TABLEAU POSETS AND THE FAKE DEGREES OF
COINVARIANT ALGEBRAS
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ABSTRACT. We introduce two new partial orders on the standard Young
tableaux of a given partition shape, in analogy with the strong and weak
Bruhat orders on permutations. Both posets are ranked by the major
index statistic offset by a fixed shift. The existence of such ranked poset
structures allows us to classify the realizable major index statistics on
standard tableaux of arbitrary straight shape and certain skew shapes.
By a theorem of Lusztig—Stanley, this classification can be interpreted as
determining which irreducible representations of the symmetric group exist
in which homogeneous components of the corresponding coinvariant algebra,
strengthening a recent result of the third author for the modular major
index. Our approach is to identify patterns in standard tableaux that allow
one to mutate descent sets in a controlled manner. By work of Lusztig and
Stembridge, the arguments extend to a classification of all nonzero fake
degrees of coinvariant algebras for finite complex reflection groups in the
infinite family of Shephard-Todd groups.

1. INTRODUCTION

Let SYT(A) denote the set of all standard Young tableaux of partition shape
A. We say i is a descent in a standard tableau T if ¢ + 1 comes before i in
the row reading word of T', read from bottom to top along rows in English
notation. Equivalently, ¢ is a descent in T if ¢ + 1 appears in a lower row in
T. Let maj(7T) denote the major index statistic on SYT(N), which is defined
to be the sum of the descents of T. The major index generating function for
SYT() is given by

(1) SYT()\)maj(Q) = Z qmaj(T) = Z b,\,qu-
TeSYT()N) k>0

The polynomial SYT(A)™i(¢) has two elegant closed forms, one due to
Steinberg based on dimensions of irreducible representations of GL,,(F,), see
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[Steb1], and one due to Stanley [Sta79] generalizing the Hook-Length Formula,
see Theorem 2.11.
For fixed A, consider the fake degree sequence

(2) bag:=#{T e SYT(X) :maj(T) =k} for k=0,1,2,...

The fake degrees have appeared in a variety of algebraic and representation-
theoretic contexts including Green’s work on the degree polynomials of uni-
potent GL,,(F,)-representations [Greb5, Lemma 7.4], the irreducible decom-
position of type A coinvariant algebras [Sta79, Prop. 4.11], Lusztig’s work
on the irreducible representations of classical groups [Lus77], and branching
rules between symmetric groups and cyclic subgroups [Ste89, Thm. 3.3]. The
term “fake degree” was apparently coined by Lusztig [Car89|, perhaps because
#SYT(A) = X 4s0 bak is the degree of the irreducible S,-representation indexed
by A, so a g-analog of this number is not itself a degree but related to the
degree.

We consider three natural enumerative questions involving the fake degrees:

(I) which b, j are zero?
(IT) are the fake degree sequences unimodal?
(III) are there efficient asymptotic estimates for by ;7

We completely settle (I) with the following result. Denote by A’ the conjugate
partition of A, and let b(\) := Y51 (i — 1)\

Theorem 1.1. For every partition A +n > 1 and integer k such that b(\) < k <

(Z) —b(\), we have by i, > 0 except in the case when X is a rectangle with at least

two rows and columns and k is either b(\) + 1 or (g) - b(\) = 1. Furthermore,
bak =0 for k<b(X) or k> (5)—b(\).

As a consequence of the proof of Theorem 1.1, we identify two ranked
poset structures on SYT(A) where the rank function is determined by maj.
Furthermore, as a corollary of Theorem 1.1 we have a new proof of a complete
classification due to the third author [Swal8, Thm. 1.4] generalizing an earlier
result of Klyachko [Kly74] for when the counts

ar, =#{T e SYT(N) :maj(T) =, r}

for A\ +n are nonzero.

The easy answer to question (II) is “no”. The fake degree sequences are
not always unimodal. For example, SYT(4,2)™2(g) is not unimodal. See
Example 2.13. Nonetheless, certain inversion number generating functions
p (q) which appear in a generalization of SYT(A)™i(q) are in fact unimodal;
see Definition 7.7 and Corollary 7.10. Furthermore, computational evidence
suggests SYT(A\)™mai(q) is typically not far from unimodal.
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Questions (II) and (III) are addressed in a separate article [BKS20a]. In
particular, we show in that article that the coefficients of SYT(A(?))mai(q) are
asymptotically normal for any sequence of partitions A, A\(2), . such that
aft(A(®) approaches infinity where aft(\) is the number of boxes outside the
first row or column, whichever is smaller. The aft statistics on partitions is in
FindStat as [RS*18, St001214].

We note that there are polynomial expressions for the fake degrees by j in
terms of parameters H;, the number of cells of A with hook length equal to 7.
These polynomials are closely related to polynomials that express the number
of permutations S, of a given inversion number k < n as a function of n by
work of Knuth. See Lemma 3.1 and Corollary 3.3. These polynomials are
useful in some cases, however, we find that in practice Stanley’s formula is the
most effective way to compute a given fake degree sequence for partitions up to
size 200. See Remark 2.12 for more on efficient computation using cyclotomic
polynomials.

Symmetric groups are the finite reflection groups of type A. The classifi-
cation and invariant theory of both finite irreducible real reflection groups
and complex reflection groups developed over the past century builds on our
understanding of the type A case [Hum90]. In particular, these groups are
classified by Shephard—Todd into an infinite family G(m,d,n) together with 34
exceptions. Using work of Stembridge on generalized exponents for irreducible
representations, the analog of (1) can be phrased for all Shephard-Todd groups
as

Al n L 4 .
(3) g{A}d(q) — ﬁ . [ ] . H SYT()\(Z))maJ(qWL) _ Z b{é}d’qu

d O{(A) q;d =1
where A = (MM, ... A(M) is a sequence of m partitions with n cells total,
a(A) = (XD .. XM En, d|m, and {\}? is the orbit of A under the group

Cy of (m/d)-fold cyclic rotations; see Corollary 8.2. The polynomials [a&)]q_d
are deformations of the usual g-multinomial coefficients which we explore in
Section 7. The coefficients byyya;, are the fake degrees in this case.

We use (3) and Theorem 1.1 to completely classify all nonzero fake degrees for
coinvariant algebras for all Shephard-Todd groups G(m,d,n), which includes
the finite real reflection groups in types A, B, and D. See Corollary 6.4 and
Corollary 8.4 for the type B and D cases, respectively. See Theorem 6.3 and
Theorem 8.3 for the general C,, .S, and G(m,d,n) cases, respectively.

The rest of the paper is organized as follows. In Section 2, we give back-
ground on tableau combinatorics, Shephard—Todd groups, and their irreducible
representations. Section 3 describes the polynomial formulas for fake degrees
in type A. Section 4 presents our combinatorial argument proving Theorem 1.1
and giving poset structures on tableaux of a given shape. Section 5 uses the
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argument in Section 4 to answer in the affirmative a question of Adin—Elizalde—
Roichman about internal zeros of SYT(X)4es(q); see Corollary 5.3. In Section 6,
we begin to address the question of characterizing nonzero fake degrees by
starting with the wreath products C,, S, = G(m,1,n); see Theorem 6.3. In
Section 7, we define the deformed g-multinomials [Z] ., 88 rational functions

)

and give a summation formula, Theorem 7.6, which shows they are polynomial.
Finally, in Section 8, we complete the classification of nonzero fake degrees for
G(m,d,n) and spell out how (3) relates to Stembridge’s original generating
function for the fake degrees in G(m,d,n); see Theorem 8.3 and Corollary 8.2.
We discuss potential algebraic and geometric directions for future work in
Section 9.

2. BACKGROUND

In this section, we review some standard terminology and results on combi-
natorial statistics and tableaux. Many further details in this area can be found
in [Stal2, Sta99]. We also review background on the finite complex reflection
groups and their irreducible representations. Further details in this area can
be found in [Car89, Sag91].

2.1. Word and Tableau Combinatorics. Here we review standard combi-
natorial notions related to words and tableaux.

Definition 2.1. Given a word w = wywsy---w,, with letters w; € Zs1, the content
of w is the sequence o = (a1, g, . ..) where «; is the number of times i appears
in w. Such a sequence « is called a (weak) composition of n, written as « E n.
Trailing 0’s are often omitted when writing compositions, so o = (ay, g, - . ., Q)
for some m. Note, a word of content (1,1,...,1) E n is a permutation in the
symmetric group .S, written in one-line notation. The inversion number of w
is
inv(w) = #{(,7) + i < j,w; >w;}.

The descent set of w is

Des(w) :={0<i<mn:w;>w}
and the major index of w is

maj(w):= Y i

i€Des(w)

The study of permutation statistics is a classical topic in enumerative combi-
natorics. The major index statistic on permutations was introduced by Percy
MacMahon in his seminal works [Mac13, Macl7]. At first glance, this function
on permutations may be unintuitive, but it has inspired hundreds of papers and
many generalizations; for example on Macdonald polynomials [HHLO5], posets
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[ER15], quasisymmetric functions [SW10], cyclic sieving [RSW04, AS17], and
bijective combinatorics [Foa68, Car75].

Definition 2.2. Given a finite set W and a function stat: W — Z., write the
corresponding ordinary generating function as
Wstat(q) = Z qstat(w)‘
weW
Definition 2.3. Let a = (a1,...,a,) = n. We use the following standard
g-analogues:

[n]y = 1+q+-+q" "= q;__ll, (g-integer)

[n]y! = [n]gln—-1]4[1],, (g-factorial)
(Z)q = % € Zsolql, (g-binomial)
(Z)q = % € Zsolq] (g-multinomial).

Example 2.4. The identity statistic on the set W = {0,...,n—1} has generating
function [n],. The “sum” statistic on W = [17_,{0,...,j — 1} has generating
function [n],!. It is straightforward to show that also SV := Y ¢ ¢™v(w) =
[n]q!.

For a & n, let W, denote the set of all words of content . A classic result
of MacMahon is that maj and inv have the same distribution on W, which is
determined by the corresponding g-multinomial.

Theorem 2.5. [Macl7, §1] For each a E n,
maj n inv
) wirie) = () - wir o).
a/q

Definition 2.6. A polynomial P(q) = ¥7,c;¢* of degree n is symmetric if
¢; = cp; for 0 <i<n. We generally say P(q) is symmetric also if there exists
an integer k such that ¢* P(q) is symmetric. We say P(q) is unimodal if

C()Sclﬁ"'SCjZCj+1Z"'2Cn

for some 0 < j < n. Furthermore, P(q) has no internal zeros provided that
c; # 0 whenever ¢;, ¢, #0 and 7 < j < k.

From Theorem 2.5 and the definition of the g-multinomials, we see that each
W2 () is a symmetric polynomial with constant and leading coefficient 1.
Indeed, these polynomials are unimodal generalizing the well-known case for
Gaussian coefficients [Sta80, Thm 3.1] and [Zei89]. It also follows easily from
MacMahon’s theorem that W (¢) has no internal zeros.
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2.2. Partitions and Standard Young Tableaux.

Definition 2.7. A composition A £ n such that \; > Ay > ... is called a
partition of n, written as A - n. The size of A is |A| := n and the length £(\) of
A is the number of non-zero entries. The Young diagram of A is the upper-left
justified arrangement of unit squares called cells where the ¢th row from the
top has \; cells following the English notation; see Figure 1a. The cells of a
tableau are indexed by matrix notation when we refer to their row and column.
The hook length of a cell c € X is the number A, of cells in A in the same row as
¢ to the right of ¢ and in the same column as ¢ and below ¢, including ¢ itself;
see Figure 1b. A corner of X is any cell with hook length 1. A notch of X is
any (4,7) not in A such that both (i - 1,7) and (4,5 — 1) are in A. Note that
notches cannot be in the first row or column of X\. A bijective filling of X is any
labeling of the cells of A by the numbers [n] = {1,2,...,n}. The symmetric
group S, acts on bijective fillings of A by acting on the labels.

L[]

3]2[1]

NGV

6
2
1

oo oo |oo

(A) Young diagram of \. (B) Hook lengths of .
FIGURE 1. Constructions related to the partition A = (6,3,3) +
12. The partition has corners at positions (3,3) and (1,6) and
one notch at position (2,4).

Definition 2.8. A skew partition \[v is a pair of partitions (v, A) such that
the Young diagram of v is contained in the Young diagram of A. The cells
of A\/v are the cells in the diagram of A\ which are not in the diagram of v,
written ¢ € A\/v. We identify straight partitions A\ with skew partitions \/@
where @ = (0,0, ...) is the empty partition. The size of \/v is |A\/v|:= || =|v|.
The notions of bijective filling, hook lengths, corners, and notches naturally
extend to skew partitions as well.

Definition 2.9. Given a sequence of partitions A = (A, ..., A\(")) we identify
the sequence with the block diagonal skew partition obtained by translating the
Young diagrams of the A\(¥) so that the rows and columns occupied by these
components are disjoint, form a valid skew shape, and they appear in order
from top to bottom as depicted in Figure 2.

Definition 2.10. A standard Young tableau of shape A/v is a bijective filling
of the cells of A\/v such that labels increase to the right in rows and down
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FIGURE 2. Diagram for the skew partition \/v = 76443/4433,
which is also the block diagonal skew shape A =

((3,2),(1,1),(3))

columns; see Figure 3. The set of standard Young tableaux of shape A\/v is
denoted SYT(A/v). The descent set of T e SYT(A/v) is the set Des(T') of all
labels ¢ in T" such that ¢ + 1 is in a strictly lower row than i. The major index
of T is

maj(T):= > i

i€Des(T")

1[2]4][7]912 2]6]
31610 415
58|11 1137
FIGURE 3. On the left is a standard Young tableau of straight
shape A = (6,3,3) with descent set {2,4,7,9,10} and major
index 32. On the right is a standard Young tableau of block
diagonal skew shape (7,5,3)/(5,3) corresponding to the sequence
of partitions ((2),(2),(3)) with descent set {2,6} and major
index 8.

The block diagonal skew partitions A allow us to simultaneously consider
words and tableaux as follows. Let W, be the set of all words with content
a=(a1,...,q). Letting A = ((ag), ..., (1)), we have a bijection

(5) $:SYT(A) > W,

which sends a tableau 7" to the word whose ith letter is the row number in
which ¢ appears in T, counting from the bottom up rather than top down.
For example, using the skew tableau 7" on the right of Figure 3, we have
&(T) = 1312231 € W(399). It is easy to see that Des(¢(1")) = Des(T"), so that

maj(¢(T)) = maj(T).

2.3. Major Index Generating Functions. Stanley gave the following an-
alogue of Theorem 2.5 for standard Young tableaux of a given shape. It
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generalizes the famous Frame-Robinson—Thrall Hook-Length Formula [FRT54,
Thm. 1] or [Sta99, Cor. 7.21.6] obtained by setting ¢ = 1.

Theorem 2.11. [Sta99, 7.21.5] Let A+ n with A = (A1, Ag,...). Then
¢"M[n],!

Hcg)\[hc]q

where b(N\) == ¥.(i — 1)\; and h. is the hook length of the cell c.

(6) SYT(A)™(q) =

Remark 2.12. Since # SYT(\) typically grows extremely quickly, Stanley’s
formula offers a practical way to compute SYT(A)™a(q) even when n ~ 100 by
expressing both the numerator and denominator, up to a ¢-shift, as a product
of cyclotomic polynomials and canceling all factors from the denominator. We
prefer to use cyclotomic factors over linear factors in order to avoid arithmetic
in cyclotomic fields.

Example 2.13. For A = (4,2), b()\) = 2 and the multiset of hook lengths is
{12,22,4,5} so |SYT(A)| =9 by the Hook-Length Formula. The major index
generating function is given by

SYT(4,2)™(q) =¢®+q" +2¢° + ¢° +2¢* + ¢* + ¢*

PSR F
[5][4]4[2]4[2]4 2]
Note, SYT(4,2)™2i(q) is symmetric but not unimodal.
For A\ =(4,2,1), b(\) = 4 and the multiset of hook lengths is {13,2,3,4,6}
so |[SYT(A)| = 35 by the Hook-Length Formula. The major index generating
function is given by

SYT(4,2,1)™%(q) = ¢ + 2¢™® + 3¢'% + 4¢* + 5¢*° + 5¢° + 5¢° + 4q" + 3¢5

M
6L, ¢ sl

Note, SYT(4,2,1)™mai(q) is symmetric and unimodal.

+2q5+q4=q4[

Example 2.14. We recover g-integers, g-binomials, and g-Catalan numbers, up
to ¢-shifts as special cases of the major index generating function for tableaux
as follows:

q[n], if A= (n,1),
SYT(\)™i(g) = 1q()(}), i A=(n-k+1,1%),
n 2n 3 —
q m(n)q 1f)\—(n,n).
The following strengthening of Stanley’s formula to A is well known (e.g. see

[Ste89, (5.6)]), though since it is somewhat difficult to find explicitly in the
literature, we include a short proof.
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Theorem 2.15. Let A = (AD ... A(™) where A\ + a; and n =y + - + auy,.
Then

1) SYT(A)maj(Q)=(a1 o ) TISYTO®)m(g).

q =1
Proof. The stable principal specialization of skew Schur functions is given by

SYT(A/v)™(q)
J(1,q,¢%,...) = ;
syw(l,q.q ) I—Iljg\z/lvl(l_qj)

see [Ste89, Lemma 3.1] or [Sta99, Prop.7.19.11]. On the other hand, it is easy
to see from the definition of a skew Schur function as the content generating
function for semistandard tableaux of the given shape that

sx(x1,xe,...) = Hsk(n(xl,xg, o).
i=1
The result quickly follows. O

Remark 2.16. Theorem 2.11 and Theorem 2.15 have several immediate corol-
laries. First, we recover MacMahon’s result, Theorem 2.5, from Theorem 2.15
when A = ((an), (am-1),-..) by using the maj-preserving bijection ¢ in (5).
Second, each SYT(A)™2i(¢) is symmetric (up to a g-shift) with leading coef-
ficient 1. In particular, there is a unique “maj-minimizer” and “maj-maximizer”
tableau in each SYT()A). Moreover,

) minmaj(SYT(A) = b(A)
and
O maxmaisvT) = (5) -0 =00 + (A1) - >h

where b(A) = ¥, b(A®) and b(\') := 3, 6(AD7).

For general skew shapes, SYT(A/v)™3(q) does not factor as a product
of cyclotomic polynomials times ¢ to a power. A “g-Naruse” formula due
to Morales—Pak—Panova, [MPP15, (3.4)], gives an analogue of Theorem 2.11
involving a sum over “excited diagrams,” though the resulting sum has a single
term precisely for the block diagonal skew partitions A

2.4. Complex Reflection Groups. A complex reflection group is a finite
subgroup of GL(C") generated by pseudo-reflections, which are elements which
pointwise fix a codimension-1 hyperplane. Shephard—Todd, building on work
of Coxeter and others, famously classified the complex reflection groups [ST54].
The irreducible representations were constructed by Young, Specht, Lusztig,
and others. We now summarize these results and fix some notation.
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Definition 2.17. A pseudo-permutation matriz is a matrix where each row
and column has a single non-zero entry. For positive integers m,n, the wreath
product Cy, 2 S, c GL(C") is the group of n x n pseudo-permutation matrices
whose non-zero entries are complex mth roots of unity. For d | m, let G(m,d,n)
be the Shephard-Todd group consisting of matrices = € C), .S, where the
product of the non-zero entries in x is an (m/d)th root of unity. In fact,
G(m,d,n) is a normal subgroup of C,, S, of index d with cyclic quotient
(Crn2S,)/G(m,d,n) = Cy of order d.

Theorem 2.18. [ST54] Up to isomorphism, the complex reflection groups are
precisely the direct products of the groups G(m,d,n), along with 34 exceptional
groups.

Remark 2.19. Special cases of the Shephard-Todd groups include the fol-
lowing. The Weyl group of type A,_1, or equivalently the symmetric group
Sy, is isomorphic to G(1,1,n). The Weyl groups of both types B,, and C,, are
G(2,1,n), the group of n x n signed permutation matrices. The subgroup of
the group of signed permutations whose elements have evenly many negative
signs is the Weyl group of type D,,, or G(2,2,n) as a Shephard-Todd group.
We also have that G(m, m,2) is the dihedral group of order 2m, and G(m,1,1)
is the cyclic group C,, of order m.

The complex irreducible representations of S,, were constructed by Young
[You77] and are well known to be certain modules S* canonically indexed by
partitions A + n. These representations are beautifully described in [Sag91].
Specht extended the construction to irreducibles for G 2.S,, where G is a finite

group.

Theorem 2.20. [Spe35]| The complex inequivalent irreducible representations
of Crp 2 Sy, are certain modules S2 indexed by the sequences of partitions \ =
(AD XM for which (A = [AD|+ -+ (A = n.

Remark 2.21. The version we give of Theorem 2.20 was stated by Stembridge
[Ste89, Thm. 4.1]. The C,,-irreducibles are naturally though non-canonically
indexed by Z/m up to one of ¢(m) additive automorphisms, where ¢(m)
is Euler’s totient function. Correspondingly, one may identify Z/m with
{1,...,m} and obtain ¢(m) different indexing schemes for the C,, 2 S,,-irreduc-
ibles. The resulting indexing schemes are rearrangements of one another, and
our results will be independent of these choices.

Clifford described a method for determining the branching rules of irre-
ducible representations for a normal subgroup of a given finite group [Cli37].
Stembridge combined this method with Specht’s theorem to describe the irreduc-
ible representations for all Shephard-Todd groups from the C), : S,-irreducible
representations.
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We use Stembridge’s terminology where possible. In particular, for d | m,
the (m/d)-fold cyclic rotations are the elements in the subgroup isomorphic to
Cy of S,, generated by an”/d, where 0, = (1,2,...,m) is the long cycle. Let S,,
act on block diagonal partitions of the form A = (A ... A(™)) by permuting
the blocks. This action restricts to Cy = (om’?) as well. Let {A}¢ denote the
orbit of A under the (m/d)-fold cyclic rotations in Cy. Note, the number of
block diagonal partitions in such a Cg-orbit, denoted #{A}¢, always divides d,
but could be less than d if A contains repeated partitions.

For example, take d =2 and m = 6. If A = ((1),(2),(3,2),(4),(5),(6,1)),
then {A}? has two elements, A and ((4),(5),(6,1),(1),(2),(3,2)). If u =
((1),(2),(3,2),(1),(2),(3,2)), then {u}? only contains the element pu.

Theorem 2.22. [Ste89, Remark after Prop. 6.1] The complex inequivalent
irreducible representations of G(m,d,n) are certain modules SAe indexed by
the pairs ({\}4,c) where A = (MM ... X)) is a sequence of partitions with
IAl = n, {A}? is the orbit of A under (m/d)-fold cyclic rotations, and c is any
positive integer 1 < ¢ < ﬁ.

Remark 2.23. As with C,, .5, the indexing scheme is again non-canonical
in general up to a choice of orbit representative, though our results relying
on this work are independent of these choices. In fact, Stembridge uses
A= (A=D 0 X©) ) which is the most natural setting for Theorem 2.22
and Theorem 2.39 below. The fake degrees for irreducibles S2 of C,,2S,, are
invariant up to a g¢-shift under all permutations of A in S,,, so for our purposes
the indexing scheme is largely irrelevant. The fake degrees for irreducibles
SAYe of G(m,d,n), however, are only invariant under the (m/d)-fold cyclic
rotations of A in general. In this case, strictly speaking our A(®) corresponds
to the irreducible cyclic group representation y*~! defined by x*!(o,,) = wi-!
where w,, is a fixed primitive mth root of unity in the sense that

A [0, XD -1, oA\ Cm2Sy
S2 = (X STV @S )Tcsza(A)’

see [Ste89, (4.1)]. Since we have no need of these explicit representations, we
have used the naive indexing scheme throughout.

Example 2.24. For the type B,, group G(2,1,n), the irreducible representa-
tions are indexed by pairs (A, ) since C; is the trivial group and so in each
case ¢ = 1.

Example 2.25. For the type D,, group G(2,2,n), the irreducible representa-
tions can be thought of as being indexed by the sets {\, u} with A # p and
|A| + |i| = n together with the pairs (v,1) and (v,2) where v + n/2. The orbits
alone can be thought of as the 2 element multisets {\, u} with |\ +|u| =n.
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2.5. Coinvariant Algebras. As mentioned in the introduction, Stanley (see
[Sta79]) and Lusztig (unpublished) determined the graded irreducible decom-
position of the type A coinvariant algebra via the major index generating
function on standard Young tableaux. Stembridge was the first to publish a
complete proof of this result and extended it to the complex reflection groups
G(m,d,n) [Ste89]. We now summarize these results.

Definition 2.26. Any group G ¢ GL(C") acts on the polynomial ring with n
variables C[z1, ..., x,] by identifying C* with Spans{x1,...,z,} and extending
the G-action multiplicatively. The coinvariant algebra of G is the quotient of
Clx1,...,2,] by the ideal generated by homogeneous G-invariant polynomials
of positive degree, which is thus a graded G-module.

Definition 2.27. Let R, denote the coinvariant algebra of S,,. For A +n, let
g*(q) be the fake degree polynomial whose kth coefficient is the multiplicity of
S* in the kth degree piece of R,,.

Theorem 2.28 (Lusztig—Stanley, [Sta79, Prop. 4.11]). For a partition A,
g*(q) = SYT(X)™(q).

Equivalently, the multiplicity of S» in the kth degree piece of the type A
coinvariant algebra R, is by, the number of standard tableauz of shape X\ -n
with major index k.

Definition 2.29. Let R,,, denote the coinvariant algebra of C,, :S,,. Set
by.x = the multiplicity of S2 in the kth degree piece of R, .
Write the corresponding fake degree polynomial as

9*(q) =Y bard".
k
Definition 2.30. Given a sequence of partitions A = (A, ... A(™) recall

b(a(d)) = i( 1A,

We continue to identify A with a block diagonal skew partition when conve-
nient, as in Definition 2.9. Thus, SYT(A) is the set of standard Young tableaux
on the block diagonal skew partition \. We will abuse notation and define
b(a(T)) = b(a(N)) for any T € SYT(A), which is not necessary in the next
theorem but will be essential for the general Shephard-Todd groups G(m,d,n).

Theorem 2.31. [Ste89, Thm. 5.3] For A = (AM ... A" with || = n,
g*(q) = "I SYT(Q)™(¢™).
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Equivalently, the multiplicity of S2 in the kth degree piece of the C,, 2 S,
cotnvariant algebra R, ,, is the number of standard tableauz T' of block diagonal

shape A with k =b(a(T)) + m-maj(T).

Remark 2.32. By (7), we have an explicit product formula for g2(q) also.
Furthermore, in [BKS20a], we characterize the possible limiting distributions
for the coefficients of the polynomials SYT(A)™2(q). We show that in most
cases, the limiting distribution is the normal distribution. Consequently,
that characterization can be interpreted as a statement about the asymptotic
distribution of irreducible components in different degrees of the C,, S,
coinvariant algebras.

Corollary 2.33. In type B, the irreducible indexed by (\, ) with |\ =k and
lu| = n—k has fake degree polynomial

g()\,u)(q) _ q#+2b(x)+2b(u)(”) [k?]cﬁ! [n - k]qQ! .
k q2 Hce/\[hc]q2 Hcléﬂ[hcl]qQ

Definition 2.34. Let R,, ., denote the coinvariant algebra of G(m,d,n)
assuming d | m. For an orbit {\}? of a sequence of m partitions with n total
cells under (m/d)-fold cyclic rotations, set

birye k. = the multiplicity of S )¢ in the kth degree piece of Ry, 4n,
which in fact depends only on the orbit {A}¢ and not the number ¢ by [Ste89,
Prop. 6.3]. Write the corresponding fake degree polynomial as
d
g2 (q) = Y byad®.
k

Theorem 2.35. [Ste89, Cor. 6.4] Let {A}¢ be the orbit of a sequence of m
partitions A with |A| =n under (m/d)-fold cyclic rotations. Then

s - LD gypaymsyry

where

() (@)= 3 gew),

pe{A}d

Corollary 2.36 ([Lus77, Sect. 2.5], [Ste89, Cor. 6.5]). In type D,, an
irreducible indexed by {A\}? with A = (\,u) and |A| = k, |u| = n -k has fake

degree polynomial

G2 (q) = kg 1260 ¢“+q"* (”) [Flp! [ —Klp!
g L+q™ \k q> HceA[hC]q2 Hc’eu[hC’]tﬁ ’

where Ky, =1 if X # p and kyy = 1/2.
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Observe that Theorem 2.31 gives a direct tableau interpretation of the
coefficients of g2(q). More generally, Stembridge gave a tableau interpretation
of the coefficients of g1}"(¢) which we next describe.

Definition 2.37. For a given m,d,n, let A = (A ... A\(™)) be a sequence of m
partitions with |A| = n. Let {A}¢ be the orbit of A\ under (m/d)-fold rotations.
The cyclic group Cy = (07”,"{/61) acts on the disjoint union |,cyya SYT () as
follows. Given g = (u®, ..., ut™) e {A}4, each T € SYT(x) may be considered
as a sequence T = (T ... T(m) of fillings of the shapes u®. The group Cy
acts by (m/d)-fold rotations of this sequence of fillings. Write the resulting
orbit as {T}¢, which necessarily has size d. For such a T, the largest entry of
T, namely n, appears in some 7). If among the elements of the orbit {T'}¢ of
T this value k is minimal for T itself, then we call T the canonical standard
tableau representative for {T}¢. Let

SYT({A}) e |] SYT()
pe{A}d o
be the set of canonical standard tableau representatives of orbits {T}? for
T € SYT()). Recall, b(a(T)) = b(a(p)) = ¥(i~1)|u] if T e SYT(u), s0 boa
is not generally constant on SYT({A}9).

Remark 2.38. When the parts A(®) are all non-empty, the set SYT({A}%) is
the set of standard block diagonal skew tableaux of some shape p € {A}¢ where
n =|A| is in the upper-right-most partition possible among the (m/d)-fold cyclic
rotations of its blocks. Since every orbit {T'}¢ has size d, we have

v - T8 sy,

Theorem 2.39. [Ste89, Thm. 6.6] Let A be a sequence of m partitions with
Al =n. Let {\}? be the orbit of A\ under (m/d)-fold cyclic rotations. Then

gV (q) = SYT({A})reorrmmai(q).

Equivalently, the multiplicity of S?AY¢ in the kth degree piece of the G(m,d,n)
coinvariant algebra R, 4, 15 the number of canonical standard tableaux T €

SYT({A}4) with k =b(a(T)) +m-maj(T).

3. PorynoMIiAL FoOrMULAS FOR FAKE DEGREES

In this section, we briefly show how to construct polynomial formulas for
the fake degrees b, directly from Stanley’s g-hook length formula. We will
use these polynomials in the next section for small changes from the minimal
major index. Our results extend to a formula for counting permutations of a
given inversion number.
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Given A, let
(10) Hi;(\) =#{ceX: h.=1},
(1) mi(\) = 0k A =i},

If \ is understood, we abbreviate H; = H;(\). For any nonnegative integer k
and polynomial f(q), let [¢*]f(q) be the coefficient of ¢¥ in f(q).

Lemma 3.1. For every A+n and k = b(\) +d, we have

M I (1) —
(2) b=l OSYTOYI) - T T )

which is a polynomial in the H;’s for every positive integer n.

Proof. By Theorem 2.11, we have
i ! n ,
13)  PISYT)™I(g) = L P10,
Hce)\[h‘c]q i=1
The result follows using the expansion (1-¢*)~7 =Y>, (j+z_1)qi" and multipli-

cation of ordinary generating functions. 0

Note that if H;(A) =0 and m;(u) =1, then the corresponding binomial coef-
ficient in (12) is —1, so it is not obvious from this formula that the coefficients
by are all nonnegative, which is clearly true by definition.

Remark 3.2. The first few polynomials are given by
[" D ]SYT(A)™(q) = Hy - 1
= #{notches of A},

[POSYTO)i) = () + Ha - 1,

H+1
3
gsyToymi) = (1) () (5 ) -
+ (Hy - 1)(Hs = 1)+ (Hy - 1).

[POSISYTO)™(q) = (7)) + (= )0 = 1) + (2 - 1)

These exact formulas hold for all |\| > 4. For smaller size partitions some terms
will not appear.

It is interesting to compare these polynomials to the ones described by Knuth
for the number of permutations with k& <n inversions in S, in [Knu73, p.16].
See also [Stal2, Ex. 1.124] and [OEI18, A008302]. We can extend Knuth’s

formulas to all 0 < k < (Z) using the same idea.
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Corollary 3.3. For fized positive integers k and n, we have

, pfn+my(p) -2
14 #{weS, inv(w) =d} = (—1)#{“”1}( )
W ) P
where the sum is over all partitions p+ d such that p; <n and all of the parts
of u larger than 1 are distinct.

The proof follows in exactly the same way from the formula

n

Z; qinv(w) = H[i]q = H[i]q/[l]q =(1-¢)™ H(1 - qi)~
weS,, i=1 i=1 i=1
In essence, this is the case of the g-hook length formula when all of the hooks
are of length 1.

Remark 3.4. Let T'(d,n) be the number of partitions p + d such that pu; <n
and all of the parts of u larger than 1 are distinct. The triangle of numbers
T(d,n) for 1 <n<dis [OEI18, A318806].

4. TYPE A INTERNAL ZEROS CLASSIFICATION

As a corollary of Stanley’s formula, we know that for every partition A - n > 1
there is a unique tableau with minimal major index b(\) and a unique tableau
with maximal major index (3) —b(\'). These two agree for shapes consisting of
one row or one column, and otherwise they are distinct. It is easy to identify
these two tableaux in SYT(A); see Definition 4.1 below. Then, we classify all
of the values k such that b(\) < k < (g) —-b(\) and the fake degree by =0. We
refer to such k as internal zeros, meaning the location of zeros in the fake degree
sequence for A between the known minimal and maximal nonzero locations.

Definition 4.1.

(1) The maz-maj tableau for X is obtained by filling the outermost, max-
imum length, vertical strip in A with the largest possible numbers
AL A= 1,...,]A] = €(\) + 1 starting from the bottom row and going up,
then filling the rightmost maximum length vertical strip containing cells
not previously used with the largest remaining numbers, etc.

(2) The min-maj tableau of A is obtained similarly by filling the outermost,
maximum length, horizontal strip in A\ with the largest possible num-
bers |A|,|A| = 1,...,|A\| = A1 + 1 going right to left, then filling the lowest
maximum length horizontal strip containing cells not previously used
with the largest remaining numbers, etc.

See Figure 4 for an example. Note that the max-maj tableau of A is the
transpose of the min-maj tableau of )\’

The ¢*M+! coefficients of SYT(A)™#i(q) can be computed as in Lemma 3.1
or Remark 3.2, resulting in the following.
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1 2 35 9 1 3 4

4 6 10[14] 2 6 7

7 11 5 9 10

8 12 8
(A) A max-maj tableau and its (B) A min-maj tableau and its
outermost vertical strip. outermost horizontal strip.

FIGURE 4. Max-maj tableau and min-maj tableau for \ =
(6,4,3,3,1).

Corollary 4.2. We have [¢"M*1]SYT(\)™2i(q) = 0 if and only if X is a
rectangle. If \ is a rectangle with more than one row and column, then
[+ ]SYT(A)™2i(q) = 1.

A similar statement holds for maj(7") = (g) - b(\) -1 by symmetry. Thus,
SYT™(¢) has internal zeros when \ is a rectangle with at least two rows and
columns. We will show these are the only internal zeros of type A fake degrees,
proving Theorem 1.1.

Definition 4.3. Let £(\) denote the set of ezceptional tableaux of shape A
consisting of the following elements.

(i) For all A\, the max-maj tableau for A.

(i) If A is a rectangle, the min-maj tableau for A.

(iii) If A is a rectangle with at least two rows and columns, the unique tableau
in SYT(\) with major index equal to (g) - b(\) - 2. It is obtained from
the max-maj tableau of A by applying the cycle (2,3,...,¢(\) + 1), which
reduces the major index by 2.

For example, £(64331) consists of just the max-maj tableau for 64331 in
Figure 4a, while £(555) has the following three elements:

1 2 3 4 5 1 2 7 10 13 1 4 7 10 13
6 7 8 9 10 3 5 8 11 14 2 5 8 11 14
11 12 13 14 15 4 6 9 12 15 3 6 9 12 15

We prove Theorem 1.1 by constructing a map

(15) @:SYT(A) N E(N) — SYT(N)
with the property
(16) maj(p(T)) =maj(T) + 1.

For most tableaux T', we can find another tableau 7" of the same shape such
that maj(7") =maj(7T") + 1 by applying some simple cycle to the values in T,
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meaning a permutation whose cycle notation is either (¢,i+1,...,k—1,k) or
(k,k-1,...,i+1,i) for some i < k. We will show there are 5 additional rules
that must be added to complete the definition.

We note that technically the symmetric group S,, does not act on SYT(\)
for A + n since this action will not generally preserve the row and column
strict requirements for standard tableaux. However, S, acts on the set of all
bijective fillings of A\ using the alphabet {1,2,...,n} by acting on the values.
We will only apply permutations to tableaux after locating all values in some
interval [7,7] ={i,i+1,...,7} in T. The reader is encouraged to verify that the
specified permutations always maintain the row and column strict properties.

4.1. Rotation Rules. We next describe certain configurations in a tableau
which imply that a simple cycle will increase maj by 1. Recall, the cells of a
tableau are indexed by matrix notation.

Definition 4.4. Given A +n and T € SYT()), a positive rotation for T is an
interval [i, k] c [n] such that if T":= (4,i+1,...,k—1,k)-T, then T" € SYT(\)
and there is some j for which

{j} =Des(T") - Des(T) and {j -1} =Des(T) — Des(T").

Intuitively, a positive rotation is one for which j — 1 € Des(7") becomes j €
Des(7") and all other entries remain the same. Consequently, maj(7") =
maj(7T) + 1. We call j the moving descent for the positive rotation.

The positive rotations can be characterized explicitly as follows. The proof
is omitted since it follows directly from the pictures in Figure 5.

Lemma 4.5. An interval [i,k] is a positive rotation for T e SYT(X) if and
only if i < k and there is some necessarily unique moving descent j with
1<i<j<k<n such that

(a) i,...,7 =1 form a horizontal strip, j—1,j form a vertical strip, and j,j +
1,...,k form a horizontal strip;

(b) if i < j, then i appears strictly northeast of k and i—1 is not in the rectangle
bounding i and k;

(c) ifi=j, then i—1 appears in the rectangle bounding i and k;

(d) if j <k, then k appears strictly northeast of k—1 and k + 1 is not in the
rectangle bounding k and k-1, and

(e) if j =k, then k+1 appears in the rectangle bounding k and k — 1.

See Figure 5 for diagrams summarizing these conditions.

In addition to the positive rotations above, we can also apply negative
rotations, which are defined exactly as in Definition 4.4 with (¢,i+1,...,k=1,k)
replaced by (k,k—1,...,7+ 1,4) and the rest unchanged. Combinatorially,
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= i o j-1 =t i1 -
k — 1
j o k-1 F==X j+1 - k L

(A) Schematic of a positive rotation with i < j < k.

=t ¢ 1+1 - k-1 =t ¢+1 - k-1 k
k k+1 1 k+1

(B) Schematic of a positive rotation with i < j = k.

1—1 k 1—-1 )
) i1+1 - k-1 ==X i+1 1+2 - k FB==XL

(C) Schematic of a positive rotation with i = j < k.

FIGURE 5. Summary diagrams for positive rotations.

negative rotations can be obtained from positive rotations by applying inverse-
transpose moves, that is, by applying negative cycles (k,k-1,...,7) to the
transpose of the configurations in Figure 5 and reversing the arrows. Explicitly,
we have the following analogue of Lemma 4.5. See Figure 6 for the corresponding
diagrams.

Lemma 4.6. An interval [i,k] is a negative rotation for T € SYT(N) if and
only if i < k and there is some necessarily unique mouving descent j with
1<i<j<k<n such that

(a) i,...,5 form a vertical strip, j,j+1 form a horizontal strip, and j+1,... k
form a vertical strip;

(b) if i < j, then i + 1 appears strictly southwest of i and i — 1 is not in the
rectangle bounding © and i+ 1;

(c) ifi=j, then i —1 appears in the rectangle bounding i and i+ 1;

(d) if j < k, then i appears strictly southwest of k and k + 1 is not in the
rectangle bounding 1 and k; and

(e) if j =k, then k+1 appears in the rectangle bounding i and k.

Example 4.7. The tableau

1 2 6 7 9
3 4 8 13

5 11 12 15

10 14
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i+1 i
j+2 j+1 k-1 =
: ko k+1 k-1 k+1
k k-1 o
= i FL|— =X k FL (B) i<j=F.
i+l i
t+2 1+1 i-1 i+1 i-1 i
: 1+ 2 1+1
J j-1 P — :
. k k-1
(A) i<j<h. S ko Jeer
(c)i=j<k.

FIGURE 6. Summary diagrams for negative rotations.

allows positive rotation rules with [i, k] € {[5,6],[8,9],[8,10],[8,11],[9,13]},
and the tableau

1 3 8 10 15
2 4 9 11

5 7 13 14

6 12

allows negative rotation rules with [i, k] € {[4,6],[6,7],[11,12]}.

It turns out that for the vast majority of tableaux, some negative rotation
rule applies. The positive rotations can be applied in many of the remaining
cases. For example, among the 81,081 tableaux in SYT(5442), there are only
24 (i.e., 0.03%) on which we cannot apply any positive or negative rotation rule.
For example, no rotation rules can be applied to the following two tableaux:

1 2 3 4 5 1 2 3 8 12
6 7 8 9 4 6 9 13
10 11 12 13 and ooy 1y
14 15 11 15

The following lemma and its corollary give a partial explanation for why
negative rotation rules are so common. Given a tableaux T, let T'|;.; denote
the restriction of T' to those values in [z].
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Lemma 4.8. Let T e SYT(A) N E(N). Suppose z is the largest value such that
T2 is contained in maxmaj(u) for some pi. If T|[..17 is not of the form

1 2 g
1+1 z+1
7+ 2

4

then some negative rotation rule applies to T

Proof. Since T ¢ £()\), T is not maxmaj(\), so A is not a one row or column
shape. We have z > 2 since both two-cell tableaux are the max-maj tableau
of their shape. Since maxmaj(y) is built from successive, outermost, maximal
length, vertical strips as in Figure 4a, the same is true of T.;.

First, suppose z is not in the lowest row of T[.;. Let ¢ be the value in
the topmost corner cell in T'|j.; which is strictly below z. Let j > i be the
bottommost cell in the vertical strip of T'|,j which contains i. See Figure 7a.
We verify the conditions of Lemma 4.6, so the negative [i, z]-rotation rule
applies with moving descent j. By construction, ¢,...,7 form a vertical strip,
7,7 +1 form a horizontal strip, and j +1,..., 2 form a vertical strip. If i < j,
then since i is a corner cell, i + 1 appears strictly southwest of 7, and 7 — 1 is
above both ¢ and i+ 1 so ¢ — 1 is not in the rectangle bounding ¢ and ¢ + 1. If
1 =j, we see that ¢ — 1 appears in the rectangle bounded by ¢ and 7 + 1. We
also see that i appears strictly southwest of z, and z + 1 is not in the rectangle
bounding ¢ and z since ¢ is a topmost corner and z is maximal.

Now suppose z is in the lowest row of T'|[.j. In this case, T'|j.j is the max-maj
tableau of its shape, so that z < |\ and z + 1 exists in T since T ¢ £(\). By
maximality of z, z+ 1 cannot be in row 1 or below z. Let 7 < z be the value in
the rightmost cell of Tj,] in the row immediately above z + 1. See Figure 7b.
We check that the negative [i, z]-rotation rule applies with moving descent
j = z using the conditions in Lemma 4.6. By construction, ,...,z form a
vertical strip. Since z + 1 is not below z, we see that z,z + 1 form a horizontal
strip. Since z + 1 is in the row below 4, 7 + 1 appears strictly southwest of .. We
also see that z + 1 appears in the rectangle bounded by ¢ and z by choice of
1. It remains to show that ¢ — 1 is not in the rectangle bounding 7 and 7 + 1.
Suppose to the contrary that ¢ — 1 is in the rectangle bounding ¢ and 7 + 1.
Then ¢ would have to be in row 1 by choice of ¢ < z. Consequently 7 + 1 is in
row 2 and strictly west of 4, forcing i — 1 to be in row 1 also. It follows from
the choice of z that T'|; is a single row, the values i,i +1,...z form a vertical
strip, and T'|.,1 is of the above forbidden form, giving a contradiction. [

Corollary 4.9. If T € SYT(A) N E(N) and 1 € Des(T'), then some negative
rotation rule applies to T.
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1 3 6 11 1 3 6 10
2 4 7 12 2 4 7 11
5 8 — 5 12

9 13 8 13

10 9

(A) For the tableau on the left above, i =8 and z = 12 since T[;2; is contained the
max-maj tableau of shape 44322, 12 is not in the lowest row, 8 is in the closet corner
to 12 in T(;2) and below 12. Apply the negative rotation (12,11,10,9,8) to get the
tableau on the right, and observe maj has increased by 1. The moving descent is
j =10.

1 3 6 1 3 6
2 47 2 4 10
5 8 11 — 5 7 11
9 8
10 9

(B) For the tableau on the left above, i = 7 and z = 10 since T'|1¢] is the max-maj
tableau of shape 33211, 10 is in the lowest row, 11 is in row 3, and 7 is the largest
value in T'|f1o) in row 2. Apply the negative rotation (10,9,8,7) to get the tableau
on the right, and observe maj has increased by 1. The moving descent is j = z = 10.

FiGURE 7. Examples of the negative rotations obtained from
Lemma 4.8.

Proof. Let z be as in Lemma 4.8. Clearly z > 2 and 7|2 is a single column, so
T'|(2+1] cannot possibly be of the forbidden form. O

We also have the following variation on Lemma 4.8. It is based on finding
the largest value ¢ such that T'|r; is contained in an exceptional tableau of
type (iii). The proof is again a straightforward verification of the conditions in
Lemma 4.6, and is omitted.

Lemma 4.10. Let T € SYT(A) N E(X). Suppose the initial values of T are of
the form

zl)) 31 1 2 /41 - @ p+1
p, 3 z+1 o :

4 : : Lo

. q or 4 z+2 : : : q .

; : : : >

In either case, the [p, q]-negative rotation rule applies to T.
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4.2. Initial Block Rules. Here we describe a collection of five additional block
rules which may apply to a tableau that is not in the exceptional set. In each
case, if the rule applies, then we specify a permutation of the entries so that
we either add 1 into the descent set and leave the other descents unchanged, or
we add 1 into the descent set, increase one existing descent by 1, and decrease
one existing descent by 1. Thus, maj will increase by 1 in all cases. While
these additional rules are certainly not uniquely determined by these criteria,
they are also not arbitrary.

Example 4.11. For a given T € SYT()), one may consider all 77 € SYT(\)
where maj(7”) =maj(T) + 1. If 7" = o -T where ¢ is a simple cycle, then one
of the rotation rules may apply to 7. Table 1 summarizes five particular T
for which no rotation rules apply. These examples have guided our choices in
defining the block rules. In all but one of these examples, there is a unique
T’ with maj(7") = maj(7T") + 1, though in the third case there are two such 77,
one of which ends up being easier to generalize.

Tableau T ‘ Tableaux 1" ‘ o ‘ Block rule
1388 53738 (2,3,4)(6,7) Bl
sg3t 5867 (2,3,4,7,6,5) B2
123 136 145
16 21,26 (2,3,6,4),(2,4)(3,5) | B3, —
127 148
12028 52190 (274a3)(778a9a 10) B4

12 15
16 59 (2,5,6,7,4,3) B5
7 1

TABLE 1. Some tableaux T € SYT(\) together with all 7" =
o-T eSYT(A) where maj(7") =maj(T) + 1. See Definition 4.13
for an explanation of the final column.

In the remainder of this subsection, we describe the block rules, abbreviated
B-rules. Then, we prove that if no rotation rules are possible for a tableau
then either it is in the exceptional set or we can apply one of the B-rules. The
B-rules cover disjoint cases so no tableau admits more than one block rule. To
state the B-rules precisely, assume T € SYT(A) \ £(A\) and no rotation rule
applies.

Notation 4.12. Let ¢ be the largest possible value such that 7’|, is contained
in the min-maj tableau of a rectangle shape with a columns and b rows.
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Consequently, the first ¢ numbers inrow ¢, 1 <i < b—1, of T are (i-1)a+1,. .., ia,
and row b begins with (b—1)a+1,(b-1)a+2,...,c.

Assuming 1 ¢ Des(T) and T ¢ £(\), we know a,b>2 and ¢> 3. If c+1 is
in 7', then it must be either in position (1,a+1) or (b+1,1). If ¢ = ab, then
c< |\l since T' ¢ E(N), otherwise ¢ = || is possible. For example, the tableaux

1234
1234516 12345 59 1210
6 7891017, 6 7 8910, 610 , 3281
1112 13 14 15 1112 13 7 &

8
have (a, b, c) equal to (5,3,15), (5,3,13), (4,2,5), and (2,2,3), respectively.

Definition 4.13. Using Notation 4.12, we identify the block rules with further
required assumptions as follows. See Figure 8 for summary diagrams.

e Rule B1: Assume c¢=ab, T(14:1)=c+1, T(24+1) =c+2, and a <c-2.
In this case, we perform the rotations (2,...,a+ 1) and (¢, c+ 1) which
are sufficiently separated by hypothesis. Then, 1,a+ 1 and ¢ become
descents, and a and ¢+ 1 are no longer descents, so the major index is
increased by 1. The B1 rule is illustrated here with a =5, b = 3:

L2 3 4 5] 16] ~ [1] 3 4 5 [6] [15]
Bl 6 7 8 9 10 17 > 7 8 9 10 17
11 12 13 14 15 G 1112 13 14 16

The boxed numbers represent descents of the tableau on the left /right
that are not descents of the tableau on the right/left. The elements not
shown (i.e. 18,19,...,|A|) can be in any position.

e Rule B2: Assume c¢ < ab and there exists a 1 < k < a such that
Twry = ¢ and Ty 1) # ¢+ 1. In this case, we perform the rotation
(2,3,...,a,2a,3a,...,a(b-1),c,c=1,....c—=k+1=a(b-1)+1,a(b-
2)+1,...,2a+1,a+1) around the perimeter of T'|[.;. Now 1 becomes a
descent, and the other descents stay the same so the major index again
increases by 1. The B2 rule is illustrated by the following (here a =5,
b=2and k =3):

1 2 3 4 5 3 4 5 10
B2 6 7 8 9 10 (3 2 7 8 9 13
1112 13 ¥ 6 11 12 3¢

The crossed out number 14 means that 14 is not in position (3,4): it
can either be in positions (1,6) or (4,1), or it can be that A = 553.
Again, the numbers 15,...,|)\| can be anywhere in 7.
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e Rule B3: Assume a > 3, ¢ = a+ 1, and there exists £ > 2 such
that T(272) =a+k+ 1, T(372) =a+k+ 2, and for all 7 € {1,2,...,k‘}
we have T(;11) = a+1. Thus b = 2. Then we apply the rotation
(2,3,...,a,a+k+1,a+1). Now 1 becomes a descent, and the rest of

the descent set is unchanged so the major index again increases by 1.
The B3 rule is illustrated by the following (here a =4, k =4):

1 2 3 4 (1] 3 4 9

59 2 5
B3: 6 10 C 6 10

7 7

8 8

e Rule B4: Assume that a = 2, ¢ = 3, and there exists k > 2 such that
{3,4,...,k+1} appear in column 1 of 7', {k+ 2,k +3,...,2k} appear
in column 2 in 7'. Further assume that the set {2k + 1,2k +2,...,3k}
appears in column 3, {3k + 1,3k + 2,...,4k} appears in column 4,
etc., until column [ for some [ > 2 and T{4411) = kI +1 and T4 9) #
kl + 2. Thus, b = 2. In this case, we can perform the two rotations
(k+1,k,...;3,2) and (k(I-1)+1,k(I-1)+2,...,kl,kl+1). Now 1,
k+1 and k(I - 1) enter the descent set, and k and k(I - 1) + 1 leave it,
so the major index increases by 1. The B4 rule is illustrated by the
following (here k =3 and [ = 4):

1 2 7 [10] (1] [4] 7 11
gy 35 s 1 G 2 5 8 12

16 9 12 G 3 6 [9] 13
13 3¢ 10 24

e Rule B5: Assume that a = 2, ¢ = 3, and there exists k > 3 such that
{3,4,...,k} appear in column 1 of T, {k+ 1,k +2,...,2k - 2} appear
in column 2 in T'. Furthermore, assume T{; 1) = 2k — 1 and T(; 2y # 2k.
Thus, b = 2. Then apply the cycle (k,k-1,...,3,2,k+1,k+2,...,2k-1)
to T. Now 1 becomes a descent, and the rest of the descent set remains

unchanged, so the major index increases by 1. The B5 rule is illustrated
by the following (here k = 5):

B5:

G

C«“HBOOI\DH

O U= W =
X@OO\ICD

2
6
7
8

Pl
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Lemma 4.14. If T e SYT(X), T ¢&E(N), and 1,2 ¢ Des(T'), then either some
rotation rule applies to T" or a B1, B2 or B3 rule applies.

Proof. Let ¢ be the largest possible value such that 7|, is contained in the min-
maj tableau of a rectangle shape with a columns and b rows, see Notation 4.12.

1 2 v a ab+1
a+1 a+2 v 2a ab+?2
a(b-1)+1 a(b-1)+2 - ab
N

1 3 ea+ 1 ab
2 a+2 20 ab+2

a(b-1)+1 a(b-1)+2 -~ ab+1

(A) BLI.
1 9 a
a+1 a+2 2a
(1,(1)—.2)+1 a(b—'2)+2 (L(b‘—l)
a(b-1)+a ab-1)+2 « c=1 ¢ - ak
|
1 3 e e 2
2 a+2 --- 3a
(L(b—.?))—i-l a(b—‘2)+2 v e e
a(b=2)+1 a(b-1)+1 « ¢=2 c—1 - 2ok
(B) B2
1 2 - a-1 a 1 3 - a a+k+1
a+1l a+k+1 2 a+l
a+2 a+k+2 —|a+2
a+k a+h
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1 2 2k+1 - k(-1)+1
3 kE+2 2k+2 - k({-1)+2
4 k+3 2k+3 - k(/-1)+3

F+l 2k 3k il

kl+1 k=2
N
1 E+1 2k+1 - k(/-1)+2
2 k+2 2k+2 - EkE(/-1)+3
3 k+3 2k+3 - k({-1)+4
K o% 3k - kl+1
B(0-1)+1 T2
(D) B4

1 2 1 kE+1

3 kE+1 2 k+2

4 k+2 3 k+3
k-1 2k-3| |k-2 2k-2

k 2k -2 k-1 2k-1
2k—-1 2Kk k P

FiGURE 8. Summary diagrams for block rules.

Since 1,2 ¢ Des(T') and T ¢ £(\), we know 1,2, 3 are in the first row of T" so
a>3,b>2, and a+2 <|)\|. By construction, we have T(51)=a+1 and a + 2
must appear in position (1,a+ 1), (2,2), or (3,1) in 7.

Case 1: T(j44+1) = a+2. Observe that

1 2 3 - a a+?2

T|[“+2] T a+1

and z > a + 2. Consequently, T|[z+1] cannot be of the form forbidden by
Lemma 4.8, so a negative rotation rule applies.

Case 2: T{y9) = a+2. First suppose ¢ = ab, then T{; 4,1) = ¢+ 1 by choice of
c. Now consider the two subcases, T(3441) = ¢+ 2 and T(9441) # ¢+ 2. In the
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former case, as in Figure 8a, the B1 rule applies to T'. In the latter case, one
may check that an [4,c + 1]-positive rotation rule applies to 7" where i = T4 ).
On the other hand, if ¢ < ab, then a B2 rule applies to T" as in Figure 8b.
Case 3: T(z1y=a+2. Let k=min{j >2 | a+j ¢ Des(T)} so Tjs11)=a+k
and T(ao1) # a+k+ 1. Since T' ¢ £(X), we know a + k + 1 exists in 1" either in
position (1,a+1) or (2,2), so T|f4+k+1] looks like

1 2 3 a a+k+1 1 2 3 - a
a+1 a+l a+k+1

a+2 or a+2

a+k a+k

If T1441) = a+k+1, then Lemma 4.8 shows that a negative rotation rule
applies to T'. On the other hand, if T(9) = a + k + 1, then observe that either a
B3 move applies or the rotation (a + k,a + k + 1) applies to T', depending on
whether T(39) = a+ k +2 or not. 0]

Lemma 4.15. If T e SYT(\), T ¢ E(N), 1 ¢ Des(T), and 2 € Des(T'), then
either some rotation rule applies tol' or a B1, B2, B4 or B5 rule applies.

Proof. Let k = min{j > 3 | j ¢ Des(T")} so the consecutive sequence [3,k]
appears in the first column of 7" and k + 1 does not. By definition of k£ and the
fact that T ¢ £(X), T must have k+1 in position (1,3) or (2,2). If T(1 3y = k+1,
then a negative rotation rule holds by Lemma 4.8.

Assume T{59y = k+1. Let £ be the maximum value such that [k+1, (] appears
as a consecutive sequence in column 2 of 7T". If £ < 2(k — 1), then the negative
rotation rule for (¢,¢—1,... k) applies to T by the first case of Lemma 4.10.

If ¢ =2(k-1) and T{; 3y = £+1, let m be the maximum value such that [(+1,m]
appears as a consecutive sequence in column 3 of 7. We subdivide on cases
for m again. If m < 3(k — 1), then the negative rotation rule (m,m-1,...,¢)
applies to T' by the second case of Lemma 4.10. If m = 3(k - 1), we consider
the maximal sequence of columns containing a consecutive sequence in rows
[1,k - 1] to the right of column 2 until one of two conditions hold

12 (+1 é kil trl

3 k+1 ; : :

i g - k 14 m
p+1

In the first picture, T'|,) is not a rectangle, so we may apply a negative rotation
by the second case of Lemma 4.10, so consider the second picture. In the
second picture, T, is a rectangle and we know p + 1 exists in 7" since 1’|
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is an exceptional tableau for a rectangle shape. If p+ 2 is in row k, column
2, a (p,p+ 1) rotation rule applies. If p + 2 is not in row k, column 2, then a
B4-move applies.

Finally, consider the case £ =2(k—1) and T(y1) =€+ 1. If T(}9) # £+ 2 and
k> 3, then a B5-move applies. If T{;2) = £+ 2 and %k > 3, then the rotation
(¢,¢+ 1) applies to 1" since £ -1 is above £. If T2y = £ +2 and k = 3, then
{=4="To and T(31) =5 so T contains

1 2
3 4.
)

In this case, consider the subcases ¢ = ab or ¢ < ab with a = 2. If ¢ = ab, then
T3 =c+1since T ¢ £(N). Either a Bl-move applies if T{53y = ¢+ 2 and a
(¢, c+1) rotation applies otherwise. On the other hand, if ¢ < ab then a B2-rule
applies. O

We may finally define the map ¢ from (15). The proof of Theorem 1.1
from the introduction follows immediately from this definition and the last few
lemmas.

Definition 4.16. Given 7' € SYT(\) - £(A), we define ¢(7") as follows. If
1 € Des(T), define o(T") = (z,2—1,...,7)T as in Corollary 4.9. If 1,2 ¢ Des(T),
then Lemma 4.14 applies, so define ¢(7T') using the specific B1, B2, B3 or
rotation rule identified in the proof of that lemma. If 1 ¢ Des(7T') and 2 € Des(T),
then Lemma 4.15 applies, so define ¢(7") using the specific B1, B2, B4, B5, or
negative rotation rule identified in the proof of that lemma. These rules cover
all possible cases. By contruction, maj(¢(7")) = maj(7") + 1.

We may define two poset structures on standard tableaux of a given shape
using the preceding combinatorial operations. We call them “strong” and
“weak” in analogy with the strong and weak Bruhat orders on permutations.
Recall an inverse-transpose block rule is a block rule obtained from transposing
the diagrams in Figure 8 and reversing the arrows.

Definition 4.17. As sets, let P(\) and Q()) be either
SYT(A) \ {minmaj(\), maxmaj(\)}
if \ is a rectangle with at least two rows and columns, or SYT(\) otherwise.

e (Strong SYT Poset) Let P()) be the partial order with covering rela-
tions given by rotations, block rules, and inverse-transpose block rules
increasing maj by 1.

o (Weak SYT Poset) Let Q(A) be the partial order with covering relations
given by S < T if ¢(S) =T or ¢(1") =S’ where S’,T" are the transpose
of S, T, respectively.
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Corollary 4.18. As posets, P()\) and Q(\) are ranked with a unique minimal
and mazximal element. If A is not a rectangle, the rank function is given by
tk(T) =maj(T) —b(N). If X is a rectangle with at least two rows and columns,
then the rank function is given by rk(T) = maj(T") — b(\) — 2.

Proof. By Corollary 4.2, P()\) and () have a single element of minimal maj
and of maximal maj. Any element T besides these is covered by ¢(7") and
covers o(T")', so is not maximal or minimal. By construction maj increases by
1 under covering relations. The result follows. 0

In Figure 9, we show an example of both the Weak SYT Poset and the Strong
SYT poset for A =(3,2,1). More examples of these partial orders are given at
https://sites.math.washington.edu/~billey/papers/syt.posets.

Remark 4.19. Observe that both the positive and negative rotation rules
apply equally well to any skew shape tableaux in SYT(\/v). The block rules
apply to skew shape tableaux as well when T, is a straight shape tableau.
However, in order to define the analogous posets on SYT(A/u), one must
include additional block moves. This is part of an ongoing project.

Remark 4.20. Lascoux—Schiitzenberger [LS81] defined an operation called
cyclage on semistandard tableaux, which decreases cocharge by 1. The cyclage
poset on the set of semistandard tableaux arises from applying cyclage in
all possible ways. Cyclage preserves the content, i.e. the number of 1’s, 2s,
etc. See also [SW00, Sect. 4.2]. Restricting to standard tableaux, cocharge
coincides with maj, so the cyclage poset on SYT(n) is ranked by maj. However,
cyclage does not necessarily preserve the shape, so it does not suffice to prove
Theorem 1.1. For example, restricting the cyclage poset to SYT(32) gives a
poset which has two connected components and is not ranked by maj, while
both of our poset structures on SYT(32) are chains. A reviewer of [BKS20b]
posed an interesting question: is there any relation between the cyclage poset
covering relations restricted to SYT(A) and the two ranked poset structures
used to prove Theorem 1.17 We have not found one, but such a connection
would be interesting if found.

5. INTERNAL ZEROS FOR des ON SYT()\)

The results of Section 4 show that SYT(A)™i(¢) almost never has internal
zeros. Adin—Elizalde-Roichman analogously considered the internal zeros of
the descent number generating functions SYT(A/v)4es(q) where des(T) is the
number of descents in a tableau 7'

Question 5.1. [AERI1S8, Problem 7.5] Is {des(T") : T € SYT(A\/v)} an interval
consisting of consecutive integers, for any skew shape \[v? That is, does
SYT(A/v)des(q) ever have internal zeros?



425136)

(526134)| |@35126)

‘(ﬂslu)‘ ‘(534|26)‘
(lez») ‘(SAE»IZ?)‘ (wsme)‘
‘(645123)‘ ‘(326145)‘ ‘(524135)‘

(624!35)‘ ‘(426135)‘

(625134) 436125)

(635124)

Weak
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“425136)

(526134) “435126)

(536124)| | (534126)

5461”7,)‘ ‘(634]75)‘ ‘mzsms)‘
(645]2?)‘ ‘(svmxe)‘ ‘(2’6I4i)

624135 | | 426135

(625134) “436125)

(635124)

Strong

FIGURE 9. Hasse diagram of the Weak SYT Poset and the
Strong SYT Poset of A = (3,2,1). Each tableau is represented
by its row reading word in these pictures.

The minimum and maximum descent numbers are easily described as follows.
The argument involves constructions similar to the sequences of vertical and

horizontal strips used in Definition 4.1.

Lemma 5.2. [AER18, Lemma 3.7(1)] Let \/v be a skew shape with n cells.
Let ¢ be the maximum length of a column and r be the maximum length of a
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row. Then
mindes(SYT(A/v)) =c-1
maxdes(SYT(\/v))=(n-1)-(r-1)=n-r.

Indeed, it is easy to see that minmaj(\) constructed as in Definition 4.1 has
A —1=c-1 descents, and symmetrically that maxmaj(\) has n —r descents.
The arguments in Section 4 consequently resolve Question 5.1 affirmatively in
the straight-shape case.

Corollary 5.3. For A +n, we have
{des(T): T eSYT(A\)}={N -LA\,....n= X\ = 1,n =\ }.
In particular, SYT(N)4(q) has no internal zeros.

Proof. First suppose A is not a rectangle with at least two rows and columns.
Iterating the ¢ map creates a chain from minmaj(\) to maxmaj(\). At each
step, ¢ either applies a rotation rule or a block rule. Rotation rules preserve
descent number. Block rules always increase the descent number by exactly 1.
Since minmaj(A) and maxmaj(\) have the minimum and maximum number
of descents possible, the result follows.

If X is a rectangle with at least two rows and columns, it is easy to see that
the unique tableau of major index b(\) + 2 has exactly one more descent than
minmaj(A). The result follows as before by iterating the ¢ map. O

Remark 5.4. The same argument shows that SYT(A\)mai-des(¢q) also has no
internal zeros. Indeed, applying a rotation rule increases maj—des by 1 while
fixing des, and applying a B-rule fixes maj—des and increases des by 1. In this
sense, the strong or weak posets P(\) and (\) have a Z x Z ranking given by
(maj - des, des).

6. INTERNAL ZEROS FOR FAKE DEGREES OF (C,, S,

In this section, we classify which irreducible representations appear in which
degrees of the corresponding coinvariant algebras for all finite groups of the
form (), S,,. The goal is to classify when the fake degrees by # 0. We will
use the following helpful lemma which is straightforward to prove.

Lemma 6.1. Suppose that f and g are polynomials in Z[q] with non-negative
coefficients, that f has no internal zeros and has at least two non-zero coeffi-
cients, and that g has no adjacent internal zeros. Then, fg has no internal
2€708S.

Lemma 6.2. Let A= (A1) ... \"™) be a sequence of partitions. The polyno-
mial SYT(A)™ai(q) has no internal zeros except when A has a single non-empty
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block XD which is a rectangle with at least two rows and columns. In this latter
case, the only internal zero up to symmetry occurs at k =b(A®) + 1.

Proof. If \ has only one nonempty partition, then the characterization of
internal zeros follows from Theorem 1.1, so assume A\ has two or more nonempty
partitions. From Theorem 2.15, we have

maj _ n = () ymaj
(17) SYT(A)™(q) = (IA“)I, L IA("“I)Q q SYT(A™)™(q).
By MacMahon’s Theorem 2.5, we observe that the g-multinomial coefficients
have no internal zeros. Furthermore, the g-multinomial in (17) is not constant
whenever A\ has two or more non-empty partitions. From Theorem 1.1, we know
SYT(A®)mai(q) has no adjacent internal zeros for any 1 < i < m. Consequently,
by Lemma 6.1, the overall product in (17) has no internal zeros. 0

Theorem 6.3. Let A be a sequence of m partitions with |A| = n, and assume
g2(q) = X barg®. Then for keZ, by #0 if and only if

%—b(g)e{O,l,...,(nJrl)—th}\D/\,

2 CEA

where Dy is empty unless A\ has a single non-empty partition N\ which is a
rectangle with at least two rows and columns, in which case

D ={1,(”+1)— 5 hc—l}.
- 2 cex(®

Proof. By Theorem 2.31,
g(a) = ¢V SYT (X)) (g™)

which implies by, # 0 only if £ - b(a())) is a multiple of m. By Lemma 6.2,
we know SYT(A)™#i(q) has either no internal zeros or internal zeros at degree
1+ b()\) and degree one less than the maximal major index for A in the
case of a rectangle with at least 2 rows and columns. By (8) and (9), the
minimal major index for \ is b()) := ¥, b(A®), and the maximal major index
is b(\) + (m;l) — Y eex he. Hence, the result follows. O

Corollary 6.4. In type B, the irreducible representation indexed by (\, p)
with |\l + || = n appears in degree k of the coinvariant algebra of G(2,1,n) if
and only if

k_T“"-b(A)-b(u)e{o,1,...,(”+1)—2hc— zhc,}\pw).

2 ceEX cep
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Example 6.5. Consider the type Bg case, where m = 2,d = 1,n = 6. For
A=((2),(31)), we have b(A) =1 and

g2(q) = ¢ +2¢* + 4¢°* + 5¢%° + 7¢"8 + 7¢*0 + Tg" + 5¢*2 + 4¢'° + 2¢° + ¢5.
For p = (2,(33)), we have b(x) = 3 and
94(q) = ¢ + ¢ + ¢ + 4% + 2.

In both cases, the nonzero coefficients are determined by Corollary 6.4.

7. DEFORMED GAUSSIAN MULTINOMIAL COEFFICIENTS

We now turn our attention to extending Theorem 6.3 to general Shephard-
Todd groups G(m,d,n). We begin by introducing a deformation of the g-
multinomial coefficients arising from Theorem 2.35 in the special case when
A=((),(a2),...,(am)) is a sequence of one row partitions. After several
lemmas, we give an alternative formulation for these deformed g-multinomials
in terms of inversion generating functions on words with a bounded first letter.

Definition 7.1. Let a = (aq,..., ;) En be a weak composition of n with m
parts. Recall the long cycle o, = (1,2,...,m) € S,,, so

Om Q= (Oém,(l/l,OéQ, s 7am—1)-

Let d|m, 7= om/® and Cy = () = (0m'®) so C acts on length m compositions
by (m/d)-fold cyclic rotations as in Definition 2.37. Set

b(o-a)
(18) I:n] - ZO’ECd q (n)
Qlgd [d]gnmia \ot)gm

where
m

b(a) =Y (i-1)a.

i=1

Note that when ¢ = 1, we have ["]l,d = ("), and when d = 1, we have

« «

[Z]q.l = qb(a)(Z)qm, where m is the number of parts of a. As usual, we also

write [Z]q;d = [k»:*k]q;d = [nfz’k]q;d, where m = 2 in this case. Note that [Z]q;d is
invariant under the Cy-action on «, though this is not typically true of general

permutations of a.

Example 7.2. Observe that (Z)qm alone is generally not divisible by [d]nm/a.

For example, if n =5, a=(2,1,1,1), and d = 2, we have

5
(2 1,1 1) =% +3¢7 460 +9¢% + 11¢7 + 11" + 99" +6¢° +3¢" + 1
) ) Y q
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which is not divisible by [2] 542 = ¢1° + 1. However, ¥,.c, ¢*"® = ¢® + ¢% and
(®+ q6)(271?171)q4 is divisible by ¢'° + 1 giving

[ 5 ] :q34+q32+3q30+3q28+6q26+5q24+8q22
2,1,1,1],

+6q20+8q18+5q16+6q14+3q12+3q10+q8+q6.

See Figure 10 for a larger example.

1.2e7 -
le7
8e6 -
6e6 - .. FELAAATY .

4e6

FIGURE 10. A plot of the coefficients for the deformed g¢-
multinomial [g]q_d with o = (2,1,3,1,4,5) and d = 3.

Lemma 7.3. Given o = (aq,...,q,) En, we have

b(op - ) —b(a) =n—may,,
and
b(T-a) = b(a) =nm/d—m(ou, + Gy + - + Qpemyas)-
Proof. The second claim follows by iterating the first for 7 = o™ For the first,
we have
(o) —b(a) = (ag + 20+ -+ (m—=1)am,_1)
(g +2az+--+(m-1)ay)
=+ g+t apog — (M= 1)y,
which simplifies to n — may,. O
If a & n, let |;a be the vector obtained from « by decreasing «; by 1. Extend
the definition of (Z)q to m-tuples of integers by declaring (Z)q =0 if any o
is negative. The following lemma is well known but we include a proof for
completeness.
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Lemma 7.4. We have the following recurrence for q-multinomial coefficients,

o +etog_q n- 1
(ah" O5'm) Zq ( l'z )

Proof. By MacMahon’s Theorem, the left-hand side is the inversion number
generating function on length n words with «; copies of the letter ¢ for each 1.
If the first letter in such a word is ¢, the number of inversions involving the
first letter is ay + ag + -+ + ;_1, from which the result quickly follows. L]

The non-trivial deformation of the g-binomial coefficients in Definition 7.1
has the following more explicit form. In particular, these rational functions are
polynomials with non-negative integer coefficients that satisfy a Pascal-type
formula.

Lemma 7.5. In the case d =m =2, we have

k n—k
n] ¢"+q n\y n_k(n—l) k(n—l)
19 =— = L .
(19) [k]q;2 1+qn (k)q2 q Eo1 q2+q ko) € Zso[q]

Proof. The first equality is immediate from Definition 7.1. For the second, we
use the well-known “g-Pascal” identities

(k)=o) o), = (), ),

which arise from Lemma 7.4. Thus,

(V) _ ok ”_1) n+n—k’(n_1)
q(k)q2 q( k q2+q k—lqz

and
qn—k(n) — qn+k(n - 1) + qn—k(n - 1)
kg k] k-1)p
Hence,
ko nky[™ ny [k ”_1) n—k(n_l)
=(1
@orn(y) - (o) e (),

so the second equality in (19) holds. O

We next generalize Lemma 7.5 to all [ ]q for any a £ n. The proof that

follows is independent of Theorem 2.35, which can also be used to prove they
are polynomials with non-negative integer coefficients.

Theorem 7.6. Let a be a weak composition of n with m parts, and let d | m
Then

m/d
nl b(o-a) m.((g.a)1+...+(a,a)vl)( n-1 )
= q q
HIEDEEED> o)

a 0eCy v=1
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In particular, [Z] s a polynomial with non-negative coefficients.

¢d
Proof. Observe from the definition that (Z)q = (:a)q for any o € Cy. Thus, by

Lemma 7.4, we can rewrite the numerator of ["]q. , 8s

d
b(o-) b(TJ )
a—;d 1 (O{) Z: (T'] Oé)qm
d m
e(i,5,a) n—1 )
22" (. (7 -a)

7=14=1

where
(20) €(i,j, ) =b(r7-a)+m-((77-a)y +++ (77 - a)i1).

It is straightforward to check that |; (o, - @) = 0y lic1 ¢, s0 that |; (77 - ) =
79+ }i_jm/ac, where indices are taken modulo m. Thus,

5 ) S5

0eCy i=1j=1 ii—jm/dOé q

Group the terms on the right according to the value i — jm/d =, t € [m]. Note
that j € [d] could be equivalently represented as j € Z/d, though i € [m] cannot
be treated similarly here. One may check that the set of (7,7) € [m] x Z/d such
that i — jm/d =, t can be described as

{(t+sm[d,s):se[-p,d-1-p]}
where t = pym/d+wv, for some unique p; € [0,d-1] and v; € [m/d]. Consequently,
d-1-p;
2() E(E ) (L),
Next, we evaluate the incremental change
e(t+(s+1)ymjd,s+1,a)—e(t+sm/d,s,a)
for a given s. Let §=7%-«a. By Lemma 7.3,
(7t a) = b(7* - a) = b(7 - B) - b(B)
=nm/d—m-(Bm + -+ Bm-m/d+1)-
We also find
(7 B)1te+ (T Bew(srymja-1 = Bm-myast + -+ B + B1 + -+ + Brasmpa-1
SO
(7-B)1++ (7" 5)t+(s+1)m/d—1 = B1 = = Brrsmja-1

= ﬁm—m/d+1 +oeeet Bm
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Combining these observations,
e(t+(s+1)ym/d,s+1,a) —e(t+sm/d,s,a) =nm/d.

It follows that

d-1-p¢
Z qe(t+sm/d,s,a) _ qe(tfpzm/d,*l’tya) [d]

S=-Pt

qnm/d

_ q€(vt7_pt70‘) [d]qnm/d-

Since we have a bijection [0,d — 1] x [m/d] - [m] given by (p,v) —» pm/d + v,
we have
d-1m/d

(21) > qb(a'a)(n)qm = [d]pmia Y Y. qe(v’_p’a)( ol ) K

ceCy o p=0 v=1 l’u+pm/da

proving the polynomiality of [Z]q' o

We can further refine (21). From (20), we observe that
e(v,-p, ) = €(v,0,777 - ),

/d

. m
and since 7 =g, , we have

lv-%—pm/da =70 |y (Tﬁp ' Oé)'

qe(v,—p,a)( n-1 ) — qe(v,O,‘r_p-a)( n-1 ) ’
lvv-%—pm/da qgm lﬂu (T_p'a) qm

So,

which implies

5 b(ala)(n) - [d] T e mz/:d m4<<a~a)1+~-+<o~a)u_1>( n-1 )
q o o - qnm/d q q lv (0‘.0[) qm.

ceCy ceCy v=1
The result follows by dividing by [d] nm/a. O
In light of Theorem 7.6, we define the following polynomials.

Definition 7.7. Let a = (a1,...,a,,) £ n, and say 1 < k < m. Define the
a, k-partial sum multinomial by

k
(k) — aptetoy -1 (n - 1)
Pa'\q) =2 4 .
(¢) Z; )
Remark 7.8. By Lemma 7.4, pgm> = (Z)q, and more generally the same
argument shows that
(22) i (q) = {we Wa :wy < kY™ (q)

is an inversion number generating function.
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It is very well-known that the multinomial coefficients can be written as a
product of binomial coefficients. More generally, g-multinomial coefficients can
be written as a product of g-binomial coefficients. This holds true even for the
a, k-partial sum multinomials as follows.

Lemma 7.9. Let a = (aq,...,an) En and 1 <k <m. We have

k m

k aq+ -+ 0y 041+---+0zi—1

@) @=TI( ) - 11 ( ).

i=1 & q i=k+1 @ q
Proof. Recall that p$”(q) = {w e W, :wy < k}nv(g). Partition the set {w €
W, :w; < k} into (a1+ o 1_a,m am) subsets according to the placement of all
k+1,k+2,...,m’s in positions 2, 3,...,n. For each such placement, there are
(62:20?) ways to place numbers 1,2,...,k in the remaining positions. Since

each inversion in a word w € W, is between two letters < k, between two letters
>k +1, or between a letter < k and a letter > k + 1, it follows that

. Q1+ + n-1 )
24 eW,:w <k}™(q) =
(24) {w o F () (al,...,ak)(a1+~--+ak—1,ak+1,...,am
by MacMahon’s Theorem 2.5. Factoring each g-multinomial in (24) into g-
binomials gives (23). O
Corollary 7.10. Let a = (aq,...,a,) En and 1 <k <m. The o, k-partial
sum multinomial p&k)(q) 18 symmetric and unimodal.

Proof. A result of Andrews [And76, Thm. 3.9] states that the product of
symmetric, unimodal polynomials with non-negative coefficients is symmetric
and unimodal with non-negative coefficients. The g-binomials are symmetric
with non-negative coefficients, and it is a well-known, non-trivial fact that they
are also unimodal. See [Zei89] for a combinatorial proof of this fact and further
historical references. The result now follows from Lemma 7.9. U

Lemma 7.11. Let a = (aq,...,apm) EN and 1<k<m. Then pa)(q) 0 of
and only if ay + -+ ag > 0. In this case, py )(q) has constant coefficient 1,
degree D, — a1 — - — Quy, where D, (g) - (al) 15 the degree of( ) nd
has no internal zeros. Furthermore, p )(q) 1s non-constant except when

o oy +--+ay =0, in which case pa)(q)

ey +-+ap=1and a;=n- 1f0rsomez>k‘ in which case pg )(q)—l
or

o o; =n for some i <k, in which case p{ (q) = 1.

Proof. Each claim follows easily from the fact that p, )(q) is the inversion
generating function for {w € W, : w; < k}. Alternatively, one may use
Lemma 7.9. O
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We have the following summary statement.

Corollary 7.12. Let a be weak composition of n with m parts, and let d |

m. Let o = ((a1),(a2),...,(a,)) be the corresponding sequence of one row
partitions. Then,
n Y pec, @) (n) b(o-a), (mfd) d (o)
Sl E— = ), " pea (q") = 9**" (q).
|ia:|‘1ﬂ [d] qnmld Qa/gm O’;d #{g}d

Proof. The first equality is just the definition. The second equality follows
from Theorem 7.6. The third equality follows from Theorem 2.35 and the fact
that P
b(oa) _ d\boer
q = [0 q).
2 Ha) ({a}))™ (@)

o’ECd

]
Remark 7.13. We note that since ["]q'd = # g{@(¢q), we knew from

6
Stembridge’s work that the deformed multinomial coefficients are polynomials
in ¢ even though they are defined as rational functions. Our proof in The-
orem 7.6 gives an alternate, direct proof of this fact without going through
representation theory. Furthermore, we use the summation formula in Corollary

7.12 to characterize the internal zeros of g{A*(¢) in the next section.

8. INTERNAL ZEROS FOR G(m,d,n)

We can now extend the results of Section 6 to all Shephard—Todd groups
G(m,d,n). We thus give a remarkably simple and completely general de-
scription for which irreducible representations appear in which degrees of the
coinvariant algebras of essentially arbitrary complex reflection groups. Recall
the notation established in Section 2.4. Let {A}? be the orbit of A\ under

(m/d)-fold rotations in Cy = (om!%).
Definition 8.1. Given a sequence A = (AW, ... (™) with |A| = n, let
a(d) = (MDA .

Similarly, let a(A) be the length m sequence of partitions whose ith partition
is the single row partition of size |A(].

The map « may not be injective on {A}¢, though it has constant fiber sizes
since « is Cy-equivariant. For example, when m =4,d = 4, we have

a:((2),2,(1%),2) » ((2).2,(2).2)
(2.(2),2,(1%) = (2,(2).2,(2))
((1%),2,(2),2) » ((2),2.(2), 2)
(2.(1%),2,(2)) » (2,(2),2,(2)).
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Generalizing Theorem 2.15, we have the following corollary of Stembridge’s
Theorem 2.35 and Definition 7.1.

Corollary 8.2. Let A be a sequence of m partitions with |\ =n. Let {\}? be
the orbit of A\ under (m/d)-fold cyclic rotations. Then

0y () = A [ n ] T SYT (A ymai (g
g qa)= . : q").
Proof. By Theorem 2.35,

S OE a9 () SYT(A)™(q™).

[d]qnm/d
We have 40
d bOOé _ FAY d d boa
()™ @ = g Gy (@)™ @
and

({g(g)}d)b"“ (q) = w T o),

O'ECd
Consequently, using Theorem 2.15 and Definition 7.1, we have

N #{\}4 . Yol gOlo-ed)) (" M (i) \maj( ;m
g™ (q) = y (A (a(A)) [ISYT(A®)mi(g™)

=1

O

We will now prove the general classification theorem for nonzero fake degrees
as mentioned in the introduction. The reader may find it useful to compare
the statement to the type A case in Theorem 1.1 and the C,, .S, case in
Theorem 6.3.

Theorem 8.3. Let A be a sequence of m partitions with |[A|=n>1, let d|m,
and let {\}? be the orbit of X\ under the group Cy of (m/d)-fold cyclic rotations.
Then byyya # 0 if and only if for some p e {A} we have |pM]+ -+ |u(™/D] > 0
and

k—=b(a(p)) n
— Y - b(p) €40, 1, D]+ [l D] 4 (2) =2 he ~Dya.

CEH
Here Dy.q is empty unless either
(1) p has a partition p of size n; or
(2) p has a partition p of size n -1 and [pM|+ -+ [p(/D[ =1,
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where in both cases | must be a rectangle with at least two rows and columns.

In case (1), we have
n+1
D#;d::{ ( ) S he - }
cep

and in case (2) we have
oo )-21)
- CcEp

Proof. Let a = a(A). Using Corollary 8.2 and Corollary 7.12, we have

(25) W' (g - HAL 3 gy gny. HSYT(A(”)““&”(Q )-

d oeCy
Thus, we consider the locations of the nonzero terms in
(26) S (q) TTSYT(AD)m2i(g).
i=1

Recall that p(m/d)( ) = 0 whenever (0-a); + -+ (0 a)y/a = 0, so assume
(0-a);+-+(0-Q)ma > 0. Since SYT(A@D)mai(g) # 0 for all partitions A, we
can also assume (26) is not zero.

By Lemma 7.11, pSm/? )(¢) has no internal zeros, degree (g) - (0‘2) - (o-

@) mjas1 — = (0 - @)m, and constant term p(m/d)(O) = 1. Thus the minimal
degree term of (26) with nonzero coefficient is ¢ by (8), and the maximal
degree term is g to the power

@) (5)-2(%) - 0 @maes =+ (o) Leg(SYTOO)™i(q)),

Since a; = |A(®|, we know by (9) that deg(SYT(A@)mai(q)) = (%) - b(AD"), so
(27) simplifies to

(28) (5) - (7 @mjans == (@) - bX)

where b()") := ¥, b(AD"). From (9), we also know (5) - (") = b(A) + ("3') -
Yeex he and 0 - o E n, so we conclude that the maximal degree of (26) is

(29) b()) +(0-a)1+---+(0-a)m/d+( ) S he.
CEA
If pim/ d)(q) # 1, then the product in (26) also has no internal zeros by

Theorem 1.1 and Lemma 6.1. The cases where pg. a/ d)(q) = 1 are listed in
Lemma 7.11. By assumption, (o -a); + -+ (0 - a)pm/q > 0 so the remaining
cases are when (o -a); + -+ (0 - @) = 1 and some a; =n -1 for i > m/d,
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or a; =n for some i <m/d. In either of the remaining cases, determining the
nonzero coefficients of (26) reduces to the case of a single partition described
in Theorem 1.1.

To finish the proof, we observe from (25) that byyya, # 0 if and only if there
exists some o € Cy such that (o -a); +--+ (0 &)mq > 0 and the corresponding
product

¢"plil? (gm) - TTSYT(AD )™ (g™)
i=1

has nonzero coefficient of ¢*. Thus, by our analysis of the location of nonzero
coefficients in (26), we observe that byyyay # 0 if and only if

kE—-0b(o-

M—b(g) € {O,l,...,(a-a)l+---+(a-a)m/d+(n)—th} N D,q
m 2 CEA a

where 1= 0 - A. Observing that b(A) = (1), Eeep he = Leey he;, and b(o - a) =

b(a(p)) completes the proof of the theorem. - O

Corollary 8.4. In type D,,, an irreducible with orbit {\,u} where |\ + |pu| =n
appears in degree k of the coinvariant algebra of G(2,2,n) if and only if either
A+ and

k- n
% “B(A) ~b(p) € {o, 1N+ (2) T he- Y hc,} Doy
ceEA cep
or u*J and
k—|A n
% “B(A) ~b(j) € {0, Lo+ (2) ST he- ¥ hc,} N
[EDN cep

Example 8.5. Consider the type Dg case, where m = 2,d = 2,n = 6. For
A=1((2),(31)), we have b(\) =1 and

g{A}Q(q) — q20 +3q18 +6q16 +8q14 +9q12 +8q10 +6q8 +3q6 +q4'
On the other hand, if u = (2, (33)) then b(x) = 3 and
g1 (q) = q"® +q" + ¢+ g+ "

In both cases, the nonzero coefficients are determined by Corollary 8.4. One
may notice that g{ﬁ}Q(q) * g{ﬁ}l(q), which appeared in Example 6.5. However,
for v = ((33),2), one can check {u}* = {v}? and g (q) = g (¢) = ¢ (q).
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9. FUTURE WORK

A sequence ag,ay,as, ... is parity-unimodal if ag,as,ay, ... and ay,as,as, . ..
are each unimodal. Stucky [Stul8, Thm. 1.3] recently showed that the ¢g-Catalan
polynomials, namely SYT((n,n))™%(q) up to a g-shift, are parity-unimodal.
The argument involves constructing an sly-action on rational Cherednik algebras.
See [§3.1, Haiman94] for a prototype of the argument in a highly related
context. Recent work of Gaetz—Gao [GG20] constructed an slp-module on CS,,
and strongly related work of Hamaker—Pechenik—Speyer—Weigandt [HPSW20)|
constructed an sls-module on R,,, though neither of these structures are capable
of producing internal zeros and they do not respect the isotypic decomposition.
Nonetheless, based on Stucky’s result, our internal zeros classification, and a
brute-force check for n < 50, we conjecture the following.

Conjecture 9.1. The fake-degree polynomials f(q) are parity-unimodal for
all \.

When W is a Weyl group, the Hilbert series of the coinvariant algebra Ry,
is symmetric and unimodal by the Hard Lefschetz Theorem since Ry, presents
the cohomology of the associated flag variety G/B. One referee asked the
following interesting question.

Is there an algebraic or geometric witness to the fact that the
f*(q) so rarely have internal zeros in their coefficient sequences?
More precisely, let ¢ = cixq + -+ + ¢,x, be a linear form in
Clx1,...,x,]| with ¢; # ¢; whenever ¢ # j. These are precisely

the Lefschetz elements when W =S5,,. If V) = @Zig_l)/ 2(VA)d is
the A-isotypical component of R,,, decomposed by polynomial
degree, for each d we have a linear map

x/ €
(VW) = (Rn)ae1 = (VA)as,

where we first multiply by ¢ and then we act by the Young
symmetrizer €, € C[S,,]. Initial computer verifications suggest
this composite linear map is nonzero whenever f*(q) does not
have an internal zero, at least for some special choices of the
coefficients ¢;. Could this correspond to some property in geom-
etry?

Remark 9.2. We note that Stanley used the Hard Lefschetz Theorem to prove
that Bruhat orders are rank symmetric, rank unimodal, and have a symmetric
chain decomposition, so they are Sperner [Sta84]. This theorem was part of our
motivation for defining the Weak SY'T Poset. We were looking for a subposet
of the Strong SY'T Poset which is a symmetric chain decomposition, though
we did not find one. The Weak SYT Poset is not a disjoint union of chains
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in general, though it is the most natural subposet we could find. The names
“Weak” SY'T Poset and “Strong” SYT Poset simply imply that one is a subposet
of the other in the same way that the weak order is a subposet of “strong”
Bruhat order.
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