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Abstract
The general solutions of the homogeneous matrix equation
AXCcT - BXDT =0
and the system of the matrix equations
AX+BY =0, XCT+vyDT =0

are described in terms of Kronecker canonical forms, i.e., in terms of Kronecker invari-
ants and Kronecker bases, for pairs of matrices (A4, B) and (C, D). A canonical form
for a pair of commuting matrices (E, F) such that E? = F? = EF = 0 is discussed.
These results are applied to construct a canonical basis for the second root subspace
of a two-parameter eigenvalue problem. The corresponding relations for canonical
invariants are given.

1 Introduction

In multiparameter spectral theory we consider a system of multiparameter pencils

n
m(x):Z%]Aj_‘/;Oa 1=1,2,...,n, (1)
Jj=1
where Vj; are n; x n; matrices over complex numbers and A = (A1, Ag,..., A,) are param-

eters. We remark that when n = 1 then (1) is a one-parameter pencil. It is well known
that there is a canonical form for such pencils under equivalence of pairs of matrices. This
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is the Kronecker canonical form [28] (see [12, 17, 19] for modern versions). In this paper
the Kronecker canonical form is applied in two different ways to study two-parameter
systems, i.e. systems of form (1) with n = 2.

Our approach is based on Atkinson’s theory [3]. He associated with (1) an n-tuple of
commuting matrices {I‘j}?zl, acting on €V, N =[], n;. One of the problems consid-
ered then is to give bases for joint root subspaces of matrices I'; in terms of the matrices
Vi;j. This has been achieved using coalgebraic techniques in [20]. However, the description
obtained in [20] shows that in general complex calculations are required in order to com-
pute these bases. An interesting problem now is to find classes of multiparameter systems
(1) for which the computation of bases for joint root subspaces of I'; is simplified. Some
of these are already known in the literature, e.g. [4, 15, 26, 27]. (We discuss the literature,
including that on applications, later in the section.) One of simplest cases where to look
for motives that would give further algorithms to build bases for root subspaces is to
consider two-parameter systems. We do so, and hence we assume hereafter that n = 2.

We construct a canonical basis for the second root subspace

N =ker (I'1 — M I)? Nker [(Ty — A1) (Dy — AoI)] Nker (T'y — Ao 1)? . (2)

Bases for the second root subspace for the general multiparameter systems are given in
[6]. The main contribution of our paper is that in two-parameter setting we can construct
these bases canonically. We remark that in the literature there are known classes of
multiparameter systems for which in general the joint eigenvectors for I'y and I's do not
span root subspaces but the second root vectors do span them (cf. [6, §8], [7, §5] and [15,
Thm. 5.7]). Thus to find a basis for the second root subspace is not only interesting as
an intermediate step towards a construction of a basis for the entire root subspace but for
certain cases it already gives a complete basis.

The first application of the Kronecker canonical form in our paper is to describe a
canonical form for a pair of commuting matrices A; and A, that satisfy A2 = 4145 =
A2 = 0. Note that the restrictions of 'y — A1 and T's — X\oI to the second root subspace
N satisfy these relations. We remark that this is a special case of a canonical form given
by Gel'fand and Ponomarev in [18, Ch. II].

The main result of [6] is that a basis for the second root subspace A is constructed
from a basis for the (joint) eigenspace

M = ker (F] — All) N ker (FQ — AQI) (3)

and a basis for the kernel of a special matrix, which yields when applied to the two-
parameter case a system of matrix equations

AX -BY =0, XCT -vyDT =0 (4)
(see §2 for details). This system is related to the matrix equation
AxcT - BxDT =o. (5)

Namely, it is easy to observe that if a pair of matrices (X,Y") solves (4) then both X and
Y solve (5). We use Kronecker canonical form for pairs of matrices (A, B) and (C, D)



to construct canonical bases for the space of solutions of (5) and (4). This is our second
application of the Kronecker canonical form. We also associate with the construction of
bases a set of canonical invariants. These yield when applied to the two-parameter system
a basis in which the restrictions of I'y — A\ and I's — Ao to the second root subspace
N are in the canonical form mentioned in the previous paragraph. We believe that the
calculations in terms of invariants will yield when translated into appropriate algebraic
setting towards better understanding of the main result of [20], and subsequently enable
us to find simpler algorithms to calculate bases for joint root subspaces.

The study of two-parameter eigenvalue problems has a long history. Originally they
were studied for boundary value problems. Then V;; act in infinite dimensional Hilbert
spaces, Vo are differential operators and V;;, 7 # 0, are multiplication operators. The
description of bases for root subspaces then yields various completeness and expansion
results. The cases when the eigenvectors are complete were studied already at the turn of
the century. For instance, Dixon [13], Camp [8], and also Hilbert [24] studied expansions
of functions in terms of eigenfunctions of a pair of two-parameter differential equations of
Sturm-Liouville type. Later Pell [31] studied a two-parameter system of integral equations
of Fredholm type. In the 1950s Cordes [10, 11] developed an abstract Hilbert space setting
for a special class of two-parameter eigenvalue problems (cf. also [29]). Among recent
publications we find work of Almamedov, Aslanov and Isaev [1], Binding and Browne
[5], Faierman [15], and many others. Besides the applications to the boundary value
problems [2] two-parameter eigenvalue problems (as well as multiparameter ones) occur
in various applications, for instance, to the linearized bifurcation models [22], to the
inverse eigenvalue problems [21], and to the linearizations of polynomials in two (or more)
variables [16].

The matrix equation

AXDT —BxCT = FE (6)

has been studied for a long period of time as well (see [33, 34, 36]). Various applications
of these matrix equations are known in the literature, and they motivated several authors
to study them, e.g. [9, 14, 23]. The idea to use the Kronecker canonical forms of pairs of
matrices (A, B) and (C, D) in order to study the matrix equation (6) was brought forward
by Mitra [30] and Rézsa in [32]. Since we could not find in the literature a description of
the general solutions of the matrix equations (4) and (5) we first describe these solutions.
The methods involved are very standard so we do not give detailed proofs. We remark
that a detailed discussion of the general solutions of the matrix equation (6) in terms of
the Kronecker canonical forms is given in the internal research paper [25].

We conclude the introduction with some words on the setup of our paper. In §2
we recall Atkinson’s construction [3] for two-parameter systems. We also state the two-
parameter versions of the main results of [6] and illustrate them with an example. To
unify the treatment of various cases our definitions of the Kronecker chains and associated
invariants differ slightly from the standard ones. We give the definitions and explain the
differences in §3. There we also discuss a canonical form for a pair of commuting matrices
(A1, Ay) such that A? = Ay A, = A3 = 0. Canonical bases, with corresponding invariants,
for the spaces of solutions of (5) and (4) are given in §4 and §5, respectively. We apply



these bases to construct a canonical basis of the second root subspace for two-parameter
systems in §6. We also discuss relations between the invariants and give two examples.

2 Two-parameter Eigenvalue Problems

In order to construct a pair of commuting matrices I' = (I'1,'y) associated with a two-
parameter system

W = {W; (X) = Vit A + Vigdo — Vio; i = 1,2} (7)

a regularity assumption is needed. We assume that Ay = Vi1 ® Vag — Vis ® Vo is an
invertible matrix. Here A is acting on C"'"? (= €™ ® C"?). Further we define matrices
Ay =Vig® Vag — Vig ® Vo and Ag = Vi1 @ Vog — Vg ® Vay. Atkinson [3, Thm. 6.7.2]
showed that matrices I'; = AalAi, i = 1,2 commute. We call the pair I' = (I'1,'2) the
associated system of the system (7).

A pair of complex numbers (A1, A2) is called an eigenvalue of T if the eigenspace M,
defined by (3), is nonzero. A pair of complex numbers A = (A1, A2) is called an eigenvalue
of W if ker W, (A) # {0} for 7 = 1,2. Atkinson [3, Thm. 6.8.1] showed that the spectra
o (W) of a multiparameter system W and o (T') of its associated system T coincide.

From now we assume that A € C? is an eigenvalue of W. Suppose that ¢ =
dimker W; (A) and that the columns of matrices X;q and Y;g € C™*% form bases for
the kernels of W; (AX) and W, (X)*, respectively. Then we associate with A four matrices

VA = YiViXio (€ €%), ij=1,2. (®)

We identify the tensor product space C?* ® C?? with the vector space of ¢ X go complex
matrices via the isomorphism Z : C @ €% — C9*% defined by

1 n T1Y1r T1Y2 0 T1Yge
_ i) Y2 ZT2Yy1  T2Y2 o T2Yg
= ® . — . . .

Lq, Yqo g1 TqY2 - TqrYg

for decomposable tensors and extended by linearity. Hereafter we assume this identifica-
tion. Thus we view
Ay =VA® Vs~ Vi@ Vi)
and
pr_ | Vel Vel
0 IQVY I®Vs
as linear transformations acting on C?*% and C? %% @ C?*% respectively. For instance,
- q1%q2 A X N v AN\T
if X € 07 then AY (X) = VAX (Vi) —vdx (V) .
For every positive integer n we write n = {1,2,...,n} and 0 = (). The set of pairs of
indices ¢1 x go is denoted by Q, and we write k = (ky, k) for an element k in Q.



We denote the columns of the matrix X,o by 2%, k € ¢. By [3, Thm. 6.9.1] it
follows that By = {z}f = :clf(ll ® :cgf), k e Q} is a basis for the eigenspace M, and hence

dy := dim M = q1q2. We complete the set By to a basis B = By U {zi, le ﬂ} for the

second root subspace N (see (2)). Here di = dim N — dj.
Let A; = (T'; — NI) |a, = 1,2. In the basis B we have that

0 B;
Ai_[o 0]-, (9)

where B; = [b%‘l] KeQU1 is a matrix of sizes dy x di. Here we assume that Q is ordered

lexicographically. By (9) we have that

(i =XD)z = 3 bz (10)
keQ
for i = 1,2 and | € d;. We write Bl = [bfl] neotd
_ ) k1=1,k2=1
BB (11)
B}

Note that B! is the I-th column of B; written as a matrix.

Theorems 1 and 2 that follow describe the general form of a second root vector, i.e.
an element in N\ M, and a basis for N'. They are adapted two-parameter versions of
Theorems 6.2 and 6.3 in [6].

Theorem 1 A vector z is in N\M if and only if there exist (b‘f,b‘g) e C? ke Q, not
all 0. and vectors =2 € €™, ky € q2 and e ™, ke q1 such that

q1
> (Vanbl + Visbk) 2l + Wi () 2l =0, (12)
ki=1
q2
> (Vaabl + Vaodls) a2 + Wo (A) = 0, (13)
ko=1
and
q1 q2
2= @us + > it @b, (14)
ki=1 ko=1
Then it follows that
T — Nl z=Y b (15)

keQ
fori=1,2.



We recall that columns of the matrix Yy form a basis for the kernel of W, (A)*. So if
we multiply the relation (12) by Y% on the left-hand side we get that

q1
Yfi) Z (angkulw) + Vlngkl’kQ)) xlf(lj =0, ko € @ (16)
ki1=1

When written in the matrix form the above equalities turn to

VAB1 + Vi3By = 0. (17)
Here B, = [bgkhk?)]? ) ZZ K Tn a similar way we get from (13) the matrix equality
1=1,R2=
T T
B, (Vg)i> + By (Vg)é> = 0. (18)
. B, \ [ . A .

Hence it follows that B € ker Dy (via the isomorphism EZ). The system of equations

2

(17) and (18) for By and By is a system of type (4) that is mentioned in the introduction,
and is the main motivation for our study. Furthermore, we remark that both By and By
solve the matrix equation

vix (v3) - vdx () =0,

i.e., they are elements of ker Aj.

The converse part of Theorem 1 says that we can construct a vector 2 € N/ M for
every element in the kernel of D} by (14). To find vectors x’f% note that (17) implies (16),
and then vectors w?f exist because

q1
> (Vb 4+ vigbl )l € (ker Wy (A))* (= im W (X))
k1=1

We find vectors xé} analogously. Theorem 2 tells that these constructions can be extended
to obtain a basis for ker D} from a basis for N’/ M, and conversely.

Theorem 2 Suppose that {Bl, l e ﬂ} is a basis for the kernel of Dy, and that for each

I a vector 2t is associated with B! as in (14). Then By U {zll, le ﬁ} is a basis for N.

Conversely, suppose that B!, | € dy are given as in (11). Then they form a basis for
the kernel of D).

We illustrate Theorems 1 and 2 with an example.

Example 3 Consider the two-parameter system

1 00 10 0 01 0
WiA)=10 10 |N+|0 3 -2 |Xx-]0 1% 1
0 11 01 1 0 0 0



100 000 00 1
WoA)=10 0 0 |XN+|0 1 1 |X—|00 —2
00 1 01 0 00 —2

Evidently the matrices Vg and Vo are singular.

So Ag = (0,0) € 0 (W) and we have
q1 =1 and ¢ = 2. Hence dy = 2. We choose

1

(e}

10 2 2
X10 - 0 . Yig - 0 s XQO - 0 1 s and Y20 - 1 0
0 1 00 0 1
Then it follows that vectors
1 1 1
2l=10|®|0] andzl?=|0|®|1
0 0 0 0

form a basis for M and we have

2 0 01
vie=vy = = |3 0 mav =] 6 1] (19

The space € ® €C? is isomorphic to C? and we identify the direct sum €% & €? with C*.
Then

0000
xx_ |0 0 00
B 2 001
20 01
Because the matrix D)° has rank 1 and d; = dimker D;° it follows that di = 3. Then we
choose
1 0 0
1_| O 2 _ | 1 3_ |0
B = K B = 0 and B® = 1
-2 0 0

as a basis for ker D()\. To construct a vector z| corresponding to B! we need to find
vectors 11, 24 and xli such that

11 21 1 2 11
Viiwio — Vioryy = 0, —2Visz19 — Vipzyy = 0 and Vayx9) — 2Vaoxsy — Vagwgy = 0.

Here note that W; (Ag) = —Vjo. A possible choice is
0 0 0
gil=| 1 [, 28 =] -2 | andail=1]0
—1 2 1



Similarly we find vectors

0 0 0
12 = 1 |, 22=|0| andzl?2=10
-1 0 ] | 0
that correspond to B2, and vectors
[0 ] 0 ] [0 ]
=101, 223 = 1 and z33 = | 0
| 0] -1 ] | 0|
that correspond to B3. Then we have
[0 ] [0 ] [0 ]
0 0 0
1 0 0
1 1 0
A= -=21,22=1| 0 and 7} = 1 1,
0 0 0
-1 -1 0
2 0 -1
| 0 | | 0 | | 0 |
and {z§,22: 21,23, 2}} is a basis for V. 0

By means of the Kronecker bases developed in the next three sections, we shall be
able to construct a basis for the above example in a canonical way - see Example 10.

3 Kronecker canonical form

First we introduce some special matrices needed in the construction of the Kronecker
canonical form. The p X p identity matrix is denoted by I,,. The ¢ x q Jordan matriz with
etgenvalue o is

a l 0 - 0
0O a 1 - 0
Jq(a) =
0 0 O 1
00 0 a |
We also define the p x (p 4+ 1) matrices

10 -+ 0 O 0o 1 0 -~ 0
o 0 1 0 0 and @, = 0 0 1 0
0 0 1 0 0 0 0 1



The pairs of building blocks of the Kronecker canonical formfor a pair of matrices are
of three different types: (L,p), (M,p) and (J («),q) where p > 0, g > 1 and o € CU{c0}.
The building blocks of type (L, p) are of sizes p X (p + 1), the building blocks of type (M, p)
are of sizes (p + 1) x p and the building blocks of type (J («),q) are of sizes ¢ x gq. Here
the blocks of types (L,0) and (M,0) which are of ‘sizes’ 0 x 1 and 1 x 0, respectively,
correspond to a column of ’s and a row of 0’s, respectively, in the Kronecker canonical
form. For p > 1 the types with the corresponding pairs of building blocks are :

type (L,p) with (Fp, Gp),
type (M,p) with (FI:‘F, G;‘f),

e e {5 0SS

The theorem of Kronecker (cf. [17, p. 37] or [19, Thm. A.7.3]) states that every pair of
m X n complex matrices (A, B) is equivalent to a pair of matrices in block diagonal form
with diagonal blocks of types (L,p), (M,p) and (J («),q). We call this block diagonal
form the Kronecker canonical form of a pair (A, B).We call the collection

7 ={(L,h) 7--'1(L7173L) ; (Mvml)w--a(MvmpM) i (J (1), 1) 7--'7(J(O"PJ) 7jm) i}

of the types of the diagonal blocks the set of invariantsof a pair (A, B). The elements of
the set 7 are called the invariantslt is a consequence of the theorem of Kronecker that
two pairs of m X n matrices (A, B) and (C, D) are equivalent if and only if they have the
same sets of invariants. See [17, Thm. 5, p. 40] or [19, Cor. A.7.4]. Note that in our
discussion we view the initial u x v block of zeros in [19, Thm. A.7.3] (in [17, p.39, exp.
(34)] this is the initial h x g block of zeros) as a collection of u blocks of type (L,0) and v
blocks of type (M,0). This enables us to absorb the initial block of zeros into the blocks
of types (L,p) and (M, p). So for instance, pair of matrices

0000 0 000
0000 0 000
0000 01 00
0010 0 0 01
0001 00 00

has set of invariants Z = {(L,0), (M,0),(M,0),(J (c0),1),(J(0),2)}.

Suppose that a pair of commuting N x N matrices (A1, Ay) is such that A? = A2 =
Ay As = 0. Under similarity they can be reduced simultaneously to the strict block upper-
triangular form

1

B
A = 0 |,i=1,2, (20)
0

o O O
o O O

where we may assume that B; and By are such that the matrix [ B, By } has linearly

B

B ] has linearly independent columns. Suppose
2

independent rows, and that the matrix [

9



that (El,ég) is the Kronecker canonical form of the pair (B, B2) and that invertible
matrices P and () are such that El = PB;Q for i = 1,2. Then

=1 _ |0 B
UA,U [0 0 ], (21)
P 0O 0
whereU =| 0 I 0 |,isa canonical form for (A1, A) under simultaneous similarity
00 Q!

of matrices.

Next we introduce the notion of a Kronecker basis for a pair of matrices (A4, B). With
every invariant + €Z we associate a Kronecker chainC, of linearly independent vectors as
follows :

If .= (L,p) then C, = {ul i€ zil} and

BU1 = 0,
Buijy1 = Au;, i €p,
0 = A’U,p+1 .

If t = (M,0) then C, = 0 and if « = (M, p), p > 1 then C, = {uz i 62} and
Bu; = Aujq, 1€p-—1.

Ifi=(J(a),p), a€C, thenCLz{ui, iep} and

(B-aA)u; = 0, -
(B—ad)ups — Au i€p—1.
And finally, if . = (J (00) ,p) then C, = {Uz = B} and
Auy = 0,
Aujyy = Bu;, i€p—1. (23)

The union of all Kronecker chains C = U,c7C, of a pair of matrices (A, B) is called a
Kronecker basis of (A, B).

To unify the treatment of pairs of invariants of types (L,p) and (J («),q) with pairs
of invariants (J () ,p) and (J («) , q) we define the a-shift

C ()= {ui (), iep+1}

of a Kronecker chainC, = {uz 1€ p+ 1} for . = (L,p). The chain C, () is determined
by the relations



if a € C, and
Z Ny ( Z NPT

Here ) is an indeterminate. Then we check dlrectly that vectors u; (), 1 € p+ 1 satisfy
relations (22) if @ € € and relations (23) if & = oo. Note also that the chains C, and
C, () span the same subspace.

4 The Matrix Equation AXDT — BXCT =0

Now we consider the matrix equation (5). Suppose that Z; and Zs are the sets of invariants
of the pairs (A, B) and (C, D), respectively, and C; and Cy their corresponding Kronecker
bases. Now we define a subset J in the set of pairs of invariants Z; x Zo. A pair (¢q,t2)
is in the set J if one of the following holds :

(i) v =(L,p1) and 13 = (L, p2).

(iia) v1 = (L,p1), 12 = (M,ps) and p; < pa,
(iib) v1 = (M,p1), 12 = (L,p2) and p1 > py,
(iiia) ¢ = (L,p1) and 1o = (J (@) ,p2),
(iiib) 1 = (J (o)

(iiic) 11 = (J(a),p1) and 13 = (J (@) ,p2).

With a pair of invariants (11,12) € J we associate a set U, ,,) of matrices as follows :

,p1) and t9 = (L, p2) and

(i) if o1 = (L,p1), 12 = (L,p2), C1uy = {Ulz’a 736101+1} and Cy,, = {U2i~, 73€p2+1}
then

u(L1,L2) = Ul, Ul = Z u111u212 l € D1 +p2 +1
i1 +io=Il+1

(iia) if v = (L,p1), to = (M, p2), where p1 < pg, Cy,, = {uu, 1€ p+ 1} and Cy,, =
{UQi, ] G]E} then

p1

T

Uiy o) = {Uz; U= uriy1ug, g L€ po —m};
2=0

(iib) if 1 = (M7p1)7 la = (L7p2)7 where p; > po, ClL1 = {ulia 76&} and C2L2 =
{UQi, 1€y + 1} then

u(bl,bz) = {Ul; U= ZUI l+zu2 FESE lep — p?}

=0

11



(iiia) if 17 = (L,p1), t2 = (J (@), p2), where a € C U {0}, Cy,, () = {uy; (), 1 €
p1 + 1} is the a-shift of the Kronecker chain Cy,,and Cy,, = {UQZ', 1€ 12} then

u(tl,m) = {Ul; U= Z u1i, (@) U%;Q: ! GIQ} ;

i1 +io=l+1

(iiib) if v = (J (@) ,p1), where o € C U {0}, 19 = (L,p2), C1,, = {uli, 736&} and
Co, () = {UQi (), i €Eps+ 1} is the a-shift of the Kronecker chain Cy,, then

Ui o) = {Ul; U= Y, i u ()T, 1611};

i1+io=Il+1

(ilic) if 11 = (J (a),p1), 2 = (J (@) ,p2), C1uy = {Uu, i GZA} and Cy,, = {ug;, i € ZQ}
then

Uiy =0 U = Z Uulu%;?, I € min{py,p2} 7.
i1 +io=l+1

Using the above setting we have the following theorem :

Theorem 4 A basis U for the space of solutions of the matriz equation AX DT —BXCT =
0, consists of the union of all the sets U, ,,y for pairs of invariants (11,12) in the set J.

The proof uses standard methods and so we only outline the main steps. First we
reduce the matrix equation (5) into blocks, one for each pair of invariants (¢1, ) € Zo X Z
(cf. [30, 32]). Then we show directly that for invariants (t1,t2) € J the matrices in
U(,, ,.,) are linearly independent solutions of (5). Next we consider the linear map X
AXDT — BXCT and show that the dimension of its kernel is equal to the number of
elements in I/, and so U is a basis as required. (For a special case X — AX — XC7 this
is studied in [35, §5].)

Corollary 5 The matriz equation AXDT — BXCT = 0 has only the trivial solution
X =0 if and only if either

(i) there are no invariants of type (L,p) in the sets Ty and Iy and there is no pair of
invariants (J () ,p1) € Iy and (J (B),p2) € Zo with a = B3, or

(ii) one of the sets of invariants Z;, where i is either 1 or 2, consists only of invariants of
the type (M, p1), while there might be invariants of the type (L,ps) in the other set
of invariants but any of them is such that ps > p, where p = max {p;, (M,p1) € Z;}.

12



5 The System of Matrix Equations AX +BY =0 and XC” +
YDT =0

Suppose that U = U, ,,)e 7U(,, 1,) 18 @ basis for the space of solutions of the matrix equa-
tion (5) as described in Theorem 4. We write J' for the set of all the pairs (11,t2) € J that
are different from the cases (¢1,t2) = ((L,p), (M,p + 1)) and (¢1,12) = (M,p + 1), (L, p)),
i.e., if the cases (iia) and (iib) of §4 are replaced by

(iia’) v1 = (L,p1), ta = (M,p2) and p; < py + 1,
(iib") ¢1 = (M,p1). t2 = (L,p2) and p; + 1 > po.

We associate with every pair of invariants (:1,2) € J' a set of pairs of matrices U?
y ) (t1,L2)

as follows. Here the matrices U; are defined in (7)-(diic) for different cases of pairs (11, 12) :

(i) If 11 = (L,p1) and 19 = (L, p2) then

2 Uiy
Uiy ay) = {[ U, | le€pitpr+2

where Uy = Uy, 1p,42 =0,

(ii) If oy = (L,p1), t2 = (M,p2) and p1 +2 < py or 13 = (M,p1), 1o = (L,p2) and

p1 > p2 + 2 then
U
2 — I+1
Uity i) = {[ U ] L€ lp1 —pa| — 1},

(iii) In cases (iiia), (iiib) or (iiic), if @ € C, then

i

aU; +U;_
u@l,Lz)z{[ T 1],}6]3},

and if @ = oo then

2 _ =U
Z/{(LI,LQ) - { [ Ul—l s l e ]_) .
Here
D2, if v = (L,p1) and 1o = (J (@) ,p2),
pP=4 P if v =(J(a),p1) and = (L,p2),
min {py,p2} if v = (J(a),p1) and = (J(a),p2),

and we assume that Uy = 0.

In the above setting we have the following result :

13



Theorem 6 The space of solutions of the pair of matriz equations AX + BY = 0 and
XCT+Y DT =0 has a basis U?> = U(LI’LQ)EJ/U(QH 12)? where the sets Z/I(QL1 1) 0T€ given above.

Let us give a short sketch of a proof. If AX + BY = 0 and XCT + Y DT = 0 then
both X and Y are solutions of the matrix equation AX DT — BXCT = (. By Theorem

4 it follows that X = > yyU and Y = Y dyU. The relations between the scalars vy
Ueud Ueld

and 0y follow from the equalities AX + BY = 0 and XCT +Y D" = 0 using the reduction
into blocks as for the proof of Theorem 4.

6 A Canonical Basis for the Second Root Subspace of Two-
parameter Systems

Now we return to study two-parameter systems (7). We use the notation introduced in
§2. Theorem 2 tells that we can associate to a basis for the kernel of D} a basis for the
second root subspace N. The elements of ker D} satisfy the system of matrix equations
(17) and (18) for By and By that is of type (4). Now we apply the canonical construction
from the previous section to construct a canonical basis for A/. In this basis the matrices
for A; = (I'; — N\I) |a, © = 1,2 are in the canonical form (21). To get the precise form
(21) we suppose that Z; is the set of invariants of the pair (VszVzi\) (note the order)
and C; = U,e1,C;,; is the corresponding Kronecker basis. Further we assume that set of
invariants 7' and corresponding basis U? are defined as in the previous section. (Note
that U2 is a basis for ker D}.) Next we define a mapping 1 on the set of pairs of invariants
J' by

(L,p1 +p2+ 1), if (t1,02) isasin (i),
(M,ps —p1 — 1), if (t1,t2) is as in (da’),
_ ) (M,p1—p2—1), if  (t1,02) is as in (#d'),
UG (J (—a),p2), if  (11,t9) is as in (444a), (24)
(J (—=a),p1), if (t1,t2) is as in (4iid),
L (J (—a),min{py,p2}), if (t1,t2) is asin (diic).
Here we assume that —oo = oco. The set of invariants Z = {9 (¢1,¢2), (t1,t2) € J'} is

called the set of invariants for X. We write U? = I/I(QLI 1) if . =1 (t1,02). Tt turns out that

the set of invariants Z is equal to the set of invariants of a pair of matrices C-= (6’1, 6’2) ,

that correspond to the matrices 4; = (I'; — A1) |ar, @ = 1,2, when in the canonical form
(21).

In the rest of this section we describe the construction of a canonical basis for N
using the basis U? for ker D). We discuss each of three different types of invariants 1 € 7
separately. We discuss the case « = (L, p) in detail and we only outline the construction
for the other two cases since it is similar. We construct a vector in '/ M for every element
in U42. Tn order for A;, i = 1,2 to be in the precise canonical form (21) this construction
differs from the one given in (14). For the same reason we also change bases for ker W; (),

and hence for M : if C;,, = {Uili, le ]_)} is a Kronecker chain for (VQ, Vzi‘) then we define

(3
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C},, to be the set of vectors

’1)50 = X,ouy, | € p. (25)
Because C; = U, er,Ciy; is a basis for C% it follows that C; = U,e7,C},. is a basis for
ker W; ().
6.1 A Basis Corresponding to an Invariant . = (L, p)

Theorem 7 Suppose . = (L,p) =1 (t1,t2) where 11 = (L,p1) € Iy and 19 = (L,p2) € Iy
and p = py + pa + 1. Then there exist vectors vl~i e C", 1=1,2 and l; € p; + 1 such that

anm + W (A) i (26)
Vzlvfo+1 VZQUZO + Wi (A)v; l+1 =0 for l; € p; (27)
and
—Viguhs + Wi (A) o8 = 0. (28)
Then the vectors ' .
=D Y i o, lep (29)
11 4+t0=l+1
and '
2 = (=1 > (vﬁ®v + vl @ vl ), lep+1 (30)
i1 +io=Il+1

are linearly independent. It also follows that
(T —MI) 2t =2} (31)
and
(Ty — XoI) 2 = 2471 (32)
for k € p+ 1, where 2) = zg"H = 0.

Proof. Suppose that C;,, = {uil; I €p;+ 1}, i = 1,2. Because 1; = (L, p;) it follows
from the definition of a Kronecker chain that

Vluzl = 0,
A _ A
Viiuik+1 = Vijuig, k € pi,
— A
0 - ViQUi,m—H -

Recall that Vl;\ = Y;§Vi; Xio, where columns of Yjo form a basis for ker W; (A)*. Then it
follows that vectors Viyvly, Viivldt —Viguly, 1 € i, and —Vioul Pit! helong to (ker W; (A)* )J‘.

Because (ker W; (A)*)™ = im W; (A) there exist vectors v}, € €™ such that (26), (27) and
(28) hold. Then we construct vectors (29) and (30). We write vector 1 ® yo — 9 ® yy
®

also in the determinantal form as zl 52 . Then it follows that
1 Y2
l k ®
’U VlQ'UIO
Ay — A\Ag) 2 E 11 ) _
( ,Ué—]l—l k ‘/QQUé-(l)—l k

15



l ® -1 k &
Vi Vigv -1 Vigu Vigu !
_ (1) I L fo Viztio | _ A,
( ) kgl ‘/2 ,Ué—(l)—l k ‘/22'051—1 k ( ) kgl ‘/22,01201€ ‘/22,012 k 0<Q
and l o
VHU W1 ()\) v
As — Mol 2t = (=1)! 10 el =
( 2 2 0) 1 ( ) kgl Vél’l)l—(i)—l k W2 ()\) ’1)12_{1 k
l k k ® -1
Vv Vv -1 Vi Vigu -
— (-1 b U f Vivio |1 _ A1
( ) kgl ‘/21,05—(1)—1 k ‘/21,05—(1)—1 k ( ) kgl ‘/'21,020 ‘/QQ,Ué()k 0<0
for I € p+ 1. Hence (31) and (32) hold. Here we assume z) = zgﬂ = 0. The vectors

zé, I € p are linearly independent because the vectors Uﬁo: | € p; are linearly independent.
Then it follows from (31) and (32) that the vectors {zf); ZEQ} U {zll lep+ 1} are
linearly independent. O

If we restrict the transformations I'y — A1 and I'o — A9 1 to the joint invariant subspace
S spanned by the vectors {zé; le Q} U {z{; lep+ 1} then we have

0 F,

0 0

(T1 — M) |s= [ 0 0

] and (Ty — AoT) |s= [ 0 Gy ] . (33)

Note that the invariant of the pair of matrices (F),,G)p) is (L,p). We also remark that
the relations (26)-(28) relate the elements in ? to the vectors 2} in the same way as the

relations (12) and (13) relate [ El to the vector (14). Here vectors (25) are used. The
2

particular form of vectors (29) and (30) is chosen in order that (31) and (32) hold, i.e.,

that we have (33).

6.2 A Basis Corresponding to an Invariant . = (M, p)

Suppose that + = (M,p) = n(t1,t2), where o1 = (L,p1) € Iy, t9 = (M,p2) € Iy and
p = ps —p; — 1(>1), and that vectors v}, are defined by (25). The basis for the case
11 = (M,p1) € Iy, 195 = (L,p2) € Zo and p = p; — py — 1 is obtained symmetrically,
interchanging ¢+ = 1 and 7 = 2.

Theorem 8 If 1 = (M,p) € T is as above then there exist vectors vi, € C™, 1 € py + 2
and vh, € C™, 1 € py — 1 such that

Virogg + Wi (A) vf; =0,
V11’Ul1—(')_1 — V12’Ullo + Wh (A) ’Uﬁ—l =0, € p1.

Vil + Wy (A) o} =0,

and
V21’Ul20 — Vzg’l)ggl + Wo (A) vél =0, l€py—1.
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Then the vectors ,
1

Z(l] — (_1)l k+1 ® H—k.‘ i €p+ 1’
k=0
and

p1+1
Z ,Uk:+1 H—k 4 Z ,Uk-i-l l-{—k‘ ’ l c B

are linearly independent. Furthermore, we have
Ty — M) 2 = 2

and

(Ty — XoI) 2} = 2™
for 1 € p.

The proof is very similar to the proof of Theorem 7 and we will omit it.

If we restrict the transformations I'y — A1 and I's — Ao 1 to the joint invariant subspace
S spanned by the vectors {zé; lep+ 1} U {z{; l e ;1_)}, described in the above theorem,
then we have

0

0

(T1 — M) |s= [ 0 0

T T
}% ] and (FQ/\21)|52[0 Gy ]

Note that the invariant of the pair of matrices (FIT , G};) is (M, p) .

6.3 A Basis Corresponding to an Invariant . = (J («),p)

Suppose ¢ = (J (a) ,p) = n(t1,t2), where 11 = (J (—a) ,p1) € Iy, to = (J (—a) ,p2) € Iy,
p = min{p;,p2} and a € C. The basis for the case 11 = (L,p1) and 19 = (J (—a),p2) is
obtained by the same arguments as in the case 11 = (J (—«),p1) and 19 = (J (—a),p2)
using the a-shift Cy,, (—a) = {uu (—a), i €p1 + 1} and writing uy; (—a) = 0 for i >
p1+ 1if po > p; + 1. Then the case 11 = (J (—a),p1) and 19 = (L,p3) is analogous, we
need only to interchange 7 = 1 and 7 = 2. The cases a = oc are the same as the cases
a = ( after interchanging V;; and Vjo for i = 1, 2.

Theorem 9 If 1y = (J(—a),p1) and 13 = (J (—a),p2) then there exist vectors vl €
C™, I € p such that
Ui (@) vjg + Wi (A) vfy = 0

and
Ui (a) vlg !t — Vigolg + Wi A) w1 =0, lep—1.

Here U; () = Vi1 + aVia. The vectors

- va@v“ kolep
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and
l

l l k I+1—k k +1—-k
z1:(—1)2(’”11®v§5 + vjp ® vy] )a lep
k=1
are linearly independent. Furthermore

(T — M) 2 =2}

and
Ty — Xol) 2} = auzh + 2b71

for 1 € p. Here we assume that z = 0.

To prove the theorem we apply the same arguments as in the proof of Theorem 7.

If we restrict the transformations I'y — A1 and I's — Ao 1 to the joint invariant subspace
S spanned by the vectors {zé; l e ]_9} U {zll le Q} given in the above theorem. Then we
have

0 I,

Ty = M) |s= [ 0 0

and (g — XoI) |s= [ g Jpéa) ] ;

and the corresponding invariant is (J (a) ,p) .

6.4 A Canonical Basis for the Second Root Subspace

For every element in the set of invariants Z for A we construct vectors zj and z! as
explained in Theorems 7-9. They are linearly independent (cf. Theorem 2). We denote
the set of these vectors by B and by N the subspace they span. Then N is invariant for
both T'; and we have that N’ C N. If N/ # N we complete the set B} by a set of vectors,
say B", to the basis By for N. We write N = £ (B"). Because the vectors 2} are as many
as dim ker D} and are linearly independent it follows from Theorem 2 that we can assume
that N/ € M. Then we write the pair of restricted transformation A4; = (T; — \I) |»
in the form (9) using the basis By. It follows from Theorems 7-9 that matrices B; of (9)
have the form

_ | B
n=| %] (34
where
[ B 0 0 ]
0 By, 0 0
0 Bi,T1+1
B; = (35)
Bi,TH—Tz
Biri4rat1 0
0 - 0 0 Biyitrotrs |
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The first 7y blocks Bjj, i = 1,2 in the form (35) correspond to the invariants (L, p;) in
the set 7 (hence By; = F), and Byj = G, ). The next ry blocks in (35) correspond to
the invariants (M, p;) in the set Z and the last 3 blocks B;; correspond to the invariants
(J () ,p;). The rows of 0 at the bottom in (34) are as many as there are vectors in the
set N”. Note that the matrices A; of (9), where B; are in the form given by (34) and
(35), are in the canonical form (21). Note also that the set of invariants of the pair of
matrices (§1,§2) equals 7.
We illustrate the preceding discussion with two examples.

Example 10 Consider again the two-parameter system of Example 3 (cf. also [6, Ex.
7.1]). The sets of invariants for the pairs (V{\QO, Vl)io) and (1/2/\20, V;io) (see (19)) that corre-
spond to the eigenvalue Ag = (0,0) are {(L,0),(M,0)} and {(L,1),(M,0)}, respectively.

The set of invariants for Ag is {(L,2)}. Kronecker chains associated with the invariants
1

(L,0) and (L, 1) are [1] and { l (1] ] , [ 2 ] }, respectively. Then we have that

0
1 0 3
'Ul(] = 0 U20 = 1 and ’UQO = 0
0 0 0
We find vectors
0 0 0 0 0
'U]] = ]. s 'U]] = _]. &nd 'U%] = 0 'UQ] == 0 s 'U%] - 0
-1 1 0 : 0
such that
Vitogy — Viguy, = 0, —Vigujy — Vigui, =0
and

| 1 2 1 2 2 3
Varvgg — Vagua = 0, Varvyg — Vagvgg — Vaougy = 0 and — Vaguig — Vauy =0

hold. Then it follows from Theorems 2 and 7 that the vectors

0 : 0 ] [0 0
~1 0 0 0 0
0 0 0 —3 0
0 0 0 —3 —3
1 _ 2 _ 1 _ 2 _ 3 _
zz=1 0 |, 2=1]20 zZ] = 1 1, 2= 1 and 2z} = 0
0 0 0 0 0
0 0 0 : :
0 0 ~1 ~1 0
L 0 | 0 ] | 0 | 0 | 0

form a basis for A/. Note that the above method to construct vectors of a basis for N’
differs from the method given in Theorems 1 and 2, and which is used in Example 3, hence
also the bases constructed in the two examples are different. O
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Example 11 Suppose that we are given matrices

(01 00 0 07 (1.0 0 0 0 07
001000 010000
pA_ 000100 5 1000000
" 0000T10] "' 000100/’
000001 000010
L0000 0 0] 000000 1,
and
01000 10000
00100 00000
VA=10 000 0|andVh={0 0 1 0 0
00021 00010
0000 2 00001

Then we form a two-parameter system

Wl(A)=lIG Vﬁ%ﬁ[o Vlé]AQ_lO 0]

0 I 0 0 Is 0
and \ \
WQ('\)_lO 0 A1+[0 L 1ML ool

From the structure of the above two-parameter system it follows that it is nonsingular and
that A = (0,0) is an eigenvalue. We also find that the matrices V;?, 4, = 1,2, are precisely

E

as defined by (8) if we choose X1q = [? ],Ym— [?],XQU— [](.) ] and Yo =
6 5

[ {)5 ] The set of invariants for (Vl’\Q,Vf\l) is {(L,2),(M,3)} and the set of invariants

for (VQ)Q, Vz)i) is {(L,1),(M,1),(J(2),2)}. The set of pairs of invariants J' has three
elements {(L,2). (L, 1)}, {(L,2),,(J (2),2)} and {(M,3) (L, 1)} . Applying the mapping
7 defined by (24) we find that the set of invariants for Ag is {(L,4) ., (M,1),(J(2),2)}. O

We conclude with a remark. Note that an arbitrary set of invariants that contains
no invariants (L,0) and (M,0) is a set of invariants for some pair of matrices (By, B3)
associated with a pair of commuting matrices Ay, Ay as given in (20). However, not
every set of invariants (even if it does not contain any invariants (L,0) and (M,0)) is a
set of invariants, say Z, for an eigenvalue of a two-parameter system. For instance, the
number of invariants of the type (M, p) in Z can not be larger then twice the number of
invariants of the type (L,p) in Z. (To prove this claim observe that matrices V/Q\, V1’1\ are
square matrices and therefore their set of invariants Z; contains equal numbers, say [;, of
invariants of types (L, p) and (M,p). Then Z = n(J') contains exactly l1lo invariants of
type (L, p) and at most 2115 invariants of type (M, p) —see (24), and sections 4 and 5.) To
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characterize the sets Z that are possible sets of invariants for eigenvalues of two-parameter

systems is, at this time, an open problem.
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