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Abstract

We define a q generalization of weighted Catalan numbers studied by
Postnikov and Sagan, and prove a result on the divisibility by p of such
numbers when p is a prime and q its power.

1 Introduction

The n-th Catalan number

Cn =
1

n + 1

(
2n

n

)

is equal to the number of binary trees on n vertices, of lattice paths from (0, 0)
to (2n, 0) with steps (1, 1) and (1,−1) that stay above the y-axis (Dyck paths),
and of many other objects (see [S99]). If b : N→ Z is a function and {bi} = b(i)
is the corresponding sequence, we weight a vertex of a binary tree T by bi, where
i is the number of left edges on the unique path from the vertex to the root of
the tree, and we define the weight w(T ) of the tree to be the product of the
weights of its vertices. Then the weighted n-th Catalan number is

Cn(b) =
∑

T
w(T ),

where the sum is over all binary trees on n points. We weight each step (1, 1)
of a Dyck path by bi, where i is the y-coordinate of the starting point, and we
weight a Dyck path by the product of weights of its up steps; then

Cn(b) =
∑

P
w(P),

where the sum is over all Dyck paths from (0, 0) to (2n, 0).

The divisibility of Catalan numbers Cn by powers of 2 has been determined
both arithmetically and combinatorially (see for example [AK73], [E83], [SU91],
[D99], [DS06]); if we denote the maximal ξ for which qξ|m by ξq(m), and the
sum of the digits in the q-ary expansion of m by sq(m), then

ξ2(Cn) = s2(n + 1)− 1. (1)

A natural question arises: under what conditions on b do we have ξ2(Cn(b)) =
ξ2(Cn)? Postnikov and Sagan ([SP06, Theorem 2.1]) found the following suffi-
cient condition. Here the operator ∆ is defined by ∆f(x) = f(x + 1)− f(x).
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Theorem 1 Assume that b satisfies b(0) = 1 (mod 2) and 2n+1|∆nb(x) for
all n ≥ 1 and x ∈ N. Then ξ2(Cn) = ξ2(Cn(b)).

In this paper, we will define a generalization of weighted Catalan numbers and
prove an analogous theorem.

2 Generalized Catalan numbers

For q ≥ 1 and n ≥ 0, define

C(q)
n =

1
(q − 1)n + 1

(
qn

n

)
.

It is well known that this counts the number of lattice paths P in the plane
from (0, 0) to (qn, 0) using steps (1, q − 1) and (1,−1) that never go below the
y axis, and the number of q-ary trees on n vertices (recall that a rooted tree is
q-ary if every vertex has q distinguishable possibly empty branches). If F (q)(x)
is the ordinary generating function for C

(q)
n , then obviously

F (q)(x) = 1 + x
(
F (q)(x)

)q

,

and so the numbers C
(q)
n are the coefficients in the Taylor expansion of the

continued fraction

1

1− x
1− x(

1− x
(1−...)q−1

)q−1




q−1

.

The following is a generalization of (1).

Proposition 2 Assume that q = pk where p is a prime and k ≥ 1. Then we
have

ξp(C(q)
n ) =

sp((q − 1)n + 1)− 1
p− 1

(2)

for any n.

Proof: The exponent of p in the prime factorization of m! is
⌊

m

p

⌋
+

⌊
m

p2

⌋
+

⌊
m

p3

⌋
+ . . .

In

C(q)
n =

1
(q − 1)n + 1

(
qn

n

)
=

(qn)!
n!((q − 1)n + 1)!

2



the numerator contains pk−1n+pk−2n+ . . .+n+ bn/pc+ ⌊
n/p2

⌋
+

⌊
n/p3

⌋
+ . . .

p factors, n! contains bn/pc+⌊
n/p2

⌋
+

⌊
n/p3

⌋
+ . . . p factors, and ((q−1)n+1)!

contains

(a1 + a2p + . . . + atp
t−1) + (a2 + a3p + . . . + atp

t−1) + . . . + (at−1 + atp) + at =

= a1 + a2(1 + p) + . . . + at(1 + . . . + pt−1) =
a1(p− 1) + . . . + at(pt − 1)

p− 1
=

=
(q − 1)n + 1− a0 − a1 − . . .− at

p− 1

p factors, where (q−1)n+1 = a0+a1p+. . .+atp
t is the expansion of (q−1)n+1

in base p. But then C
(q)
n contains

(q − 1)n
p− 1

− (q − 1)n + 1− sp((q − 1)n + 1)
p− 1

=
sp((q − 1)n + 1)− 1

p− 1

p factors.

Remark 3 It is possible (but cumbersome) to calculate explicitly the residue
of C

(q)
n /pξ modulo q (with ξ = ξp(C

(q)
n )). For example, if q = p is a prime, then

this residue is

(−1)
Pt

i=0 ai−1
p−1 +

Pt
i=0(ai−1)(p− a0 − 1)!(p− a1 − 1)! · · · (p− at − 1)!;

we get a much more complicated formula for general q.

For a q-ary tree T on n vertices, weight the vertex v by bi = b(i) where i is the
number of non-right edges on the unique path from the root of T to v, and let
wb(T ), the weight of T , be the product of the weights of its vertices (see Figure
1).

Figure 1: A ternary tree with weight b3
0b

4
1b

4
2b

3
3

Obviously we have C
(q)
n = C

(q)
n (b) for the constant function b(x) = 1.

Define the weighted analogues of C
(q)
n by

C(q)
n (b) =

∑

T
wb(T ),
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where the sum is over all q-ary trees on n-vertices. For example,

C
(q)
0 (b) = 1, C

(q)
1 = b0, C

(q)
2 = (q − 1)b0b1 + b2

0,

C
(q)
3 = (q − 1)2b0b1b2 +

(
q−1
2

)
b0b

2
1 + 3(q − 1)b2

0b1 + b3
0.

The same proof as in the non-weighted case shows that

∑

n≥0

C(q)
n (b)xn =

1

1− b0x
1− b1x(

1− b2x
(1−...)q−1

)q−1




q−1

.

Proposition 4 For each path P from (0, 0) to (qn, 0) using steps (1, q − 1)
and (1,−1), weight the step (x, y) → (x + 1, y − 1) by 1 and the step (x, y) →
(x + 1, y + q − 1) by bi where i is the number of points (x′, y′) on P satisfying
x′ < x and y′ < y′′ for any (x′′, y′′) ∈ P , x′ < x′′ ≤ x. Let wb(P ) denote the
product of the weights of the steps of P . Then

C(q)
n (b) =

∑

P

wb(P ),

Sketch of proof: Consider a depth-first search of a weighted tree T . If a branch
is empty, do a (1,−1) step (and backtrack if it is the right-most branch of a
vertex); otherwise do a (1, q−1) step. It is easy to see that this gives a bijection

b0

b1

b2

b0

b1

b1

b0 b0

b2

b1

Figure 2: A tree and the corresponding path

between q-ary trees and paths, and that the weights of the paths are as described
above. See Figure 2 for an example.

Our main result is the following generalization of Theorem 1.
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Theorem 5 Let q = pk for p prime and k ≥ 1, and let a function b : N → Z
satisfy b(0) = 1 (mod q) and qn+1|∆nb(x) for all x. Then

C(q)
n (b) = C(q)

n (mod pξ+k)

where

ξ =
sp((q − 1)n + 1)− 1

p− 1
,

i.e. the same powers of p divide C
(q)
n (b) and C

(q)
n , and C

(q)
n (b)/pξ and C

(q)
n /pξ

have the same remainder modulo q.

3 Proof of Theorem 5

For any i, define

F (q)
i = {f : N→ Z : f(0) = i (mod q), qn+1|∆nf(x) for all n ≥ 1 and all x}.

The following generalization of [SP06, Lemma 2.2] is true for any q, although
we will only need it for q a prime power.

Proposition 6 We have:

(1) If f ∈ F (q)
i then ∆f/q ∈ F (q)

0 .

(2) If f ∈ F (q)
i and g ∈ F (q)

j then f + g ∈ F (q)
i+j.

(3) If f ∈ F (q)
i and g ∈ F (q)

j then f · g ∈ F (q)
ij .

(4) If f1, . . . , fq ∈ F (q)
1 then

(∑
i fi(x)

∏
j 6=i fj(x + 1)

)
/q ∈ F (q)

1 .

Proof: The first two claims are obvious, and (3) follows from

∆n(f · g) =
n∑

j=0

(
n

k

)
∆n−k(Sk(f)) ·∆k(g)

where S is the shift operator, Sf(x) = f(x+1). For (4), note that the right-hand
side can be written as

∑
i fi(x)

∏
j 6=i(fj(x) + ∆fj(x))

q
= f1(x) · · · fq(x) +

∑

l

Fl,

where each Fl is a product of some elements of F (q)
1 and (by (1)) at least one

element of F (q)
0 . By (3), Fl ∈ F (q)

0 and f1 · · · fq ∈ F (q)
1 , so (4) holds by (2).

As in [DS06] and [SP06], we will need to study the orbits of the action of G(q)
n

on the set T (q)
n of q-ary trees on n points, where G(q)

n is the group of symmetries
of the complete q-ary tree of depth n.
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Proposition 7 Let q = pk, and let O be an orbit of Gn acting on Tn. Then pξ

divides |O| where

ξ =
sp((q − 1)n + 1)− 1

p− 1
.

Let us postpone the proof.

Note that the proposition is a combinatorial proof of only a part of Proposition
2: it shows that pξ divides C

(q)
n , but not that it is the highest power of p that

divides it. However, this is enough to prove the main result.

Proof (of Theorem 5): As in [SP06, Lemma 2.4] let O denote an orbit of G(q)
n

acting on T (q)
n , and define

rb(O)(x) =
wb(O)(x)

|O|
where wb(O)(x) =

∑
T ∈O wb(T )(x) and wb(T )(x) =

∏
v∈T b(x + iv) with iv

the number of non-right edges on the unique path from the vertex v to the root.
In particular, wb(O)(0) = C

(q)
n (b). We will prove by induction on n that for

any orbit O, rb(O) ∈ F (q)
1 .

If n = 0, O is empty, rb(O)(x) = 1 and rb(O) ∈ F (q)
1 . Suppose n ≥ 1, pick

a tree T in O, and let T1, . . . , Tq be the branches of the root of T . Some of
the corresponding orbits Oi can be the same; assume that there are l different
orbits V1, . . . ,Vl, and that they appear q1, . . . , ql times in O1, . . . ,Oq. Then
|O| = (

q
q1,...,ql

)|V1|q1 · · · |Vl|ql and wb(O)(x) is equal to

b(x)




l∑

i=1

(
q−1

q1,...,qi−1...,ql

)
wb(Vi)(x) (wb(Vi)(x + 1))qi−1

∏

j 6=i

(wb(Vj)(x + 1))qj


 ;

hence

rb(O)(x)=b(x)·
∑l

i=1 qirb(Vi)(x) (rb(Vi)(x + 1))qi−1 ∏
j 6=i (rb(Vj)(x + 1))qj

q
=

= b(x) ·
∑q

i=1 rb(Oi)(x)
∏

j 6=i rb(Oj)(x + 1)
q

and this function is in F (q)
1 by induction, (4) and (3).

Since
C(q)

n (b) =
∑

O
|O| · rb(O)(0),

|O| is divisible by pξ by Proposition 7 and rb(O)(0) ∈ Z, we have pξ|C(q)
n (b),

and, modulo q,

C
(q)
n (b)
pξ

=
∑

O

|O|
pξ

· rb(O)(0) =
∑

O

|O|
pξ

=
C

(q)
n

pξ
.
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In order to prove Proposition 7, we will have to explore the structure of the
minimal orbits of the action of G(q)

n on T (q)
n , i.e. the orbits whose cardinalities

have the lowest power of p in their prime factorization.

Color a vertex of T black if all its branches are equivalent, and white otherwise.

The number of trees in the orbit of a q-ary tree T is the product of

Pv =
(

pk

qv
1 , . . . , qv

l

)
=

(pk)!
Qv

over all white vertices v of T , where qv
1 , . . . , qv

l are the sizes of equivalence classes
of the children of v. Note that Pv = 1 for a black vertex and p|Pv for a white
vertex.

Lemma 8 If T is a tree in a minimal orbit O, then no black vertex of T can
have a white child.

Proof: If a black vertex v of T ∈ O has white children, and a child of v has
branches T1, . . . , Tq, we can form a tree T ′ with at least q− 1 fewer p factors by
attaching all q copies of T1 to the first child of v, all q copies of T2 to the second
child of v, etc.

T1 · · · Tq T1 · · · Tq T1 · · · Tq

· · ·

· · ·

· · ·

Tq · · · TqT2 · · · T2T1 · · · T1

· · ·

· · ·

· · ·

Figure 3: Transforming a tree

See Figure 3 for an example.

Therefore a minimal orbit must have the following structure: there are some
(white) vertices forming a q-ary tree, and there are some complete q-ary trees
(containing black vertices) attached – see the left drawing of Figure 4. We can
visualize such an orbit as a plane q-ary tree with each endpoint denoted by a
non-negative integer (see the right drawing on Figure 4) indicating the depth
of the attached complete q-ary tree. If T has b white vertices and Ai complete
q-ary trees of depth i, then

∑
Ai = (q − 1)b + 1, in other words, the tree has

(
∑

Ai − 1)/(q − 1) white vertices. We will call complete q-ary trees of depth i
i-trees, and if an i-tree is the child of a white vertex, we will call it an i-child.
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0 01 0 0 30 0 0 01 0

2

Figure 4: A tree in which no black vertex has a white child

Lemma 9 If T is a tree in a minimal orbit O and Ai is the number of complete
q-ary trees of depth i in T , then Ai < q.

Proof: Assume Ai ≥ q = pk for some i and write the number of i-children of
a white vertex v as rv

k−1 · · · rv
1rv

0 in base p. Pick the vertex v with the highest
rv
0 , and assume that there is another vertex v′ with rv′

0 > 0. Since the number
of children of v is divisible by p, there must be a j-child or a white vertex so
that the number of equivalent children of v is not divisible by p. Switching
this j-tree or white vertex (together with its successors) with one of the i-trees
among the children of v′ does not decrease the number of p factors in Qv or Qv′

and increases rv
0 . But if the new rv

0 is p, the number of p factors in Qv actually
increases, which contradicts the minimality of O. Therefore we can assume that
there is only one vertex v with a positive rv

0 .
We can repeat the same process for rv

1 : if there are two vertices with non-zero
rv
1 , we can exhange p i-trees of one with p j-trees or equivalent white children

of the other and repeat this until only one rv
1 (which must remain smaller than

p) is non-zero. Continue with rv
2 , . . . , rv

k−2. When we do the same procedure
for rv

k−1, we will get a complete q-ary tree of depth i + 1 (after at most p − 1
exchanges), and we will strictly decrease the number of p factors in |O|, which
contradicts its minimality.

Since a complete q-ary tree of depth l has 1 + q + . . . + ql−1 = (ql − 1)/(q − 1)
vertices and since

n = b + A0
1− 1
q − 1

+ A1
q − 1
q − 1

+ A2
q2 − 1
q − 1

+ . . .

implies (q − 1)n + 1 = A0 + A1q + A2q
2 + . . ., the number of white points in a

minimal orbit is
sq((q − 1)n + 1)− 1

q − 1
.
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Lemma 10 If T is a tree in a minimal orbit O, then the number of white
children of a (white) vertex v with equivalent subtrees is strictly smaller than p.

Proof: Assume that pl is the highest power of p that is smaller than or equal to
the number of equivalent white children of v.
Assume that the pl equivalent white children of v have qi copies of Ti, q1 + . . .+
qt = q. Note that qi must be smaller than pk−l by Lemma 9, and each white
child contributes

∑

i

(⌊
qi

p

⌋
+

⌊
qi

p2

⌋
+ . . . +

⌊
qi

pk−l−1

⌋)

p factors to the denominator of |O|.
Write qi = ci

0 + ci
1p + . . . + ci

k−l−1p
k−l−1 in base p, and split the qip

l equivalent
children in ci

0 + ci
1 + . . . + ci

k−l−1 groups of size pl (ci
0 times), pl+1 (ci

1 times)
etc. and attach each group to one of the chosen pl children of v. Note that we
can do that for all i simultaneously: first attach groups of size pk−1 to the first,
second etc. child of v. After we run out of groups of size pk−1, we repeat the
same process with pk−2, pk−3 etc.
We get a new orbit with a different number of p factors. The vertex v has pl

fewer children of some equivalent class; since l is maximal, the new Qv has at
most 1 + p + . . . + pl−1 fewer p factors.
The new grandchildren of v contribute

∑

i

(
ci
0(1 + . . . + pl−1) + ci

1(1 + . . . + pl) + . . . + ci
k−l−1(1 + . . . + pk−2)

)
=

=
∑

i

(
(1 + p + . . . + pl−1)qi +

⌊
qi

p

⌋
+

⌊
qi

p2

⌋
+ . . . +

⌊
qi

pk−l−1

⌋)
=

= (1 + p + . . . + pl−1)pk +
∑

i

(⌊
qi

p

⌋
+

⌊
qi

p2

⌋
+ . . . +

⌊
qi

pk−l−1

⌋)

p factors. Since
∑

i

(⌊
qi

p

⌋
+ . . . +

⌊
qi

pk−l−1

⌋)
≤

⌊∑
qi

p

⌋
+ . . . +

⌊ ∑
qi

pk−l−1

⌋
= pl+1 + . . . + pk−1,

the difference between the old and the new number of p factors in |O| is at least

(1+ . . .+pl−1)pk−
(∑

i

(⌊
qi

p

⌋
+ . . . +

⌊
qi

pk−l−1

⌋))
(pl−1)−(1+ . . .+pl−1) ≥

≥ (1 + . . . + pl−1)pk − (pl+1 + . . . + pk−1)(pl − 1)− (1 + . . . + pl−1) =

= (pk+. . .+pk+l−1)−(p2l+1+. . .+pk+l−1)+(pl+1+. . .+pk−1)−(1+. . .+pl−1) =

= (pl+1 + . . . + p2l)− (1 + . . . + pl−1) = (pl+1 − 1)(1 + . . . + pl−1),

which is strictly positive and hence contradicts the minimality of |O| unless
l = 0.
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Now it is easy to prove the proposition. We have determined the number of
white points in a minimal orbit; they contribute

b · (1 + p + . . . + pk−1) =
sq((q − 1)n + 1)− 1

q − 1
· q − 1
p− 1

=
sq((q − 1)n + 1)− 1

p− 1

p factors to the numerator of |O|. There are Ai = aik + a1p+ . . .+ aik+k−1p
k−1

complete trees of depth i, and they contribute at most

ξp(Ai!) =
Ai − aik − aik+1 − . . .− aik+k−1

p− 1

p factors to the denominator of |O|. The white vertices do not contribute any
p factors to the denominator of |O| by Lemma 10. That means that the prime
factorization of the cardinality of the minimal orbit has at least (and, by Propo-
sition 2, exactly)

sq((q − 1)n + 1)− 1
p− 1

− sq((q − 1)n + 1)− sp((q − 1)n + 1)
p− 1

=

=
sp((q − 1)n + 1)− 1

p− 1

p factors.

Note that in the case q = p both Lemma 9 and Lemma 10 are trivial.

4 Concluding remarks

It is natural to ask whether the results extend to arbitrary q.

Question 1 Let q = pkq′ for p prime, k ≥ 1 and gcd(p, q′) = 1, and let a
function b : N → Z satisfy b(0) = 1 (mod q) and qn+1|∆nb(x) for all x. Is it
true then that

C(q)
n (b) = C(q)

n (mod pξ+k)

where ξ is the highest power of p dividing C
(q)
n ; i.e. do the same powers of p divide

C
(q)
n (b) and C

(q)
n , and do C

(q)
n (b)/pξ and C

(q)
n /pξ have the same remainder

modulo pk?

The answer is negative. The author wrote a program in C++ that generated
random b’s satisfying the hypothesis, and checked the condition C

(q)
n (b) =

C
(q)
n (mod pξ+k) for low n’s (n ≤ 250). It appears that the equality fails to be

satisfied for sporadic n’s whenever q is not a prime power; when q = 6 and p = 2,
the equality is not necessarily satisfied for n = 22, 43, 86, 107, 150, 171, 214, 235.
For example, we have

C
(6)
22 = 5.643274... · 1022 = 1011111100...1011000000[2]
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and
C

(6)
22 (b) = 1.071965... · 1071 = 1111100010...0100000000[2].

for b(x) = 36x + 1. What about the following?

Question 2 Let q be arbitrary, and let a function b : N → Z satisfy b(0) =
1 (mod q) and qn+1|∆nb(x) for all x. Is it true that

C(q)
n (b) = C(q)

n (mod qξ+1)

where ξ is the highest power of q dividing C
(q)
n ; i.e. do the same powers of q divide

C
(q)
n (b) and C

(q)
n , and do C

(q)
n (b)/qξ and C

(q)
n /qξ have the same remainder

modulo q?

The answer, again, is no, although the computation that proves this is con-
siderably harder. A Maple program showed that (again for b(x) = 36x + 1)
C

(6)
n = C

(6)
n (b) (mod 6ξ+1) (where ξ is the highest power of 6 dividing C

(6)
n )

holds for n ≤ 202, while

C
(6)
203 = 6.506438... · 10233 = 2155553502...5211200000[6],

and
C

(6)
203(b) = 9.873449... · 10878 = 2521223211...3050000000[6].

It is interesting to explore necessary conditions for the conclusion of Theorem 5
to hold for low n. The following is a sample, and it suggests that the conditions
of the theorem are too strong.

Proposition 11 Let q = pk for p prime, and let b : N→ Z. Then the following
statements are equivalent:

(a) For n ≤ q + 2 we have

C(q)
n (b) = C(q)

n (mod pξ+k)

where

ξ =
sp((q − 1)n + 1)− 1

p− 1

(b) b(0) = 1(mod q), q|∆b(q−1) and q2|∆b(x) for x = 0, 1, . . . , q−3, q−2, q.

Sketch of proof: We will prove that the conditions are necessary, and it will
be clear from the proof that they are also sufficient. We have C

(q)
1 (b) = b0

and C
(q)
1 = 1, so b(0) = 1 (mod q). It is easy to see either directly or using

Proposition 2 that for n = 2, 3, . . . , q pk is the highest power of p that divides
C

(q)
n , and it is obvious from the definition of C

(q)
n (b) that the only term in

C
(q)
n (b) that contains bn−1 is

(q − 1)nb0b1 · · · bn−1.
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If we assume by induction that b0 = . . . = bn−2 (mod q2) and if n ≤ q, then we
get (modulo q2)

C(q)
n (b)− C(q)

n = (q − 1)nbn−2
0 bn−1 + (C(q)

n − (q − 1)n)bn−1
0 − C(q)

n =

= (q − 1)nbn−2
0 (bn−1 − b0) + C(q)

n (bn−1
0 − 1).

Since (q − 1)n, bn−2
0 are invertible in Zq2 and since q|bn−1

0 − 1 and q|C(q)
n , we

get that bn−1 = b0 (mod q2).
Since C

(q)
q+1 is not divisible by p and b0 = . . . = bq−1 = 1 (mod q),

C
(q)
q+1(b) = (q − 1)qbq + (C(q)

q+1 − (q − 1)q) = C
(q)
q+1 (mod q)

implies bq = 1 (mod q).
The Catalan number C

(q)
q+2 is divisible by q and not by q2. A careful considera-

tion of q-ary trees of depth at least q on q + 2 vertices gives

C
(q)
q+2(b) = (q − 1)q+1bq

0bqbq+1 +
1
2
q(q − 1)qbq

0b
2
q + (2− q + q2)(q − 1)qbq+1

0 bq+

+
(

C
(q)
q+2 − (q − 1)q+1 − 1

2
q(q − 1)q − (2− q + q2)(q − 1)q

)
bq+2
0 ,

if we set this equal to C
(q)
q+2 and do some elementary arithmetic in Zq2 , we get

bq+1 = bq (mod q2). This concludes the proof.

For example, when b is a polynomial, this gives q + 1 conditions on the coeffi-
cients. It is interesting that for q = 2 these conditions appear to be sufficient as
well.

Conjecture Let b(x) = c0 + c1x + . . . + cdx
d. Then ξ2(Cn(b)) = ξ2(Cn) for

all n if and only if

(1) 2|c0 − 1,

(2) 4|c1 + c2 + c3 + . . .,

(3) 2|c3 + c5 + c7 + . . .

The conjecture was verified with a C++ program for a large number of b’s and
for n ≤ 250.
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