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Abstract
We define a ¢ generalization of weighted Catalan numbers studied by
Postnikov and Sagan, and prove a result on the divisibility by p of such
numbers when p is a prime and ¢ its power.

1 Introduction

The n-th Catalan number

C - 1 <2n>
n+1l\n
is equal to the number of binary trees on n vertices, of lattice paths from (0, 0)
to (2n,0) with steps (1,1) and (1, —1) that stay above the y-axis (Dyck paths),
and of many other objects (see [S99]). If b: N — Z is a function and {b;} = b(z)
is the corresponding sequence, we weight a vertex of a binary tree 7 by b;, where
1 is the number of left edges on the unique path from the vertex to the root of
the tree, and we define the weight w(7) of the tree to be the product of the
weights of its vertices. Then the weighted n-th Catalan number is

Cn(b) = w(T),

T

where the sum is over all binary trees on n points. We weight each step (1,1)
of a Dyck path by b;, where ¢ is the y-coordinate of the starting point, and we
weight a Dyck path by the product of weights of its up steps; then

Cu(b) =) w(P),
P
where the sum is over all Dyck paths from (0,0) to (2n,0).

The divisibility of Catalan numbers C,, by powers of 2 has been determined
both arithmetically and combinatorially (see for example [AK73], [E83], [SU91],
[D99], [DS06]); if we denote the maximal & for which ¢%|m by &,(m), and the
sum of the digits in the g-ary expansion of m by s4(m), then

&(Ch) =s2(n+1) — 1. (1)

A natural question arises: under what conditions on b do we have &(Cy (b)) =
&2(Cp)? Postnikov and Sagan ([SP06, Theorem 2.1]) found the following suffi-
cient condition. Here the operator A is defined by Af(z) = f(z + 1) — f(x).



Theorem 1 Assume that b satisfies b(0) = 1 (mod 2) and 2"'|A"b(z) for
alln > 1 and x € N. Then &(Cy,) = &(Crh(b)). O

In this paper, we will define a generalization of weighted Catalan numbers and
prove an analogous theorem.

2 Generalized Catalan numbers

For ¢ > 1 and n > 0, define

1 n
(@~ (4
o (q—l)n—l—l(n)'

It is well known that this counts the number of lattice paths P in the plane
from (0,0) to (gn,0) using steps (1,¢ — 1) and (1, —1) that never go below the
y axis, and the number of g-ary trees on n vertices (recall that a rooted tree is
g-ary if every vertex has ¢ distinguishable possibly empty branches). If F(@)(z)

is the ordinary generating function for Cy(Lq), then obviously
q
FO@) =14z (F@) (x)) ,

and so the numbers C,(Lq) are the coefficients in the Taylor expansion of the
continued fraction

q—1

The following is a generalization of (1).

Proposition 2 Assume that ¢ = p* where p is a prime and k > 1. Then we

have
o) = 2=t D =] @)

for any n.

Proof: The exponent of p in the prime factorization of m! is

HMEREIRS
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" (g—Dn+1\n nl((¢g—1)n+1)!



the numerator contains p*~'n+p*~2n+...+n+ n/p| + |n/p?| + |n/p?| +...
p factors, n! contains |n/p] + |n/p*| + |n/p*| +... p factors, and ((¢—1)n+1)!
contains

(a1+a2p+...+atpt_1)+(a2—|—a3p+...—|—atpt_1)—|—...—|—(at,1 +ap) +a; =

- — 4. +ap—1
=a;+ax(l+p)+...+a(l+...+p 1):a1(p ) p_laf(p ):

(g—Dn+1l—ay—ar—...—a;
p—1
p factors, where (¢—1)n+1 = ag+aip+...+aspt is the expansion of (¢—1)n+1
in base p. But then C,(LQ) contains

(g=Dn (@=Dn+1-s5(g=1n+1) sp((g=Dn+1)-1

p—1 p—1 p—1
p factors. O
REMARK 3 Tt is possible (but cumbersome) to calculate explicitly the residue

of C’ﬁbq)/pg modulo ¢ (with £ = fp(C'y(Lq))). For example, if ¢ = p is a prime, then
this residue is
=i_gai—1 t .
(1) 7T T gy — D(p—ar = D (p = = 1)
we get a much more complicated formula for general gq. O

For a g-ary tree 7 on n vertices, weight the vertex v by b; = b(%) where i is the
number of non-right edges on the unique path from the root of 7 to v, and let
wp (7)), the weight of 7, be the product of the weights of its vertices (see Figure
1).

Figure 1: A ternary tree with weight b3bibab3

Obviously we have C4 = C{?(b) for the constant function b(z) = 1.

Define the weighted analogues of C’T(Lq) by

C(b) =Y wy(T),
T



where the sum is over all g-ary trees on n-vertices. For example,
c?my=1, 9=y C$? = (q = 1)boby + b2
0 ( ) ’ 1 05 2 (q ) 001 + 0,

CS? = (g — 1)%bobibs + (75Y)bob? + 3(g — 1)b2by + b3.

The same proof as in the non-weighted case shows that

> P (b)a" = !

n>0 1- =T

bax -1
(1 - (1—..2.)(1*1)

Proposition 4 For each path P from (0,0) to (¢n,0) using steps (1,q — 1)
and (1,—1), weight the step (z,y) — (x + 1,y — 1) by 1 and the step (z,y) —
(x+1,y+q—1) by b; where i is the number of points (z',y") on P satisfying
<z andy <y’ for any (2",y") € P, 2’ <2’ < x. Let wp(P) denote the

product of the weights of the steps of P. Then

C(b) = 3 wy(P),
P

Sketch of proof: Consider a depth-first search of a weighted tree 7. If a branch
is empty, do a (1,—1) step (and backtrack if it is the right-most branch of a
vertex); otherwise do a (1,¢— 1) step. It is easy to see that this gives a bijection

bo
bo by
by
bl b 1 bl
bo bo
by

Figure 2: A tree and the corresponding path

between g-ary trees and paths, and that the weights of the paths are as described

above. See Figure 2 for an example.

Our main result is the following generalization of Theorem 1.



Theorem 5 Let ¢ = p* for p prime and k > 1, and let a function b: N — Z
satisfy b(0) = 1 (mod q) and ¢"*|A"b(z) for all x. Then

G (b) = P (mod p**)

where
‘= sp((g—1n+1)—1
p—1 ’

i.e. the same powers of p divide C’T(Lq)(b) and CY, and C’,(f)(b)/gjf and C’r(f)/p5
have the same remainder modulo q.

3 Proof of Theorem 5

For any i, define
.7-'1.((1) ={f: N — Z: £(0) =i (mod ¢q), ¢""*|A"f(z) for all n > 1 and all x}.

The following generalization of [SP06, Lemma 2.2] is true for any ¢, although
we will only need it for ¢ a prime power.

Proposition 6 We have:
(1) If £ € F\V then Af/q e FV.

(2) Iff e ]:z‘(q) and g € f;q) then f +g € ]-‘Z.(j)j,

(3) Iff € FV and g € F\¥ thent-ge FI.

(1) Iffy,... £, € FO then (zi £i(2) 100 £ + 1)) Jge F9.

Proof: The first two claims are obvious, and (3) follows from

n

arireg) = 3 () )ar st - ate)

=0

where S is the shift operator, Sf(x) = f(x+1). For (4), note that the right-hand
side can be written as

22 (@) [ (5 (2) + Afj(2))

q

= fi(0) £, () + Y,
l

where each F; is a product of some elements of fl(q) and (by (1)) at least one
element of 7,7 By (3), F; € £\” and f, --- £, € F\?, so (4) holds by (2). O

As in [DS06] and [SP06], we will need to study the orbits of the action of gl

T(Lq)

on the set ’]}L(Q) of g-ary trees on n points, where G" is the group of symmetries

of the complete g-ary tree of depth n.



Proposition 7 Let ¢ = p*, and let O be an orbit of G, acting on T,,. Then p®
divides |O| where
¢ splla=Dnr1 -1
p—1 '

Let us postpone the proof.

Note that the proposition is a combinatorial proof of only a part of Proposition

2: it shows that p¢ divides C,(Lq), but not that it is the highest power of p that
divides it. However, this is enough to prove the main result.

Proof (of Theorem 5): As in [SP06, Lemma 2.4] let O denote an orbit of G{¥
acting on ’Z;(q), and define

~ wp(0)(2)
rp(0)(z) = ‘]T

where wi, (0)(2) = D> 7co Wb(7)(z) and wi(7)(z) = [[,c7 b(x + i) with 4,
the number of non-right edges on the unique path from the vertex v to the root.
In particular, wy(O)(0) = clo (b). We will prove by induction on n that for
any orbit O, rp(0) € fl(q).

If n =0, O is empty, rp,(O)(x) =1 and rp,(O) € ]_—1(q). Suppose n > 1, pick
a tree 7 in O, and let 7,...,7,; be the branches of the root of 7. Some of
the corresponding orbits O; can be the same; assume that there are [ different

orbits Vi,...,V;, and that they appear ¢i,...,q times in Oi,...,04. Then
O] = (q1 4 ql)|])1|q1 < WV|? and wp(O)(z) is equal to

l

b(@) [ D (o 474 ) weV)(@) (we (V)@ + )" ] (wo (V) (@ + 1) | ;

= J#i
hence
! qi—1 (2 .
rp(0)(z) =b(z)- Y im1 irp(Vi) (@) (ru (Vi) (z +ql)) [L (re(Vy)(z +1)) _
YL (0 (@) [T, m6(0) (w + 1)

=b(z) -
(z) .
and this function is in ¥ by induction, (4) and (3).
Since
Ci(b) =3 _|0] - rp(0)(0),
0

|O| is divisible by p* by Proposition 7 and r,(O)(0) € Z, we have pf\CT(Lq)(b),
and, modulo ¢,

9 (b) 0] o] ¢
= .y (0)(0) = —_— = . U
o~ O = =T



In order to prove Proposition 7, we will have to explore the structure of the
minimal orbits of the action of g,(;” on ’];L(q), i.e. the orbits whose cardinalities
have the lowest power of p in their prime factorization.

Color a vertex of 7 black if all its branches are equivalent, and white otherwise.

The number of trees in the orbit of a g-ary tree 7 is the product of

k kY|
Pv:(,,,p U>:(p)-
q1s--+54q; Qv

over all white vertices v of 7, where ¢7, ..., ¢; are the sizes of equivalence classes
of the children of v. Note that P, = 1 for a black vertex and p|P, for a white
vertex.

Lemma 8 If T is a tree in a minimal orbit O, then no black vertex of T can
have a white child.

Proof: If a black vertex v of 7 € O has white children, and a child of v has
branches 71, ..., 7,, we can form a tree 7’ with at least ¢ — 1 fewer p factors by
attaching all ¢ copies of 77 to the first child of v, all ¢ copies of 75 to the second
child of v, etc.

T To Ty 7,1,

Figure 3: Transforming a tree

See Figure 3 for an example. O

Therefore a minimal orbit must have the following structure: there are some
(white) vertices forming a g-ary tree, and there are some complete g-ary trees
(containing black vertices) attached — see the left drawing of Figure 4. We can
visualize such an orbit as a plane g-ary tree with each endpoint denoted by a
non-negative integer (see the right drawing on Figure 4) indicating the depth
of the attached complete g-ary tree. If 7 has b white vertices and A; complete
g-ary trees of depth 4, then >  A; = (¢ — 1)b + 1, in other words, the tree has
(3>- A, —1)/(¢ — 1) white vertices. We will call complete g-ary trees of depth 4
i-trees, and if an i-tree is the child of a white vertex, we will call it an i-child.



Khn
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Figure 4: A tree in which no black vertex has a white child

Lemma 9 If7 is a tree in a minimal orbit O and A; is the number of complete
q-ary trees of depth i in T, then A; < q.

Proof: Assume A; > q = p¥ for some i and write the number of i-children of
a white vertex v as r}_; ---rjrg in base p. Pick the vertex v with the highest

7y, and assume that there is another vertex v’ with r§ > 0. Since the number
of children of v is divisible by p, there must be a j-child or a white vertex so
that the number of equivalent children of v is not divisible by p. Switching
this j-tree or white vertex (together with its successors) with one of the i-trees
among the children of v’ does not decrease the number of p factors in @, or Q.-
and increases rj. But if the new r{ is p, the number of p factors in Q, actually
increases, which contradicts the minimality of O. Therefore we can assume that
there is only one vertex v with a positive r{.

We can repeat the same process for r7: if there are two vertices with non-zero
ry, we can exhange p i-trees of one with p j-trees or equivalent white children
of the other and repeat this until only one r} (which must remain smaller than
p) is non-zero. Continue with 73,...,77_,. When we do the same procedure
for rj_,, we will get a complete g-ary tree of depth i + 1 (after at most p — 1
exchanges), and we will strictly decrease the number of p factors in |O|, which
contradicts its minimality. O

Since a complete g-ary tree of depth [ has 1 +¢q¢+ ...+ ¢ = (¢ = 1)/(¢—1)
vertices and since
1 -1 21
q A q

1—
=b+ A A
n + 0q—1+ 1q—1+ 2q_1

+ ...

implies (¢ — 1)n + 1 = Ag + A1q + A2¢* + .. ., the number of white points in a
minimal orbit is

sq((g=1Dn+1) -1
q—1 '



Lemma 10 If 7 is a tree in a minimal orbit O, then the number of white
children of a (white) vertex v with equivalent subtrees is strictly smaller than p.

Proof: Assume that p' is the highest power of p that is smaller than or equal to
the number of equivalent white children of v.

Assume that the p' equivalent white children of v have ¢; copies of 73, ¢1 +...+
q; = q. Note that ¢; must be smaller than p*~! by Lemma 9, and each white

child contributes
qi q; qi
(5] L]+ [#))

3

p factors to the denominator of |O|.
Write ¢; = ¢ +cip+...+ch_, p*
children in ¢ + ¢} + ...+ ¢t _, | groups of size p' (¢} times), p'*1 (¢! times)
etc. and attach each group to one of the chosen p' children of v. Note that we
can do that for all i simultaneously: first attach groups of size p*~! to the first,
second etc. child of v. After we run out of groups of size p*~!, we repeat the
same process with pF~2, p*~3 etc.

We get a new orbit with a different number of p factors. The vertex v has p'
fewer children of some equivalent class; since [ is maximal, the new @, has at
most 1 4+ p+ ...+ p~! fewer p factors.

The new grandchildren of v contribute

—I=1 in base p, and split the ¢;p' equivalent

S+ 4+ + )+ (A ) =

s R Ty
L TPy

p factors. Since

2 Q;};J et L?’“qilD = F;%J et \\pkz:lqilJ =t

i

the difference between the old and the new number of p factors in O] is at least

(1+...+pY)pF— <Z QiJ o+ L&J)) (P —1)—(1+...+p) >

>4+ = P 1) - (L P ) =
= (pk+...+pk+l71)f(p2l+1+."+pk+l71)+(pl+1+.“+pk71)7(1+'“+p171) _
=@ ) () = P (LY,

which is strictly positive and hence contradicts the minimality of |O| unless
l=0. O



Now it is easy to prove the proposition. We have determined the number of
white points in a minimal orbit; they contribute

Sq((Q*l)nnLl)fl.q—l _sq(lg=1)n+1)—1

b-(1 ) = =
(L+p+...4+p"7) i1 p— p—

p factors to the numerator of |O|. There are A; = a;, +a1p+ ... +apip_1p !
complete trees of depth 4, and they contribute at most

A<—a»k—a»k 1 — e — Qijktk—1
€p<A1'): % i z;il tk+

p factors to the denominator of |O|. The white vertices do not contribute any
p factors to the denominator of |O| by Lemma 10. That means that the prime
factorization of the cardinality of the minimal orbit has at least (and, by Propo-
sition 2, exactly)

s(g—=Dn+1) -1  se((g—Dn+1)—sp((¢ —n+1)
p—1 p—1

_ sp((g—n+1)—1
p—1

p factors.

Note that in the case ¢ = p both Lemma 9 and Lemma 10 are trivial.

4 Concluding remarks
It is natural to ask whether the results extend to arbitrary gq.

Question 1 Let ¢ = p*q’ for p prime, k > 1 and ged(p,q’) = 1, and let a
function b: N — Z satisfy b(0) = 1 (mod q) and ¢" " |A"b(z) for all x. Is it
true then that

CAD (b) = €49 (mod p£+4)

where & is the highest power of p dividing C’éq) ; i.e. do the same powers of p divide
C,(lq)(b) and CS7, and do C? (b)/p* and C’flq)/pE have the same remainder
modulo p* ¢

The answer is negative. The author wrote a program in C++ that generated
random b’s satisfying the hypothesis, and checked the condition cl (b) =
clo (mod p&t*) for low n’s (n < 250). It appears that the equality fails to be
satisfied for sporadic n’s whenever g is not a prime power; when ¢ = 6 and p = 2,
the equality is not necessarily satisfied for n = 22,43,86,107,150,171, 214, 235.
For example, we have

C55) = 5.643274... - 10?2 = 1011111100...1011000000

10



and
O35 (b) = 1.071965... - 107" = 1111100010...0100000000 -

for b(z) = 36z + 1. What about the following?

Question 2 Let q be arbitrary, and let a function b: N — Z satisfy b(0) =
1 (mod q) and ¢"*'|A™b(x) for all x. Is it true that

C{(b) = € (mod ¢¢*)

where £ is the highest power of q dividing CT(LQ) ; i.e. do the same powers of q divide
C’flq)(b) and C\?, and do C{? (b)/q* and C’T(Lq)/q5 have the same remainder
modulo q?

The answer, again, is no, although the computation that proves this is con-
siderably harder. A Maple program showed that (again for b(x) = 36z + 1)

c = C’,(L6)(b) (mod 65*1) (where ¢ is the highest power of 6 dividing C,(fi))
holds for n < 202, while

C{o% = 6.506438... - 1023 = 2155553502...5211200000],

and
Ok (b) = 9.873449... - 1057 = 2521223211...30500000005).

It is interesting to explore necessary conditions for the conclusion of Theorem 5
to hold for low n. The following is a sample, and it suggests that the conditions
of the theorem are too strong.

Proposition 11 Let g = p* for p prime, and let b: N — Z. Then the following
statements are equivalent:

(a) For n < q+ 2 we have
O (b) = C{ (mod p***)
where
= sp(lg—n+1)—1
p—1
(b) b(0) = 1(mod q), q|Ab(¢—1) and ¢*|Ab(x) forz =0,1,...,¢—3,¢—2,q.

Sketch of proof: We will prove that the conditions are necessary, and it will
be clear from the proof that they are also sufficient. We have CYI)(b) = b
and qu) =1, s0o b(0) = 1 (mod ¢). It is easy to see either directly or using
Proposition 2 that for n = 2,3,...,q p¥ is the highest power of p that divides
Ci? | and it is obvious from the definition of C,(Lq)(b) that the only term in
C,(LQ)(b) that contains b,,_1 is

(¢ —1)"boby - - bn—1.

11



If we assume by induction that by = ... = b,_» (mod ¢?) and if n < ¢, then we
get (modulo ¢?)

OO (b) — CO = (q— 1)y b1 + (CP — (¢ — )"~ — Cl0) =
= (q — 1)”()8—2(()”_1 _ bO) + C’ELq) (bg—l . 1).

Since (¢ — 1)", by~ ? are invertible in Z,2 and since g|by ' — 1 and q|C'7(LQ)7 we
get that b, _1 = by (mod ¢?).

Since Céj_)l is not divisible by p and by = ... =b,—1 = 1 (mod ¢),
Cyi(b) = (q = 1), + (CF) — (¢ = 1)) = G2, (mod g)

implies b, = 1 (mod gq).
The Catalan number Cq(‘i)z is divisible by ¢ and not by ¢?. A careful considera-
tion of g-ary trees of depth at least ¢ on ¢ + 2 vertices gives

1
Cyt(b) = (¢ = DT 04bybyr + Sala = U0 + (2 =+ ¢*)(g — )7 b, +

1
+ (Céi)z —(g=D™ - Zala - - 2—g+a*)(a - 1)q) b2,
if we set this equal to ng(-]i-)Q and do some elementary arithmetic in Zg2, we get
by+1 = by (mod ¢?). This concludes the proof. O

For example, when b is a polynomial, this gives ¢ + 1 conditions on the coeffi-
cients. It is interesting that for ¢ = 2 these conditions appear to be sufficient as
well.

Conjecture Let b(x) = ¢y + c1x + ... + cqz?. Then &(Cph (b)) = &(C,) for
all n if and only if

(1) 2|ep — 1,
(2) 4|01+CQ+63+...,
(3) 2les+es+cr+... O

The conjecture was verified with a C++ program for a large number of b’s and
for n < 250.

Acknowledgment

I would like to thank A. Postnikov for suggesting the problem.

12



References

[AK73] R. Alter and K. K. Kubota, Prime and prime power divisibility of Cata-
lan numbers. J. Combinatorial Theory Ser. A 15 (1973), 243-256.

[D99] E. Deutsch, An involution on Dyck paths and its consequences. Discrete
Math. 204 (1999), no. 1-3, 163-166.

[DS06] E. Deutsch, B. E. Sagan, Congruences for Catalan and Motzkin numbers
and related sequences. J. Number Theory 117 (2006), no. 1, 191-215.

[E83] 0. Egecioglu, The parity of the Catalan numbers via lattice paths. Fi-
bonacci Quart. 21 (1983), no. 1, 65-66.

[SP06] A. Postnikov, B. E. Sagan, What power of two divides a weighted Cata-
lan number? to appear in J. Combinatorial Theory Ser. A

[SU91] R. Simion, D. Ullman, On the structure of the lattice of noncrossing
partitions. Discrete Math. 98 (1991), no. 3, 193-206.

[S99] R. P. Stanley, Enumerative combinatorics. Vol. 2. Cambridge Studies
in Advanced Mathematics, 62. Cambridge University Press, Cambridge,
1999.

13



