Divisibility of generalized Catalan numbers

Matjaž Konvalinka

Abstract

We define a q generalization of weighted Catalan numbers studied by Postnikov and Sagan, and prove a result on the divisibility by p of such numbers when p is a prime and q its power.

1 Introduction

The n-th Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

is equal to the number of binary trees on n vertices, of lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$ that stay above the y-axis (Dyck paths), and of many other objects (see [S99]). If $\mathbf{b}: \mathbb{N} \rightarrow \mathbb{Z}$ is a function and $\left\{b_{i}\right\}=\mathbf{b}(i)$ is the corresponding sequence, we weight a vertex of a binary tree \mathcal{T} by b_{i}, where i is the number of left edges on the unique path from the vertex to the root of the tree, and we define the weight $w(\mathcal{T})$ of the tree to be the product of the weights of its vertices. Then the weighted n-th Catalan number is

$$
C_{n}(\mathbf{b})=\sum_{\mathcal{T}} w(\mathcal{T})
$$

where the sum is over all binary trees on n points. We weight each step $(1,1)$ of a Dyck path by b_{i}, where i is the y-coordinate of the starting point, and we weight a Dyck path by the product of weights of its up steps; then

$$
C_{n}(\mathbf{b})=\sum_{\mathcal{P}} w(\mathcal{P})
$$

where the sum is over all Dyck paths from $(0,0)$ to $(2 n, 0)$.
The divisibility of Catalan numbers C_{n} by powers of 2 has been determined both arithmetically and combinatorially (see for example [AK73], [E83], [SU91], [D99], [DS06]); if we denote the maximal ξ for which $q^{\xi} \mid m$ by $\xi_{q}(m)$, and the sum of the digits in the q-ary expansion of m by $s_{q}(m)$, then

$$
\begin{equation*}
\xi_{2}\left(C_{n}\right)=s_{2}(n+1)-1 \tag{1}
\end{equation*}
$$

A natural question arises: under what conditions on \mathbf{b} do we have $\xi_{2}\left(C_{n}(\mathbf{b})\right)=$ $\xi_{2}\left(C_{n}\right)$? Postnikov and Sagan ([SP06, Theorem 2.1]) found the following sufficient condition. Here the operator Δ is defined by $\Delta \mathbf{f}(x)=\mathbf{f}(x+1)-\mathbf{f}(x)$.

Theorem 1 Assume that bsatisfies $\mathbf{b}(0)=1(\bmod 2)$ and $2^{n+1} \mid \Delta^{n} \mathbf{b}(x)$ for all $n \geq 1$ and $x \in \mathbb{N}$. Then $\xi_{2}\left(C_{n}\right)=\xi_{2}\left(C_{n}(\mathbf{b})\right)$.

In this paper, we will define a generalization of weighted Catalan numbers and prove an analogous theorem.

2 Generalized Catalan numbers

For $q \geq 1$ and $n \geq 0$, define

$$
C_{n}^{(q)}=\frac{1}{(q-1) n+1}\binom{q n}{n}
$$

It is well known that this counts the number of lattice paths P in the plane from $(0,0)$ to $(q n, 0)$ using steps $(1, q-1)$ and $(1,-1)$ that never go below the y axis, and the number of q-ary trees on n vertices (recall that a rooted tree is q-ary if every vertex has q distinguishable possibly empty branches). If $F^{(q)}(x)$ is the ordinary generating function for $C_{n}^{(q)}$, then obviously

$$
F^{(q)}(x)=1+x\left(F^{(q)}(x)\right)^{q}
$$

and so the numbers $C_{n}^{(q)}$ are the coefficients in the Taylor expansion of the continued fraction

The following is a generalization of (1).
Proposition 2 Assume that $q=p^{k}$ where p is a prime and $k \geq 1$. Then we have

$$
\begin{equation*}
\xi_{p}\left(C_{n}^{(q)}\right)=\frac{s_{p}((q-1) n+1)-1}{p-1} \tag{2}
\end{equation*}
$$

for any n.
Proof: The exponent of p in the prime factorization of $m!$ is

$$
\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{m}{p^{2}}\right\rfloor+\left\lfloor\frac{m}{p^{3}}\right\rfloor+\ldots
$$

In

$$
C_{n}^{(q)}=\frac{1}{(q-1) n+1}\binom{q n}{n}=\frac{(q n)!}{n!((q-1) n+1)!}
$$

the numerator contains $p^{k-1} n+p^{k-2} n+\ldots+n+\lfloor n / p\rfloor+\left\lfloor n / p^{2}\right\rfloor+\left\lfloor n / p^{3}\right\rfloor+\ldots$ p factors, n ! contains $\lfloor n / p\rfloor+\left\lfloor n / p^{2}\right\rfloor+\left\lfloor n / p^{3}\right\rfloor+\ldots p$ factors, and $((q-1) n+1)$! contains

$$
\begin{gathered}
\left(a_{1}+a_{2} p+\ldots+a_{t} p^{t-1}\right)+\left(a_{2}+a_{3} p+\ldots+a_{t} p^{t-1}\right)+\ldots+\left(a_{t-1}+a_{t} p\right)+a_{t}= \\
=a_{1}+a_{2}(1+p)+\ldots+a_{t}\left(1+\ldots+p^{t-1}\right)=\frac{a_{1}(p-1)+\ldots+a_{t}\left(p^{t}-1\right)}{p-1}= \\
=\frac{(q-1) n+1-a_{0}-a_{1}-\ldots-a_{t}}{p-1}
\end{gathered}
$$

p factors, where $(q-1) n+1=a_{0}+a_{1} p+\ldots+a_{t} p^{t}$ is the expansion of $(q-1) n+1$ in base p. But then $C_{n}^{(q)}$ contains

$$
\frac{(q-1) n}{p-1}-\frac{(q-1) n+1-s_{p}((q-1) n+1)}{p-1}=\frac{s_{p}((q-1) n+1)-1}{p-1}
$$

p factors.
Remark 3 It is possible (but cumbersome) to calculate explicitly the residue of $C_{n}^{(q)} / p^{\xi}$ modulo q (with $\xi=\xi_{p}\left(C_{n}^{(q)}\right)$). For example, if $q=p$ is a prime, then this residue is

$$
(-1)^{\frac{\sum_{i=0}^{t} a_{i}-1}{p-1}+\sum_{i=0}^{t}\left(a_{i}-1\right)}\left(p-a_{0}-1\right)!\left(p-a_{1}-1\right)!\cdots\left(p-a_{t}-1\right)!;
$$

we get a much more complicated formula for general q.
For a q-ary tree \mathcal{T} on n vertices, weight the vertex v by $b_{i}=\mathbf{b}(i)$ where i is the number of non-right edges on the unique path from the root of \mathcal{T} to v, and let $w_{\mathbf{b}}(\mathcal{T})$, the weight of \mathcal{T}, be the product of the weights of its vertices (see Figure $1)$.

Figure 1: A ternary tree with weight $b_{0}^{3} b_{1}^{4} b_{2}^{4} b_{3}^{3}$

Obviously we have $C_{n}^{(q)}=C_{n}^{(q)}(\mathbf{b})$ for the constant function $\mathbf{b}(x)=1$.
Define the weighted analogues of $C_{n}^{(q)}$ by

$$
C_{n}^{(q)}(\mathbf{b})=\sum_{\mathcal{T}} w_{\mathbf{b}}(\mathcal{T})
$$

where the sum is over all q-ary trees on n-vertices. For example,

$$
\begin{gathered}
C_{0}^{(q)}(\mathbf{b})=1, \quad C_{1}^{(q)}=b_{0}, \quad C_{2}^{(q)}=(q-1) b_{0} b_{1}+b_{0}^{2}, \\
C_{3}^{(q)}=(q-1)^{2} b_{0} b_{1} b_{2}+\binom{q-1}{2} b_{0} b_{1}^{2}+3(q-1) b_{0}^{2} b_{1}+b_{0}^{3} .
\end{gathered}
$$

The same proof as in the non-weighted case shows that

$$
\sum_{n \geq 0} C_{n}^{(q)}(\mathbf{b}) x^{n}=\frac{1}{1-\frac{b_{0} x}{\left(1-\frac{b_{1} x}{\left(1-\frac{b_{2} x}{(1-\ldots)^{q-1}}\right)^{q-1}}\right)^{q-1}}}
$$

Proposition 4 For each path P from $(0,0)$ to (qn,0) using steps $(1, q-1)$ and $(1,-1)$, weight the step $(x, y) \rightarrow(x+1, y-1)$ by 1 and the step $(x, y) \rightarrow$ $(x+1, y+q-1)$ by b_{i} where i is the number of points $\left(x^{\prime}, y^{\prime}\right)$ on P satisfying $x^{\prime}<x$ and $y^{\prime}<y^{\prime \prime}$ for any $\left(x^{\prime \prime}, y^{\prime \prime}\right) \in P, x^{\prime}<x^{\prime \prime} \leq x$. Let $w_{\mathbf{b}}(P)$ denote the product of the weights of the steps of P. Then

$$
C_{n}^{(q)}(\mathbf{b})=\sum_{P} w_{\mathbf{b}}(P)
$$

Sketch of proof: Consider a depth-first search of a weighted tree \mathcal{T}. If a branch is empty, do a $(1,-1)$ step (and backtrack if it is the right-most branch of a vertex); otherwise do a ($1, q-1$) step. It is easy to see that this gives a bijection

Figure 2: A tree and the corresponding path
between q-ary trees and paths, and that the weights of the paths are as described above. See Figure 2 for an example.

Our main result is the following generalization of Theorem 1.

Theorem 5 Let $q=p^{k}$ for p prime and $k \geq 1$, and let a function $\mathbf{b}: \mathbb{N} \rightarrow \mathbb{Z}$ satisfy $\mathbf{b}(0)=1(\bmod q)$ and $q^{n+1} \mid \Delta^{n} \mathbf{b}(x)$ for all x. Then

$$
C_{n}^{(q)}(\mathbf{b})=C_{n}^{(q)}\left(\bmod p^{\xi+k}\right)
$$

where

$$
\xi=\frac{s_{p}((q-1) n+1)-1}{p-1}
$$

i.e. the same powers of p divide $C_{n}^{(q)}(\mathbf{b})$ and $C_{n}^{(q)}$, and $C_{n}^{(q)}(\mathbf{b}) / p^{\xi}$ and $C_{n}^{(q)} / p^{\xi}$ have the same remainder modulo q.

3 Proof of Theorem 5

For any i, define

$$
\mathcal{F}_{i}^{(q)}=\left\{\mathbf{f}: \mathbb{N} \rightarrow \mathbb{Z}: \mathbf{f}(0)=i(\bmod q), q^{n+1} \mid \Delta^{n} \mathbf{f}(x) \text { for all } n \geq 1 \text { and all } \mathrm{x}\right\}
$$

The following generalization of [SP06, Lemma 2.2] is true for any q, although we will only need it for q a prime power.

Proposition 6 We have:
(1) If $\mathbf{f} \in \mathcal{F}_{i}^{(q)}$ then $\Delta \mathbf{f} / q \in \mathcal{F}_{0}^{(q)}$.
(2) If $\mathbf{f} \in \mathcal{F}_{i}^{(q)}$ and $\mathbf{g} \in \mathcal{F}_{j}^{(q)}$ then $\mathbf{f}+\mathbf{g} \in \mathcal{F}_{i+j}^{(q)}$.
(3) If $\mathbf{f} \in \mathcal{F}_{i}^{(q)}$ and $\mathbf{g} \in \mathcal{F}_{j}^{(q)}$ then $\mathbf{f} \cdot \mathbf{g} \in \mathcal{F}_{i j}^{(q)}$.
(4) If $\mathbf{f}_{1}, \ldots, \mathbf{f}_{q} \in \mathcal{F}_{1}^{(q)}$ then $\left(\sum_{i} \mathbf{f}_{i}(x) \prod_{j \neq i} \mathbf{f}_{j}(x+1)\right) / q \in \mathcal{F}_{1}^{(q)}$.

Proof: The first two claims are obvious, and (3) follows from

$$
\Delta^{n}(\mathbf{f} \cdot \mathbf{g})=\sum_{j=0}^{n}\binom{n}{k} \Delta^{n-k}\left(S^{k}(\mathbf{f})\right) \cdot \Delta^{k}(\mathbf{g})
$$

where S is the shift operator, $S \mathbf{f}(x)=\mathbf{f}(x+1)$. For (4), note that the right-hand side can be written as

$$
\frac{\sum_{i} \mathbf{f}_{i}(x) \prod_{j \neq i}\left(\mathbf{f}_{j}(x)+\Delta \mathbf{f}_{j}(x)\right)}{q}=\mathbf{f}_{1}(x) \cdots \mathbf{f}_{q}(x)+\sum_{l} \mathbf{F}_{l}
$$

where each \mathbf{F}_{l} is a product of some elements of $\mathcal{F}_{1}^{(q)}$ and (by (1)) at least one element of $\mathcal{F}_{0}^{(q)}$. By (3), $\mathbf{F}_{l} \in \mathcal{F}_{0}^{(q)}$ and $\mathbf{f}_{1} \cdots \mathbf{f}_{q} \in \mathcal{F}_{1}^{(q)}$, so (4) holds by (2).

As in [DS06] and [SP06], we will need to study the orbits of the action of $\mathcal{G}_{n}^{(q)}$ on the set $\mathcal{T}_{n}^{(q)}$ of q-ary trees on n points, where $\mathcal{G}_{n}^{(q)}$ is the group of symmetries of the complete q-ary tree of depth n.

Proposition 7 Let $q=p^{k}$, and let \mathcal{O} be an orbit of \mathcal{G}_{n} acting on \mathcal{T}_{n}. Then p^{ξ} divides $|\mathcal{O}|$ where

$$
\xi=\frac{s_{p}((q-1) n+1)-1}{p-1} .
$$

Let us postpone the proof.
Note that the proposition is a combinatorial proof of only a part of Proposition 2: it shows that p^{ξ} divides $C_{n}^{(q)}$, but not that it is the highest power of p that divides it. However, this is enough to prove the main result.

Proof (of Theorem 5): As in [SP06, Lemma 2.4] let \mathcal{O} denote an orbit of $\mathcal{G}_{n}^{(q)}$ acting on $\mathcal{T}_{n}^{(q)}$, and define

$$
\mathbf{r}_{\mathbf{b}}(\mathcal{O})(x)=\frac{\mathbf{w}_{\mathbf{b}}(\mathcal{O})(x)}{|\mathcal{O}|}
$$

where $\mathbf{w}_{\mathbf{b}}(\mathcal{O})(x)=\sum_{\mathcal{T} \in \mathcal{O}} \mathbf{w}_{\mathbf{b}}(\mathcal{T})(x)$ and $\mathbf{w}_{\mathbf{b}}(\mathcal{T})(x)=\prod_{v \in \mathcal{T}} \mathbf{b}\left(x+i_{v}\right)$ with i_{v} the number of non-right edges on the unique path from the vertex v to the root. In particular, $\mathbf{w}_{\mathbf{b}}(\mathcal{O})(0)=C_{n}^{(q)}(\mathbf{b})$. We will prove by induction on n that for any orbit $\mathcal{O}, \mathbf{r}_{\mathbf{b}}(\mathcal{O}) \in \mathcal{F}_{1}^{(q)}$.
If $n=0, \mathcal{O}$ is empty, $\mathbf{r}_{\mathbf{b}}(\mathcal{O})(x)=1$ and $\mathbf{r}_{\mathbf{b}}(\mathcal{O}) \in \mathcal{F}_{1}^{(q)}$. Suppose $n \geq 1$, pick a tree \mathcal{T} in \mathcal{O}, and let $\mathcal{T}_{1}, \ldots, \mathcal{T}_{q}$ be the branches of the root of \mathcal{T}. Some of the corresponding orbits \mathcal{O}_{i} can be the same; assume that there are l different orbits $\mathcal{V}_{1}, \ldots, \mathcal{V}_{l}$, and that they appear q_{1}, \ldots, q_{l} times in $\mathcal{O}_{1}, \ldots, \mathcal{O}_{q}$. Then $|\mathcal{O}|=\binom{q}{q_{1}, \ldots, q_{l}}\left|\mathcal{V}_{1}\right|^{q_{1}} \cdots\left|\mathcal{V}_{l}\right|^{q_{l}}$ and $\mathbf{w}_{\mathbf{b}}(\mathcal{O})(x)$ is equal to
$b(x)\left(\sum_{i=1}^{l}\left({ }_{q_{1}, \ldots, q_{i}-1 \ldots, q_{l}}^{q-1}\right) \mathbf{w}_{\mathbf{b}}\left(\mathcal{V}_{i}\right)(x)\left(\mathbf{w}_{\mathbf{b}}\left(\mathcal{V}_{i}\right)(x+1)\right)^{q_{i}-1} \prod_{j \neq i}\left(\mathbf{w}_{\mathbf{b}}\left(\mathcal{V}_{j}\right)(x+1)\right)^{q_{j}}\right) ;$
hence

$$
\begin{aligned}
\mathbf{r}_{\mathbf{b}}(\mathcal{O})(x)=b(x) \cdot & \frac{\sum_{i=1}^{l} q_{i} \mathbf{r}_{\mathbf{b}}\left(\mathcal{V}_{i}\right)(x)\left(\mathbf{r}_{\mathbf{b}}\left(\mathcal{V}_{i}\right)(x+1)\right)^{q_{i}-1} \prod_{j \neq i}\left(\mathbf{r}_{\mathbf{b}}\left(\mathcal{V}_{j}\right)(x+1)\right)^{q_{j}}}{q}= \\
& =b(x) \cdot \frac{\sum_{i=1}^{q} \mathbf{r}_{\mathbf{b}}\left(\mathcal{O}_{i}\right)(x) \prod_{j \neq i} r_{\mathbf{b}}\left(\mathcal{O}_{j}\right)(x+1)}{q}
\end{aligned}
$$

and this function is in $\mathcal{F}_{1}^{(q)}$ by induction, (4) and (3).
Since

$$
C_{n}^{(q)}(\mathbf{b})=\sum_{\mathcal{O}}|\mathcal{O}| \cdot \mathbf{r}_{\mathbf{b}}(\mathcal{O})(0)
$$

$|\mathcal{O}|$ is divisible by p^{ξ} by Proposition 7 and $\mathbf{r}_{\mathbf{b}}(\mathcal{O})(0) \in \mathbb{Z}$, we have $p^{\xi} \mid C_{n}^{(q)}(\mathbf{b})$, and, modulo q,

$$
\frac{C_{n}^{(q)}(\mathbf{b})}{p^{\xi}}=\sum_{\mathcal{O}} \frac{|\mathcal{O}|}{p^{\xi}} \cdot \mathbf{r}_{\mathbf{b}}(\mathcal{O})(0)=\sum_{\mathcal{O}} \frac{|\mathcal{O}|}{p^{\xi}}=\frac{C_{n}^{(q)}}{p^{\xi}}
$$

In order to prove Proposition 7, we will have to explore the structure of the minimal orbits of the action of $\mathcal{G}_{n}^{(q)}$ on $\mathcal{T}_{n}^{(q)}$, i.e. the orbits whose cardinalities have the lowest power of p in their prime factorization.

Color a vertex of \mathcal{T} black if all its branches are equivalent, and white otherwise.
The number of trees in the orbit of a q-ary tree \mathcal{T} is the product of

$$
P_{v}=\binom{p^{k}}{q_{1}^{v}, \ldots, q_{l}^{v}}=\frac{\left(p^{k}\right)!}{Q_{v}}
$$

over all white vertices v of \mathcal{T}, where $q_{1}^{v}, \ldots, q_{l}^{v}$ are the sizes of equivalence classes of the children of v. Note that $P_{v}=1$ for a black vertex and $p \mid P_{v}$ for a white vertex.

Lemma 8 If \mathcal{T} is a tree in a minimal orbit \mathcal{O}, then no black vertex of \mathcal{T} can have a white child.

Proof: If a black vertex v of $\mathcal{T} \in \mathcal{O}$ has white children, and a child of v has branches $\mathcal{T}_{1}, \ldots, \mathcal{I}_{q}$, we can form a tree \mathcal{T}^{\prime} with at least $q-1$ fewer p factors by attaching all q copies of \mathcal{T}_{1} to the first child of v, all q copies of \mathcal{T}_{2} to the second child of v, etc.

Figure 3: Transforming a tree
See Figure 3 for an example.
Therefore a minimal orbit must have the following structure: there are some (white) vertices forming a q-ary tree, and there are some complete q-ary trees (containing black vertices) attached - see the left drawing of Figure 4. We can visualize such an orbit as a plane q-ary tree with each endpoint denoted by a non-negative integer (see the right drawing on Figure 4) indicating the depth of the attached complete q-ary tree. If \mathcal{T} has b white vertices and A_{i} complete q-ary trees of depth i, then $\sum A_{i}=(q-1) b+1$, in other words, the tree has $\left(\sum A_{i}-1\right) /(q-1)$ white vertices. We will call complete q-ary trees of depth i i-trees, and if an i-tree is the child of a white vertex, we will call it an i-child.

Figure 4: A tree in which no black vertex has a white child

Lemma 9 If \mathcal{T} is a tree in a minimal orbit \mathcal{O} and A_{i} is the number of complete q-ary trees of depth i in \mathcal{T}, then $A_{i}<q$.

Proof: Assume $A_{i} \geq q=p^{k}$ for some i and write the number of i-children of a white vertex v as $r_{k-1}^{v} \cdots r_{1}^{v} r_{0}^{v}$ in base p. Pick the vertex v with the highest r_{0}^{v}, and assume that there is another vertex v^{\prime} with $r_{0}^{v^{\prime}}>0$. Since the number of children of v is divisible by p, there must be a j-child or a white vertex so that the number of equivalent children of v is not divisible by p. Switching this j-tree or white vertex (together with its successors) with one of the i-trees among the children of v^{\prime} does not decrease the number of p factors in Q_{v} or $Q_{v^{\prime}}$ and increases r_{0}^{v}. But if the new r_{0}^{v} is p, the number of p factors in Q_{v} actually increases, which contradicts the minimality of \mathcal{O}. Therefore we can assume that there is only one vertex v with a positive r_{0}^{v}.
We can repeat the same process for r_{1}^{v} : if there are two vertices with non-zero r_{1}^{v}, we can exhange $p i$-trees of one with $p j$-trees or equivalent white children of the other and repeat this until only one r_{1}^{v} (which must remain smaller than $p)$ is non-zero. Continue with $r_{2}^{v}, \ldots, r_{k-2}^{v}$. When we do the same procedure for r_{k-1}^{v}, we will get a complete q-ary tree of depth $i+1$ (after at most $p-1$ exchanges), and we will strictly decrease the number of p factors in $|\mathcal{O}|$, which contradicts its minimality.

Since a complete q-ary tree of depth l has $1+q+\ldots+q^{l-1}=\left(q^{l}-1\right) /(q-1)$ vertices and since

$$
n=b+A_{0} \frac{1-1}{q-1}+A_{1} \frac{q-1}{q-1}+A_{2} \frac{q^{2}-1}{q-1}+\ldots
$$

implies $(q-1) n+1=A_{0}+A_{1} q+A_{2} q^{2}+\ldots$, the number of white points in a minimal orbit is

$$
\frac{s_{q}((q-1) n+1)-1}{q-1}
$$

Lemma 10 If \mathcal{T} is a tree in a minimal orbit \mathcal{O}, then the number of white children of a (white) vertex v with equivalent subtrees is strictly smaller than p.

Proof: Assume that p^{l} is the highest power of p that is smaller than or equal to the number of equivalent white children of v.
Assume that the p^{l} equivalent white children of v have q_{i} copies of $\mathcal{T}_{i}, q_{1}+\ldots+$ $q_{t}=q$. Note that q_{i} must be smaller than p^{k-l} by Lemma 9 , and each white child contributes

$$
\sum_{i}\left(\left\lfloor\frac{q_{i}}{p}\right\rfloor+\left\lfloor\frac{q_{i}}{p^{2}}\right\rfloor+\ldots+\left\lfloor\frac{q_{i}}{p^{k-l-1}}\right\rfloor\right)
$$

p factors to the denominator of $|\mathcal{O}|$.
Write $q_{i}=c_{0}^{i}+c_{1}^{i} p+\ldots+c_{k-l-1}^{i} p^{k-l-1}$ in base p, and split the $q_{i} p^{l}$ equivalent children in $c_{0}^{i}+c_{1}^{i}+\ldots+c_{k-l-1}^{i}$ groups of size p^{l} (c_{0}^{i} times), p^{l+1} (c_{1}^{i} times) etc. and attach each group to one of the chosen p^{l} children of v. Note that we can do that for all i simultaneously: first attach groups of size p^{k-1} to the first, second etc. child of v. After we run out of groups of size p^{k-1}, we repeat the same process with p^{k-2}, p^{k-3} etc.
We get a new orbit with a different number of p factors. The vertex v has p^{l} fewer children of some equivalent class; since l is maximal, the new Q_{v} has at most $1+p+\ldots+p^{l-1}$ fewer p factors.
The new grandchildren of v contribute

$$
\begin{aligned}
& \sum_{i}\left(c_{0}^{i}\left(1+\ldots+p^{l-1}\right)+c_{1}^{i}\left(1+\ldots+p^{l}\right)+\ldots+c_{k-l-1}^{i}\left(1+\ldots+p^{k-2}\right)\right)= \\
& \quad=\sum_{i}\left(\left(1+p+\ldots+p^{l-1}\right) q_{i}+\left\lfloor\frac{q_{i}}{p}\right\rfloor+\left\lfloor\frac{q_{i}}{p^{2}}\right\rfloor+\ldots+\left\lfloor\frac{q_{i}}{p^{k-l-1}}\right\rfloor\right)= \\
& \quad=\left(1+p+\ldots+p^{l-1}\right) p^{k}+\sum_{i}\left(\left\lfloor\frac{q_{i}}{p}\right\rfloor+\left\lfloor\frac{q_{i}}{p^{2}}\right\rfloor+\ldots+\left\lfloor\frac{q_{i}}{p^{k-l-1}}\right\rfloor\right)
\end{aligned}
$$

p factors. Since
$\sum_{i}\left(\left\lfloor\frac{q_{i}}{p}\right\rfloor+\ldots+\left\lfloor\frac{q_{i}}{p^{k-l-1}}\right\rfloor\right) \leq\left\lfloor\frac{\sum q_{i}}{p}\right\rfloor+\ldots+\left\lfloor\frac{\sum q_{i}}{p^{k-l-1}}\right\rfloor=p^{l+1}+\ldots+p^{k-1}$,
the difference between the old and the new number of p factors in $|\mathcal{O}|$ is at least

$$
\begin{gathered}
\left(1+\ldots+p^{l-1}\right) p^{k}-\left(\sum_{i}\left(\left\lfloor\frac{q_{i}}{p}\right\rfloor+\ldots+\left\lfloor\frac{q_{i}}{p^{k-l-1}}\right\rfloor\right)\right)\left(p^{l}-1\right)-\left(1+\ldots+p^{l-1}\right) \geq \\
\geq\left(1+\ldots+p^{l-1}\right) p^{k}-\left(p^{l+1}+\ldots+p^{k-1}\right)\left(p^{l}-1\right)-\left(1+\ldots+p^{l-1}\right)= \\
=\left(p^{k}+\ldots+p^{k+l-1}\right)-\left(p^{2 l+1}+\ldots+p^{k+l-1}\right)+\left(p^{l+1}+\ldots+p^{k-1}\right)-\left(1+\ldots+p^{l-1}\right)= \\
=\left(p^{l+1}+\ldots+p^{2 l}\right)-\left(1+\ldots+p^{l-1}\right)=\left(p^{l+1}-1\right)\left(1+\ldots+p^{l-1}\right),
\end{gathered}
$$

which is strictly positive and hence contradicts the minimality of $|\mathcal{O}|$ unless $l=0$.

Now it is easy to prove the proposition. We have determined the number of white points in a minimal orbit; they contribute

$$
b \cdot\left(1+p+\ldots+p^{k-1}\right)=\frac{s_{q}((q-1) n+1)-1}{q-1} \cdot \frac{q-1}{p-1}=\frac{s_{q}((q-1) n+1)-1}{p-1}
$$

p factors to the numerator of $|\mathcal{O}|$. There are $A_{i}=a_{i k}+a_{1} p+\ldots+a_{i k+k-1} p^{k-1}$ complete trees of depth i, and they contribute at most

$$
\xi_{p}\left(A_{i}!\right)=\frac{A_{i}-a_{i k}-a_{i k+1}-\ldots-a_{i k+k-1}}{p-1}
$$

p factors to the denominator of $|\mathcal{O}|$. The white vertices do not contribute any p factors to the denominator of $|\mathcal{O}|$ by Lemma 10 . That means that the prime factorization of the cardinality of the minimal orbit has at least (and, by Proposition 2 , exactly)

$$
\begin{gathered}
\frac{s_{q}((q-1) n+1)-1}{p-1}-\frac{s_{q}((q-1) n+1)-s_{p}((q-1) n+1)}{p-1}= \\
=\frac{s_{p}((q-1) n+1)-1}{p-1}
\end{gathered}
$$

p factors.
Note that in the case $q=p$ both Lemma 9 and Lemma 10 are trivial.

4 Concluding remarks

It is natural to ask whether the results extend to arbitrary q.
Question 1 Let $q=p^{k} q^{\prime}$ for p prime, $k \geq 1$ and $\operatorname{gcd}\left(p, q^{\prime}\right)=1$, and let a function $\mathbf{b}: \mathbb{N} \rightarrow \mathbb{Z}$ satisfy $\mathbf{b}(0)=1(\bmod q)$ and $q^{n+1} \mid \Delta^{n} \mathbf{b}(x)$ for all x. Is it true then that

$$
C_{n}^{(q)}(\mathbf{b})=C_{n}^{(q)}\left(\bmod p^{\xi+k}\right)
$$

where ξ is the highest power of p dividing $C_{n}^{(q)}$; i.e. do the same powers of p divide $C_{n}^{(q)}(\mathbf{b})$ and $C_{n}^{(q)}$, and do $C_{n}^{(q)}(\mathbf{b}) / p^{\xi}$ and $C_{n}^{(q)} / p^{\xi}$ have the same remainder modulo p^{k} ?

The answer is negative. The author wrote a program in $\mathrm{C}++$ that generated random b's satisfying the hypothesis, and checked the condition $C_{n}^{(q)}(\mathbf{b})=$ $C_{n}^{(q)}\left(\bmod p^{\xi+k}\right)$ for low n 's $(n \leq 250)$. It appears that the equality fails to be satisfied for sporadic n 's whenever q is not a prime power; when $q=6$ and $p=2$, the equality is not necessarily satisfied for $n=22,43,86,107,150,171,214,235$. For example, we have

$$
C_{22}^{(6)}=5.643274 \ldots \cdot 10^{22}=1011111100 \ldots 1011000000_{[2]}
$$

and

$$
C_{22}^{(6)}(\mathbf{b})=1.071965 \ldots \cdot 10^{71}=1111100010 \ldots 0100000000_{[2]} .
$$

for $\mathbf{b}(x)=36 x+1$. What about the following?
Question 2 Let q be arbitrary, and let a function $\mathbf{b}: \mathbb{N} \rightarrow \mathbb{Z}$ satisfy $\mathbf{b}(0)=$ $1(\bmod q)$ and $q^{n+1} \mid \Delta^{n} \mathbf{b}(x)$ for all x. Is it true that

$$
C_{n}^{(q)}(\mathbf{b})=C_{n}^{(q)}\left(\bmod q^{\xi+1}\right)
$$

where ξ is the highest power of q dividing $C_{n}^{(q)}$; i.e. do the same powers of q divide $C_{n}^{(q)}(\mathbf{b})$ and $C_{n}^{(q)}$, and do $C_{n}^{(q)}(\mathbf{b}) / q^{\xi}$ and $C_{n}^{(q)} / q^{\xi}$ have the same remainder modulo q?

The answer, again, is no, although the computation that proves this is considerably harder. A Maple program showed that (again for $\mathbf{b}(x)=36 x+1$) $C_{n}^{(6)}=C_{n}^{(6)}(\mathbf{b})\left(\bmod 6^{\xi+1}\right)\left(\right.$ where ξ is the highest power of 6 dividing $\left.C_{n}^{(6)}\right)$ holds for $n \leq 202$, while

$$
C_{203}^{(6)}=6.506438 \ldots \cdot 10^{233}=2155553502 \ldots 5211200000_{[6]},
$$

and

$$
C_{203}^{(6)}(\mathbf{b})=9.873449 \ldots \cdot 10^{878}=2521223211 \ldots 3050000000_{[6]} .
$$

It is interesting to explore necessary conditions for the conclusion of Theorem 5 to hold for low n. The following is a sample, and it suggests that the conditions of the theorem are too strong.

Proposition 11 Let $q=p^{k}$ for p prime, and let $\mathbf{b}: \mathbb{N} \rightarrow \mathbb{Z}$. Then the following statements are equivalent:
(a) For $n \leq q+2$ we have

$$
C_{n}^{(q)}(\mathbf{b})=C_{n}^{(q)}\left(\bmod p^{\xi+k}\right)
$$

where

$$
\xi=\frac{s_{p}((q-1) n+1)-1}{p-1}
$$

(b) $\mathbf{b}(0)=1(\bmod q), q \mid \Delta \mathbf{b}(q-1)$ and $q^{2} \mid \Delta \mathbf{b}(x)$ for $x=0,1, \ldots, q-3, q-2, q$.

Sketch of proof: We will prove that the conditions are necessary, and it will be clear from the proof that they are also sufficient. We have $C_{1}^{(q)}(\mathbf{b})=b_{0}$ and $C_{1}^{(q)}=1$, so $\mathbf{b}(0)=1(\bmod q)$. It is easy to see either directly or using Proposition 2 that for $n=2,3, \ldots, q p^{k}$ is the highest power of p that divides $C_{n}^{(q)}$, and it is obvious from the definition of $C_{n}^{(q)}(\mathbf{b})$ that the only term in $C_{n}^{(q)}(\mathbf{b})$ that contains b_{n-1} is

$$
(q-1)^{n} b_{0} b_{1} \cdots b_{n-1}
$$

If we assume by induction that $b_{0}=\ldots=b_{n-2}\left(\bmod q^{2}\right)$ and if $n \leq q$, then we get (modulo q^{2})

$$
\begin{gathered}
C_{n}^{(q)}(\mathbf{b})-C_{n}^{(q)}=(q-1)^{n} b_{0}^{n-2} b_{n-1}+\left(C_{n}^{(q)}-(q-1)^{n}\right) b_{0}^{n-1}-C_{n}^{(q)}= \\
=(q-1)^{n} b_{0}^{n-2}\left(b_{n-1}-b_{0}\right)+C_{n}^{(q)}\left(b_{0}^{n-1}-1\right)
\end{gathered}
$$

Since $(q-1)^{n}, b_{0}^{n-2}$ are invertible in $\mathbb{Z}_{q^{2}}$ and since $q \mid b_{0}^{n-1}-1$ and $q \mid C_{n}^{(q)}$, we get that $b_{n-1}=b_{0}\left(\bmod q^{2}\right)$.
Since $C_{q+1}^{(q)}$ is not divisible by p and $b_{0}=\ldots=b_{q-1}=1(\bmod q)$,

$$
C_{q+1}^{(q)}(\mathbf{b})=(q-1)^{q} b_{q}+\left(C_{q+1}^{(q)}-(q-1)^{q}\right)=C_{q+1}^{(q)}(\bmod q)
$$

implies $b_{q}=1(\bmod q)$.
The Catalan number $C_{q+2}^{(q)}$ is divisible by q and not by q^{2}. A careful consideration of q-ary trees of depth at least q on $q+2$ vertices gives

$$
\begin{aligned}
C_{q+2}^{(q)}(\mathbf{b}) & =(q-1)^{q+1} b_{0}^{q} b_{q} b_{q+1}+\frac{1}{2} q(q-1)^{q} b_{0}^{q} b_{q}^{2}+\left(2-q+q^{2}\right)(q-1)^{q} b_{0}^{q+1} b_{q}+ \\
+ & \left(C_{q+2}^{(q)}-(q-1)^{q+1}-\frac{1}{2} q(q-1)^{q}-\left(2-q+q^{2}\right)(q-1)^{q}\right) b_{0}^{q+2}
\end{aligned}
$$

if we set this equal to $C_{q+2}^{(q)}$ and do some elementary arithmetic in $\mathbb{Z}_{q^{2}}$, we get $b_{q+1}=b_{q}\left(\bmod q^{2}\right)$. This concludes the proof.

For example, when \mathbf{b} is a polynomial, this gives $q+1$ conditions on the coefficients. It is interesting that for $q=2$ these conditions appear to be sufficient as well.

Conjecture Let $\mathbf{b}(x)=c_{0}+c_{1} x+\ldots+c_{d} x^{d}$. Then $\xi_{2}\left(C_{n}(\mathbf{b})\right)=\xi_{2}\left(C_{n}\right)$ for all n if and only if
(1) $2 \mid c_{0}-1$,
(2) $4 \mid c_{1}+c_{2}+c_{3}+\ldots$,
(3) $2 \mid c_{3}+c_{5}+c_{7}+\ldots$

The conjecture was verified with a C++ program for a large number of b's and for $n \leq 250$.

Acknowledgment

I would like to thank A. Postnikov for suggesting the problem.

References

[AK73] R. Alter and K. K. Kubota, Prime and prime power divisibility of Catalan numbers. J. Combinatorial Theory Ser. A 15 (1973), 243-256.
[D99] E. Deutsch, An involution on Dyck paths and its consequences. Discrete Math. 204 (1999), no. 1-3, 163-166.
[DS06] E. Deutsch, B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences. J. Number Theory 117 (2006), no. 1, 191-215.
[E83] Ö. Eğecioğlu, The parity of the Catalan numbers via lattice paths. Fibonacci Quart. 21 (1983), no. 1, 65-66.
[SP06] A. Postnikov, B. E. Sagan, What power of two divides a weighted Catalan number? to appear in J. Combinatorial Theory Ser. A
[SU91] R. Simion, D. Ullman, On the structure of the lattice of noncrossing partitions. Discrete Math. 98 (1991), no. 3, 193-206.
[S99] R. P. Stanley, Enumerative combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999.

