, then this placement of cycles is also counted
in the permutation when (π(1), . . . , π(i−1), π(i+1), . . . , π(p), π(i), π(p+1), . . . , π(k)).
That means that it is enough to take permutations which satisfy

• for each i /∈ J there exists j > i such that uπ(i) and uπ(j) are not disjoint and
such that {π(i+ 1), . . . , π(j − 1)} ∩ J = ∅,

which is the second condition in Theorem 5.8.1.
Finally, assume that we have π(i) > π(i+1) with π(i) /∈ J . Then π(i) must be placed
in the same slot as a high cycle π(j) for j > i, and so π(i+ 1), which commutes with
π(i), must be placed in the same slot as well. But then this placement of cycles in
slots is already counted in the permutation where π(i) and π(i + 1) are switched.
Therefore we have

• if π(i) > π(i+ 1) then π(i) ∈ J ,
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which is the third condition in Theorem 5.8.1.
We have described all permutations that give aλ,µ, and now we have to find the
number of ways to place uπ(1), . . . , uπ(k) in the β slots so that the cycles in each slot
give a term appearing in (det(I − C))−1. All cycles between two consecutive high
cycles must appear in the same slot as the right-hand high cycle. Therefore placing
the cycles in slots is the same as placing β−1 dividers after (some of the) high cycles.
Of course, there are

(
β−1+l

l

)
ways of doing this, but we can get the same terms several

times: if we take two consecutive high cycles uπ(i), uπ(j) with i < j, π(i) > π(j), then
uπ(i) must necessarily commute with uπ(j) and with all the low cycles between them,
we can move uπ(j) to the right of uπ(i), possibly move some of the low cycles before uπ(j)

to the right of uπ(i), and we see that this term has already been counted for a different
π. In order to avoid overcounting, we have to place a divider after uπ(i). Therefore

the number of unique placements in slots corresponding to π is
(
β−1+l−des′(π)

l

)
, and

this finishes the proof of Theorem 5.8.1.

Remark 5.8.5 Theorem 5.8.1 is an extension of Theorem 4.6.5 and is therefore not
true for general right-quantum matrices, see Example 4.6.9. ♦
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Chapter 6

Goulden-Jackson’s immanant

formula

6.1 Introduction

In this chapter, we give two new proofs of a beautiful determinantal formula due to
Goulden and Jackson [GJ92b], and generalize this formula to the quantum setting.
The formula involves determinants of the terms of det −1(I−A) and is a generalization
of a part of the MacMahon master theorem, see the paragraph following Theorem
6.1.1. Goulden and Jackson gave a straightforward but non-combinatorial proof. In
Section 6.2, we present two simple combinatorial proofs, prove a β-extension in the
spirit of Sections 4.6 and 5.8, and give an interesting determinantal expression for
the value of irreducible characters of the symmetric group. In Section 6.3, we give a
brief background on Hecke algebras of type A, which is needed in Section 6.4, where
a quantum extension of the formula is stated and proved. In Section 6.5, we use the
results of the previous sections to (re)prove beautiful combinatorial representations
of characters of Hecke algebras of type A. The necessary bijective proofs appear in
Section 6.6.

Let us start with a discussion of symmetric functions of eigenvalues of a matrix.

Take a complex matrix A = (aij)
m
i,j=1 for complex variables aij , its characteristic

polynomial χA(t) = det(A− tI) and its eigenvalues ω1, . . . , ωm. Vieta’s formulas tell
us that the elementary symmetric functions

ei = ei(ω1, . . . , ωm) =
∑

j1<...<ji

ωj1 · · ·ωji

are easily expressible in terms of aij :

e0t
m − e1t

m−1 + . . .+ (−1)mem = (t− ω1) · · · (t− ωm) =

= det(tI − A) =
m∑

i=0

(−1)itm−i
∑

J∈([m]
i )

detAJ ,
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with AJ = (aij)i,j∈J , i.e.

ei =
∑

J∈([m]
i )

detAJ .

The complete homogeneous symmetric functions

hi = hi(ω1, . . . , ωm) =
∑

j1≤...≤ji

ωj1 · · ·ωji

are also easy. We know that

∑
hit

i=
1∑

(−1)ieiti
=

1

tm
∑

(−1)ieiti−m
=

1

tm det(t−1I −A)
=

1

det(I − tA)
(6.1.1)

and by MacMahon master theorem (Theorem 4.1.1)

hi(ω1, . . . , ωm) =
∑

λ

aλ1λ1
aλ2λ2

· · ·aλiλi
, (6.1.2)

where:

• λ = λ1 · · ·λi runs over all sequences of i letters from {1, . . . , m}, and

• λ = λ1 · · ·λi is the non-decreasing rearrangement of λ.

Goulden and Jackson proved the following.

Theorem 6.1.1 Abbreviate hi(ω1, . . . , ωm) to hi, ei(ω1, . . . , ωm) to ei, choose a par-
tition λ = (λ1, . . . , λp) of m, and write aπ = a1π(1)a2π(2) · · ·amπ(m) for a permutation
π ∈ Sm. Then

[aπ] det(hλi−i+j)p×p = [aπ] det(eλ′i−i+j)λ1×λ1 = χλ(π), (6.1.3)

where [aπ]E is the coefficient of the basis element aπ of E, and χλ is the irreducible
character of the symmetric group Sm corresponding to λ.

For λ = (m), we have det(hλi−i+j)p×p = hm and χλ(π) = 1 for all π ∈ Sm, so (6.1.3)
is a special case of the MacMahon master theorem.

The characters of the symmetric group are class functions in the sense that χλ(π)
depends only on the cycle type of π. That means that it makes sense to define χλ(µ)
for partitions λ, µ of the same size.

Note that since hλi−i+j = hλi−i+j(ω1, . . . , ωm), det(hλi−i+j) and det(eλ′i−i+j) can both
be expressed as

sλ(ω1, . . . , ωm)

by the (dual) Jacobi-Trudi identity (see for example [Sta99, Theorem 7.16.1 and
Corollary 7.16.2]). Here sλ is the Schur symmetric function corresponding to the
partition λ.
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Goulden and Jackson’s result is stated in the (clearly equivalent) language of im-
manants. Theirs is one of the many papers in the early 1990’s that brought about
fascinating conjectures and results on immanants; see for example [GJ92a], [Gre92],
[SS93], [Ste91], [Hai93] for details and further references.

We give two more proofs of this result. The first gives a recursion that specializes
to Murnaghan-Nakayama’s rule, and the second is a simple combinatorial proof of a
statement equivalent to (6.1.3).

6.2 Two proofs of Theorem 6.1.1

First, let us give a proof that uses recursion; more specifically, let us give an expression
for the left-hand side of (6.1.3) which expresses the desired coefficient in terms of
coefficients of determinants of smaller matrices.

Note first that all the terms a = a1∗ · · ·a1∗a2∗ · · · of

sλ(ω1, . . . , ωm) = det(eλ′i−i+j)

are balanced (each i appears as many times among ai∗ as among a∗i).

Suppose we want to find the coefficient of a = a1∗ · · ·a1∗a2∗ · · · in sλ(ω1, . . . , ωm).
Assume C = {1, . . . , k}, D = {k + 1, . . . , m} and that a does not contain aij for
i ∈ C, j ∈ D or i ∈ D, j ∈ C. The coefficient of a does not change if we set all
aij that do not appear in a equal to 0; we may therefore assume that the matrix
A has a block diagonal form A1 ⊕ A2, and if ξ1, . . . , ξk are the eigenvalues of A1

and ζk+1, . . . , ζm are the eigenvalues of A2, the eigenvalues of A are (ω1, . . . , ωm) =
(ξ1, . . . , ξk, ζk+1, . . . , ζm). By definition,

sλ(ω1, . . . , ωm)

is the sum of ωT = ω
α1(T )
1 ω

α2(T )
2 · · · over all semistandard Young tableaux (SSYT) T

of shape λ; here αi(T ) is the number of i’s in T . See [Sta99, §7.10] for definitions and
details. In every such T , the numbers 1, . . . , k form a SSYT of some shape ν ⊆ λ,
and the numbers k + 1, . . . , m form a SSYT of shape λ/ν. Therefore

[a]sλ(ω1, . . . , ωm) =
∑

ν⊆λ

[a1]sν(ξ1, . . . , ξk)[a2]sλ/ν(ζk+1, . . . , ζm), (6.2.1)

where a1 (respectively a2) is the product of the terms of a with indices in C (respec-
tively D). Since sλ/ν is homogeneous of degree |λ| − |ν|, we can restrict the sum to
partitions ν ⊢ k.

The factors in this sum can either be calculated explicitly (for example using the dual
Jacobi-Trudi identity) or recursively.

Example 6.2.1 Let us use this formula to find the coefficient of a11a12a21a
2
22a34a43

in s322(ω1, . . . , ω4). By (6.2.1), we have to find the coefficient of a34a43 in sλ/ν for
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ν = 32, 311, 221. We have

s322/32(ζ3, ζ4) = s2(ζ3, ζ4) = h2(ζ3, ζ4) = a2
33 + a33a44 + a34a43 + a2

44,

s322/311(ζ3, ζ4) = s11(ζ3, ζ4) = e2(ζ3, ζ4) = a33a44 − a34a43,

s322/221(ζ3, ζ4) = s21/1(ζ3, ζ4) = e21(ζ3, ζ4) = a2
33 + 2a33a44 + a2

44

and therefore

[a11a12a21a
2
22a34a43]s322(ω1, . . . , ω4) = [a11a12a21a

2
22] (s32(ζ1, ζ2)− s311(ζ1, ζ2)) .

Furthermore,

s32(ζ1, ζ2) =

∣∣∣∣∣∣

e2 0 0
e1 e2 0
0 e0 e1

∣∣∣∣∣∣
= e22e1 = (a11a22 − a12a21)

2(a11 + a22)

and

s311(ζ1, ζ2) =

∣∣∣∣∣∣

0 0 0
1 e1 0
0 1 e1

∣∣∣∣∣∣
= 0.

Therefore
[a11a12a21a

2
22a34a43]s322(ω1, . . . , ω4) = −2. ♦

Let us prove that this recursion specializes to the Murnaghan-Nakayama’s rule. In
order to do that, assume that π = π1 · (k + 1, k + 2, . . . , m) for π1 ∈ Sk. In this case,
a2 is of the form ak+1,k+2ak+2,k+3 · · ·am,k+1 = b1 · · · bl. The corresponding matrix A2

is 


0 b1 0 . . . 0
0 0 b2 . . . 0
...

...
...

. . .
...

0 0 0 . . . bl−1

bl 0 0 . . . 0




(6.2.2)

and its characteristic polynomial is (−1)l(tl − b1b2 · · · bl). If the zeros are denoted
η1, . . . , ηl, then e0(η1, . . . , ηl) = 1, el(η1, . . . , ηl) = (−1)l−1b1 · · · bl, ei(η1, . . . , ηl) = 0
for i 6= 0, l.

For a partition λ = (λ1, . . . , λp), define the conjugate partition λ′ by λ′i = |{j : λj ≥
i}|. A border strip is a connected skew shape with no 2 × 2 square, and the height
ht of a border strip is defined to be one less than the number of rows. The following
result is well known; we include the proof for the sake of completeness. It will imply
that the only non-zero terms in the sum (6.2.1) are indexed by border strips.

Lemma 6.2.2 If λ = (λ1, . . . , λp) is a partition and ν ⊆ λ is a subpartition with
|λ| − |ν| = l, then:

1. λ/ν is a border strip if and only if λ′/ν′ is a border strip;
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2. λ/ν is a border strip if and only if λ1 + p = l + 1;

3. λ/ν is a border strip if and only if λi = νi−1 + 1 for 2 ≤ i ≤ p.

Proof. Let (a, b) be the entry in row a and column b. (1) is obvious. (2) The squares
of a border strip λ/µ form a NE-path from (1, p) to (λ1, 1). Each such path has
(p − 1) + (λ1 − 1) + 1 squares. Conversely, a partition containing (1, p), (λ1, 1) and
λ1 +p−3 other squares must be a NE-path and hence its squares form a border strip.
(3) A 2 × 2 square in rows i − 1, i implies that λi ≥ νi−1 + 2. It is clear that if the
squares of a shape λ/µ form a NE-path, we have λi = νi−1 + 1.

Proposition 6.2.3 If the zeros of tl−b1b2 · · · bl are η1, . . . , ηl, then sλ/ν(η1, . . . , ηl) =
0 unless λ/ν is a border strip, and sλ/ν(η1, . . . , ηl) = (−1)ht(λ/ν)b1b2 · · · bl for a border
strip λ/ν.

Proof. We can assume that λi 6= νi and that νp = 0. The indices of the entries of the
matrix

det(eλ′i−ν′j−i+j)λ1×λ1

are strictly increasing in rows; the largest possible index is λ1 + p − 1 = l; and the
indices of the diagonal elements are λ′i − ν

′
i with 1 ≤ λ′i − ν ′i ≤ l (and λ′i − ν ′i = l

only in the trivial case λ1 = l, ν = ∅). Note that this determinant is equal to
sλ/ν . By the lemma and the fact that ek = 0 for k 6= 0, l, the matrix is 0 on and
above the diagonal unless λ/ν is a border strip. If it is a border strip, the matrix
entries in positions (i, j), i ≤ j < λ1, are 0 (in particular, all the entries in the
first row are 0 except the last, which is el), and by the lemma, the subdiagonal
entries are 1 and the element (1, λ1) is (−1)l−1b1 · · · bl. Therefore sλ/ν(η1, . . . , ηl) =
(−1)l−1+λ1−1b1b2 · · · bl = (−1)p−1b1b2 · · · bl, with p− 1 = ht(λ/ν).

In other words, if π = π1 · (k + 1, k + 2, . . . , m) for π1 ∈ Sk, then by (6.2.1),

[aπ]sλ(ω1, . . . , ωm) =
∑

ν

(−1)ht(λ/ν)[a1]sν(ξ1, . . . , ξk),

where a1 = aπ1 and the sum is over all partitions ν ⊆ µ for which µ/ν is a border
strip. This is precisely the Murnaghan-Nakayama’s rule, see [Sag01, Theorem 4.10.2].
Together with the fact that Murnaghan-Nakayama’s rule completely determines the
irreducible characters χλ, this shows that

[aπ]sλ(ω1, . . . , ωm) = χλ(π).

Note that this also gives us the coefficient of aπ = a1π(1) · · ·amπ(m) in pλ(ω1, . . . , ωm):
we know that

pλ =
∑

µ

χµ(λ)sµ

and hence
[aπ]pλ(ω1, . . . , ωm) =

∑

µ

χµ(λ)χµ(π)
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is (by the orthogonality of the columns of the table of characters) equal to

zλ = 1j1j1!2
j2j2! · · ·

if the cycle type of π is the partition λ = 〈1j12j2 · · · 〉, and 0 otherwise; see e.g. [Sta99,
Proposition 7.17.6].

An even simpler proof uses the scalar product in the space of symmetric function. Let
us find the coefficient of aπ in eλ(ω1, . . . , ωm) = eλ1eλ2 · · · eλp. If we pick aiπ(i) from
eλ1 , we must also pick aπ(i)j from eλ1 because every term in eλ1 is balanced. But since
aπ(i)π2(i) is the only term of aπ with π(i) as the first index, we must have j = π2(i).
In other words, each of the cycles of π must be chosen from one of the eλi

’s. We know
that for J = {j1 < j2 < . . . < ji} and τ a permutation of j1, . . . , ji, aj1τ(j1) · · ·ajiτ(ji)
appears in ei with coefficient equal to the sign of τ .

This reasoning implies that the coefficient of aπ = a1π(1) · · ·amπ(m) with π of cycle
type µ = (µ1, . . . , µq) in eλ is equal to σµRµλ, where

• σµ is equal to (−1)j2+j4+... for µ = 〈1j12j2 · · · 〉, and

• Rµλ is the number of ordered partitions (B1, . . . , Bp) of the set {1, . . . , q} such
that

λj =
∑

i∈Bj

µi

for 1 ≤ j ≤ p.

But we know that if 〈·, ·〉 is the standard scalar product in the space of symmetric
functions defined by 〈hλ, mµ〉 = δλµ and ω is the standard (scalar product preserving)
involution given by ω(hλ) = eλ, then pµ =

∑
ν Rµνmν and ω(pµ) = σµpµ (see [Sta99,

§7.4 – §7.9]), do

〈eλ, pµ〉 = 〈ω(eλ), ω(pµ)〉 = σµ〈hλ, pµ〉 = σµRµλ.

Since eλ form a vector-space basis of the space of symmetric functions and since both
the scalar product with a fixed function and the operator [aπ] are linear, we have
proved the following.

Proposition 6.2.4 For any symmetric function f and for π a permutation of cycle
type µ, we have

[aπ]f(ω1, . . . , ωm) = 〈f, pµ〉

In particular,
[aπ]sλ(ω1, . . . , ωm) = 〈sλ, pµ〉 = χλ(µ).

The proposition of course also implies that

[aπ]pλ(ω1, . . . , ωm) = 〈pλ, pµ〉 = zλδλµ,

which we already proved above.
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The β-extension of the MacMahon master theorem, equation (4.6.2), yields the fol-
lowing extension of Theorem 6.1.1.

Theorem 6.2.5 Denote by hβi the coefficient of ti in

(
1

det(I − tA)

)β
.

Choose a partition λ = (λ1, . . . , λp) of m, and write aπ = a1π(1)a2π(2) · · ·amπ(m) for a
permutation π ∈ Sm. Then

[aπ] det(hβλi−i+j
)p×p = βcycπχλ(π), (6.2.3)

where χλ is the irreducible character of the symmetric group Sm corresponding to λ,
and cyc π is the number of cycles of π. In particular, for β = −1, the formula (6.2.3)
gives the relation

χλ
′

(π) = (−1)cyc π+|λ|χλ(π). (6.2.4)

Proof. Each term in the expansion of det(hβλi−i+j
)p×p is a product of certain hβi ’s.

Since the terms of hβi are also balanced, the same reasoning as on page 102 shows that
for each cycle (j, π(j), π2(j), . . .), the variables aj,π(j), aπ(j),π2(j), . . . must be chosen

from the same hβi . Assume that the cycle decomposition of π is

(j1, π(j1), π
2(j1), . . .)(j2, π(j2), π

2(j2), . . .) · · · (js, π(js), π
2(js), . . . , ),

and let us find the coefficient of

(
aj1,π(j1)aπ(j1),π2(j1) · · ·

) (
aj2,π(j2)aπ(j2),π2(j2) · · ·

)
· · ·
(
ajs,π(js)aπ(js),π2(js) · · ·

)

in hβi . We use the equation (4.6.3). In the notation of Section 4.6, there is exactly one
permutation in σ ∈ P(1) with v(σ) = aπ; it is defined by σ(i, 1) = (π(i), 1). Clearly,
cyc σ = cyc π, so the appropriate coefficient is βs. It follows that the coefficient of
aπ in det(hβλi−i+j

)p×p is equal to βcycπ times the coefficient of aπ in det(hλi−i+j)p×p,
which is, by Theorem 6.1.1, precisely (6.2.3).
We saw in (6.1.1) that

det(I − tA) =
∑

i

(−1)ieit
i,

where ei = ei(ω1, . . . , ωm), so, for β = −1, we have hβi = (−1)iei and

det(hβλi−i+j
)p×p = det((−1)λi−i+jeλi−i+j)p×p = (−1)|λ|sλ′(ω1, . . . , ωm)

by the dual Jacobi-Trudi identity, and by taking the coefficient of aπ on both sides
and using Theorem 6.1.1 and (6.2.3) we get (−1)cyc πχλ(π) = (−1)|λ|χλ

′
(π), which is

equivalent to (6.2.4).

It is worthwhile to note the following determinantal description of irreducible char-
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acters of the symmetric group.

Corollary 6.2.6 Let λ, µ be partitions of m, and define f0, . . . , fm via the formula

(tµ1 − u1)(t
µ2 − u2) · · · (t

µq − uq) = f0t
m − f1t

m−1 + . . .+ (−1)mfm.

Then
χλ(µ) = [u1 · · ·uq] det(fλ′i−i+j) = (−1)|λ|+q[u1 · · ·uq] det(fλi−i+j).

Example 6.2.7 Let λ = (2, 2, 2, 1) and µ = (3, 2, 2). Then

(t3−u1)(t
2−u2)(t

2−u3) = t7− (u2 +u3)t
5−u1t

4 +u2u3t
3 +(u1u2 +u1u3)t

2−u1u2u3

and so f0 = 1, f1 = 0, f2 = −u2 − u3, f3 = u1, f4 = u2u3, f5 = −u1u2− u1u3, f6 = 0,
f7 = u1u2u3. Hence

χ2221(322) = [u1u2u3]

∣∣∣∣
f4 f5

f2 f3

∣∣∣∣ = [u1u2u3](f4f3 − f2f5) = 1− 2 = −1. ♦

Proof of Corollary 6.2.6. Take π = (1, 2, . . . , µ1)(µ1 + 1, µ1 + 2, . . . , µ1 + µ2) · · · , and
form the block diagonal matrix A = A1 ⊕ . . . ⊕ Aq with blocks of the form (6.2.2)
corresponding to cycles of π. For example, when µ = (3, 2, 2), the permutation is
(123)(45)(67) and the matrix is




0 a12 0 0 0 0 0
0 0 a23 0 0 0 0
a31 0 0 0 0 0 0
0 0 0 0 a45 0 0
0 0 0 a54 0 0 0
0 0 0 0 0 0 a67

0 0 0 0 0 a76 0




.

The characteristic polynomial of A is (tµ1 − u1)(t
µ2 − u2) · · · (tµq − uq) for u1 =

a12a23 · · ·aµ11, u2 = aµ1+1,µ1+2aµ1+2,µ1+3 · · ·aµ1+µ2,µ1+1, etc. In other words, if the
eigenvalues of A are ω1, . . . , ωm, then ei(ω1, . . . , ωm) = fi. But then det(fλ′i−i+j) =
sλ(ω1, . . . , ωm) and equation (6.1.3) implies

[u1 · · ·uq] det(fλ′i−i+j) = [aπ]sλ(ω1, . . . , ωm) = χλ(µ).

The second equality is a corollary of (6.2.4).

6.3 Some background on Hecke algebras of type A

A beautiful quantization of the symmetric group is Hm(q), the Hecke algebra of type
A. In this section, we define and give some basic information about this algebra;
in the next section, we prove a q-generalization of Theorem 6.1.1; and in Sections
6.5 and 6.6, we use these results to give combinatorial formulas for three families of
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characters of Hm(q).

The symmetric group Sm is generated by transpositions si = (i, i+1), 1 ≤ i ≤ m−1,
which satisfy the relations:

s2
i = 1 for i = 1, . . . , m− 1, (6.3.1)

sisjsi = sjsisj if |i− j| = 1, (6.3.2)

sisj = sjsi if |i− j| ≥ 2. (6.3.3)

The Hecke algebra of type A, Hm(q), for q ∈ C \ {0} is the C-algebra generated by
the elements {Tsi

: 1 ≤ i ≤ m− 1} satisfying the following relations:

T 2
si

= (q2 − 1)Tsi
+ q2 for i = 1, . . . , m− 1, (6.3.4)

Tsi
Tsj

Tsi
= Tsj

Tsi
Tsj

if |i− j| = 1, (6.3.5)

Tsi
Tsj

= Tsj
Tsi

if |i− j| ≥ 2. (6.3.6)

If si1 · · · siℓ is a reduced expression for w of length inv(w) = ℓ, we define Tw =
Tsi1
· · ·Tsiℓ

. Every reduced expression can be obtained from another reduced expres-
sion by using only the relations (6.3.2) and (6.3.3) (see [Man01, Proposition 2.1.6]), so
(6.3.5) and (6.3.6) imply that Tw is well defined. This also follows from Matsumoto’s
theorem (see [GP00, Theorem 1.2.2]). The elements Tw, w ∈ Sm, form a basis of the
algebra Hm(q) by Bourbaki’s theorem, see for example [GP00, Theorem 4.4.6].

We also define {T̃si
: 1 ≤ i ≤ m − 1} with T̃si

(q) = q−1Tsi
and T̃w = q− inv(w)Tw =

T̃si1
· · · T̃siℓ

. The generators T̃w satisfy the relations

T̃ 2
si

= (q − q−1)T̃si
+ 1 for i = 1, . . . , m− 1, (6.3.7)

T̃si
T̃sj
T̃si

= T̃sj
T̃si
T̃sj

if |i− j| = 1, (6.3.8)

T̃si
T̃sj

= T̃sj
T̃si

if |i− j| ≥ 2. (6.3.9)

Remark 6.3.1 Usually, we take T 2
si

= (q−1)Tsi
+q instead of (6.3.4) in the definition

of Hm(q), and T̃w = q− inv(w)/2Tw. However, in this context, the quantum algebra is
assumed to satisfy relations (1.3.15)–(1.3.18) with q replaced by q1/2. ♦

If inv(siw) = inv(w)− 1, we have w = si(siw) with inv(siw) = inv(w)− 1. Then

T̃si
T̃w =

{
T̃siw : inv(siw) = inv(w) + 1

T̃siw + (q − q−1)T̃w : inv(siw) = inv(w)− 1
(6.3.10)

by (6.3.7), and similarly

T̃wT̃si
=

{
T̃wsi

: inv(wsi) = inv(w) + 1

T̃wsi
+ (q − q−1)T̃w : inv(wsi) = inv(w)− 1

. (6.3.11)
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The following lemma is a generalization of the equivalence v = wu ⇐⇒ w−1 = uv−1

and turns out to be very useful.

Lemma 6.3.2 For every u, v, w ∈ Sm, we have

[T̃v]T̃wT̃u = [T̃w−1]T̃uT̃v−1 .

Proof. Let us first prove the statement for v = id. Then we have to prove that

[1]T̃wT̃u =

{
1 : u = w−1

0 : otherwise

Indeed, it is clear from equations (6.3.10) and (6.3.11) that there is no term T̃id in

T̃wT̃u if inv(w) < inv(u) or inv(w) > inv(u). Furthermore, there is no term T̃id in

T̃wT̃u if inv(w) = inv(u) unless the reduced words for u is the reduced word for w in

reverse order; in other words, unless u = w−1. Clearly, [1]T̃wT̃w−1 = 1.
For every u, v, w, we can write

T̃wT̃u =
∑

x

cxT̃x, T̃uT̃v−1 =
∑

y

dyT̃y

for some cx, dy ∈ C. Then

[1]T̃wT̃uT̃v−1 = [1]

(
∑

x

cxT̃x

)
T̃v−1 = cv,

but also

[1]T̃wT̃uT̃v−1 = [1]T̃w

(
∑

y

dyT̃y

)
= dw−1.

Therefore [T̃v]T̃wT̃u = [T̃w−1 ]T̃uT̃v−1 .

Representations and characters. Let A be an algebra over C. A left A-module
V is called a representation of A. We can also represent an algebra representation
as an algebra homomorphism ϕ = ϕV : A → End(V), where End(V) is the algebra of
endomorphisms of V.

Example 6.3.3 Let us prove that the map ηq : Hm(q)→ C defined by ηq(T̃w) = qinv(w)

is a representation, i.e. that we have ηq(T̃wT̃v) = qinv(w)+inv(v) for all w, v. This is
obviously true if v = id, assume that it holds for all w, v with inv(v) = k − 1, and
assume inv(v) = k. We have v = siv

′ for some i ∈ {1, . . . , m− 1}, inv(v′) = k − 1. If
inv(wsi) = inv(w) + 1, then

ηq(T̃wT̃v) = ηq(T̃wT̃si
T̃v′) = ηq(T̃wsi

T̃v′) = qinv(wsi)+inv(v′) = qinv(w)+inv(v),
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and if inv(wsi) = inv(w)− 1, then

ηq(T̃wT̃v) = ηq(T̃wT̃si
T̃v′) = ηq((T̃wsi

+ (q − q−1)T̃w)T̃v′) =

= ηq(T̃wsi
T̃v′) + (q − q−1)ηq(T̃wT̃v′) = qinv(wsi)+inv(v′) + (q − q−1)qinv(w)+inv(v′) =

= qinv(w)+inv(v)−2 + (q − q−1)qinv(w)+inv(v)−1 = qinv(w)+inv(v).

The representation is called the trivial representation. We can similarly prove that
εq : Hm(q) → C defined by εq(T̃w) = (−q)− inv(w) is a representation, we call it the
sign representation. ♦

For an A-module V which is finitely generated and free over C, the character of V is
the linear map χV : A −→ C, a 7→ tr(ϕV(a)).

First note the following. For a representation ϕ and the corresponding character ϕ,
we have

χ(ab) = tr(ϕ(ab)) = tr(ϕ(a)ϕ(b)) = tr(ϕ(b)ϕ(a)) = tr(ϕ(ba)) = χ(ba). (6.3.12)

for every a, b ∈ A.

The algebra Hm(q) is finitely generated and free. Therefore it makes sense to talk
about characters of its representations.

Equation (6.3.12) implies the following relation for characters of the Hecke algebra.

Theorem 6.3.4 Take w ∈ Sm, i ∈ {1, . . . , m − 1}, s = si, and a character χ of
Hm(q). Then:

• if inv(sws) = inv(w), then χ(T̃sws) = χ(T̃w);

• if inv(sws) = inv(w) + 2, then χ(T̃sws) = χ(T̃w) + (q − q−1)χ(T̃sw) = χ(T̃w) +

(q − q−1)χ(T̃ws);

• if inv(sws) = inv(w) − 2, then χ(T̃sws) = χ(T̃w) − (q − q−1)χ(T̃sw) = χ(T̃w) −

(q − q−1)χ(T̃ws);

Proof. Assume that inv(sw) = inv(w)− 1 and inv(sws) = inv(w). Then

χ(T̃sT̃wT̃s) = χ((T̃sw + (q − q−1)T̃w)T̃s) = χ(T̃sws) + (q − q−1)χ(T̃wT̃s)

and, by (6.3.12),

χ(T̃sT̃wT̃s) = χ(T̃wT̃sT̃s) = χ(T̃w(1 + (q − q−1)T̃s)) = χ(T̃w) + (q − q−1)χ(T̃wT̃s),

so χ(T̃sws) = χ(T̃w). If inv(sw) = inv(w) + 1 and inv(sws) = inv(w), then

χ(T̃sT̃wT̃s) = χ(T̃swT̃s) = χ(T̃sws) + (q − q−1)χ(T̃sw)
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and, by (6.3.12),

χ(T̃sT̃wT̃s) = χ(T̃sT̃sT̃w) = χ((1 + (q − q−1)T̃s)T̃w) = χ(T̃w) + (q − q−1)χ(T̃sw).

This proves (a). Let us prove (b). If inv(sws) = inv(w)+2, then inv(sw) = inv(ws) =
inv(w) + 1, and so

χ(T̃sT̃wT̃s) = χ(T̃sws) = χ(T̃wT̃sT̃s) =

= χ(T̃w(1 + (q − q−1)T̃s)) = χ(T̃w) + (q − q−1)χ(T̃ws),

and since χ(T̃sT̃w) = χ(T̃wT̃s), we have χ(T̃sws) = χ(T̃w)+ (q− q−1)χ(T̃sw). Swapping
the roles of w and sws, we get (c) from (b).

In particular, we have the following; γµ, µ(w), aw and aw were defined in Section 2.7.

Corollary 6.3.5 Every character χ of Hm(q) has the following property. For a
permutation w 6= γµ, choose the smallest i that satisfies w(i) = j + 1 > i+ 1. Then:

• if inv(sjwsj) = inv(w), then χ(T̃w) = χ(T̃sjwsj
);

• if inv(sjwsj) = inv(w)− 2, then χ(T̃w) = χ(T̃sjwsj
) + (q − q−1)χ(T̃wsj

).

Note that this is precisely the recursion from Theorem 2.7.1. That means that for
any character χ of Hm(q), the quantum immanant

ImmχA =
∑

w∈Sm

χ(T̃w)aw

is also given by

ImmχA =
∑

w∈Sm

χ(T̃γµ(w)
)aw.

One important quantum immanant is the quantum permanent

perqA =
∑

w∈Sm

qinv(w)aw =
∑

w∈Sm

qm−cyc(w)aw,

which corresponds to the Hecke algebra trivial character. Furthermore, we have the
quantum determinant,

detqA =
∑

w∈Sm

(−q)− inv(w)aw =
∑

w∈Sm

(−q)−(m−cyc(w))aw,

which corresponds to the Hecke algebra sign character.

Remark 6.3.6 Our definition of the quantum determinant in Section 1.4 was dif-
ferent: instead of aw = a1w1a2w2 · · ·amwm , we had aw11aw22 · · ·awmm. However, these
terms are equal in the quantum algebra: we can move a1∗ all the way to the left using
(1.3.17), then move a2∗ to the slot immediately to the right of a1∗ using (1.3.17), and
continue. ♦
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Representations induced from parabolic subalgebras. For a subset J of
{1, . . . , m − 1}, we call the subgroup SJ = 〈si : i ∈ J〉 of Sm the parabolic sub-

group of Sm, and the subalgebra HJ of Hm(q) generated by {T̃si
: i ∈ J} the parabolic

subalgebra of Hm(q). Say that we are given a representation of HJ , i.e. a HJ -module
V. The tensor product Hm(q) ⊗HJ

V is naturally an Hm(q)-module with the action
h′(h⊗ v) = h′h⊗ v. This is the induced representation. See [GP00, page 287].

Define

XJ = {x ∈ Sm : inv(xsi) > inv(x) for all i ∈ J} = {x ∈ Sm : desx ∩ J = ∅}.

Clearly, every x ∈ XJ is the unique element of minimal length in the coset xSJ of
Sm. Furthermore, for every w ∈ Sm, there exist unique x ∈ XJ and v ∈ SJ satisfying
w = xv; we also have inv(xv) = inv(vx−1) = inv(x) + inv(v). See [GP00, Proposition
2.1.1] for the proof for a general Coxeter group.

Lemma 6.3.7 For x ∈ XJ , u ∈ SJ and w ∈ Sm, we have

[T̃xu]T̃w = [T̃u]T̃x−1T̃w.

Proof. The left hand side is equal to 1 if w = xu and 0 otherwise. Write w = yv for
unique y ∈ XJ , v ∈ SJ . Then T̃x−1T̃w = T̃x−1T̃yT̃v, and T̃x−1T̃y is a linear combination

of T̃z with z ∈ SJ . But T̃zT̃v = T̃zv, so we can only get a non-zero coefficient in T̃u if
v = u. Furthermore,

[T̃u]T̃x−1T̃yT̃u = [1]T̃x−1T̃y,

and this is 1 if y = x and 0 otherwise by Lemma 6.3.2. Therefore [T̃u]T̃x−1T̃w is 1 if
w = xu and 0 otherwise.

The lemma is the Hecke algebra analogue of the statement xu = w ⇐⇒ u = x−1w.

Theorem 6.3.8 If ϕ is a representation of HJ , the induced representation Φ has the
block matrix form

Φ(T̃π) =




F (T̃x−1
1
T̃πT̃x1) F (T̃x−1

1
T̃πT̃x2) . . . F (T̃x−1

1
T̃πT̃xd

)

F (T̃x−1
2
T̃πT̃x1) F (T̃x−1

2
T̃πT̃x2) . . . F (T̃x−1

2
T̃πT̃xd

)
...

...
. . .

...

F (T̃x−1
d
T̃πT̃x1) F (T̃x−1

d
T̃πT̃x2) . . . F (T̃x−1

d
T̃πT̃xd

)



,

where XJ = {x1, . . . , xd}, and F is the linear map that satisfies

F (T̃π) =

{
ϕ(T̃π) : π ∈ SJ

0 : π /∈ SJ
.

Sketch of proof: The basis of the induced module is {Ty ⊗ vi}, where y runs over XJ

and {vi} form the basis of V . Write T̃πT̃y =
∑

w cwT̃w. Then every w can be written
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as xu for x ∈ XJ and u ∈ SJ , and T̃w = T̃xT̃u. Then

T̃π(T̃y ⊗ vi) =

(
∑

w

cwT̃w

)
⊗ vj =

∑

x,u

cxuT̃xT̃u ⊗ vj =

=
∑

x,u

cxuT̃x ⊗ T̃uvj =
∑

x,u

cxuT̃x ⊗ ϕ(T̃u)vj .

But
cxu = [T̃xu]T̃πT̃y = [T̃u]T̃x−1T̃πT̃y

by the last lemma. That implies the theorem.

Irreducible characters and Kostka numbers. We will use the following fact
about irreducible characters of Hm(q) without proof. In order to motivate it, let us
return to the characters of the symmetric group for a moment. We already discussed
its irreducible characters in Sections 6.1 and 6.2. Let us describe two more families
of characters. The trivial characters of Young subgroups Sλ1 ×· · ·×Sλp of Sm induce
the characters {ηλ : λ ⊢ m}. They are given by

ηλ(π) = Rµλ, (6.3.13)

where µ = (µ1, . . . , µr) is the type of the permutation π, and Rµλ was defined on page
102.

The sign characters of Young subgroups induce the characters {ελ : λ ⊢ m}, which
are given by

ελ(π) = σµRµλ, (6.3.14)

where σµ = sign π = (−1)j2+j4+... for µ = 〈1j12j2 · · · 〉.

It is well known that the inverse Kostka numbers K−1
µ,λ = 〈sλ, mµ〉 describe the ex-

pansions of irreducible Sm characters in terms of induced sign and trivial characters
of Sm, i.e.

χλ =
∑

µ

K−1
µ,λη

µ =
∑

µ

K−1
µ,λ′ε

µ.

Somewhat surprisingly, these numbers also describe the expansions of irreducible
Hm(q) characters in terms of induced sign and trivial characters of Hm(q) no “quan-
tum analogue” of inverse Kostka numbers is needed for this purpose. See [GP00,
§9.1.9]. In other words, we have

χλq =
∑

µ

K−1
µ,λη

µ
q =

∑

µ

K−1
µ,λ′ε

µ
q . (6.3.15)

6.4 Quantum Goulden-Jackson immanant formula

The purpose of this section is to prove the following Hecke algebra analogue of The-
orem 6.1.1.
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Define the sequences (Hk)k∈Z, (Ek)k∈Z in A by

1

detq(I − tA)
=

∞∑

k=0

Hkt
k, detq(I + tA) =

m∑

k=0

Ekt
k,

and by requiring that polynomials with indices not appearing in these sums be zero.

Theorem 6.4.1 Take a partition λ ⊢ m and a permutation π ∈ Sm. If the matrix
A = (aij)m×m is quantum, then

[aπ] det(Hλi−i+j)p×p = [aπ] det(Eλ′i−i+j)λ1×λ1 = χλq (T̃π). (6.4.1)

Note that det in the theorem does not contain powers of q, i.e. it is not the quantum
determinant.

Before proving the theorem, let us notice that equation (6.3.13) is equivalent to the
following. For a commutative matrix A = (aij)m×m, the immanant

Immηλ A =
∑

π∈Sm

ηλ(π)a1π(1) · · ·amπ(m)

can be expressed in terms of permanents of submatrices AI = (aij)i,j∈I as

Immηλ A =
∑

(I1,...,Ip)

per(AI1) · · ·per(AIp), (6.4.2)

where the sum is over all p-tuples (I1, . . . , Ip) of disjoint Ij, |Ij| = λj, with union [m].

Similarly, equation (6.3.14) is equivalent to the following. For a commutative matrix
A = (aij)m×m, the immanant

Immελ A =
∑

π∈Sm

ελ(π)a1π(1) · · ·amπ(m)

can be expressed in terms of determinants as

Immελ A =
∑

(I1,...,Ip)

det(AI1) · · ·det(AIp), (6.4.3)

where the sum is over all p-tuples (I1, . . . , Ip) of disjoint Ij, |Ij| = λj, with union [m].

Formulas (6.4.2) and (6.4.3) are called Merris-Watkins formulas, see [MW85]. The-
orem 6.4.1 will follow from (6.3.15) and the quantum analogues of these formulas
(Theorem 6.4.4).

Lemma 6.4.2 For a composition λ = (λ1, . . . , λp) ⊢ m, define the subset J of gen-
erators of Sm by

J = [m− 1] \ {λ1, λ1 + λ2, . . . , λ1 + . . .+ λp−1}.
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Then we have ∑

v∈XJ ,u∈SJ

qinv(u)T̃vT̃u−1T̃v−1 =
∑

w∈Sm

ηλq (T̃w)T̃w−1,

∑

v∈XJ ,u∈SJ

(−q)− inv(u)T̃vT̃u−1T̃v−1 =
∑

w∈Sm

ελq (T̃w)T̃w−1.

Proof. By Theorem 6.3.8, we have

ηλq (T̃w) =
∑

v∈XJ

∑

u∈SJ

qinv(u)[T̃u]T̃v−1 T̃wT̃v,

and so
∑

w∈Sm

ηλq (T̃w)T̃w−1 =
∑

w∈Sm

(
∑

v∈XJ

∑

u∈SJ

qinv(u)[T̃u]T̃v−1 T̃wT̃v

)
T̃w−1 .

But by Lemma 6.3.2,

[T̃u]T̃v−1 T̃wT̃v = [T̃v]T̃wT̃vT̃u−1 = [T̃w−1]T̃vT̃u−1T̃v−1

and so

∑

w∈Sm

ηλq (T̃w)T̃w−1 =
∑

v∈XJ

∑

u∈SJ

qinv(u)
∑

w∈Sm

(
[T̃w−1 ]T̃vT̃u−1T̃v−1

)
T̃w−1 =

=
∑

v∈XJ

∑

u∈SJ

qinv(u)T̃vT̃u−1T̃v−1 .

The proof for the sign character is completely analogous.

Remark 6.4.3 It is actually possible to prove the lemma directly from the definition
of an induced character and Lemma 6.3.2, without proving Theorem 6.3.8. ♦

Define the subspace A0 of A as the space generated by {aw : w ∈ Sm}. Define an
action of Hm(q) on A0 by

T̃si
◦ aw = asi,w =

{
awsi

if inv(wsi) > inv(w)

awsi
+ (q − q−1)aw if inv(wsi) < inv(w)

.

Theorem 6.4.4 (quantum Merris-Watkins formulas) Let λ = (λ1, . . . , λp) be a com-
position of m. Then we have

Immηλ
q
A =

∑

(I1,...,Ip)

perq(AI1) · · ·perq(AIp), (6.4.4)

Immελ
q
A =

∑

(I1,...,Ip)

detq(AI1) · · ·detq(AIp), (6.4.5)

where the sums are over all sequences (I1, . . . , Ip) of pairwise disjoint subsets of [m]
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satisfying |Ij | = λj, with union [m].

Proof. Let us prove first that

T̃si
◦ av,w = asiv,w if siv > v. (6.4.6)

This is true by definition for v = id, now assume that it is true for all v with k
inversions. We want to prove that T̃si

◦ avsj ,w = asivsj ,w for sivsj > vsj > v. Note

that siv > v and so T̃si
◦ av,w = asiv,w for all permutations w. We have

avsj ,w =

{
av,wsj

: w(j) < w(j + 1)
av,wsj

+ (q − q−1)av,w : w(j) > w(j + 1)

and therefore T̃si
◦ avsj ,w = T̃si

◦ av,wsj
= asiv,wsj

= asivsj ,w if w(j) < w(j + 1), and

T̃si
◦ avsj ,w = T̃si

◦
(
av,wsj

+ (q − q−1)av,w
)

= asiv,wsj
+ (q − q−1)asiv,w = asivsj ,w if

w(j) > w(j + 1). This proves the induction step for (6.4.6).
For a permutation π, let σ be the permutation we get by rearranging π(λ1 + . . . +
λk−1 + 1), . . . , π(λ1 + . . . + λk) in increasing order. For example, if λ = (3, 2, 2) and
π = 6742135, then σ = 4671235. Note that σ ∈ XJ . Furthermore, we get π from σ
by permuting only positions 1, . . . , λ1, λ1 + 1, . . . , λ2, etc. In other words, π = σu for
a permutation u ∈ SJ . Note that this is the unique decomposition of π as a product
of an element of XJ and an element of SJ . In our example, u = 2315467. Since
inv(u−1σ−1) = inv(u−1) + inv(σ−1), we have T̃u−1T̃σ−1 ◦ aid = aσu = aπ. By equation
(6.4.6),

T̃σT̃u−1T̃σ−1 ◦ aid = aσ,π.

Note that π 7→ (σ, u) is a bijection between Sm and XJ × SJ , and that inv(u) =
inv(π)− inv(σ). Therefore

(
∑

v∈XJ ,u∈SJ

qinv(u)T̃vT̃u−1T̃v−1

)
◦ aid =

∑

(I1,...,Ip)

perq(AI1) · · ·perq(AIp).

where the sum is over sequences (I1, . . . , Ip) of pairwise disjoint subsets of [m] satis-
fying |Ij| = λj, with union [m]. Similarly

(
∑

v∈XJ ,u∈SJ

(−q)− inv(u)T̃vT̃u−1T̃v−1

)
◦ aid =

∑

(I1,...,Ip)

detq(AI1) · · ·detq(AIp).

The result now follows from Lemma 6.4.2 and the fact that Tw−1 ◦ aid = aw.

Corollary 6.4.5 Define the elements

αk =
∑

|I|=k

perq(AI), βk =
∑

|I|=k

detq(AI)

for all k. Then αk’s (respectively, βk’s) commute modulo A0.
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Proof. The product αkαj is, modulo A0, equal to
∑

(I1,I2)
perq(AI1) · perq(AI2) with

the sum over disjoint subsets I1 and Ij of m, with |I1| = k and |I2| = j. That is, by
Theorem 6.4.4, equal to

∑
I Imm

η
(k,j)
q

AI , with the sum over all (k + j)-subsets I of

[m]. The result follows since η
(k,j)
q = η

(j,k)
q . The other proof is analogous.

Proof of Theorem 6.4.1. All expression in the proof are taken modulo A0. Because
quantum matrices are also q-right-quantum, we can use the q-right-quantum master
theorem (Theorem 4.4.1) to see that Hk = αk, where αk was defined in Corollary
6.4.5. The elements Hk commute; therefore we have

det(Hλi−i+j)p×p =
∑

µ

K−1
µ,λHµ1 · · ·Hµp =

∑

µ

K−1
µ,λ Immηλ

q
(A) = Immχλ

q
A.

The last equality is (6.3.15).
The second identity is even simpler, as we do not need the master theorem. It is
obvious that Ek = βk (even in the algebra A), and the rest of the proof is analogous
to the one above.

6.5 Combinatorial interpretations of characters of

Hecke algebras

Theorem 6.4.4 can be used to (re)prove the combinatorial interpretation of the char-

acters ηλq (T̃γµ) (given implicitly by Ram [Ram91, Theorem 4.1]), ελq (T̃γµ) and χλq (T̃γµ)
(given by Ram and Remmel [RR97, Theorem 3]).

Fix a partition λ = (λ1, . . . , λs) and a composition µ = (µ1, . . . , µr) of m, and write
w = γµ. For a permutation π ∈ Sm, say that i is in kth λ-slot of π if λ1 + . . .+λk−1 <
π−1(i) ≤ λ1 + . . .+λk for some k. For example, for λ = (4, 2, 1, 1) and π = 56483721,
4, 5, 6, 8 are in the first λ-slot, and 3 and 7 are in the second λ-slot.

We proved in Theorem 6.4.4 that

ηλq (T̃γµ) = [aw] Immηλ
q
A =

∑

(I1,...,Ip)

[aw]perq(AI1) · · ·perq(AIp) =

=
∑

π∈Sm

qinv(π)−inv(σ)[aw]aσ1,π1aσ2,π2 · · ·aσn,πn =
∑

π∈Sm

qinv(π)−inv(σ)[aw]aσ,π,

where we obtain σ from π by placing the elements in the same λ-slot into increasing
order. For example, if λ = (4, 2, 1, 1) and π = 56483721, then σ = 45683721.

Take a permutation π ∈ Sm. Denote by J the r-tuple (J1, . . . , Jr) of multisets Jk so
that Jk contains a copy of j for every i with λ1 + . . .+ λj−1 < i ≤ λ1 + . . .+ λj and
µ1 + . . .+µk−1 < π(i) ≤ µ1 + . . .+µk. For example, for π = 56483721, λ = (4, 2, 1, 1)
and µ = (3, 3, 2), we get J = ((2, 3, 4), (1, 1, 1), (1, 2)). Clearly, Jk has µk elements,
and there are λj copies of j in ∪Jk.
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Theorem 6.5.1 Take w = γµ for some composition µ. The map ϕ = ϕλ,µ : π 7→ J
is a bijection between the set of π with

[aw]aσ,π 6= 0

and the set of r-tuples J = (J1, . . . , Jr) of multisets Jk for which |Jk| = µk and for
which ∪Jk contains λj copies of j. Furthermore, in this case

qinv(π)−inv(σ)[aw]aσ,π = qr−mq2
∑

j N=(Jj)(q2 − 1)
∑

j N<(Jj),

where N=(J) = |{j < r : ij = ij+1}|, N<(J) = |{j < r : ij < ij+1}| for J = (i1, . . . , ir).

The theorem is proved in Section 6.6.

Define quantum power symmetric function pµ(x1, x2, . . .) for a composition µ by

pµ = pµ1
· · · pµs

,

where
pr =

∑

J

q2N=(J)(q2 − 1)N<(J)xi1xi2 · · ·xin ;

here J runs over multisets (i1, . . . , ir) with 1 ≤ i1 ≤ . . . ≤ ir ≤ m. For example,

p3 = q4m3 + q2(q2 − 1)m21 + (q2 − 1)2m111.

If q = 1, we get ordinary power symmetric functions. Furthermore, define

p̃µ = p̃µ1 · · · p̃µs ,

where
p̃r =

∑

J

(−1)N=(J)(q2 − 1)N<(J)yi1yi2 · · · yin;

here J runs over multisets (i1, . . . , ir) with 1 ≤ i1 ≤ . . . ≤ ir ≤ m. For example,

p3 = m3 − (q2 − 1)m21 + (q2 − 1)2m111.

If q = 1, we get σµpµ.

Theorem 6.5.1 immediately yields a combinatorial description of the characters ηλq and
ελq , which we give in Theorem 6.5.3. In order to prove the combinatorial description
of the irreducible characters χλq , we need the following Theorem. Note that this result
was already proved in [RR97], see equation (22) and the remark following it. Our
proof, though essentially equivalent, is completely direct and elementary (in particu-
lar, it does not need Littlewood-Richardson rule, Pieri rule or λ-ring manipulations).
See also [RRW96].

Recall that a border strip is a connected skew shape with no 2×2 square. Equivalently,
a skew shape λ/µ is a border strip if and only if λi = µi−1 + 1 for i ≥ 2. The height
ht of a border strip is one less than the number of rows, and the width wt is one less
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than the number of columns. The ordinary Murnaghan-Nakayama rule states that
for any partition µ and r ∈ N, we have

sµ · pr =
∑

λ

(−1)ht(λ/µ)sλ, (6.5.1)

where the sum is over all partitions λ ⊇ µ for which λ/µ is a border strip of size r.
See [Sta99, Theorem 7.17.1].

Define a broken border strip to be a (not necessarily connected) skew shape with no
2 × 2 square. Equivalently, a skew shape λ/µ is a broken border strip if and only if
λi ≤ µi−1 + 1 for i ≥ 2. A broken border strip λ/µ is a union of a finite number,
st(λ/µ), of border strips. Denote by ht(λ/µ) the sum of heights of these strips and
by wt(λ/µ) the sum of widths of these tableaux. The following generalizes (6.5.1).

Theorem 6.5.2 (quantum Murnaghan-Nakayama rule) For any partition µ and r ∈
N we have

sµ · pr =
∑

λ

(−1)ht(λ/µ)q2wt(λ/µ)(q2 − 1)st(λ/µ)−1sλ, (6.5.2)

where the sum runs over all partitions λ ⊇ µ for which λ/µ is a broken border strip
of size r.

The proof appears in Section 6.6.

A broken border strip tableau of shape λ/µ and type α is an assignment of positive
integers to the squares of λ/µ such that:

• every row and column is weakly increasing,

• the integer i appears αi times, and

• the set of squares occupied by i forms a broken border strip or is empty.

The weight of a broken border strip b is

weight b = (−1)ht(b)q2wt(b)(q2 − 1)st(b)−1,

and the weight weight T of a broken border strip tableau T is the product of weights
of its non-empty broken border strips.

Theorem 6.5.3 Theorems 6.5.1 and 6.5.2 imply the following combinatorial descrip-
tions of characters of the Hecke algebra.

1. We have
ηλq (Tγµ) =

∑
q2
∑

j N=(Jj)(q2 − 1)
∑

j N<(Jj)

and
ελq (Tγµ) =

∑
(−1)

∑
j N=(Jj)(q2 − 1)

∑
j N<(Jj),

where the sums are over all r-tuples (J1, . . . , Jr) of multisets Jj with |Jj| = µj
and for which ∪Jk contains λj copies of j.
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2. We have
χλq (Tγµ) =

∑

T

weight T,

where the sum is over all broken border strip tableaux T of shape λ and type µ.

Proof. (1) The first formula follows immediately from

ηλq (T̃γµ) =
∑

π∈Sm

qinv(π)−inv(σ)[aw]aσ,π,

Theorem 6.5.1, and relation Tγµ = qm−rT̃γµ for µ = (µ1, . . . , µr) ⊢ m.
The second formula follows from

ελq (T̃γµ) =
∑

π∈Sm

(−q−1)inv(π)−inv(σ)[aw]aσ,π,

Theorem 6.5.1, and relation Tγµ = qm−rT̃γµ for µ = (µ1, . . . , µr) ⊢ m.
(2) By equation (6.3.15),

χλq (Tγµ) =
∑

ν

K−1
ν,λη

ν
q (Tγµ) =

∑

ν

K−1
ν,λ[mν ]pµ =

=
∑

ν

K−1
ν,λ〈pµ, hν〉 =

〈
pµ,
∑

ν

K−1
ν,λhν

〉
= 〈pµ, sλ〉.

The result follows by Theorem 6.5.2 and induction on the length of µ.

Example 6.5.4 For λ = (3, 2, 1) and µ = (2, 2, 1, 1), we have the following 4-tuples.

J1 J2 J3 J4 weight J1 J2 J3 J4 weight
11 12 2 3 q2(q2 − 1)1 11 12 3 2 q2(q2 − 1)1

11 13 2 2 q2(q2 − 1)1 11 22 1 3 q4(q2 − 1)0

11 22 3 1 q4(q2 − 1)0 11 23 1 2 q2(q2 − 1)1

11 23 2 1 q2(q2 − 1)1 12 11 2 3 q2(q2 − 1)1

12 11 3 2 q2(q2 − 1)1 12 12 1 3 q0(q2 − 1)2

12 12 3 1 q0(q2 − 1)2 12 13 1 2 q0(q2 − 1)2

12 13 2 1 q0(q2 − 1)2 12 23 1 1 q0(q2 − 1)2

13 11 2 2 q2(q2 − 1)1 13 12 1 2 q0(q2 − 1)2

13 12 2 1 q0(q2 − 1)2 13 22 1 1 q2(q2 − 1)1

22 11 1 3 q4(q2 − 1)0 22 11 3 1 q4(q2 − 1)0

22 13 1 1 q2(q2 − 1)1 23 11 1 2 q2(q2 − 1)1

23 11 2 1 q2(q2 − 1)1 23 12 1 1 q0(q2 − 1)2

That means that

ν(3,2,1)
q (T214356) = 4q4 + 12q2(q2 − 1) + 8(q2 − 1)2 = 24q4 − 28q2 + 8.
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Similarly we get

ε(3,2,1)
q (T214356) = 4− 12(q2 − 1) + 8(q2 − 1)2 = 8q4 − 28q2 + 24.

Finally, the following are all broken border strip tableaux of shape λ and type µ:

1 1 3
2 2
4

1 1 4
2 2
3

1 1 3
2 4
2

1 1 4
2 3
2

1 2 2
1 3
4

1 2 2
1 4
3

1 2 3
1 2
4

1 2 4
1 2
3

1 1 2
2 3
4

1 1 2
2 4
3

1 2 3
1 4
2

1 2 4
1 3
2

Note that the first 8 tableaux are actually border strip tableaux. We have

χ(3,2,1)(T214356) = 2q4 − 4q2 + 2 + 2q2(q2 − 1)− 2(q2 − 1) = 4q4 − 8q2 + 4. ♦

Theorem 6.5.3 implies the following interesting fact.

Corollary 6.5.5 The endomorphism ω defined on the algebra of symmetric functions
by ω(er) = hr satisfies ω(pµ) = p̃µ.

Proof. It is enough to prove that ω(pr) = p̃r for all r. We have

〈ω(p̃r), sλ〉 = 〈p̃r, ω(sλ)〉 = 〈p̃r, sλ′〉 = 〈p̃r,
∑

ν

K−1
ν,λ′hν〉 =

=
∑

ν

K−1
ν,λ′ [mν ]p̃r =

∑

ν

K−1
ν,λ′ε

ν
q (Tγr) = χλq (Tγr) = 〈pr, sλ〉

and the claim follows.

Remark 6.5.6 In the preparation of this thesis, an error was found in [Ram91, §8].
The entry for λ = (3, 2, 1) and µ = (2, 2, 2) should be 2q3 − 6q2 + 6q − 2 (or, in our
language, 2q6 − 6q4 + 6q2 − 2) instead of q3 − 5q2 + 5q − 1. ♦

6.6 Proofs of Theorems 6.5.1 and 6.5.2

Proof of Theorem 6.5.1. We want to write aσ,π in the basis {av : v ∈ Sm}. In order
to do that, take the variable a1r and move it to the left, all the while using relations
(1.3.17), (1.3.18). Write R = q − q−1. For example, when λ = (2, 2) and π = 3421,
we have

a33a44a12a21 = a33(a12a44+Ra14a42)a21 = a12a33a44a21+Ra13a32a44a21+Ra14a33a42a21.

118



In each of the new terms choose the variable a2r′ and move it to the left, then the vari-
able a3r′′ , etc. In the end, we get a linear combination of certain av for v ∈ Sm, with
each av having coefficient Rk for some integer k. Of course, if we are only interested
in the coefficient of aw for w = γµ, we can disregard every term that cannot give aw in
the end. As an example, take λ = (4, 2, 1, 1), µ = (3, 3, 2) (so w = 23156487) and π =
56483721. We have a45a56a64a88a33a77a22a11 = a45a56a64a88a33a77(a11a22 + Ra12a21),
but we can ignore the term with a11a22 because as we move a11 to the left, no term
will start with a12, which is the first variable of aw. We get

[a23156487]a45a56a64a88a33a77a22a11 = R[a23156487]a45a56a64a88a33a77a12a21 =

= R[a23156487]a45a56a64a88a33a12a77a21 = R[a23156487]a12a45a56a64a88a33a77a21 =

= R[a23156487]a12a45a56a64a88a33a21a77 = R2[a23156487]a12a45a56a64a88a23a31a77 =

= R2[a23156487]a12a23a45a56a64a88a31a77 = R2[a23156487]a12a23a31a45a56a64a88a77 =

= R3[a23156487]a12a23a31a45a56a64a78a87 = R3.

Let us figure out how this works in general. As we move a1r to the left, we can either
use the relation ajka1l = a1lajk for k < l (in which case the variable with the first
index 1 remains the same) or the relation ajla1k = a1kajl + (q − q−1)a1lajk for k < l
(in which case the variable with the first index 1 remains the same in one term and
is increased in the other).

All in all, the second index of the variable with the first index 1 will stay the same or
increase, and the second index of variables with the first index 2 or more will stay the
same or decrease. In particular, w(1) ≥ r for every w for which the coefficient of aw
in aσ,π is non-zero. Since w(1) ≤ 2 for w = γµ, we conclude that r ≤ 2. Moreover, in
the process of moving the variable a11 or a12 to the left, the second index can never
increase above 2.

Now take the variable a2r′ and assume that r′ > 3. That means that as we move a1r

to the left, we do not use the relation a2la1k = a1ka2l + (q − q−1)a1la2k, and we still
have the variable a2r′ . As we move this variable to the left, the second index can only
increase, and we cannot end up with aw for w(2) ≤ 3. Therefore, if [aw]aσ,π 6= 0, then
we have r′ ≤ 3.

The conclusion we can make in general is that if [aw]aσ,π 6= 0, then σi ≤ πi + 1. Now
assume that w(i) = i + 1 and that air with r ≤ i appears in aσ,π. After we move
a1r1 , . . . , ai−1,ri−1

to the left, the second index of the variable with the first index i
can only decrease, so it is ≤ i. Furthermore, the variable with the second index i+ 1
is still on the same side of ais as in aσ,π. That means that in order for the coefficient
at aw to be non-zero, the variable with the second index i+ 1 must be weakly to the
left of the variable with the first index i in aσ,π. In other words, either we have ai,i+1

in aσ,π, or the slot of i+ 1 is strictly to the left of the slot of i.

On the other hand, assume that ai,i+1 appears as a variable in aσ,π. When we move
a1r1 , . . . , ai−1,ri−1

to the left, we can ignore the terms in which we replace ai,i+1 by air
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for r ≤ i, since that would create a variable aj,i+1 with j < i. And as we move ai,i+1

to the left, we can only increase the second index. That means that w(i) = i+ 1.

Now take an r-tuple J = (J1, . . . , Jr) of multisets Jk for which |Jk| = µk and for
which ∪Jk contains λj copies of j, and let us find all π that ϕ maps into J and for
which [aw]aσ,π 6= 0. For example, for λ = (4, 2, 1, 1), µ = (3, 3, 2) (i.e. w = 23156487)
and J = (234, 111, 12), the first 4 entries of π with ϕ(π) = J are, by definition of
ϕ, 4, 5, 6 and either 7 or 8 (in some order). However, for [aw]aσ,π to be non-zero, it
cannot be 7, as we would have w(7) = 8, but the slot of 7 would be strictly to the
left of the slot of 8. Similar reasoning shows that the next 2 entries of π must be
3 (it cannot be 1, because that would place 2 strictly to the right of 1 even though
w(1) = 2, and it cannot be 2, because that would place 3 strictly to the right of
2 even though w(2) = 3) and 7 (as 8 already appears among the first 4 entries of
π). We get that the 7th entry of π must be 2 and the 8th 1. Also, w(4) = 5 and
w(5) = 6, and we proved that this implies that a45 and a56 appear in aσ,π. In other
words, there is only one option for π, and that is π = 56483721. Recall that indeed
[a23156487]a45a56a64a88a33a77a22a11 = R3 6= 0.

In general, our previous reasoning implies that for each J , there is exactly one π with
[aw]aσ,π 6= 0 and ϕ(π) = J , and it is constructed as follows. Rearrange each of the
r multisets J1, . . . , Jr into a weakly decreasing word, and concatenate them into one
word α of length m, but write bars in between – in our example, we get 432|111|21.
Then for each k from 1 to s do the following:

1. write the positions of k in α – we get a word gk of length λk (in our example,
we get g1 = 4568, g2 = 37, g3 = 2 and g4 = 1)

2. rotate cyclically to the right the positions in gk that belong to the same multiset
Jj; this is hk (in our example, we get h1 = 5648, h2 = 37, h3 = 2 and h4 = 1);

3. write h1, . . . , hs together; this is π (56483721 in our example).

As another example, take λ = (4, 4, 3, 2, 1) and µ = (2, 3, 6, 3). Note that in this case,

aw = a12a21a34a45a53a67a78a89a9,10a10,11a11,6a12,13a13,14a14,12.

For
J = ((1, 3), (1, 4, 5), (1, 1, 2, 2, 2, 4), (2, 3, 3)),

we get α = 31|541|422211|332|, g1 = (2, 5, 10, 11), g2 = (7, 8, 9, 14), g3 = (1, 12, 13),
g4 = (4, 6), g5 = (3), h1 = (2, 5, 11, 10), h2 = (8, 9, 7, 14), h3 = (1, 13, 12) h4 = (4, 6)
h5 = (3) and

aσ,π = a22a55a10,11a11,10a78a89a97a14,14a11a12,13a13,12a44a66a33

It remains to see what the (non-zero) coefficient of aw in aσ,π is. For example, take
µ3 = 6 in the last example, and the corresponding multiset J3 = (1, 1, 2, 2, 2, 4) and
the word 422211. The entry corresponding to 4 is a66, the terms corresponding to 222
are a78a89a97, and the terms corresponding to 11 are a10,11a11,10. As we are moving
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the terms to the left, we replace a97a66 by a67a96 and a11,10a96 by a9,10a11,6, so the
coefficient is R2. In general, it is easy to use the same reasoning to see that the
multiset Jk contributes RN<(Jk) to the coefficient. On the other hand, it contributes
qN=(Jk) to qinv(π)−inv(σ). Therefore

qinv(π)−inv(σ)[aw]aσ,π = q
∑

j N=(Jj)(q − q−1)
∑

j N<(Jj) = qr−mq2
∑

j N=(Jj)(q2 − 1)
∑

j N<(Jj).

This completes the proof.

Proof of Theorem 6.5.2. The basic idea is the same is in the proof of [Sta99,
Theorem 7.17.1]. Fix n, let δ = (n − 1, n − 2, . . . , 0), and, for α ∈ Nn, write
aα = det(x

αj

i )ni,j=1. The classical definition of Schur functions says that aλ+δ/aδ =
sλ(x1, . . . , xn). It is therefore enough to prove

aµ+δ · pr =
∑

λ

(−1)ht(λ/µ)q2wt(λ/µ)(q2 − 1)st(λ/µ)−1aλ+δ,

where the sum goes over all partitions λ ⊇ µ for which λ/µ is a broken border strip
of size r and n is at least the number of parts of λ, and let n→∞ in order to prove
the lemma. Throughout the proof, all functions depend on x1, . . . , xn.

It is easy to see that for a partition ν with n parts

aµ+δ ·mν =
∑

aµ+δ+σ(ν),

where the sum runs over all permutations σ of n (here σ(ν) is the composition we
get if we shuffle the entries of ν according to σ, i.e. σ(ν)σ(i) = νi). For example, for
µ = 31, n = 4 and ν = (2, 2, 1, 0), then

a6310 ·m221 =

= a8520 +a8511 +a8430 +a8412 +a8331 +a8322 +a7332 +a7512 +a7530 +a6531 +a6522 +a6432.

Of course, for every composition α, aα is equal to ±aµ for some partition µ, and if α
has a repeated part, then aα = 0. For example,

a6310m221 = a8520 + a8430 − a8421 − a7521 + a7530 + a6531 + a6432.

Let us find the coefficient of aλ+δ in aµ+δ · pr. Assume without loss of generality that
λ and µ have n parts (some of which can be 0). We divide the calculations into two
parts.

Assume first that λ/µ is a broken border strip (of size r). As a running example, let
us take λ = 5431, µ = 33, r = 7 and n = 4. We want to find the coefficient of a8641 in
a6510 ·p7. Since λ/µ is a broken border strip, we have λi ≤ µi−1 +1 for i ≥ 2. In other
words, (λ+ δ)i ≤ (µ+ δ)i−1. We want to find all partitions ν (with possible zeros at
the end) of r so that σ(ν) + µ+ δ is a permutation of λ+ δ for some σ. Equivalently,
we want to find all compositions ν so that π(ν+µ+ δ) = λ+ δ for some permutation
π ∈ Sn. In our example, π1((2, 1, 3, 1) + (6, 5, 1, 0)) = π2((0, 3, 3, 1) + (6, 5, 1, 0)) =
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π3((2, 1, 0, 4) + (6, 5, 1, 0)) = π4((0, 3, 0, 4) + (6, 5, 1, 0)) = (8, 6, 4, 1) for π1 = 1234,
π2 = 2134, π3 = 1243 and π4 = 2143. Note that the signs of these permutations are
1,−1,−1, 1, respectively.

Since (ν + µ+ δ)i−1 ≥ (µ+ δ)i−1 ≥ (λ+ δ)i, we must have π(i) ≤ i+ 1 for i ≤ n− 1.
Furthermore, if λi ≤ νi−1, then π(i) ≤ i. Denote by I ⊆ {2, . . . , n} the set of i with
λi = νi−1 + 1. In our example, I = {2, 4}. Note that the elements in I correspond
to rows that contain cells of the broken border strip λ/µ, but are not the first row of
a border strip of λ/µ. Furthermore, denote by K the set of all i with λi = νi. The
elements of K correspond to empty rows of λ/µ.

To a composition ν with π(ν + µ + δ) = λ + δ for some π, assign Iν ⊆ I by Iν =
{i ∈ I : π(i) = i + 1}. In our example, we have I2131 = ∅, I0331 = {2}, I2104 = {4},
I0304 = {2, 4}. It is very easy to see that this assignment is a bijection between
compositions ν for which π(ν + µ + δ) = λ + δ for some permutation π ∈ Sm, and
subsets of I. It remains to figure out the appropriate sign and weight, and to sum
over all subsets of I. In the running example, the weights of m3211, m3310, m4210, m4300

in p7 are q6(q2−1)3, q8(q2−1)2, q8(q2−1)2, q10(q2−1), respectively, so the coefficient
of a5431 in a33 · p7 is

q6(q2 − 1)3 − q8(q2 − 1)2 − q8(q2 − 1)2 + q10(q2 − 1) =

= q6(q2 − 1)
(
(q2 − 1)2 − 2q2(q2 − 1) + q4

)
= q6(q2 − 1)(q2 − (q2 − 1))2 = q6(q2 − 1).

Note that λ/µ is composed of two border strips of widths 2 and 1 and heights 1 and
1, so the result matches with (6.5.2).

For J ⊆ I, the corresponding π satisfies π(i) = i + 1 for i ∈ J , and the remaining
elements appear in increasing order in π. In other words, the disjoint cycle decompo-
sition of π is of the form (1, 2, . . . , i1)(i1 + 1, i1 + 2, . . . , i2) · · · , where i0 = 1, i1, i2, . . .
are precisely the elements of {1, . . . , n} \ J . Since cycles of odd length are even per-
mutations and cycles of even length are odd permutations, that means that the sign
of π is (−1)|J |.

Recall that the weight of mν in pr is q2(r−s)(q2 − 1)s−1, where s is the number of
different non-zero parts of ν. That means that for a subset Iν of I, mν appears with
weight q2(r−n+|Iν |+|K|)(q2 − 1)n−|Iν |−|K|−1. In turn, this implies that the coefficient of
aλ+δ in aµ+δ · pr is

∑

J⊆I

(−1)|J |q2(r−n+|J |+|K|)(q2 − 1)n−|J |−|K|−1 =

= (−1)|I|q2(r−n+|K|)(q2 − 1)n−|I|−|K|−1

|I|∑

k=0

(
|I|

k

)
(−1)|I|−kq2k(q2 − 1)|I|−k =

= (−1)|I|q2(r−n+|K|)(q2 − 1)n−|I|−|K|−1
(
q2 − (q2 − 1)

)|I|
=

= (−1)ht(λ/µ)q2wt(λ/µ)(q2 − 1)st(λ/µ)−1.
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The second part of the proof deals with the case when λ/µ is not a broken border
strip. Let us start with an example. Choose λ = (6, 5, 4, 3, 2), µ = (4, 2, 2, 2), r = 10
and n = 5. Then λ + δ = (10, 8, 6, 4, 2) and µ + δ = (8, 5, 4, 3, 0), so we get the
following table of compositions ν and permutations π for which π(ν + µ+ δ) = λ+ δ
(weight(ν) denotes the coefficient of mν in pr):

ν π sign π weight(ν)
23212 12345 +1 q10(q2 − 1)4

23032 12435 −1 q12(q2 − 1)3

21412 13245 −1 q10(q2 − 1)4

21052 13425 +1 q12(q2 − 1)3

05212 21345 −1 q12(q2 − 1)3

05032 21435 +1 q14(q2 − 1)2

01612 23145 +1 q12(q2 − 1)3

01072 23415 −1 q14(q2 − 1)2

The involution

12345
ϕ
←→ 13245, 12435

ϕ
←→ 13425, 21345

ϕ
←→ 23145, 21435

ϕ
←→ 23415

reverses signs and preserves weights, so the total coefficient of a65432 in a4222 · p10 is 0.

In general, a sign-reversing weight-preserving involution is constructed as follows.
Take the maximal i for which µi−1 + 1 < λi (in our example, i = 3). Such an
i exists because λ/µ is not a broken border strip. Choose a composition ν and
permutation π with π(ν + µ + δ) = λ + δ. Note that the maximality of i implies
(λ+ δ)π(i−1) = (ν +µ+ δ)i−1 ≥ (µ+ δ)i−1 > (µ+ δ)i ≥ (λ+ δ)i+1 and so π(i− 1) ≤ i.
Similarly, for i ≤ j < n, we have (λ + δ)π(j) = (ν + µ + δ)j ≥ (µ + δ)j ≥ (λ + δ)j+1

and π(j) ≤ j + 1. Choose the smallest k ≥ i with π(k) ≤ k. Part of π is

(
. . . i− 1 i i+ 1 . . . k − 1 k . . .
. . . π(i− 1) i+ 1 i+ 2 . . . k π(k) . . .

)
.

Note that π(i− 1), π(k) ≤ i. In the example, we have k = 3, 4, 3, 4, 3, 4, 3, 4.

Define ϕ(π) = π · (i− 1, k). Then ϕ(π) has the following form:

(
. . . i− 1 i i+ 1 . . . k − 1 k . . .
. . . π(k) i+ 1 i+ 2 . . . k π(i− 1) . . .

)
.

Clearly, ϕ is a sign-reversing involution. Furthermore,

νi−1 = (ν+µ+δ)i−1−(µ+δ)i−1 = (λ+δ)π(i−1)−(µ+δ)i−1 ≥ (λ+δ)i−(µ+δ)i−1 > 0,

νk = (ν + µ+ δ)k − (µ+ δ)k = (λ+ δ)π(k) − (µ+ δ)k > (λ+ δ)i − (µ+ δ)i−1 > 0.

These are the only entries that change in ν when we take ϕ(π) instead of π, and since
they are both strictly positive before and after the change, ϕ preserves weight.
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